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Abstract The number of colourings of a graph G with Q or fewer colors is a
polynomial in Q known as the chromatic polynomial PG(Q). It coincides with
the partition function 2£G of the Q state Potts model on G at zero temperature
and in the antiferromagnetic regime eκ = 0. In the planar case, the Beraha

conjecture particularizes the numbers 5n = 4cos2 — as possible accumulation
n

points of real zeroes of PG in the infinite graph limit. We suggest in this work an
approach based on recent developments of quantum groups to handle this
conjecture. For the square, triangular and honeycomb lattices and systems
wrapped on a cylinder / x ί, we first exhibit in the (β, eκ) Potts parameter space
a critical line, where &G(Q, eκ) has real zeroes converging to and only to the Bn

9s
as /, £->oo. The analysis is based on the vertex representation of the Q state
Potts model, quantum algebra Uqsl(2) properties for q a root of unity, and
conformal invariance. Uqsl(2) symmetry is present for any eκ, including the
chromatic polynomial case ex = 0. Using an additional hypothesis on the
eigenvalues structure and knowledge of the Potts parameter space, we then
argue that for PG(Q), real zeros occur and converge to Bn's, 2 ̂  n ̂  n0 only,
where n0 depends on the lattice. Extensions to other kinds of graphs and size
dependence of the zeros are discussed. Finally physical applications are also
mentioned.

1. Introduction

Consider a graph G, i.e. a set of points and edges joining pairs of points l. The
number of ways of colouring the points of G with Q 6 N or fewer colours, no two
adjacent points having the same colour, is a polynomial in Q known as the
chromatic polynomial: PG(Q) [1].

* Laboratoire de Γlnstitut de Recherche Fondamentale du Commissariat a FEnergie Atomique
1 We suppose that G has no loop, otherwise PG would be trivially 0 for any Q. Moreover we can
restrict to graphs with no parallel edges, since their presence does not affect the chromatic problem
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Besides graph theory, PG(Q) appears also in statistical mechanics[2, 3]. If we
consider the colours as spins σ=l,...,gofaβ state Potts model such that spins σί?

σ7 on adjacent points interact with energy —Jδσ.σ. the partition function is

&G(Q,eK)=Σ Π e»>**"9 (1)
{σ} adjacent

spins

where β=—,T the temperature, K = βJ. Hence in the antiferromagnetic region

and for T->Ό we obtain [3]
&G(Q,0) (2)

Although PG(Q) is defined initially as a number of colourings, we can consider it
from now on as a polynomial where Q is indeterminate. Similarly, high
temperature expansion [2, 3] of 3?G(Q, eκ) allows to define the β-state Potts model
for any complex Q. One finds

&G(Q,eκ)=Σ(eK-VBQC, (3)
9

where the sum is over graphs ̂  containing all sites of G and a subset of its edges. B
is the number of edges in ,̂ C the number of connected components, including
isolated sites. Equation (2) holds for complex Q as well.

The zeros of PG are of special interest since for Q integer PG(Q) = 0 means that
the graph G is not β-colorable. We restrict in this paper to planar graphs 2 (for
instance the four colors conjecture [1] means that there should be no graph G such
that PG(4) = 0). Various studies have then revealed the importance [4-9] of the
Beraha numbers in the problem

#π = 4cos2^, (4)

#ι=4, #2 = 0, #3 = 1, #4 = 2, J56 = 3, other #π's (see Table 1) are non-integer and
accumulate in 4 when n-» oo.

The %#Λ's are supposed to play a specific role as accumulation points of zeros of
chromatic polynomials for large graphs [4-6, 2]. We have found two formulations
of the corresponding Beraha conjecture which do not seem fully equivalent. In [6]
it is conjectured that among the limits of zeroes of all (not necessarily recursive)
families of chromatic polynomials are found all #π's while a slightly different
statement is given in [2], i.e. that the real zeroes of the chromatic polynomial of an
arbitrary planar lattice should cluster round limit points belonging to the #π's
when the lattice becomes large. In this paper we consider mainly the second
formulation, and hence focus on real zeros. Several numerical checks have been
performed [8-10], but besides the case of #5 [7, 8] and of special recursive maps
[4, 6] we do not know any exact analysis of the problem.

On the other hand the Beraha numbers (4) occur in several other contexts like
the possible values of index for subfactors [11], the classification of unitary
conformal field theories [12], or the construction of integrable models [13, 14].

2 We recall that a graph G is planar if it can be drawn on the plane in such a way that no two
adjacent edges meet except at a common endpoint
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Table 1. Numerical values of some Beraha numbers Bn = 4cos2 —
n

B, =4
B2 =0
B3 =1
B4 = 2
B5 ~ 2.618034
B6 = 3
BΊ ^3.2469980
B8 -3.414214
B9 -3.532089
BίQ~ 3.618034

B' =4

Recent developments [14-17] show how the latter subjects are connected due to
their common quantum group structure [18]. Our purpose in this paper is to
reconsider the colouring problem and Beraha conjecture from the point of view of
quantum s/(2). We show that for the square, triangular and honeycomb lattice,
there is a line eκ(Q) in the Potts model parameter space close to the zero
temperature antiferromagnetic line eκ = 0 such that for families of graphs G made
of a piece t x / of lattice wrapped on a cylinder, <2?G(β> e*) has real zeros converging
to all the ΰπ's in the thermodynamic limit ί,/-»oo. The properties of the Potts
model are singular at these numbers. For the chromatic polynomial 2£G(Q, 0) itself,
we show under some additional assumptions that real zeros converge to a subset
Bn, n^n0 where n0 depends on the lattice (n0 = 6 for the square lattice, 14 for the
triangular, 4 for the honeycomb). We discuss possible extensions of our results to
other two dimensional graphs. Physical applications are also mentioned.

2. Square Lattice-General Description

We start with the square lattice and consider a Q (integer)-state Potts model on the
planar graph Gltt of Fig. 1, with free boundary conditions (BC) on the top and
bottom row, and periodic BC in the time direction. We denote the horizontal
(vertical) coupling J1(J2) The transfer matrix τPotts from one column to the next is
expressed as a product of bond matrices X that add some horizontal or vertical
edge. Defining /

(^2i-l)σσ' = 6~1/2 Π <5 '

(M .-«•»/'' Ί>
we have

(6)

where



660 H. Saleur

Fig. 1. Square lattice graph Gu, and its medial graph G'. Opposite sides in the time direction t are
identified

and

β l/2 τ-ί Y ΓT Y tη\
11 Λ2i-l 11 Λ2i \'J

The operators e satisfy the Temperley Lieb projector algebra

(8)

and the partition function is

(9)

An important step in our approach will consist in using the other represen-
tation of algebra (8) provided by the staggered 6-vertex model. We introduce
vertices on the medial graph G', with weights

X XX V V XX Vx\ XX xx xx Xx

or
*! XX

*-ι (10)

-1 \+x2q

depending on whether the vertex stands on an horizontal or vertical bond of G.
Matrices which add a vertex are

where e acts in the tensor product of 21 spin £ representations ^=

0 0 0 0

0 ήΓ1 -1 0

0 -1 q 0

o o o o
where

as

(12)

(15)
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It was then noticed in [18] that (12), (11) and hence the whole vertex transfer
matrix τvertex commute with the quantum algebra Uqsl(2). The latter is a
deformation of the universal enveloping algebra of sl(2) with generators S*, Sz

obeying

i ~ I^Λ ^ ίvS/7~σί + l

Acting in jΊf we have

21

sz= Σ *f ,

where σ are usual sl(2) generators acting in ρ1/2. The relations (8) define the
commutant of Uqsl(2) in J4? .

In the q generic case, the representations of Uqsl(2) are in one to one
correspondence with sl(2) (q = 1) case. We label them as ρp with dimension 2/+ 1.
Due to

we can decompose the space Jtif onto eigenspaces as

W= Θ Γjlρj9 (16)
j=o

jf integer

where

"-G^-G-*0
Associated to spin 7 we have eigenvalues A", α = l, ...,Γjl (in increasing order).

β matrices (4, 12) satisfying the same algebra, τPotts and τvertex have some
eigenvalues in common. Their precise correspondence is worked out using for
instance graphical arguments. On G, the partition function of the Q (integer)- state
Potts model is [2, 3]

&G(Q,eκ\eκ>)= Σ(^-l)βl(^2-l)β2βc, (18)

which now makes sense for any real Q. The graphs ^ are in one to one
correspondence with polygon decomposition &' of G' [19], and one finds using
Euler's relation

where P is the number of polygons in &'.
The polygons can be oriented, and their weight Q1/2 turned into a local form by

associating complex weights q±1/4 to each left or right turn. Attaching oriented
polygons at each site of the medial lattice reproduces the 6-vertex model with
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weights (10) (the additional minus sign is introduced there for convenience and
does not change the resulting partition function). A special case must be taken to
deal with the periodic BC [19, 21], and one finds

/ r^1

j=o q*=ι J

j integer

where we have introduced the q analog of the dimension of representations ρj9

(for simplicity, the / dependence of eigenvalues is not indicated in our notation).
Formula (20) holds true for any real Q. When Q is not integer the coefficients in (20)
can be non-integer, reflecting the fact that the partition function of the geometrical
model (18, 19) is not the trace of some transfer matrix raised to the ί.

3. Representations of Uqsl(2) when Q is a Root of Unity

The representation theory of Uqsl(2) is qualitatively very different [1 5, 22, 23] from
the generic case when q is a root of unity q = eiπm/n. As shown in [1 5], sets of states
which for q generic belong to representations ρ^ , ρjf can gather in a larger (Type I)
representation ρjr which is indecomposable but not irreducible when

/=-l-/modn

' l }

This pairing occurs in a maximal way. For a given 0 ̂  y < we have spins

0 gj' < n - 1 -j =j1 <j + n=j2<... <jk ^ 21 such that (/,,;, + J satisfy (21 ). Then all
Γ?k representations ρjk are paired with a subset Γ?k of the Γjk_ t representations
ρjk_l. The remaining ρ j k_1 are paired with a subset Γjk

/_1 — Γ?k

l of the Γ?J_2

representations ρ/k_2, etc.
In this way all^, ι'^l representations are paired. We are left with a number

ί2?I = Γf-Γ?' + Γ?'-Γ?' + ... +(-)"Γ?k

1 (22)

of representations which cannot be paired. They are called of Type II, and have

still the same structure as sl(2) ones. The case; = — — - is treated separately since it
2 w _ j

is invariant under (21). Representations with spins 7'= rnodn are not paired,

and also in correspondence with sl(2) ones. They are nevertheless called of Type I.
Hence, because (2/+ \)q changes sign in (21), Type I representations are character-
ized by their q dimension being zero.

The transfer matrix of the vertex model τvertex commutes with Uqsl(2\ hence
when two representations ρp ρr get paired, the corresponding eigenvalues λp λr

which were not related for q generic become identical. The expression (22) thus
makes sense for contributions to the partition function also, and (20) reads then

E(π/2)-l

•'> , (23)
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where E(y) is the integer part of y, and

- Σ (4)'+ •••+(-)* (*y- (24)
α= 1 α=l α= 1

In the latter expression the λ* are defined by continuity from the irrational case.

4. The "Non-Physical" Self Dual Line: Conformal Properties

So far our discussion did not depend on the values of the couplings and actually
may be generalized to an inhomogeneous Potts model. To proceed further we
need, besides the Uqsl(2) structure, some information on the eigenvalues λ
themselves. Unfortunately, not much is known for general Kl9 K2. The most
favorable case is the critical self dual [3] line characterized by

Xlx2 = l. (25)

In this case the staggered 6- vertex model becomes homogeneous [1]. Moreover
the weights of two last kind of vertices can be made equal by a gauge
transformation, giving a zero field 6-vertex model. This is known to be (partly)
solvable. In the isotropic X j = x2 case, (25) becomes x2 = 1 . In Refs. [1 5, 21] the case
x1? x2 > 0 was considered, corresponding to the ferromagnetic critical Potts model.
There it was shown how the peculiarities of Uqsl(2) representations for q a root of
unity were related to the existence of minimal conformal theories in the continuum
limit, the degeneracies in the spectrum of τvertex corresponding to the appearance of
null states in Virasoro modules [24]. This however was a subtle effect affecting
small eigenvalues, and not manifest directly in the physical properties of the

Q = 4 cos2 — Potts model. For instance the largest eigenvalue of τvertex appears in

the 7' = 0 sector, and the associated representation never gets mixed. Hence for x = 1
in particular the free energy of a Potts model on an infinite cylinder is regular for
any Q.

We consider here the other case χi9 x2 <0. In the isotropic case, eκ = 1 — β1/2,
which is not very physical since K is complex (with imaginary part equal to π) for
Q > 1. However it should be of some interest since the B dependent term in (3) is
negative, as for the chromatic polynomial case. We have

#G(&*= -1) = Σ(-β1/2)*βC, (26)0

thus 2£G on the line x= — 1 is a polynomial in Q1/2.
With the geometry we choose, τvertex does not seem to be directly diagonaliz-

able using the Bethe ansatz [25], We can however consider the line (25) with x l 5 x2

negative and take the limit x2->0~, xx -> — oo to deal instead with the hamiltonian
problem

H= "rclhi^ V σfσf+ 1 +σfσf+ 1 +cosyσfσf+1 + l- siny(σf-σf,), (27)

where q = eιy, 0 ̂  y ̂  f . Bethe ansatz equations can be written for (27). As shown in
[15], associated Bethe states with Sz ̂  0 are annihilated by the raising operator S + .
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For q generic the Bethe solutions are believed to give all the eigenenergies ε', while
their multiplicity 2/4-1 follows from quantum group symmetry [26].

For each O gj^/, it is possible to study the smallest ε* = εj. Under the usual
real roots assumption [27] one finds, where ε is the non-universal extensive part of
the energy

21 c
lim — (εj — ε) = hj — — (28)

with central charge

c-l-6^, (29)

conformal weights [28]

hj=J" ', (30)

and we have introduced

The Kac formula in parametrization (29) reads

"rs — Λ <:4(5

and hj=hίtί + 2j. Although results (28-30) are established in the ί->oo limit,
corrections to scaling analysis [17] suggests that the relative position of levels εj
described from (30) holds true - up to any fixed energy - for / large enough. In fact
the numerical study shows this order is correct for any finite / already. We see from
(30) that the minimum hj occurs for spin

J=L~^_r (32)

where [y] means the integer closer to y (ambiguity for δ = 2ri is discussed later).
Due to Uqsl(2) symmetry, all levels εj are repeated 2/4-1 times. Some of the hfs are
negative, in connection with the non-unitarity of the theory. The apparent central
charge, i.e. the one observed by measuring the ground state εj, is

capp = c-24Λ,. (33)

Besides the εj, not much can be calculated exactly. But Bethe ansatz and conformal
invariance arguments suggest that

lim Kf = lim yWΐ-* = ~ = Kjiy) , (34)
α=l

where y is an undeterminate variable in the generating function and P(y)
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Table 2. a) Energies of the XXZ hamiltonian (27) at / = 2, δ = J/7. b) Scaled gaps are indicated, to be
compared with their asymptotic (conformal weights) values

a)
S=0s=o
-0.824208; εj=-0.606536; -0.375083; 0.125028; 1.074263;

S = l
β}= -0.824208; -0.375083; εf=0.125028; ε? = 1.074263

S=2
4=_ 0.375083

b)
21

ε£ = 1.356701

-(ε*-εi)=2.4997 2
n

— (β}-βo)=- 0-27715 ^--0.21653
π

— (εj- ε}) = 1.2086 1
π

-(ef_e})=2.4172 2
7Γ

2/

π
(β J - β J) = 0.29469 fc2 - 0.26779

From (30, 32) one deduces easily the structure of the whole spectrum. As an

example we consider δ = J/7, 1=2. From (33) the ground state occurs for J = 1, ε{.
The next level is ε^ then ε\ appear after ε\, εl and finally SQ. Numerical values are
given Table 2, together with the asymptotic expected ones.

Concerning the full vertex model, we found numerically a completely similar
structure. If we set

sinw
y<w<π(modπ),sιn(y —

the anisotropy factor is

y n
equal to 1 for x2 = — 1, u = - + — . It is also possible to consider the Potts model in

the slightly different geometry of [25] where Bethe ansatz can be applied for any u.
The results are similar, and for clarity we do not discuss them.

5. Singularities of the Potts Model

The main result of the last section is that the value of j at which the ground state
occurs moves with δ. This is very different from the usual x = 1 case, and combined
with (23) plus Uqsl(2) representation theory, will lead to some singularities for the
Potts model.
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We suppose / large enough such that in some fixed interval of <5, the two largest
eigenvalues of τvertex occur at spin expected from (33). Note that if the largest
eigenvalue Λ = λj9 the next one A is either λj+i or λj_^ depending on whether

—— e [J, J +1] or [J— 1, J]. For δ irrational, there is no possible cancellation in

the coefficients of (23). The ground state λj of the vertex model is also the one of
the Potts model, and in the infinite strip limit £->oo 3,

fl — fl — — in; 1 (τς\
./Potts ./vertex— /^i 111ΛJ \JJJ

When δ is a rational, additional degeneracies occur among the λ's and accordingly

cancellations in (23). If δ is not integer, δ= —, (2J+ l)q is
4 non-zero due to m> 1.

Moreover the representation ρj attached to λj cannot mix into a Type I. For, if
that were the case, λj would coincide with some ^-ι-jmodπ ^ut the next
eigenvalue A occurs for a highest weight at J±l, and none of the ρ j±1

representations mixes with QJ for m>l. Hence (35) still holds true when δ is
rational eg —N.

Suppose now <5 integer = n. We have to distinguish between odd and even case.
If n = 2n' + l, J = [n] = n'. QJ is one of these representations which are still
isomorphic to s/(2) ones, but with q dimension zero (2J + 1)4 = 0. Hence the
contribution of λj suddenly disappears from (20). If n = 2n', [J] is right in the
middle of n' and n' — 1. From (30), hn. = hn, _ 15 thus λ^ and λ^ _ i are asymptotically
degenerate. In fact, due to Uqsl(2) symmetry and since n', n' — l obey (22), they are
equal for finite /, the representations ρn> and ρ π / _ 1 mixing into a Type! The
^-dimension of Qn, n, _ γ being zero, the contribution of λj again disappears from
(20).

We do not expect any additional degeneracies in the spectrum, such that λj
would become equal to still another λ° at δ = n, just replacing the missing
contribution of λj in (20). This can be fully established using the conformal
invariance description (34). Indeed, we expect in the continuum limit the

— πh

eigenvalues λ to scale as λ cz Λe ' , where h is some conformal weight. Hence, each
term in the summation (24) reads asymptotically

lim Σ (λjftxΛ'iP Ί'KJe-1"11). (36)

3 In Def. (35), fpotis is the free energy per bond of the Potts model, equal to half of the free energy per
site.
Γ » Λ Λ R-Π [n/m-ί~\*δ=—, n and m coprimes. mί:2 and δ^2 imply n§4. Then J=\ =

Γn-2] . t /n-2\ /, '
*[—J-erther E^—) or E(-

n-2\ n-2 n 1
+l. Then J< +1 = - + - and

4 J 4 4 2

< - + 2 ̂  n. Moreover, if 2J +1 divides n, 2J + l = -,p>l,p does not divide m for by hypothesis n
2 m P

and m are coprimes. Hence sinπ(2J + l)— ΦO
n
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y n sin u
Table 3. Logarithms of τvertex eigenvalues for δ = n = 4,u = π — = 7 —, X = 1H e,l=3.
n_1 3 2 8 sιn(y-w)

= -, thus J is 1 or 2, #! and ρ2 are mixed. We underlined levels of highest weight states kept in

τPotts. The ground state of τPotts is the σth excited state of τvertex

S = 0
0.18248x2; 0x2; -0.24840x2; -0.61799; -0.881374x2; -1.036641;
-1.51439x2; -1.76274; -1.95022x2; -2.18139; -2.22547;
-2.644121; -3.370226; -3.78887

S = l
0.18248x2; 0; -0.24840x2; -0.61799; -0.881374x2; -1.51439x2;
-1.95022x2; -2.181397; -2.644121; -3.370226

S = 2
0.18248; 0; -0.24840; -0.881374; -1.51439; -1.94522

S = 3
0

A naive calculation of lim χj/fί) however breaks down (this again is very
t,ί-"00

different from the x = l case discussed in [15]). Indeed in the infinite sum

χJ = Kj(y)-Kn,^j(y) + KJ+J(y)-KH.i.J+J(y)+... (37)

the contribution of yh cancel due to

Hence Xj-*Q while At diverges. This phenomenon is similar to the one encountered
by Andrews et al. [1 3] in their calculation of local height probabilities in regime II.
It means that besides the above cancellation of largest eigenvalues, many other
ones occur, and that the first eigenvalue contributing to the Potts partition
function (24) is very far in the vertex spectrum. A numerical example is shown in
Table 3.

6. Zeros of the Potts Model Partition Function on the Self Dual Line

Associated to the above mechanisms are zeros of «2ΓG(β, x = — 1). Indeed consider
first the case δ ̂  n = 2nf + 1. Expand &G on the vertex-Potts eigenvalues as in (20),

%G(Q)=Qltl2 Σ (2; + i)« ΐ (Xjf (39)
7=0 α = l

j integer

SG = 0 can be rewritten as
Γjl //LαY l Γ}1 /Λ,αY

(2J+l) f=- Σ (2J+l)f Uf - Σ (2/+l)€ Σ hi - (40)
α = 2 \λj/ jf = 0 α = l \/j/

In the t-> oo limit, because λj is non-degenerate, the right member goes to zero,
and the solution of (40) in variable Q is Bn. For t finite, we can expand both sides
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which are analytic in Q around Q = Bn. The coefficients are real since eigenvalues λ
are real or appearing in pairs of complex conjugate. Hence (40) is solved by real
numbers Q(t) which converge exponentially fast towards Bn for ί-κx>. For δ^n
= 2«', a similar result is reached taking into account the multiplicity 2 (with
opposite prefactors) of the largest eigenvalue Ai, = λ^_1 for δ = 2n.

Hence we expect real zeroes converging to all the Bn\ for l> —— and ί->oo.
2 n-l

We can also consider both /, t increasing simultaneously. For /;> , the

largest eigenvalue occurs at J. Due to the conformal invariance result on the
behaviour of other λ\ the sums in (40) converge for any t when /-»oo, and can be
expanded as before around Q = Bn for t large.

Besides the Bn, no other singularity shows up in the analysis, especially for

Q = 4 cos2 —, m > 1. These are thus the only accumulation points of real zeros (we
n

do not have access here to information on the pattern of complex zeroes).

7. Non-Physical Critical Lines for the Triangular and Honeycomb Lattices

It is important to consider also some other lattices, as the Beraha conjecture we
want to address applies irrespectively of the graph G.

We introduce the Q-state Potts model on the triangular lattice (Fig. 2) G with
three couplings J^J2J^ depending on the type of bond. With the same definitions
as in (5, 6) we have

4i + 2 =

4. =(l+x2έ?4i),

(41)

a)

b)

Fig. 2. a) The triangular lattice and its medial Kagome lattice, b) The column to column transfer
matrix for this example reads

τPotts = G ^5%1X4%2%3%4%2
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andfor/o d d = 2/' + l,

τpotts = δ"2 Π *4ί+1 'Π *2i Π *«-ι !ff Xu (42)
i = 0 i=l i=l i=l

The important thing is that the Temperley Lieb algebra (8) is still hidden in the
Potts transfer matrix. Hence, as in the square lattice case, we can use the other
(vertex) representation. The medial lattice G' is the Kagome lattice. Three types of
vertices occur with the following weights:

x , + q

x~ ~ \ ~ " x
- χ 2 -χ 2

ifi
1 1 -x 3 -x3 i + xaq"1 ^^ (43)

and matrices adding a vertex read as (41), where the Temperley Lieb represen-
tation is (12). Commutation of τvertex with l/gs/(2) follows, where again

l . (44)

Expressions (20, 23) still hold true.
Although G is not self dual, a combination of duality and star triangle

transformation exists that map G onto itself [30, 31]. The fixed critical line is given
by

3+x2x3 = l. (45)

The thermodynamic properties of the vertex model when (45) is satisfied have
very simple expressions in terms of the same properties on the square lattice. For
instance [2]

) = Σ. /SSM (46)

Moreover we expect the universality classes to be the same. For x, ̂ 0 (45), this is
the known ferromagnetic Potts model. For x f^0 in (45), we should recover
properties of Sect. 4. This is easily checked in the anisotropic limit with x2, x3->0~
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\τ/ \τ/ \τ/i J>i /I

Fig. 3. The hexagonal lattice and its medial Kagome lattice

while Xi -> — oo. Then (45) implies x2 + x3 ~ —, and

1 2l \
-Σ/<j> (47)

so the hamiltonian is again (27).
In the isotropic case and for x^O, line (45) stops being physical at Q = 2, and

for Q > 2, the corresponding coupling is imaginary.
Results for the honeycomb lattice can then be deduced by duality. The medial

graph G is also a Kagome lattice (Fig. 3), and vertex weights are similar to (43),

with χhoneycomb= ̂ .̂ .̂ The cπticality condition reads thus

(48)

Within the universality hypothesis, the Q state Potts model on lines (25,45,48)
with negative x/s should be critical at the Beraha values Q = Bn. Consequently we
expect real zeros of &G(Q, x) to converge to all Bn's for ί-^ oo and / large enough,
including ί,/->oo.

8. Zeroes of the Chromatic Polynomial for the Square Lattice

At the present stage we have shown that in the Potts model parameter space there
is a line

(49)

along which 2£G(Q, eκ) has real zeros in the variable Q which accumulate to the Bn's
(and only to these) in the thermodynamic limit. The discussion of the chromatic
polynomial PG = &G(Q,Q) is more difficult.

On the one hand we still have at our disposal the algebraic structure of
Sects. 2, 3, so formulas (20,23) still hold true. But we do not have much
information concerning the eigenvalues λ" themselves. Since the argumentation
leading to zeros of JfG at the Bn's relied on both the Uqsl(2) representation theory
and the functional dependence (30), we cannot be so precise about PG. However a
discussion is still possible under some additional assumptions.

We noticed that line (49) is critical. To reach the zero temperature antiferro line

eκ = 0 (50)

we have to describe some path in the Potts model parameter space. What makes
sense physically is to tune the coupling eκ to zero at fixed Q. Away from (49), the
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-1 -

-2 -

-3

Fig. 4. Parameter space of the square lattice Potts model. Identified critical lines are: (a) eκ = l
+ β1/2, (b) eκ = 1 -βi/2, (c) eκ= -1 +(4-Q)1/2 and its dual (d) eκ= -1 -(4-β)1/2, (e) is the line
eκ = Q giving the chromatic polynomial, (e) can be reached from (b) without crossing (c) provided

Potts model and the vertex model should become massive, and finite gaps
appear. For / finite, provided the approach to (49) is regular, the few largest

eigenvalues should keep the same structure as in Sect. 4, with gaps I going as - in

case (49) 1 widening, while coincidences at q = elπm/n still must occur due to Uqsl(2)

symmetry.
Hence the argumentation of Sects. 5, 6 leading to real zeros accumulating at

the #M's should extend away from line (49), until we reach some other critical point
where the structure of the spectrum may be modified and some eigenvalues cross.
In the (Q, eκ) plane, Baxter has [32] exhibited an antiferromagnetic critical line
(Fig. 4)

e*=-l+(4-β)1/2. (51)

By turning eκ, we can reach line (50) from (49) without crossing (51) provided β = 3.
In which case, assuming lines abed of Fig. 4 are the only critical lines in the region
of interest, the spectrum structure of Sect. 4 should be correct in the eκ = 0 case as
well.

When β>3, we cannot reach (50) from (49) without crossing (51), and the
results of Sect. 4 cannot be extended without further analysis. A study of line (51)
and the vicinity of Q = 3 would be interesting by itself, and we hope to report on it
later. For our purpose, we simply report here a numerical study of the staggered 6
vertex model for eκ = 0. Some results are shown Figs. 5, 6 for 1=3. We see that
provided (5 = 6, there occur numerous crossings, and for δ>6, the structure of
eigenvalues has been deeply changed, the largest one always occurring at J = l
independently of δ. Other calculations show similar features occurring when (51)
is crossed. (We found numerically J = 0 for / even, J = 1 for / odd.)
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-1

-2

-3

J=4

2 4 6 8 6

Fig. 5

Fig. 5. Dependence of hj (30) upon δ. Crossing (indicated by dots) are due to Uqsl(2) structure

Fig. 6. Numerical values of In | λj | for /=3 as a function δ in the chromatic polynomial case. For δ^β
the structure is qualitatively the same as Fig. 5. For δ > 6 the ground state is λ\, J = 1. Notice the
very large degeneracy at δ = 6

Since for Q > 3, J^ 1 on (50), the largest eigenvalues of the Potts and vertex
models are now identical, and there is no singularity left at the £n's.

Hence we expect real zeros of PG converging to B1...B5 only (and maybe B6.
This point is at the edge of our reasoning and we are not sure about its status),
and only, and no zeros after Q = 3. So far, neither B5 nor B6 have been observed
numerically.

9. Zeros of the Chromatic Polynomial. Triangular and Honeycomb Lattices

The reasoning is in principle the same for these other lattices. In the triangular case,
it is supposed [32] that the antiferro critical line coincides with the zero temperature
one. Thus when turning eκ to zero from (45) at fixed β, a critical point is always
met. Fortunately some additional information is known from Baxter's work [10].
A crossing of eigenvalues is localized at B14 < β0 ~ 3.8197 < Bl 5 (this point may be
part of some other critical line in Fig. 7). By analogy with the square lattice case, the
structure of eigenvalues of Sect. 4 should extend up to δ <> 14 on line (50), with the
usual consequence, while for δ ̂  15 it should exhibit a maximum at J £Ξ 1. Hence we
expect real zeros of PG converging to B^ ...B14.

Finally for the honeycomb case things are more mysterious. The image of the
antiferro critical line of the triangular lattice under duality is

eκ = l-Q. (52)
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4.0
Q

Fig. 7. Parameter space of the triangular lattice Potts model. Known critical lines are: (a) β1/2x3

+ 3x2 = l, (b) eκ=Q. On (b), a crossing is identified at β0^3.8197

Fig. 8. Parameter space of the honeycomb lattice Potts model. Known critical lines are: (a) β1/2

f3x=x3, (b) eκ = l—Q. The chromatic polynomial line is (c) eκ=Q. It can be reached from (a)
without crossing (b) for O^βgl or

Tuning eκ to 0 from (48), we do not cross a known critical line for Q < 1 or Q > 2,
and cross (52) for 1 <Q<2. It seems quite unlikely that the eigenvalues structure
changes twice along (52). Rather, there is probably some other singularity away
from (48) for Q ̂  2 which forbids continuing results up to (50). We expect real zeros
to occur and converge to B2... B4 only. This seems confirmed by numerical results
[10].

10. More Physical Questions

We want to discuss here some physical consequences or interpretations of our
results.

a) First we comment an /Potts and /vertex on line (49) and Q = Bn. When looking at
χ(i,t) (24) we keep only Ωjl levels among the Γf initial ones. As is well known, Uf is
also the number of configurations of an An_1 model on a strip of width /, with
height on the top (upper) row fixed to 1(1+2;') [21]. Hence

where CA is the incidence matrix of the An_ ^ Dynkin diagram. For / large, (53) is
dominated by the largest eigenvalue

π
2cos-

n
(54)

Due to the cancellations in (24), the Ωjl are in the most excited levels of the Γ]1 ones.
Suppose they are the most excited ones and that moreover we can for finite /
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replace each λ by its asymptotic behaviour. Then the largest eigenvalue of the Potts
model in they sector Λjotts should scale like Λe ~ πh{l, where h = hj+ fc, and the integer
k in such that

Σ p(i)~ηl-Ω? ~Γf~22i, (55)
i^fc

where p(i) is the number of partitions of the integer ϊ, occurring due to the
expansion of the denominator in (34). Using known results on the asymptotic
behaviour of p(ΐ) [32],

Σ p(i)^kp(k)~ec*w, (56)

(57)

Hence
(A Jotts)f ̂  A*e ~ cstlt ~ β(/vertex " cst)Zί . (58)

From this qualitative picture we see that the behaviour of χ^^ due to the extensive
(vertex) term diverging exponentially and the Kj series vanishing exponentially has
still an extensive (Potts) behaviour, with however a different power. Putting correct
figures in the above equations is a difficult task, probably analogous to the analysis
of [13] in regime II.

To summarize we have shown that for δ φ N, the free energy of the Potts and
vertex models in the strip limit f->oo coincide /Potts^ /vertex- For δ = n, and / large

n-f
enough but finite (typically l> I the free energy of the Potts and vertex

models are different
./Potts ̂  /vertex- (59)

Moreover the preceding argument shows that (59) holds true even if /->oo. For
δ = n > 3 it is reasonable to expect /Potts = lim fpoiis to be given by the other

i-»oo

solutions of inversion identities [33, 34], namely

00 shyίsh(2w — π)t 1
/Potts=- f ' t - : - —atJpoiis Λ, 2ίshπίchyί

JL
2 ?

(60)
sh2yίsh(2π-2w)ί _

while it is known that [35]

/ is negative in (60), consistent with the fact that the ground state of the Potts
model occurs in the set of very excited vertex states. Results (60, 61) are obtained
with normalisations

— * 2 i - l ) = ( l + * * 2 i - l ) >

(62)



Zeroes of Chromatic Polynomials 675

Although for finite ί, /, FPotts (Q, x = — 1) is regular, in the strip limit t-> oo, and

for / finite ;> , the free energy per bond /potts is discontinuous at Beraha

numbers Q = Bn. This behaviour still holds in the two dimensional l-+co limit. We
discussed the case of geometry (Fig. 1) only, but expect that /Potts, /vertex do not
depend on the boundary conditions in the thermodynamic limit.

This analysis should clarify the questions of "Temperley Lieb equivalence"
between the Potts and 6-vertex model raised in [33, 34]. Due to the Uqsl(2)
symmetry, so many coincidences of levels can occur that /Potts^/vertex* even if
algebraically the correspondence (20) between the two models is the same as in the
x l f x2>0 case Our conclusions disagree slightly with Baxter in that the
expressions (60) should apply only at Beraha values Q = Bn,n>3. In Ref. [33, 34] it
was instead conjectured that (60) applied to all βe] 1,4]. Of course comparison
with other results at <2 = 2 = £4, Q = 3 = B6 was correct.

b) Second we notice that the vertex model with u = π— ,̂ y= — is related by the

usual [15, 36] quantum group analysis to the An__ ί RSOS model at the regime I-II
transition. Although the continuum limit of the vertex model is described by only
one free field, the continuum limit of the An_ί face model which is the 22Π_2

universality class [37], involves several free fields depending on the picture [38].
The origin of this different description should be hidden in the mechanism of level
cancellations. Indeed the analysis of Ref. [13] shows in the off-critical case how to
obtain string functions from sums as (37). For RSOS models, the Bethe ansatz
calculations of [39] showed that (60b) for n > 3 is correct.
c) Third, via the polygon representation (19) and Euler's relation, 3£G reads for

=-l) = (-β1/2fΣ(-β1/2)P (63)

- 0 5

-1.0

-1.5

-20

-2.5
2 10

Fig. 9. hj (30) (32) as a function of δ is piecewise regular. For 2n' < δ < 2nf + 2,

hj= — n'. Jumps in derivatives occur at every even δ = 2nf
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This is a "dense" loop model [40] with a weight -β1/2 per polygon. It would be
nice to find a geometrical interpretation of singularities of (63) at the Bn's.
d) Finally some Beraha numbers also are special points for the vertex model. For

£

instance the scaling behaviour of the vertex ground state is given by hj — —. hj(δ) is

made of pieces of curves (Fig. 9) with jumps in the derivatives at each δ = 2n'. The
effective central charge (33) reaches its upper value capp = l at paints <5 = 2n' + l.

11. Conclusions

To study the chromatic polynomials PG(Q), we have introduced a β-state Potts
model on G, and embedded the latter in a staggered 6-vertex model which exhibits
Uqsl(2) symmetry. For the square, triangular and honeycomb lattices and graphs
Glt t as in Figs. 1-3, we have exhibited an antiferro like critical line along which the
Q-state Potts model is singular, in the thermodynamic limit /, ί-> oo, at all the J5π's.
Consequently, real zeros for finite systems occur depending on the sizes /, t and
accumulate exponentially fast at the Bn's as /, £-» oo. The zero temperature antiferro
line that corresponds to PG(Q) has then to be reached from the above critical line by
turning eκ. The Uqsl(2) symmetry and its peculiarities for q a root of unity always
hold true, but the eigenvalue structure may be destroyed if some singularity is
encountered. Using known results on the parameter space of the β-state Potts
model, we argued that real zeros should occur, and accumulate to Bn's for
1 < n ̂  n0

 only> where n0 depends on G (n0 = 6,14,4 for the square, triangular and
honeycomb lattice).

We have moreover obtained information of the size dependence of the zeroes.
For instance, in a strip geometry and 1 < n ̂  n0, we expect real zeros to occur and

4

accumulate exactly at Bn when ί-»oo and / finite > .

t

Fig. 10 Fig. 11

Fig. 10. The authors of ref. [8] considered the chromatic polynomial of this graph, with the point
of view of colouring neighbouring regions with different colour

Fig. 11. The dual of Fig. 10 where points are introduced in the middle of regions and edges between
neighbouring regions, can be unfolded as Fig. 11, with periodic boundary conditions in time
direction
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Table 4. The first real zeros of the chromatic polynomial of the graph Figs. 10 and 11 (from [8])

3 = 2.61803399

4 = 3

5 = 3.2469919

6 = 3.41539930

7 = 3.52004593

We do not consider our work as a full proof. Indeed, many steps look
physically reasonable, but lack some rigour. Among them are the assumption that
Bethe states are complete, that the asymptotic behaviour of eigenvalues obeys
conformal invariance prediction, that the Potts model is regular except on some
critical lines in the (eK

9 Q) parameter space. On the other hand, it seems that our
analysis provides what may be for the first time a plausible explanation of Beraha's
conjecture. It must be emphasized that an extension of the above arguments is
partly possible, since the Potts model-vertex correspondence and the transfer
matrix formalism can be generalized to other graphs. For instance the authors of
[8] considered the chromatic polynomial of the graph G in Fig. 10. They had the
point of view of colouring regions such that neighbouring ones (i.e. with a common
border) have different color. This is easily transferred into the problem we
considered by turning to the dual lattice with points carrying Potts variables at the
center of faces, and edges between neighbouring regions. We can then unfold this
dual of Fig. 10 into the system of Fig. 11, where periodic boundary conditions are
imposed in time direction. PG(Q) has been calculated in [8], with the first real zeros
indicated Table 4, very close to B2 . . . B9.

The Potts model on G can also be embedded into a vertex model. First notice
that the Potts partition function on G can be written as

^G(β) = Tr(τPotts)
3, (64)

where τ propagates on an elementary cell. Restricting to the case of isotropic
interactions with

_ _1), X2i=(l+xe2i), (65)
we have

τPotts = ̂ 7^8

X X 8-Λ 6-Λ 4-Λ 2Λ 7Λ 3Λ 8A 6A 4Λ 9ΛL 5 X 8Λ 6ΛL 4^ 2 . (66)

Although this looks a bit complicated, the important point is that τPotts expands on
Temperley Lieb matrices. Hence a vertex model on the medial graph can be
introduced with the other representation (12), commutation with Uqsl(2) and
decomposition formula (20) still hold true. Provided the eigenvalue structure of
Sect. 4 applies here, the mechanism producing zeros close to the Bn's for G in Figs.
10 and 1 1 should be the same as before. For instance, if we considered 2£G = Tr τPotts

for / large, zeros corresponding to Table 4 should exactly converge to the Bn's.
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Fig. 12. Cell corresponding to propagation with τPotts (66)

For a family of two dimensional graphs consisting of pieces of a two
dimensional lattice (i.e. a Bravais lattice plus some arbitrary cell) wrapped on a
cylinder as in Figs. 1-3, the scheme of our analysis should apply, making the
Beraha conjecture as formulated in [2] at least reasonable. An important question
we have not discussed is the effect of changing boundary conditions. It should be
easy to switch from our cylindrical boundary conditions to free ones, and
numerical results of [10] show indeed little difference between the two cases. More
intriguing are toroidal boundary conditions. Although they usually do not affect
the thermodynamic behaviour, the situation may be different in our case. It is
known for instance that the four colors theorem becomes then a seven colors one

[1]
Finally it is interesting to notice that Beraha numbers provide an example of

rather strong universality of critical points, since the only thing that depends on
the lattice is whether or not a given Bn is a singularity point of the β-state, zero
temperature antiferromagnetic Potts model.
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Notes added in proof, a) We have now a better understanding of the region between (49) and (50).
It is a massless region (analogous to a Kadanoff Berker phase) with the same initical properties
than (49). The conclusions of Sects. 4, 6 thus apply to the chromatic case, completing the
argument of Sect. 8. b) We have generalized am argument to the case of free boundary condition
also.






