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Abstract. The objective of this paper is a mathematically rigorous investigation
of intermittency and related questions intensively studied in different areas of
physics, in particular in hydrodynamics. On a qualitative level, intermittent
random fields are distinguished by the appearance of sparsely distributed
sharp "peaks" which give the main contribution to the formation of the
statistical moments. The paper deals with the Cauchy problem (d/dt)u(t,x) =
Hu(t,x), w(0,x) = MO(X) > 0, (ί,x) £ R+ x TLά, for the Anderson Hamiltonian
H = KΔ + ξ( ), where ξ(x)9 x € TLά, is a (generally unbounded) spatially
homogeneous random potential. This first part is devoted to some basic
problems. Using percolation arguments, a complete answer to the question
of existence and uniqueness for the Cauchy problem in the class of all
nonnegative solutions is given in the case of i.i.d. random variables. Necessary
and sufficient conditions for intermittency of the fields w(ί, •) as t —> oo are
found in spectral terms of H. Rough asymptotic formulas for the statistical
moments and the almost sure behavior of u(ί, x) as t —> oo are also derived.
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Introduction

During the last decade the conception of intermittency became popular in differ-
ent areas of physics, in particular in hydrodynamics. But until now it obstinately
resists a mathematically rigorous foundation. From a qualitative point of view,
intermittent random fields are distinguished by the formation of strongly pro-
nounced spatial structures: sharp peaks, foliations, and others. In the papers
[13-15] Ya. B. ZeΓdovich et al. proposed a "rigorous" and constructive definition
of asymptotic (as t — >• oo) intermittency which may be successfully applied to a
large class of evolution problems. This definition works well in several physically
interesting situations for both stationary (i.e. time independent) and nonstation-
ary random media including magnetic and temperature fields in turbulent flows,
linearized schemes of chemical kinetics, and others (for details see [15]).

However, the papers [13-15] and related articles in physics literature provide
only rough outlines concerning mathematical analysis of the subject. Moreover,
such outlines have been made under special assumptions (e.g. Gaussian-like
random inputs) and, what is even more significant, they are far from being
complete. A thorough investigation of more general models will reveal a number
of new facts and enlighten deep connections with other branches of the theory
of disordered systems (perlocation, localization).

The paper will be divided into two separate parts. In both we will restrict
ourselves to consideration of stationary random media on the lattice (the latter
for the sake of technical simplification). More precisely, we will study the Cauchy
problem

^̂  = κAu(t, x) + ξ(x)u(t, x), (ί, x) € R+ x TLά ,

u(0,x) = uo(x), x e Z * ,

where K denotes a positive constant, A is the finite difference Laplacian acting
on functions / : TLά — » R according to the formula

l3>-χ|=ι

and Ξ = {£(x);x G TLά} denotes a field of independent indentically distributed
(i.i.d.) random variables on a probability space (Ω,^,μ). We are mainly interested
in the behavior of the solution to (0.1) for nonnegative random initial functions MO
which are either localized [e.g. MO(X) = £o(x)l or spatially homogeneous random
fields (e.g. MO = 1). We will refer to K and Ξ as to the diffusion coefficient and the
random medium (random potential), respectively.

The operator
H = κA + ξ( )

on the right of Eq. (0.1) coincides with Anderson's tight binding Hamiltonian with
diagonal disorder ([2, 9, 11]). However, in contrast to the quantum mechanical
problem described by the Schrδdinger equation

(0.2)
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which is always welll-posed, the parabolic problem (0.1) for the Anderson model
is not always solvable. Moreover, the qualitative behavior of the solutions to
problem (0.1) significantly diίfers from that of the φ-functions of problem (0.2).

Let us briefly outline the program of our paper. In the present first part we
will discuss some general questions, study existence and uniqueness for problem
(0.1) and derive rough asymptotic formulas for the almost sure (a.s.) behavior (as
t — > oo) of the solution as well as for its statistical moments expressing the effect
of intermittency. The second part will be devoted to a more detailed analysis of
the solution to (0.1), where we will use more refined techniques (in the first place
cluster expansions). We also intend to include an investigation of the spectral
aspects of the problem and its connections with the theory of localization.

Frequently Used Notation. We denote by N = {1, 2, . . . }, TLά, R*, and R+ the set of
natural numbers, the d-dimensional integer lattice, the ^-dimensional Euclidean
space, and the nonnegative half-axis, respectively. As norm on Έd we take

i.e. \z\ is the Euclidean length of the shortest path connecting 0 with z along the
edges of the lattice ΊLd. Let δx denote the Kronecker symbol, i.e. δx(y) = 1 if
y = x and δx(y) = 0 otherwise (x,y e TLd}. If £ is a finite set, then \B\ will stand
for the number of its elements.

Throughout this paper Ξ = { ξ ( x ) ; x £ Έd] stands for a spatially homogeneous
random field on a probability space (Ω,^",μ). Expectation with respect to μ will
be indicated by {•). The indicator function of an event A will be denoted by ft(A).
Throughout Sect. 2 we will assume that the random variables ξ(x)9 x e Zd, are
mutually independent. By F we will denote the (right-continuous) distribution
function of ξ = ξ(0); ess sup ξ = sup{r : F(r) < 1} we will stand for the essential
supremum of ξ.

Given two functions /,g : R+ — > R, we will write

if g(ί) — f ( t ) — > oo as t — > oo. We further denote by x+ and x~ the positive
and negative parts of x e IR, respectively. We set log+ x = log x if x > e and
log+ x = 1 otherwise.

1. General Questions

1.1. Intermittency

We first introduce the notion of intermittency in a form which is most convenient
for our purposes. Let {η(t,x)',x e Zd}, t > 0, be a family of nonnegative spatially
homogeneous random fields on a joint probability space (Ω,^,μ). Suppose that
the functions

Λp(t)=los(η(t,0)')9 ί > 0 , p G N ,

are finite.
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Definition. The random fields {η(t,x);x G Zd} will be called intermittent (asymp-
totically as ί — > oo) if they are ergodic and

If the (finite) Lyapunov exponents

exist and

then (1.1) will clearly be fulfilled. The definition of asymptotic intermittency
proposed by ZeΓdovich et al. [15] is based on this stronger requirement.

Intermittency means that there is an anomalous, as compared with Gaussian,
ratio between successive statistical moments. Indeed, condition (1.1) tells us that
the growth rate (as t -> oo) of the moment (η(t,Q)p) increases "progressively"
with its number p: for large t the second moment is much larger than the square
of the first moment, the fourth is much larger than the product of the first and
the third and the square of the second, and so on.

The interpretation of this effect consists in the following. As a rule, the
physically relevant characteristics of the random field are of global nature and,
because of ergodicity, may be expressed in terms of moments (e.g. mean mass
concentration or mean energy). It follows from (1.1) that asymptotically as t — > oo
the main contribution to each moment function is carried by higher and higher
and more and more widely spaced "overshoots" ("peaks") of the random field.
Thus, for large t the overwhelming part of the mass (or energy) of the field η(t, •)
is concentrated in these "peaks." To make this more transparent, let us choose
level functions /p, p G N, so that

and consider the events

Ep(0 = 0/(ί,0)>exp(/p(ί))}.

On the one hand, Chebychev's inequality tells us that

μ(Ep(t)) < exp{Λp(ί) - plp(t)} -> 0 as t -> oo

i.e. the density of the random level set Lp(t) = {x e Zd : η(t,x) > exp(/p(ί))} of
overshoots with amplitude exceeding exp(/p(ί)) is asymptotically small. On the
other hand,

(η(t,0)p+1l(Ω\Ep(t))) < exp{(p + l)/p(ί)}

- exp{(/> + l)/p(ί) - Λp+l(t)} (η(t,

Consequently,

(0)) as t -+ αo.



Parabolic Problems for the Anderson Model 617

But this means that for large t the overwhelming contribution to the (p + l)-st
moment is carried by the high overshoots of the field η(t, •) on the random set
Lp(t). As a characteristic feature of intermittency, the sets L\(t) => L,2(t) ^ ...
describe a hierarchy of higher and higher and more and more widely spaced peaks
which are primarily responsible for the formation of the successive statistical
moments.

Let us finally mention that for each p e N the condition

P P +

already implies that

(L2)

for all q > p
q q

provided that all functions Λq, q > p, are finite. Indeed, for each ί > 0 the
real function p >—>> Λp(t) is convex and satisfies Λo(ί) = 0. [This is the cumulant
generating function of logη(t,0).] Therefore

q-i

qΛq+l(t) -(q + l)Aq(t) = ]Γ{(Λ«+ι(t) - Aq(t)) - (ΛM(t) - Ak(t))}
fc=0

p-\

- Λp(t)) - (ΛM(t) - Ak(t))}

= pΛp+ι(t)-(p+l)Λp(t)

for all q > p. Because of (1.2), the expression on the right tends to infinity as
t —> oo, and we arrive at the desired assertion.

1.2. Linearized Models of Chemical Kinetics

We next discuss the relationship between the parabolic problem (0.1) for the
Anderson model and (linearized) problems of chemical kinetics. On a particle
level linearized chemical processes may be described by Markov branching models
on the lattice TLά. Let us consider the following model. Suppose that at time zero
there is a single particle in the system which starts to move according to the laws
of a time-continuous random walk and after a random time splits into two or
dies. Each of its descendants evolves according to the same law but independent
of all other particles. This evolution depends on the "diffusion coefficient" K of
the underlying random walk and the realizations of two spatially homogeneous
random fields {ξ+(x);x e Zd} and {ξ_(x);x e TLά} determining the branching
rates. During the time interval at any particle at site x e TLά jumps to one of its
2d neighboring sites with equal probability κdt9 splits into two with probability
ξ+(x)dt, and dies with probability ξ-(x)dt. Let η(t,y) denote the number of
particles occupying site y at time ί. Let further Px and Ex denote, respectively,
the probability law and expectation for the "diffusion" and branching mechanism,
where the index x indicates that we start at time t = 0 with a single particle at
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x G ΊLά. Note that the measures Px, x G TLd, depend on the realizations of the
random medium (ξ-( )9 £+(*))• Finally, let μ be the probability measure associated
with the random medium (£_(•),£+(•)).

The moment generating function

vz(t, x; y) = Ex z^\ (ί, x) G R+ x Z, y G Z, 0 < \z\ < 1 ,

satisfies the Skorokhod equation

+ ξ.(x))vz + ξ.(x) ,

t>z(0,x;jO=z if x = y and (1.3)

ι>z(0,x;j;) = 1 otherwise,

where the Laplace operator acts on the x-variable (see e.g. [3, 12]). Differentiating
(1.3) with respect to z at z = 1, one obtains the moment equations for the particle
field η(t,y). In particular, w(ί,x) = Έxη(t9Q) satisfies

m(0,x) = <50(x),

where ξ(x) = ξ+(x) — ζ-(x). In this way we arrived at the main equation of
our paper. Because of symmetry of the Anderson operator, it is not difficult to
see that m(ί,x) coincides with Eof/(ί,x). That is, m(ί,x) is the mean number of
particles at site x at time t provided that we start at time 0 with a single particle
at the origin. This interpretation allows to pass to spatially homogeneous intitial
configurations which lead to constant initial data in (1.4).

Let us mention the following important feature of the above equation. If the
random variables ξ-(x) and ξ+(x), x € TLά, are mutually independent and

μ({+(0)'>ί-(0))>0 (1.5)

(i.e. if with arbitrarily small but positive probability the birth rate exceeds the
death rate), then

liminf > o μ-a.s. for each x G ΊLά

ί-+oo ί

(see Sect. 4). In other words, (1.5) implies that the branching process is supercrit-
ical. Moreover, one can show that under the same assumptions

Pol l i m i n f > 0 ) > 0 μ-a.s. for each x G
y

1.3. Anderson Localization

Let us finally point out the connection between problem (0.1) and the theory
of Anderson localization. On a qualitative level, this connection indicates the
presence of intermittency for m(ί, •) as well as for the underlying particle fields
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η(t9 •), although it does not give the chance to study this effect quantitatively (in
the sense of our definition given in Sect. 1.1).

During the last years substantial progress has been achieved in analyzing the
spectral properties of the multidimensional Anderson Hamiltonian

H = κΔ + ξ(-) in l2(Zd)

with i.i.d. random potential ξ(x)9 x € Zd, see Pastur [11] for a most complete
survey. Above all, almost sure completeness of the point spectrum and exponential
decay of eigenfunctions of H in the band tails, or throughout the whole spectrum
Sp(H) ofH provided the coupling constant σ = κ~l is large, have been established
under mild conditions on the distribution of ξ(0) (Holder continuity of the
distribution function and existence of a finite moment), see Frohlich et al. [5]
and Martinelli and Scoppola [9].

At least formally, the solution of (1.4) admits the spectral representation

00

m(t, ) = JeadE(λ)δ0, (1.6)

—00

where {E(λ);λ e R} denotes the spectral family associated with the Hamiltonian
H. According to the above we can choose λ$ < supSp(H) so that the part
of the spectrum of H in (λQ9oo) is pure point. Let λi and ψi (ί = 1,2, ...)
denote the corresponding set of (random) eigenvalues and normalized (random)
eigenfuntions. Then

λo

m(ί, •) = £ **v>ί(0)v>,( ) + etλdE(λ)δ,. (1.7)

Since

' etλdE(λ)δϋ

this shows that asymptotically as t —» oo is will be sufficient to take into account
only that part of the spectrum in the spectral decomposition (1.6) which belongs
to the immediate proximity of its upper bound. Hence we conclude from (1.7)
and the exponential decay of the t/Vs that for large t the random field m(ί, •) is
"essentially" localized on the "supports" of the eigenfunctions ψi in the upper
band tail which are "sparsely distributed in space." This is the picture which
we have in mind by saying that Anderson localization indicates the presence of
intermittency on a qualitative level.

Unfortunately, it is by no means simple to give the above considerations a
strong sense, since the theory in its present stage is essentially nonconstructive (cf.
[5, 11]). Our aim is to do in some sense the converse: analyzing the asymptotics
of m(ί,x) as t -> oo by means of direct probabilistic methods and using (1.7), we
want to obtain information about the structure of the spectrum of H in the band
tails.
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2. Existence and Uniqueness

2.1. Main Result

In this section we study existence and uniqueness for the random Cauchy problem
(0.1). We will assume throughout that the random variables ξ(x), x € Zd, are
independent and identically distributed. We will mostly consider random initial
data MO which almost surely belong to the class <%Q of functions φ : Zd -> R+

which do not vanish identically and satisfy

This assumption on the growth at infinity is trivially satisfied for bounded initial
data MO. Is is also fulfilled for (not a.s. vanishing) nonnegative homogeneous
random fields (MQ(X) X € 7Ld] with

d\

< 00.

If the random variables MO(X), x € Zd, are i.i.d., then this moment condition is
also necessary for (<^o) (cf. Lemma 2.5 below).

Problem (0.1) is closely related to the Feynman-Kac functional

( l \
u(t, x) = Ex exp \ ί ξ(x(s)) ds \ M0(x(0), (t, x) € R+ x TLά . (2.1)

U >

Here and in the following (x(ί), Px) denotes symmetric random walk on ΊLd with
generator κ,Δ Px is the conditional probability law of the process (x(ί) t > 0}
given x(0) = x, and JEX stands for expectation with respect to IP*. Set ξ =

We are now in a position to formulate our main result.

Theorem 2.1. Assume that the initial datum MO belongs to class <%Q a.s.
a) //

then a.s. problem (0.1) has a unique nonnegative solution u. This solution admits
the Feynman-Kac representation (2.1).
b) //

= 0°\\\og+

ana either a > 2 or
d=l and (log(l + Γ)>«x>, (2.4)

then a.s. there is no nonnegative solution to problem (0.1).

We remark that the assertion of Theorem 2.1 will remain true if one considers
solutions M on [0, T] x Έd, 0 < T < oo (instead of R+ x Zd). The assumption
about the nonnegativity of the solution cannot be dropped. It is not hard to
construct functions u : R+ x 7Ld -> R, M φ 0, which satisfy (0.1) for ξ(x) = 0 and
MO(X) Ξ 0. If the solution u is allowed to attain both positive and negative
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values, uniqueness can only be established in the so-called Tacklind classes (see
[4, Chap. 3, Sect. 2] for the spatially continuous case).

In dimension d > 2, Theorem 2.1 gives a complete answer to the question
of existence and uniqueness for problem (0.1) in the class of all nonnegative
solutions. In particular, uniqueness is established without any restriction on the
growth of the solutions at infinity. An analysis of the proof (Sect. 2.3) shows that
assumption (2.4) can be weakened slightly.

The assertion of Theorem 2.1 substantially relies on the percolation behavior
of the random medium. To establish uniqueness via a Harnack type inequality
we will use the fact that a.s. all connected components of the level set {x G
TLά : ξ(x) < α} are finite provided that α is sufficiently negative (cf. Lemma 2.3).
In dimension d > 2, the level set {x € Zd : ξ(x) > α} contains a.s. a (unique)
infinite connected component W+ having positive asymptotic density provided
that α is sufficiently negative. Roughly speaking, this allows to restrict in the
Feynman-Kac formula (2.1) the motion of the random walk x( ) to the set W+

in order to derive "explosion" of the Feynman-Kac functional, i.e. nonexistence
of the solution to (0.1), under assumption (2.3). This is the reason why we do
not need to impose any restriction on the lower tail behavior of the distribution
of ξ in dimension d > 2. In contrast to this, assertion b) about nonexistence will
not be true in the one-dimensional case without an additional assumption like
(2.4). For any i.i.d. random field {ξ(x);x E Ή} with given tail behavior at +00
satisfying (2.3) one can change the tail behavior at —oo in such a way that a.s.
a nonnegative solution u of (0.1) exists. This is a kind of "shielding effect." If
the potential ζ(x) has very large negative peaks, then these peaks will "shield"
the large positive peaks avoiding in this way "explosion" of the Feynman-Kac
functional (2.1) (cf. the remark at the end of Sect. 2.3). The fact that existence
(nonexistence) may be expressed in terms of the finiteness (infiniteness) of the
moment (2.2) is also caused by the almost sure behavior of the random medium.
As we will see in Sect. 2.3, the clue is that a.s. the upper limit of ξ(x)/(\x\ log \x\)
as |x| —» oo does not attain finite positive values. It is either 0 or oo depending
on whether (2.2) or (2.3) is satisfied (Lemma 2.5).

The proof of Theorem 2.1 will be broken down into several steps. In Sect. 2.2
we will consider existence and uniqueness of the non-random Cauchy problem in
terms of finiteness of the associated Feynman-Kac functional. After that we will
show that for the random potential Ξ this functional is a.s. finite (infinite) under
assumption (2.2) [(2.3), (2.4)]. In Sect. 2.3 this will be done under the additional
restriction that the random medium Ξ is bounded from below. This restriction
will then be removed in Sect. 2.4.

2.2. The Deterministic Cauchy Problem

Let q : TLά — > 1R and I Q : Zd — » 1R+ be arbitrary functions. The following (rather
standard) lemma enlightens the connection between the Cauchy problem

,

v |ί=0= VQ on Έά ,
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and the Feynman-Kac functional

v(t,x) = Ex exp \ ί q(x(s)) ds I vQ(x(t))9 (ί,x) G R+ x %d - (2.6)
I £ J

Lemma 2.2 (Existence). Problem (2.5) admits at least one nonnegative solution v
iff

v(t,x) < oo for all (t,x) € R+ x £<*. (2.7)

If (2.1) is fulfilled, then v is the minimal nonnegative solution of (2.5).

Roughly speaking, nonexistence for (2.5) is caused by "explosion" of the
Feynman-Kac functional (2.6). This may occur since q and VQ are allowed to
grow to infinity arbitrarily fast. Such trouble cannot occur for the associated
intitial boundary value problems in finite regions of TLά with time-continuous
boundary conditions for which existence, uniqueness and their Feynman-Kac
representation are obvious.

Given a natural number ΛΓ, we introduce the cube

QN = {z = (Z\ z2, ... , zd) e Zd : \j\ <N for 1 < i < d}

and its boundary

By TJV we denote the first hitting time of dβ# •

τ N =inf{ ί>0 :x(ί) € dQN}.

Proof of Lemma 2.2. a) Assuming (2.7), we show that υ solves (2.5). An applica-
tion of the strong Markov property to (2.6) yields for each JV,

( * Ί
v(t, x) = JEX exp < / q(x(s)) ds > VQ(X

I J \
^ o }

sU(ί~τN,;exp < q(x(s)) ds ^ v(t - τN, x(τN)) fl(τN < ί) , (2.8)
«/
o

(ί,x) G R+ x (βjvUδβw)- Assume for the moment that v is time-continuous. Then
(2.8) is the unique solution of the initial boundary value problem associated with
(2.5) in the cylinder JR+ x (QN U dQu) with prescribed continuous boundary
function v on R+ x SQ^. Since N is arbitrary, this proves that v solves (2.5).

It only remains to check that v(t9x) is continuous in t for each x € Tίά. It
suffices to consider the point x = 0. An application of (2.8) for x = 0 and N = 1
yields

> t)

o exp{τιί(0)}ϋ(ί - TI,X)!(TI < t) .
|x|=l

Since τ\ is exponentially distributed with respect to PQ, this expression is indeed
continuous in ί.
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b) Let v be a nonnegative solution of (2.5). We show that v > v. Considering v
as the solution of the associated initial boundary value problem in the cylinder
IR+ x (QN U δ<2#), we conclude that the Feynman-Kac representation (2.8) holds
also for v instead of v. Hence,

( t Λ
v(t, x) > JEX exp < I q(x(s)) ds > vQ(x(t)) fl(τN > ί), (ί, x) G 1R+ x βN .

I «/ I
^ o }

Letting N -> oo, we get v > v on R+ x Zd. D

We will call the potential q percolating from below, if for each α G 1R the level
set {x G Zd : q(x) < α} contains an infinite connected component. Otherwise
q will be called non-percolating from below. (Two points x and y in Zd are
considered to be neighbors if \x — y\ = 1.)

Lemma 2.3 (Uniqueness). // q is non-percolating from below, then the Cauchy
problem (2.5) admits at most one nonnegative solution.

Proof. 1. Since q is assumed to be non-percolating from below, we can and will
fix α < 0 so that all connected components of the level set {q < α} are finite. For
each N G N, let us denote by Γ# the set of paths

γ : 0 = *o ~> XI -> . . -> *n (2.9)

(of successively neighboring points XQ, *ι> , xn) in Zd such that XQ, . . . , xn-\ G
QN and xn G dQN. Given a path of the form (2.9), we will denote the sequence
{xo> > XH-I} by the same symbol y. We define the subsequences

y_ = {x G y : q(x) < α}, y+ = {x G y : q(x) > α} .

One readily checks that the finiteness of all connected components of the level
set {q < α} is equivalent to

lim min |y+| = oo. (2.10)
JV->oo yeΓjv

(|y+| denotes the length of the sequence y+.)
2. Acccording to Lemma 2.2, the class of nonnegative solutions of problem (2.5)
contains the minimal solution (provided that this class is not empty). To prove
uniqueness in this class, it therefore suffices to verify that each nonnegative
solution v of (2.5) with initial datum VQ = 0 vanishes identically. It will clearly
be enough to check that u(ί,0) = 0 for all t G R+. To this end we will use the
Feynman-Kac representation

(
v(t, 0) = EO exp I q(x(s)) ds v(t - τN, x(τN)) l(τ* < ί) (2.1 1)

[cf. (2.8)]. We intend to derive from (2.11) the Harnack type inequality

/ ™,\ min lv+l-1

t>(T,0)> (-ΓΓ" exp{(*-2κd)(T-t)}v(t,0) (2.12)
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which is valid for 0 < ί < T and all natural numbers N for which the minimum
in the exponent on the right is not zero. Because of (2.10), this then implies that
t;(ί?0) = Oforal l ίe(0,Γ).

Let us fix an arbitrary path γ € ΓN of the form (2.9) with γ+ ̂  0. The
contribution of the random walk x( ) along the path γ to the expectation (2.11)
equals

σ v t -
i=0 ' \ i=0

where qt = g(x,) and σo, σ\, . . . denote the waiting times of the random walk x( )
between consecutive jumps. The random variables σo, σi, . . . are independent and
exponentially distributed with parameter 2κd. To prove (2.12), it will be enough
to show that

χy(T) > 7+ exp{(α - 2κd) (T - t)} χy(t) . (2.13)

3. It remains to prove (2.13). Since γ+ φ 0, there exists m, 0 < m < n — 1, such
that

xm € γ+ and q(xm) = min q(x).

We have

= κn ί...

ι=0

( n-l >

T-£>,*„

1=0 / (̂  1=0

Γ

= κn fdr exp{(qm - 2κd) (T - r)}v(r, xn)

o

X ... / f]

Here and in the following we do not indicate explicitly that the domains of
integration are supposed to be restricted to positive values of the integration
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variables. Since 0 < ί < T and qm > α, it follows that

χy(T) > exp{(α - 2κd) (T - t)} κn I dr exp{(gm - 2κd) (t - r)} v(r, xn)

o

... / ]~[ dsj exp I Σ (4j - 4m)Sj \
i j£y- I /e y_ J

£ s,sr-r-Σ> '̂ ^ ^^+\w y (115)
.ey+\{m} ey-

Here we have identified the sequence y_ (respectively γ+) with the set of indices
i, 0 < z < n — 1, satisfying x, e y_ (respectively x, € y+). Making a change of
integration variables of the form

Γ-r- Σ SJ

- sί; i € γ+\{m},

and remembering that qt — qm > 0 for i € y+\{m}, we find that the last integral
on the right of (2.15) is larger than (T/ί)1^1"1 times the same integral but with
T replaced by ί. Thus,

t

χ7(T) > (-) exp{(α - 2κd) (T - t)} κn ίdr exp{(^fm - 2κd) (t - r)}

o

x v(r, xn) I ... I J| dsi exp J ^(qi - qm)si I.

iφm

Comparing the expression on the right with (2.14) for T replaced by ί, we arrive
at the desired estimate (2.13). D

Remark. Without any assumption on the lower tail behavior of the potential q
like that given in Lemma 2.3 uniqueness does not hold. This is closely related to
explosion of jump Markov processes on Zd with "strong" drift. For example, the
birth and death process on TL with generator

Gf(x) = e2x+l\f(x + 1) - f(x)] + e~2x+l [f (x - 1) - /(x)]

explodes after a finite positive random time ζ. Therefore the function w(ί,x) =
FX(C < ί) is a nontrivial solution of

_ = Gw, w(0,x)sO.
όt

From this we conclude that
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is a nontrivial (nonnegative) solution of (2.5) for K = 1, q(x) = 2 — e2x+i — e~2x+l

and ι?o(x) = 0.

2.3. 77ιe Cauchy Problem with Random Potential

To prove Theorem 2.1, we now apply the Lemmas 2.2 and 2.3 to the random
potential Ξ = {ξ(x); x € Zd}. As a basic result of percolation theory, this poten-
tial is a.s. non-percolating from below. (Concerning standard facts of percolation
theory, the reader is referred to the monograph Kesten [6] and the survey papers
Kesten [7] and Men'shikov et al. [10].) Hence, a.s. problem (0.1) admits at most
one nonnegative solution. Existence of a nonnegative solution is equivalent to

( t "I
Ex exp < I ξ(x(s)) ds >uQ(x(t)) < oo for all (ί, x) € R+ x ΊLά (2.16)

I J \
^ o '

(Lemma 2.2). To decide whether or not (2.16) is fulfilled, we need to compare
the speed of decay of the probability that the random walk (x(ί), IP*) hits a point
y in the time interval [0, ί] (and similar quantities) with the speed of growth of
ξ(y) as \y\ — » oo. The asymptotic behavior of these quantities will be considered
in the next two lemmas.

Let N(t) denote the number of jumps of the random walk x( ) in the time
interval [0, ί]. For each x e Tίά, (N(t); t > 0} is a Poisson process with respect to
TPX having intensity 2κd.

Lemma 2.4. For each x £ Zd and each t > 0 we have

JPX ( max \x(s)\ >n\< exp{— n log n + Q(n)} as n -> oo , (2.17)
\ s€[0,t] J

and
Px(N(t) = n) >exp{-n logπ + Q(n)} as n -> oo. (2.18)

Note that in contrast to Brownian motion the leading term of these bounds
does not depend on t or K.

Proof. Fix t > 0 arbitrarily. We first prove (2.17). It will be enough to consider
the case x = 0. Let xl(t), ... , xd(t) denote the components of x(t). Applying
symmetry, the reflection principle, and Chebychev's exponential inequality, we
obtain the estimate

IPof max |x(s)| > n] = JP0 ( max(\xl (s)\ +... + \xd(s)\) > n]
\s€[0,t] J \s<=(Q,t] J

<2dJPQ( maxCx1^) + . . . + xd(s)) > n\
\^se[0,ί] J

< 2d+ίe-βnΈo exp{β(xl(t) + . . . +

for arbitrary β > 0. Since (x{(t) + . . . + xd(t), JPX) is a symmetric random walk on
Z with generator κdA> the expectation on the right equals exp{2κ:dί[coshj? — 1]}.
Hence

max |x(s)| > n\ < 2M exρ{-βn + 2κdt[cosh β - 1]} .
[o>ί] /
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Putting on the right β = logn, we get the desired estimate (2.17). Since

fx(N(t) = R) = ̂ ^ exp{-2κ&},

(2.18) follows from Stirling's formula for nl.Ώ

Lemma 2.5. // (2.2) is satisfied, then

Otherwise

lim sup , ,V , , < 0 a.s. (2.19)
,*,_+</ |x|log|x|

lim sup , , = oo a.s. (2.20)
W-H/ |x|log|x|

The remarkable fact of this lemma is that a.s. the upper bound on the left
of (2.19) does not belong to (0,oo). We already mentioned in Sect. 2.1 that this is
essential to get a complete answer to the question of existence of a nonnegative
solution to (0.1) in terms of the finiteness of the moment (2.2).

Proof. According to the Borel-Cantelli lemma, we must only check for each c > 0
that

£[l-F(c|x|log|x|)]<oo (2.21)
|x|>2

iff (2.2) is satisfied. Since the number of sites x e Zd with |x| = r grows like
const rd~{ as r — > oo, (2.21) is equivalent to the finiteness of

Σ r"~l Σ
n>r

= Σ ( Σ r""1

r=3 n>r

n=3 \r=3 /

n

Since Σ γd~l behaves like const nd as n —» oo, this is true iίf
r=3

^ φ+1) log(n+l) .
00 /• / * \d

Σ l I t λ _ , , .
/ F(Λ) < oo,

_3 7 \ log t)
n~ en log n

i.e. iff (2.2) is satisfied. D

Proof of Theorem 2.1. a) Suppose that (2.2) is satisfied and the initial datum MQ
belongs to class ^o a.s. To complete the proof of part a) it remains to check that
(2.16) is valid a.s. For arbitrary (ί,x) € R+ x Zd we have

ί iExexp<; ξ(x(s))ds}uo(x(t))

maχ

Ί lχ(s)l = **} eχP ί fmaχ ί(y) + maχ

) \ |y|<« |y|<«
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Applying the bounds (2.17) and (2.19) and remembering the definition of class
^o> we find that the sum on the right is finite a.s.

b) We will show that, under the assumptions of part b), a.s.

y \

ξ(x(s)) ds I M0(x(0) = oo for all t > 0 and x € Zd . (2.22)
I}

To this end it will be enough to verify that a.s.

f * Ί
sup EO exp \ ί ξ(x(s)) ds \ δy(x(t)) = 00 for all t > 0 . (2.23)
ye& ( J }

To see this, let us introduce the quasi-transition function

q(t, x, y) = JEX exp | / ξ(x(s)) ds I δy(x(t))

U J

and choose a random site z e Zd so that UQ(Z) > 0 a.s. Then an application of
the Markov property and the symmetry of the random walk yield

x

ξ(x(s))ds\uo(x(t))
I}

> q(t, x, 0) q(2t, 0, 0) q(t, 0, z) ιio(z)

and

«(2ί, 0, 0) = ]Γ ςf2(ί, 0, y) > [ sup q(t, 0, y)] 2 .

Thus (2.23) indeed implies (2.22).
We are now going to prove (2.23) under the additional assumption that the

random medium is bounded from below. After that we will consider the one-
dimensional case under assumption (2.4). The proof in the general case of an
unbounded from below random medium will be postponed to the next section.
Suppose therefore that the random variables ζ(x)9 x £ Zd, are bounded from
below by some constant α < 0. Then (2.23) is an easy consequence of (2.18) and
(2.20). Indeed, for almost every realization of the random medium Ξ we find a
sequence (yn) in TLά with

ζ(yn) n ^Ax00- (124)

The contribution of the random walk x( ) to the expectation

EO exp / ξ (x(s)) ds δya (x(t)) (2.25)
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along a path of length \yn\ joining 0 with yn which hits yn before ί/2 and stays
there until time t can be estimated from below by

e«t/2(2dΓlynlVo(N(t/2) = \yn\)eξ(yM2VyΛ(x(s) = ̂  for s € [0,ί/2])

= (2dΓM exp{(f/2)£(yn) - \yn\ log \yn\ + Q(\yn\)} . (2.26)

Here we have used (2.18). Because of (2.24), the expression on the right tends to
infinity as n -» oo, and we arrive at (2.23).

We now turn to the proof of (2.23) in the one-dimensional case under the
assumptions (2.3) and (2.4). Again, by Lemma 2.5, we find a random sequence
(yn) such that (2.24) holds a.s. We will assume without loss of generality that
yn > κt/2, ξ(yn) > 2/c, and yn -> oo. Let τn denote the first hitting time of yn. We
estimate the expectation (2.25) from below by the contribution of the random
walk x( ) moving along the path 0 —» 1 —> ... -> yn, hitting yn before ί/2, and
staying there until time ί. Then we obtain

exp { I ξ(x(s)) ds }> δy.(x(t)) S: exp{t/2(ξ(yn) - 2κ)} 2^

yn—\ \ / yn—l \

-Σr(/c)σΛfl l X><ί/2],
fc=0 J V /c=0 /

where σo, <TI, ... are the waiting times of the random walk x( ) (between consecu-
tive jumps) which are independent and exponentially distributed with parameter
2κ. The expectation on the right may be estimated from below by

σk - ^~ ι , * π\
 for ° -k < y»2yn 1 + ξ-(k)

iff 1
-̂  Λ-ί/2 ΓT ^L L

•> β I I -— -—:—z—7rτ

k=Q ^n ^ ' ^ vv/

ί 3Ή—1 ^

- ί/2 + yn log(ιcί/2) - yM log>;M - ̂  log(l + ξ~(k)) > .
k=Q )

Because of assumption (2.4), the strong law of large numbers yields

y —1

y^ log(l + ξ~(k)) = Q(yn) a.s. (2.27)
k=Q

Combining the above estimates and taking thereby into account (2.24) and (2.27),
we find that the expectation (2.25) tends to infinity as n —> oo a.s., and we are
done. D

Remark. At the end of Sect. 2.1 we mentioned that in the one-dimensional case an
additional assumption like (2.4) is needed to ensure nonexistence. If the negative
peaks of the random potential are "much larger" than the positive peaks, then a
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"shielding effect" will force existence. To illustrate this phenomenon, fix ε e (0,1)
arbitrarily and assume that ξ = ξ(0) satisfies

,0 (Z28)
' \lo*.ί,

and

μ(ξ < —t) ~ — —— as t —> oo. (2.29)

The last condition implies

for all δ e (0,ε) and

Let us introduce the abbreviations

and
ζ~ = min/ max ξ~(x)9 max £""(

\ —n<x<-n/2 n/2<x<n

Then, applying the Borel-Cantelli lemma, we obtain

lim -^ - = 0 a.s. (2.30)
W-KJO ni/ε log n

and

lim inf *°g

Ί̂  > 0 a.s. (2.3 1)

[(2.30) follows from the first half of (2.28) similarly to the proof of (2.19), and
(2.31) is a consequence of (2.29).] Hence, asymptotically (as |x| — » oo) the random
field ξ(x) has a.s. negative peaks which are much larger than the positive peaks.
This turns out to be sufficient to create the "shielding effect." Indeed, according
to the Feynman-Kac formula,

, x) =ΈX exp I \ ξ(x(s)) ds

= Σ Ex exp ξ(x(s)) ds I Wo(x(0) 1 ( max \x(s)\ = ̂  . (2.32)

For each n > 3 we find lattice points z~ and z* in (— π, — n/2) and (n/2, π),
respectively, such that

ξ (zn)= max ί (x)
—n<x<—n/2

and



Parabolic Problems for the Anderson Model 631

ζ~(zn)= max ξ~(χ).
n/2<x<n

To estimate the expectation on the right of (2.32), we replace the potential ξ(x)
in the interval [—n, n] by C + except for the points z~ and z+ where we replace it
by £ + — ζή I*1 this way we obtain for n > 3:

ί r 1
Ex exp < I ξ(x(s)) ds [> ιio(x(t» »( max |x(s)| = n\

^ o ^
< exp (tζ+ + max log iioGOl

t \y\£* J
t

- j ζ-x Ex exp <! - y C~(^-(x(s)) + δg}(x(s))) ds I if max \x(s)\ = ̂ . (2.33)

o J

If π > 2|x|, then each path which contributes to the expectation on the right of
(2.33) hits z~ or z+ and stays there (at least) an exponentially distributed time σ
(with parameter 2κ) before time ί. Therefore

ί ί 1 /< — / ζn (δz-(x(s)) + δz+(x(s))) ds f fl( max \x(s)\ = n\
[ J J Vs€[°^ /

exp
I

o

for all n > 2\x\. Combining the estimates (2.32)-(2.34), remembering that UQ
belongs to class ^o a.s. A.e. max logwo(y) < Q(n logw)V and using (2.30) and

V \y\£* J
(2.31), we find that a.s.

w(ί, x) < oo for all t and x.

In other words, with probability one the Cauchy problem (0.1) has exactly one
nonnegative solution.

2.4. Unbounded from Below Random Potential

This section is devoted to the proof of (2.23) in the multidimensional case (d > 2)
under assumption (2.3) without any restriction on the lower tail of the distribution
of ξ(x). Roughly speaking, we will show that one can choose α E JR. so negative
that the following holds true. One finds a sequence (yn) in TLd for which (2.24) is
satisfied and, moreover, for each n, 0 can be joined with yn by a path of length
not exceeding a fixed multiple of \yn\ which belongs to {x : ξ(x) > α} except for
a bounded number of points. To this end we will use percolation arguments. The
contribution of the random walk x( ) to the expectation (2.25) along a path with
the mentioned properties can then be estimated from below by an expression
similar to (2.26) to obtain (2.23).

Throughout this section we assume that d > 2. Given r > 1, let &r denote the
graph whose vertex set is Zd and whose edge set consists of all bonds connecting
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vertices x, y e Zd with x φ y and \x — y\ <r. For a finite set B c= Zd, we denote
by drB the r-boundary of B, i.e. the set of all vertices x G Zd\£ for which there
exists y € B with |y — x| < r. We further define the external r-boundary de

rB as the
set of sites y e drB for which there exists an infinite non-selfintersecting ^i-path
y = yQ — > yι — > y2 -» . . . with vertices entirely contained in Zd\B. Note that δfβ
is not < ι̂ -connected for any non-empty finite ^i -connected set B. But we have
the following lemma.

Lemma 2.6. Let B be a &2d~connected finite subset of Zd. Then Se

2d_ιB is <&\-

connected.

Proof. It will be enough to show that any two vertices y, z e de

dB can be joined
by a ^i-path in d2d-{B. Let Q(q) = [ql - 1/2, ql + 1/2] x . . . x [qd - 1/2, qd + 1/2]
denote the unit cube in ΊR.d with center q = (g1, . . . , qd). Since

5 = B U

is ^i -connected, the polyeder

is also connected. Moreover, the external boundary deB of £ is connected [8,
Chap. 8, Sect. 57, 2, Theorem 6]. There exists a ^i-path j; = ^0 -> 3Ί ->• - - -*• yk
in de

dB such that Q(y/c) is a "surface cube" of the polyeder B, i.e. one of the 2d
surfaces of this cube belongs to deB. Let us denote this surface by Sy. Analogously
we find a ^i-path z = ZQ -> zi — > . . . — > z/ in δ^β such that one of the surfaces
of Q(z/), Sz, belongs to ^eβ. We can connect Sy with Sz by a finite sequence of
neighboring surfaces Si, . . . , Sr in deB belonging to "surface cubes" with centers
qi, . . . , qr, respectively. Clearly each of the vertices yk = <7o, qi, - - - , qr, <lr+\ = zι
has distance rf to J5, and the distance between consecutive vertices, qι and ^ί+ι,
0 < ί < r, does not exceed d. Hence, q\ and gI+ι (0 < i < r) can be joined by a

of length < ti with vertices in d^-iB. In this way we have constructed a
in d2d-\B joining y and z. D

Given α € R, let us define the level sets

A' = {x G Z* : ξ(x) < α}

and

For each x € Zd, we denote by W^d(x) the ^-connected component of A~
containing x. If x $ A~ we set W^d(x) = 0. We know from percolation theory
that the level α can be chosen so negative that the following assertions are
satisfied:

(Al) Almost surely the set A+ contains a unique infinite ^i -connected com-
ponent W+, and μ(0 € W+) > 0.

(A2) Almost surely all ^-connected components W^~d(x) of A~ are finite.
Moreover, there exists a positive constant h such that

<exp{Λ| W^(x)|}> < oo for all x e Zd .
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Assertion (Al) can be found in Aizenman et al. [1, Proposition 5.3]. Assertion
(A2) is contained in Kesten [6, Theorem 5.1]. Until the end of the present section
we will assume (Al) and (A2). We need the following refinement of the second
half of Lemma 2.5.

Lemma 2.7. // (2.3) is satisfied, then

lim sup *
\x\ log|x|

= oo a.s.

Proof. To simplify notation, let us assume without loss of generality that α = 0.
Recall that F(t) = μ(ξ(Q) < ί), t e R. We assume further that the random
variables ξ(x),x G Zd, are represented in the form

Thereby {ξ-(x),ξ+(x),ζ(x); x G Zd} is a family of completely independent ran-
dom variables. The variables ξ±(x) are assumed to have distribution functions
F± defined by

_

and the random variables ζ(x) attain the values 0 and 1 with probability F(0)
and 1 - F(0), respectively. Note that ξ-(x) < 0 a.s., ξ+(x) > 0 a.s., and

l a.s.

Thus W+ depends on { ζ ( x ) ; x € Zd} only. Therefore an application of the
Borel-Cantelli lemma yields for each c > 0:

μ(ζ(x) > c\x\ log |x| for infinitely many x € W+)

= (μ(ξ+(x) > c\x\ log |x| for infinitely many x G B) \B=W+)

= 1 (2.35)

provided that
[l-F(φ|log|x|)]=oo a.s.

But

log(r + 1)) - F(cr logr)]

Σ

By the ergodic theorem and (Al),

(2.36)
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converges to some finite positive constant a.s. as r — > oo. Therefore the expression
on the right of (2.36) is infinite a.s. iff

00

Σ rd[F(c(r + 1) log(r + 1)) - F(cr log r)] = oo . (2.37)
r=l

Since

) log(r+l)

rd[F(c(r + 1) log(r + 1)) - F(cr logr)] ~ J

cr log r

as r — > oo, (2.37) is equivalent to (2.3). Thus (2.35) holds for each c > 0, and we
are done. D

Given x,y € W+, we denote by dw+(x,y) the distance between x and y in
W+, i.e. the minimal length of ^i-paths joining x and y in W+.

Lemma 2.8. There exists ρ > 1 such that a.s.

for all x e W+.

lim sup — — < ρ
\y\-*σo,y€W+ \x ~ V\

Proof. Because of the spatial homogeneity of the random medium and the Borel-
Cantelli lemma, it will be enough to check that

MO € W+,y € W+,dϊMO,jO > Q\y\) < oo (2.38)

for sufficiently large ρ.
Given y e Zd, we fix an arbitrary realization of the random medium such

that 0 e W+ and j; e W^+. We choose a ^i-path 7^ of length |y| joining 0 with
y. Let z\ be the first vertex of γy which does not belong to W+. Then z\ e ^4~.
We denote by zf and zj^ the last vertex of ̂  before zi and the first vertex of γy

after zi, respectively, which belong to ^2d-ι^2~d(z^' Clearly S^^W^zi) c ^4+.
Since zj~ e W+, Lemma 2.6 yields de2d-\Wϊd(zύ ^ W+. Moreover, we can join
zj~ and zj1" by a ^i-path which is contained in S^^W^zi). We replace the
part of the path 7^ between zf and z^" by this new path. We next choose Z2
to be the first vertex of γy after zj1" which does not belong to W+ and repeat
the above construction for ZΊ (instead of zi), and so on. In this way we find a
non-selfintersecting ^i-path γy in W+ joining 0 with y which is entirely contained
in

(Here we identified yy with the set of its vertices.) From this we conclude that

dw+(09y) < \y\
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(0 e W+,y E W+). Hence, in order to prove (2.38), it will be enough to check
that

Q\y\ < °o (2.39)Σ ^( Σ
y<=3* \ zεγy

for sufficiently large ρ.
Given c > 0 and y e Zd\{Q}> let us denote by ly the integer part of c log \y\.

Then we obtain

Σ
)}

= Σ
j>eZ <\{<

+ y μ(Y\Wύ(z)\l(\Wΰ(z)\£ly)>Q\y\\. (2.40)L—i ^\ sLa ' JΛ\ t\ \\ Ld\ >\ — y/ < z \ s \ i v /

The first sum on the right is finite provided that the constant c is sufficiently
large. This is an easy consequence of Chebychev's exponential inequality and
(A2). Set ry = 2d(ly + 1) and BΓy(z) = {z : \z - z\ < ry}. For arbitrary n and
zi, . . . , zn G Zd with min |z, — z/ 1 > 2rv, the random variables

are mutually independent, since each of them depends on the values of the
medium in the associated ball BΓy (z/) only. To estimate the last sum on the right
of (2.40), we therefore divide γy (considered as a set of vertices) into m < 2ry

pairwise disjoint subsets γ§\ . . . , yj,m) such that any two points in γ® have a
distance > 2ry (1 < ί < m). Hence, for each i,

is a sum of independent identically distributed random variables. Taking this
into account and applying Chebychev's exponential inequality, we obtain

\ < ly) > ρ\y\\

< 2ry exp - Λρ

Together with (A2) this implies that the last sum of the right of (2.40) converges
for large ρ, and we arrive at (2.39). D

We are now finally ready to prove assertion (2.23) in the multidimensional
case under assumption (2.3). Combining the Lemmas 2.7 and 2.8, we a.s. find
x G W+, a sequence (yn) in W+ with \yn\ — > oo, and ^\ -paths yn joining 0 with
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yn such that the following is satisfied. For each n, the path yn passes through x,
its part between x and yn entirely belongs to W+ a A+, and its length /„ equals
|x| +dw+(x,yn) Moreover,

We can now argue in the same way as in the case when the random potential is
bounded from below by estimating the contribution of the random walk x( ) to
the expectation (2.25) along the paths γn. We thereby use (2.41) instead of (2.24).
This yields a.s. (2.23), and we are done.

3. Asymptotics of the Statistical Moments and Intermittency

In this section we study the rough time asymptotics of the moments (w(ί,x)p),
p = 1, 2, ... , and intermittency for the solution u to the random Cauchy problem
(0.1).

In the following Ξ = {ξ(x); x G Zd} will denote an arbitrary spatially ho-
mogeneous potential (of not necessarily i.i.d. random variables). We will assume
that the initial datum {MO(X); x € Zd} is a nonnegative spatially homogeneous
random field which is independent of Ξ and has finite positive moments of all
orders:

0 < (tig) < oo for all p G N,

where UQ = wo(0). Instead of (0.1) we will consider the associated Feynman-Kac
solution u given by (2.1) which is allowed to attain the value -foo.

Under the above hypotheses the random fields w(ί, •)> t > 0, are spatially
homogeneous and, in particular, the moments (u(t9x)p) do not depend on x. If
the pair (£(•), UQ(-)) is ergodic, then the fields u(ί, •), t > 0, are also ergodic.

Let G denote the cumulant generating function of ξ — ξ(0):

G(ί) = log{exp(fί)>, ί eR.

The function G takes values in (—00, +00], is convex and vanishes at zero.
Moreover,

G(t)/t t ess supξ as 11 oo. (3.1)

In particular, ξ is unbounded from above iff G(ί)/ί —» oo as t -» oo.

Theorem 3.1. For each p G N and each t > 0 we have

exp{G(pί) - 2κdpt] (UP

Q) < (u(t,Q)p) < exp{G(pί) (uζ). (3.2)

In particular, (w(ί,0)p) < oo iff G(pt) < oo. If G(f) < oofor all t > 0 and either the
random potential Ξ is unbounded from above (i.e. ess sup ξ = oo) or the random
variables ξ(x), x G Zd, are independent and ess sup^ 7^ 0, then
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Proof. Taking in the Feynman-Kac formula (2.1) only into account the contri-
bution of the path x(-) which stays at 0 during the whole time interval [0, ί], we
get

κ(ί, 0) > exp{ί£(0) - 2κdt} ιio(0) .

This yields the lower bound in (3.2). Applying Holder's and Jensen's inequalities
and Fubini's theorem, we obtain the upper bound:

i f ϊ v\
<«(ί,0)>> = EO exp I I ξ(x(s)) ds «0(x(ί))

exp \ p ί ξ(x(s)) ds L ug(x(t))
I J

0 )

s t \ \

exp]p f ξ ( X ( s ) ) d s \ \ ( u p

Q )J

= exp{G(pί)}(ιιg>.

If the potential Ξ is unbounded from above and G(f) < oo for all t > 0, then
G(t)/t I oo as ί t oo and (3.3) is immediate from (3.2). It remains to consider the
case when the potential Ξ consists of i.i.d. random variables which are bounded
from above (ess sup ξ < oo) and satisfy ess sup ξ ^ 0. Under these assumptions
(3.3) follows from (3.1), the upper bound in (3.2), and the almost sure asymptotics
of w(ί,0) as ί -> oo [see (4.1) below]. D

Note that the leading term G(pt) in the asymptotic expansion of log(w(ί,0)p)
does not depend on the diffusion coefficient K. The diffusion constant only enters
higher order terms. In the case when the "high peaks" of ζ(-) and hence that of
u(t, •) are concentrated at single lattice sites we expect that

log{ιι(ί, x)p) = G(pt) - 2κdpt + δ(t) , (3.4)

i.e. we are close to the lower bound in (3.2). In this case it is "most profitable"
for the random walk in the Feynman-Kac representation (2.1) to stay the over-
whelming part of time at a site with a single high potential peak, cf. also the
proof of the lower bound in (3.2). Thereby the random walk will choose the most
advantageous among all high peaks as a result of a competition between the
amplitude of each such peak and its distance from the origin. On the other hand,
if the typical size of the "islands of peaks" of w(ί, •) increases in time (due to the
appearance of "large islands" of high peaks of the potential £(•)), then there is
no necessity for the random walk to stay during a long time period in a fixed
bounded region. Thus, in this case we expect that

d(t) (3.5)
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which means that we are close to the upper bound in (3.2). Under the assumption
that the random variables ξ(x), x € Έd, are mutually independent, we conjecture
the asymptotics (3.4) (respectively (3.5)) to be valid if the tail μ(ξ > t), t — > oo,
decreases slower (respectively faster) than in the case of a double exponential
distribution.

The bounds (3.2), (3.3) indicate the presence of intermittency for the family of
random fields {u(t, x) x € ΊLd] as t — > oo in the situation when the random poten-
tial Ξ is unbounded from above. Indeed, suppose that the cumulant generating
function G is finite and G(t)/t | oo as ί | oo. Then

G(ί) < G(2ί)/2 < G(3ί)/3 < . . . . (3.6)

This follows from the estimate

pG((p+l)ί)-(p+l)G(pί)
p-l

>G((p+l}t)-G(pt)-G(t)

= [G((p + l)f) - G(pt + 1)] - [G(ί) - G(l)] + [G(pί + 1) - G(pί)] -

> ̂ ^ - G(l) -> oo as ί-»oo. (3.7)

Here we have used the convexity of G and G(0) = 0. Unfortunately, in general
the bounds (3.2) are too rough to derive from (3.6) intermittency of M(£, •) as
ί->oo.

To formulate our result about intermittency, we introduce the functions

We denote by Λ,Q the upper bound of the spectrum of the Anderson Hamiltonian

Note that Λ,Q is non-random if the potential Ξ is ergodic. A random variable will
be called degenerate if it is almost surely constant.

Theorem 3.2. Let the assumptions introduced at the beginning of this section be
satisfied. Suppose in addition that the pair (£(•), UQ(-)) is ergodic and G(t) < aofor
all t > 0.
a) Under these assumptions the random fields (w(ί,x); x G 7Ld} are intermittent as
t —> oo if and only if

Km Γ^-Λι(ί)j =00. (3.8)

Otherwise

lim sup Γ^Φ - Λι(ί)l < oo . (3.9)
f-»oo L 2 J
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b) Assertion (3.8) holds if and only if one of the following two conditions is satis-
fied:

(i) ess supξ = oo
(ii) ess sup ξ < oo and

lim ( Eo exp 4 / [ξ(x(s)) - k] ds M = 0. (3.10)
ί̂ co \ | 7 f i

o

In particular, this is fulfilled if ξ is non-degenerate and
(iii) ΛO = ess sup ξ.

Proof. 1. The ergodicity of (ξ( ), MO(*)) implies the ergodicity of the fields w(ί, •),
t > 0. According to Theorem 3.1, the finiteness of G(ί) for all t > 0 is equivalent
to the finiteness of the functions Λp, p G N. Together with the remark at the end
of Sect. 1.1 this shows that (3.8) implies intermittency of w(f, •) as t —>> oo.
2. We show that

Eoexp ξ(x(s))ds {MO)P

< Eo exp < ξ(x(s))ds \ ) (UP

O), t > 0, p 6 N.
}) I (3.11)

Recall that UQ( ) and ξ( ) are assumed to be independent. To compute expectation
(•}, we can therefore first apply expectation {•)„„ with respect to UQ( ) for each
fixed realization of ζ( ) and then average over £(•). Taking this into account and
using Holder's inequality and Fubini's theorem, we find that

<«(ί, 0)") = Eo exp ξ(x(s)) ds uo(x(t))

I Q * '

> Eo exp / ξ(x(s)) ds 1 u0(x(t))

}\"\
ξ ( x ( s ) ) d s \ \ (MO)P.

This is the lower bound in (3.11). To derive the upper bound, we introduce the
quasi-transition function

ξ(x(s))dsδy(x(ίft, (ί, x, y) € R+ x Έά x Έά . (3.12)
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Then we obtain

3. Because of (3.11), to decide whether or not (3.8) or (3.9) is fulfilled, we can
and will assume without loss of generality that UQ = 1. In this case the following
fundamental identity is valid:

(u(s + t90)) = (tι(s,0)ιι(ί,0)), s,t > 0. (3.13)

To prove it, we note that the random quasi-transition function (3.12) is symmetric
in x and y, spatially homogeneous, and satisfies the Chapman-Kolmogorov
equation. Moreover,

Consequently,

4. As a consequence of the fundamental identity (3.13), the functions AP9 p = 1,2,
have the following properties :

ί>0; (3.14)

AI is convex and Aι(0) = 0. (3.15)

Assertion (3.14) is obvious from (3.13) for 5 = ί. To prove (3.15), it will be enough
to check that Λ± is continuous and

2Aι(s + ί) < At (2s) + A1 (2t) for all s, t > 0 . (3.16)

An application of Holder's inequality to the expectation on the right of (3.13)
and a repeated application of this identity yield

(u(s + ί,0)}2 < (u(s,0)2)(u(ί,0)2} = (u(2S,0)>(u(2ί,0)>.
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But this is equivalent to (3.16). It remains to check that the function

/ ( ^ \ \
(u(£,0))=Eoexp ίξ(x(s))ds\ te[0,T],

is continuous for arbitrary T > 0. The function under the expectation signs on
the right is continuous and bounded from above by

χeSτ

where Sτ = (x(t) : ί e [0, T]}. Since

exp{TΈ+(x)} = EO \ST\ (exp{7Έ+(0)}>

the desired continuity follows from Lebesgue's dominated convergence theorem.
5. We next show that condition (i) implies (3.8). We know from (3.1) and (3.2)
that condition (i) is equivalent to

α>. (3.17)
ί-KJO

Proceeding as in the proof of (3.7) for p = 1, we conclude from (3.14), (3.15) and
(3.17) that

A2(t) - 2Λι(t) = Aι(2t) - 2Λι(t) > ̂ - - Λι(l) -> oo as t -> oo,

i.e. we arrive at (3.8).
6. It remains to consider the case ess sup ξ < oo. We claim that

limΛι(ί)/f = λ o < o o . (3.18)
f-»oo

Note that Λ\(t)/t is non-decreasing because of (3.15). Hence the limit on the left
exists. It is obvious from the Feynman-Kac formula for u(t9 0) and the definition
of A\ that this limit does not exceed ess sup ξ. In particular, it is finite.

Let {E(λ) 9 λ € R} and {Pt 9 t > 0} denote, respectively, the spectral family
and the semi-group associated with the Hamiltonian H , and let ( , •) be the inner
product in l2(Zd). Then we obtain

, t
EoexJ fξ(x(s))ds\

U

ϊ ^
I > (Pt50,5o) = /
I J
^ _rv^

Since ((E(λo) — E(λ))δQ,δo) > 0 with positive probability for each λ < AQ, we
conclude from this that

limylι(ί)/ί >/l 0.
f-KX)



642 J. Gartner and S. A. Molchanov

To derive the opposite inequality, we observe that

(Eoexp^ ξ(x(s))ds\)~(Έoe*pl ξ(x(s)) ds\ lB,(x(t)) ) , (3.19)
\ l J J / \ I*' J /0 s I \ 0

where Bt denotes the ball in TLά with center 0 and radius ί and flβί is the indicator
function of Bt. This easily follows from (2.17) and the boundedness from above
of ξ. But

Eoexp ξ(x(s))dsHBt(x(t))

< e^\Bt\ < const td eλot . (3.20)

Here we have used the spectral representation of (PtΪB,, IB,)- Combining (3.19)
with (3.20), we arrive at

limΛι(t)/t <V
ί-»oo

7. Besides of ess sup ξ < oo we assume without loss of generality that /lo = 0.
(Otherwise one considers the functions Λp(t) — λ^pt instead of Ap(t) (p = 1,2)
corresponding to the potential ξ( ) — AO ) Then, because of (3.18) and convexity,
A i is non-decreasing and A\(t) < 0 for all ί. Hence the limit

= ρ
— *oo

exists. Moreover, condition (3.10) is equivalent to Q = — oo.
Let us first consider the case ρ = — oo. Because of (3.14) and (3.15), the

function ^(ί) — 2A\(t) equals Λ\(2t) — 2Λ\(i) and the latter is non-decreasing.
Hence the limit

lim[A2(t)-2Al(t)]=c
ί-»oo

exists. To derive (3.8), we must show that c = oo. Suppose the contrary. Then we
obtain

Al(2nt)<2nAl(t) + (2n-l)c

successively for n = 1, 2, ... Dividing both sides by 2nt and letting n -> oo, we
conclude from this that

s->oo 5

for every t > 0. Since ρ = — oo, the expression on the right is negative for large t.
But this contradicts (3.18) for AQ = 0. Hence c = oo.

In the case ρ > — oo we obtain

- 2Λι(t)] = limμ,(2ί) - 2Λ1(t)] = -ρ < oo,
— >oo ί— »oo

which yields (3.9) (also in the general case UQ φ. 1).
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8. It remains to derive condition (ii) from condition (iii) in the case AO < oo. We
know from (3.14) that

/ ( ^ ^ \ / / ( * Λ \^"\

/Eoexp] />K(x(s))-^]dsl) = ( i E 0 e x p J ί[ξ(x(s)) - λ,] ds \ ] Y
\ I o J / \ \ I J J / /

Passing to the limit as t —* oo and taking into account condition (iii), we find that

where
x 0

[ξ(x(s))-λo]ds

Together with 0 < η < 1 this implies that η = Oa.s., and we arrive at (3.10). D

Suppose that the field {ξ(x); x G TLά} is ergodic and bounded from above.
Then it is easy so see that condition (iii) of Theorem 3.2 is fulfilled iff

μ(ξ(x) > λ for \x\ < R) > 0 for all λ < ess sup ξ and R > 0. (3.21)

Let us consider several erxamples.
1. Let {ξ(x)ι x G Zd} be a field of non-degenerate i.i.d. random variables having
finite exponential moments. Suppose that the initial datum MO satisfies the con-
ditions formulated at the beginning of this section and (£(•), wo(0) is ergodic (e.g.
MO Ξ= 1). In this case (3.21) is satisfied and, consequently, the fields {u(t,x); x G Zd}
are intermittent.
2. Let {η(x)'9 x G TLά} be a homogeneous Gaussian random field. Suppose that
this field is ergodic and its finite dimensional distributions are non-degenerate
(i.e. equivalent to the Lebesgue measure). This is satisfied if the associated
spectral measure is continuous and has an absolutely continuous component. Let
h : JR. — > R be a Borel function which is bounded from above Lebesgue-almost
everywhere :

AO = ess sup h < oo .

Define

ξ(x) = h(η(x))9 x£Zd. (3.22)

This potential is ergodic, ess sup£ = AO, and (3.21) is fulfilled.
3. Consider the shock noise

η(x)=

where ζ(y), y G TLά, are independent Poissonian random variables with parameter
α, Σ|fe(x)| < oo, Σk(x) > 0. Let A : R -» IR be a non-decreasing function which is
bounded from above, and define the potential ξ( ) by (3.22). Then it is again not
difficult to show that (3.21) is fulfilled.
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4. Let (η(x); x £ ΊLd] be an ergodic random field such that a.s. a < η(Q) < b for
some positive constants a and b. Define

Since η is a generalized eigenfunctions of H to the eigenvalue 0, we have

ιy(0) = EO exp I / ξ(x(s)) ds I η(x(t)), t > 0.

U J

From this we conclude that λ$ = 0 and condition (ii) of Theorem 3.2 is violated.
Hence, the fields [u(t, x) x € Zd} are not intermittent. Moreover,

: oo
P+l P

for all p € N.
5. We consider the previous example in the one-dimensional case. Instead of
a < η(ty < b we assume that η(0) > 1 a.s. and (η(0)p) < oo, {^(O)^1) = oo for
some p > 2. Under these suppositions we obtain

<oo f o r 4 < p ,

= 00 for q > p.

To prove this, we assume for simplicitly that K = 1 and UQ = 1. We show that a.s.

w(ί,0)<f7(0) for all t (3.24)

and

lim - / w(s,
ί->oo t J

(3.25)

where c0 = {^(0))/{f/2(0)}. The bound (3.24) follows from the observation that
η is a time-independent solution of Eq. (0.1) and UQ(X) < η(x) for all x. We
introduce the functions

c G R The proof of (3.25) relies on the following two facts. Firstly, hc satisfies

Ghc = --c,
Ά

where the operator G is defined by

Gf(χ) = η - - lf(χ + 1) - /(χ)l + ̂ fc [f (x - 1) - /(x)] -



Parabolic Problems for the Anderson Model 645

Secondly, applying Birkhoff's ergodic theorem, we find that a.s. hc is bounded
from below (above) for c < c 0 (c > c0). After deriving the equation for v(t,x) =

t
fu(s,x)ds/η(x), one easily checks that the function wc defined by
o

'(x) (3.26)
i J L l l J

o

satisfies

—- = Gwc, wc |ί=0= hc.ot

From this (and the bounds hc(x) — ct < wc(f,x) < Λc(x) — (c — 1)0 we conclude
that wc(ί,0) remains bounded from below (above) as t —> oo for c < CQ (c > CQ).
Assertion (3.25) is a consequence of this and (3.26).

Since Λ\ is convex (step 4 of the proof of Theorem 3.2), the limit of Λ\(t) as
t -» oo exists. Taking this into account, we conclude from (3.24) and (3.25) that

/ I \ \
lim Λι(t) = lim log ( - / u(s,Q) ds ) = Iog(c0fo(0))).
ί->oo ί-*oo \ t j /

X 0 '

Hence, since Aq(t)/q is non-decreasing in q, all functions Λq are bounded from
below as t -» oo. From (3.24) and the moment assumptions on η(Q) we also know
that

lim sup/^(O < oo for q < p, (3.27)
ί—>00

and we arrive at the first half of (3.23). Using (3.25), we obtain

ί / / ^ \ "̂̂  \
lim inf - ί (u(s, 0)p+1) ds > ( [ lim inf - / u(s, tyds] } = oo.

ί-oo t J \ V ί-oo t J J /
0 X V 0 / '

Consequently,
lim sup Λp+ι (t) = oo. (3.28)

ί-*oo

Combining (3.28) with (3.27) and taking into account the remark at the end of
Sect. 1.1, we finally get the second half of assertion (3.23).

4. Almost Sure Asymptotics

The objective of this section is to derive the rough (logarithmic) asymptotics of
the solution w(ί, x) to the random Cauchy problem (0.1). Our approach is based on
the conception of "strong centers" suggested by Ya. B. ZeΓdovich and described
in [13, 14]. Let us explain its essence on a particle level in the supercritical case
when u(0,x) — δo(x), i.e. when at time zero there is a single particle in the system
located at the origin (cf. Sect. 1.2). The overwhelming portion of the multitude
of particles occupying the origin at time t > 1 has been generated at one of
that sites x at which ξ(χ) > a(t) > 1 (strong centers). Here a(t) denotes an
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unboundedly increasing function depending on the tail μ(ξ > r), r —> oo. Some
of the descendants of the original particle will reach such a strong center before
time £, create at this site new particles with high reproduction rate, and after
that, due to diffusion, a part of the latter will return to the origin until time t.
This process is accompanied by a competition between two factors: the greater
the distance away from 0 the stronger the occurring centers (high local maxima
of the potential) but the smaller the probability for a single particle (and each of
its descendants) to move from the origin to such a center and back.

Quantitatively, the asymptotics of w(ί,0) as t -> oo depends on the ratio
between the growth of the function

M(R)=maxζ(x)
\χ\<R

and the decay of large deviation probabilities of the random walk x( ) in the
spirit of the Lemmas 2.5 and 2.4, respectively.

We distinguish between four qualitatively different zones which may be de-
scribed in terms of the growth rate of M(R) as R — > oo and, in the case of i.i.d.
random variables ξ(x)9 x G Zd, also in terms of the speed of decay of μ(ξ > r) as
r — > oo:

a) M(JR) = Q(R")9 0 < α < 1. Roughly speaking, in this case the upper tail
of the distribution of ξ = £(0) has polynomial decay: An exact (non-random)
asymptotics of M(R) is not available. One must take into account strong centers
at a distance R(t) = Q(tβ)9 β « (1 — α)"1 > 1, from the origin, i.e. in the domain
of superlarge deviations.
b) M(R) = 0((logJR)α), α > 0. This is the situation of fractional exponential
tails, log(l — F(r))~l = O(r1/α). The main contribution to w(ί,0) is given by
strong centers in the standard large deviation zone R(t) = O(t). This includes the
Gaussian case popular in physics [14, 15].
c) M(R) = O((log logjR)α), α > 0. To derive the rough asymptotics of w(ί,0), it
suffices to take into account strong centers in an arbitrary zone R(t) = Q(tβ),
0 < β < 1, of moderate deviations. For α < 1 the main contribution to w(ί,0)
does no longer come from isolated strong centers but results from slightly lower
local maxima of the potential which are surrounded by other high peaks of
comparable amplitude. Because of its intermediate stage between "essentially
unbounded" and bounded potentials, this zone is most interesting from the point
of view of localization theory and, in particular, in connection with the estimation
of the Lifshίtz tails of the integrated density of states [11],
d) M(R) = 0(1), i.e. the potential ξ( ) is a.s. bounded from above. In this case
the strong centers form "large" (i.e. unboundedly increasing as t -> oo) islands.
Of course, the structure of that islands which give the main contribution to w(ί, 0)
depends on the detailed behavior of the distribution of ξ near the upper bound
/lo of the spectrum of H = KΔ -f ξ( ). But, at least in the i.i.d. case, these details
will only appear in the higher order terms of the growth of w(ί, 0) as t -» oo.
Concerning the rough asymptotics, the answer is simple:

lim = AO a.s. for each x e Zd . (4.1)
f-»oo t
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If the random variables ξ(x)9 x G Zd, are independent, then ΛO = ess supξ. The
proof of these facts is left to the reader.

We now turn to the formulation of the precise result. To this end we as-
sume that the potential Ξ = {ξ(x); x G Zd} consists of i.i.d. random variables
which have a continuous distribution function and are unbounded from above
(i.e. F(r) < 1 for all r G R). We consider the nonnegative solution u to the ran-
dom Cauchy problem (0.1) for a.s. not identically vanishing nonnegative initial
data MO satisfying

log log uo(x) < 1 ^

W_>oo log |X|

Condition (4.2) is slightly stronger than assumption (^o) in Sect. 2.1. In the one-
dimensional case we further impose condition (2.4) on the lower tail behavior
of the potential Ξ. To formulate our result, we introduce the non-decreasing
continuous function

and its inverse
ψ(s) = min{r : φ(r) > s}; s > 0.

The function ψ is strictly increasing, and φ(ψ(s)) = s for each s > 0.

Theorem 4.1. Under the above assumptions, with probability one for each x €
Zd the nonnegative solution u(t,x) to the random Cauchy problem (0.1) has the
following asymptotic behavior as t — >> oo.
a) //

=

s-»oo

for some y > d, then

b) //

lim ° ^ v / = 0 (4.4)
s—» oo s

and
lim [ψ(θs) — ψ(s)] = oo for each θ > 1, (4.5)
s—>oo

then
/logw(ί,x)λ 71φ i j ^ a jog ^

c) //
lim lim sup [ψ(θs) — ψ(s)] = 0, (4.6)
0|1 s—>co

ίfien
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Note that the subdivision of Theorem 4.1 into the cases a)-c) does conform
with the classification introduced before. In all three cases l—F(r) < const r~y for
some γ > d which implies (2.2) and therefore existence of a unique nonnegative
solution u to (0.1). The assumption y > d in (4.3) cannot be removed, since
0 < y < d implies (2.3) in which case the solution does not exist.

Before proving Theorem 4.1, we derive two lemmas on the growth of the
maximum M(R) and the decay of large deviation probabilities for the random
walk x( ).

The functions φ and ψ have the following remarkable property. If ξ has
distribution function F9 then η = φ(ξ) is exponentially distributed with mean one.
If η is exponentially distributed with mean one, then ξ = ψ(η) has distribution
function jp. (Here the continuity of F is needed.)

In dimension d > 2 we consider the level sets A+ and A~ introduced in Sect.
2.4 and choose α so negative that the percolation assumptions (Al) and (A2) of
that section are satisfied. For each n e N we set W+ = {x £ W+ : \x\ < n},
where W+ denotes the unique infinite cluster in A^.

Lemma 4.2. a) We have a.s.

φ(maxξ(x)\ ~ dlogn as n-+oo.
\ M<« J

b) Ifd>2, thena.s.

φ ( max ζ(x)\ ~ c/log n as n — >• oo .
\X€Wf J

Proof, a) Since φ is non-decreasing, it will be enough to show that the field η(x) =
φ(ξ(x)), x G Zd, of independent exponentially distributed random variables with
mean one satisfied a.s.

(x) ~ dlogn.

Since the maximum on the left is non-decreasing in n and Iog2n ~ Iog2n+1, it
suffices to check that for each ε € (0,1) a.s.

max η(x) > (1 + ε) d Iog2n only for finitely many n

and
max η(x) < (1 — ε) d log 2" only for finitely many n.
M<2"

But this follows from the Borel-Cantelli lemma by standard estimates,
b) Because of assertion a), it only remains to check that

max η(x) < (1 — ε) d log2" only for finitely many n, (4.7)

a.s. for each ε e (0,1). Similarly to the proof of Lemma 2.7, we find mutually
independent random variables η~(x), η+(x), ζ(x), x € %d, such that a.s.

η(x) = (l-ζ(x))η.(x)+ζ(x
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η-(x) < φ(α), η+(x) > φ(α), μ(η+(x) > r) = exp{-(r - φ(α))} for r > φ(α), ζ(x)
attains the values 0 and 1 with probability 1 —e~φ^ and e~φ^Λ\ respectively, and
A+ = {x : ζ(x) = 1}. Since η(x) = η+(x) for x e W+ and {ι/+(x); x € Zd} and
VF+ are independent, we may apply the Borel-Cantelli lemma with respect to
the conditional law of μ given {((x); x £ Z^} to reduce the proof of (4.7) to the
verification of

But this follows from the estimate

(1 - ^(«)2-(1-£)^)l^l < exp{-2-(1-ε)^2t|}

and the observation that, according to Birkhoίf 's ergodic theorem,

\W£\ ~C2nd

a.s. as n — > oo for some constant C > 0. D

As before, let (x(ί), P*) denote symmetric random walk on TLά with generator
κA> and let N(t) be the number of jumps of x( ) during the time interval [0, t\.
By τx and τ (.R) we denote the first hitting times of the site x G TLά and the set
{y £Zd :\y\> R}, respectively. Recall that in dimension d = 1 assumption (2.4)
is imposed.

Lemma 4.3. a) For arbitrary R > 0 and t > 0 we have

Po(τ(Λ) < ί) < 2d+l exp ( - R log -̂  + R\
[ icΛ J

b) If d> 2, ί/zen ί/i^rβ exists ρ > 1 SMC/I that for each t > 0 a.s.

( τ* Ί
EO exp / ξ(x(s)) ds I l(τx < f) > exp{-ρ|x| log |x|} (4.8)

and

exp ξ(x(s)) ds I(τ0 < ί) > exp{-ρ|x| log |x|} (4.9)

ybr <2// sufficiently large x G VF+. In dimension d = 1, (4.8) #«d (4.9) hold for all
sufficiently large \x\ provided that (log(l + ξ~)) < oo.

a) From the proof of Lemma 2.4 we know that

Po(τ(#) < ί) = P0f max |x(s)| > R\
\se[Q,t] J

< 2M exp{-Rβ + 2κdt[coshβ- 1]}

for all positive β, R, t. Choosing
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we get the desired upper bound for R > Kdt. For R < κdl the assertion is trivial.

b) We only prove (4.8). The proof of (4.9) is similar. We first consider the case
d > 2. Let z by a (random) site in the infinite cluster W+. Then an application
of the strong Markov property with respect to τz yields

ξ ( x ( s ) ) d s ί ( τ x < t )
J

( τ* }
EO exp \ I ξ(x(s)) ds I l(τz = τ(|z|) < t/2)

U J

xE zexp ίξ(x(s))ds\ί(τx<t/2)

for all x with \x\ > \z\. Since the first factor on the right is positive and does
not depend on x, it only remains to estimate the second one. Let y be a path in
W+ joining z with x and having length \γ\ = dw+(z,x). Note that ξ(x) > —|α|
along γ. Let σo, σ\, σ^,... denote the waiting times of the random walk between
consecutive jumps. To obtain the desired lower bound, we take only into account
the contribution of the random walk along the path y:

(2d)~M exp{-|α| t/2} Pz(σ0 + . . . + ff|,|-ι < t/2)

> exp{-|α| ί/2}P2(JV(t/2) = |y|)

> exp{-|y| log |y| + |y| log(κί/2) - (|α| + 2κd) t/2} .

Here we have used that N(t/2) is Poissonian with parameter κ,dt. Assertion (4.8)
now easily follows if we take into account that, according to Lemma 2.8, there
exists Q > 1 such that a.s.

for all sufficiently large x € W+.
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In dimension d = 1 it suffices to consider positive sites x. For x > t we obtain

_ x o g - f -

where we have used that the random variables σo, σi, ... are independent and
exponentially distributed with parameter 2κ. Because of assumption (2.4), the
strong law of large numbers yields that a.s. the sum on the right is of order O(x)
as x — » oo, and we arrive at (4.8) for large x. D

Proof of Theorem 4.1. It suffices to consider x = 0.
a) Upper bound. Given a sequence (Rn) with 0 < Rn | oo, we apply the Feyn-
man-Kac formula (2.1) to obtain

u(t9 0) = EO exp ξ(x(s)) ds M0(x(0) l(τ (Λo) > ί)

uo(x(ί)) l(τ (Λ»_ι) > t < τ (Rn)) .
n=l

Estimating the integrals in the exponents and uQ(x(t)) by t max ξ(x) and
\X\<Rn

max MO (x) (n = 0, 1, 2, ...), respectively, and applying Lemma 4.3 a), we ar-
\X\<Rn

rive at

w(ί,0) < exp it max ξ(x) + max l o g U Q ( X ) \
/X

exp \ t max ξ(x) -f max log UQ(X) — Rn_ι log — -̂ + #n_ι r (4.10)
*< \χ\<Rn \χ\<Rn Kdt )n=1 - |χ|<-Rn |χ|<Kπ

We shall choose Rn = Rn(t) (n = 0, 1, 2, ...) so that the first term on the right
gives the desired bound and the second (remainder) term tends to 0 as t —> oo.

Let us first consider case a). We Choose
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where ε is an (arbitrarily) small positive number. Assumption (4.3) implies that

φ(r) ~ y logr. (4.11)

Together with Lemma 4.2 a) this gives

} } y . (4.12)
\χ\<R

Using this and (4.2), one easily checks that a.s.

max loguo(x)=όft max ξ(x)\ (4.13)
V M£*o(0 /

provided that ε > 0 is sufficiently small (depending on the concrete realization of
MO( )) It is also not difficult to check that a.s.

exp/ί max ξ(x) + max log MO (x)
\ \χ\<Rn(t) \χ\<Rn(t)

- lV-ι(0 log t + *„_!« < e~nt (4.14)

for sufficiently large t and all n = 1, 2, . . . Substituting (4.13) and (4.14) in (4.10),
we find that a.s.

logw(ί,0) .
, < max <J(x) (l+o(l)).
ί M<-Ro(0

From this, (4.11) and Lemma 4.2 a) we conclude that

/logu(t,0)\ ^

V t )

Since ε > 0 can be chosen arbitrarily small in the definition of Ro(t), this yields
the desired upper bound.

In case b) we choose

with small (random) ε > 0. Then

max loguo(x) = ό(t) . (4.15)

Lemma 4.2 a) and assumption (4.4) together imply that a.s.

max ξ(x) = δ(Rδ) for each δ > 0 . (4.16)
\x\<R

This and (4.2) together again imply (4.14). Substituting (4.14) and (4.15) in (4.10),
we arrive at

t \x\<Ro(t)
< max * + * a.s.
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Together with assumption (4.5) and Lemma 4.2 a) we conclude from this that
a.s.

/log u(t, 0)\ , ξ(x)\(l+δ(l))~dlosRo(t),
\ t J vw^KoW /

which yields the desired upper bound.
It remains to consider case c). We first note that assumption (4.6) implies

limsup^<oo. (4.17)

Combining Lemma 4.2 a) with (4.6), we find that a.s.

maxξ(x) = ψ(d logR) + 0(1). (4.18)
\x\<R

In particular, a.s.

max ξ (x)< Clog log R (4.19)

for large R, where C denotes a positive constant. We choose

= (n + 1) f l o g log ί.

Then we again obtain (4.15) and, because of this and (4.19), also inequality (4.14).
Substituting (4.14), (4.15) and (4.18) in (4.10) and taking into account (4.6), we
finally arrive at

Q(l) = ψ(d logί) + 0(1) a.s.

b) Lower bound. If d > 2, then we choose for each (sufficiently large) R > 0 a
site XR e WR so that

ξ(xR) =

If d = 1, then we take XR from {x € TL : \x\ < R} instead of W%. In both cases
Lemma 4.2 tells us that a.s.

(4.20)
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We choose a random site z £ TLά so that UQ(Z) > 0 a.s. Applying twice the strong
Markov property to the Feynman-Kac formula (2.1), we obtain for t > 3:

( XXR Ί
tι(ί, 0) > EO exp 'J / ξ(χ(s)) ds I l(τXR < 1)

x EXΛ exp ξ (χ(s)) ds l(x(s) = x* for s e [0, t - 3])
«/
0

τ°

ί } 1x inf Eoexp< / ξ(x(s))ds > δz(x(r))uϋ(z)
ι<r<3 ^ j J

ί τ<* ~]
> C exp{(ί - 3) (ξ(XR) - 2κd)} EO exp \ j ξ(x(s)) ds I l(τxjl < 1)

^ o J
X τO N

ί r 1
x EXR exp <^ / ξ(x(s)) ds > H(τ0 < 1),

I * / I
v 0 '

where C denotes an a.s. positive random constant. Combining this with Lemma
4.3 b), we find that a.s.

κ(ί, 0) > C exp{(ί - 3) (ξ(XR) - 2κd) - 2ρR log R} (4.21)

for all sufficiently large R and all t > 3. To obtain the desired lower bounds we
shall choose # = R(t) in a suitable manner.

In case a) we take

for arbitrarily small ε € (0, 1). It then follows from (4.21) and (4.12) that a.s.

Together with (4.11) and (4.20) this implies that

Since ε can be taken arbitrarily small, this gives the desired lower bound.
In the cases b) and c) we choose

where again ε € (0, 1) is small. Because of (4.16), we conclude in both cases from
(4.21) that a.s.



Parabolic Problems for the Anderson Model 655

In case b), this together with assumption (4.5) and (4.20) implies that a.s.

^log^O)^d(log^))(1 + δ(1)K

and we arrive at the desired lower bound. In case c) we obtain a.s.

- > ψ(d logR(t)) + 0(1) = ιp(d log ί) + 0(1).

Here we have also used assumption (4.6). D
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