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Abstract. We consider random fields A satisfying the quaternionic Cauchy-
Riemann equation dA = F9 where F is white noise. Under appropriate
conditions on F, A is invariant under the proper Euclidean group in four
dimensions, but in general not under time reflection. The Schwinger functions
can be analytically continued to Wightman functions satisfying the relativistic
postulates on invariance, spectral property and locality.

1. Introduction

In recent years models of local interacting relativistic quantum fields of scalar,
vector, or gauge type have been constructed (see e.g. [2,6,7,20,28,34]) in space-time
dimensions d< 4. Since the basic work of Nelson's, the construction of such fields
has been closely connected with the construction of Euclidean (i.e. invariant in law
under the Euclidean group) random fields over Rd having suitable "Markovian"
properties.1 The case d=4 however, has remained open, from the quantum field as
well as the Euclidean Markov field point of view.2

The present article is the first one in a planned series where we investigate
random fields and quantum fields over R4. Our 4-component random fields A are
obtained by solving a first order elliptic partial differential equation

dA=F, (1.1)

where F is a 4-component Gauss-Poisson white noise with specific Euclidean
invariance. We shall formulate the above by making use of ample algebraic
structure of the field H of quaternions, which is isomorphic to R4 as vector spaces
over the reals.

Some results have already been announced in [0] and [3-5]. Reference [12]
contains a correction to [5] as well as further discussions and proofs.

1 For d = 2 most scalar models have been shown to fulfill the (strict) global Markov property (in
particular with respect to half-spaces) and Nelson's axioms. See [13] and references therein
2 For some partial results, see e.g. [0, 1, 6-9, 14, 18] and references therein
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In the present paper we resume the discussion, extending it in particular
towards the study of analytic continuation to Minkowski space-time of the
moments (Schwinger functions) of the Euclidean random field A solving (1.1).
Before going into more details, let us stress the basic ideas behind the construction,
making in fact the model fairly uniquely tied to the 4-dimensionality of the
underlying space-time.

A stochastic equation of the form LA = F, with L elliptic with constant
coefficients, and F a Euclidean white noise, looks, due to its covariance properties,
a promising candidate for constructing Euclidean Markov random fields. If L is
also of first order, we expect the resulting random field to possess the sharp
Markov property. Furthermore, covariance properties force us to take L purely
first-order, i.e. no constant term is allowed. The well-known group isomorphism,
again special for dimension 4, SO(4)^(SU(2) x St/(2))/Z2 (see [15], for instance) is
crucial. Using the isomorphisms between R4 and H, and SU(2) with the group
Sp(l) of quaternions of norm 1, we arrive at Eq. (1.1), as discussed below.

That we take F to be a white noise, i.e. a translation invariant random field with
independent values at different points in the sense of [19], is motivated by our
desire to get Markovian fields. Let us remark here that when F is Gaussian, the
corresponding random field A is a realisation of the free electromagnetic Euclidean
potential field. In the case when F is non-Gaussian, A itself is non-Gaussian and
can be looked upon as a mathematical realisation of models for interacting
electromagnetic non-linear quantum field theories. A forerunner and prototype in
this respect is the Born-Infeld model ([17]).

In a series of articles [2, 7-11], we have investigated various group-valued
random fields as realisations or extensions of (non-abelian) gauge fields. The present
work is closely related to the previous articles, thinking of H as the Lie algebra of
C7(2).3

An important, and, we think, attractive feature of our models is that they are in
a genuine sense explicit. To mention but one example, we achieve the analytic
continuation of the Schwinger functions directly "by hand," without involving
much of the axiomatic frameworks. We look at our model as a, at least partial,
realisation of the goal of uniting - in form of a local quantum field theory over
4-dimensional space-time - the ideas of quantum theory and special relativity in a
well-defined mathematical setting.

This article is devoted to invariance properties and existence of the Wightman
functions of the models, as analytic continuation of the Schwinger functions. We
show that our model possesses the basic invariance, spectrum and locality, which
are required in axiomatic approaches of relativistic quantum fields. As to other
properties, including the positivity of Wightman functions (in which one
encounters problems related to those of gauge field theories), we plan to discuss
them in forthcoming work, where we shall also discuss Markov, scaling and cluster
properties, together with taking a closer look at the regularity of the Wightman
functions.

In Sect. 2 the representation theory necessary for studying invariance pro-
perties is presented. In Sect. 3 we construct random fields which are invariant
3 For the study of stochastic equations associated with lower dimensional Euclidean random
fields, see [2, 21-24, 28, 37, 38], and references therein. See also [32]
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under rotations and translations, i.e. under the semi-direct product (Sp(l)
x Sp(l))O#, but in general not under reflections (cf. [12]).

The fourth and final section is devoted to analytic continuation. The set-up is
carefully tailored to suit an extension to a more general geometric framework
(fields over manifolds). We show that the Schwinger functions can be analytically
continued to Wightman functions (Theorem 4.21), which satisfy the postulates on
invariance, spectral property and locality.

2. Quaternions, Representations, and Invariance

A possible non-commutative generalisation of the theory of complex-analytic
functions may be directed to functions with values in Clifford modules. However,
due to the lack of commutativity, the basic result which holds in the complex
valued case fails, viz. the three definitions in terms of complex differential, Cauchy-
Riemann equation and power series expansion no longer agree (see e.g. Sudbery
[36]). The Cauchy-Riemann equation remains a natural candidate among others.
We shall make use of the quaternionic inhomogeneous Cauchy-Riemann equation
to construct random fields, for the following reasons. Since the Cauchy-Riemann
operator is elliptic and of first order, if the driving term is white noise, say, we
expect the resulting random field to possess the sharp Markov property. Moreover
the dimensionality of the physical space-time entails the employment of quater-
nions on us.

Let H be the (skew-) field of quaternionic numbers, which is algebraically
characterized as the unique associative division algebra over R of dimension four.
We denote the multiplicative identity by 1. There is a distinct anti-automorphism
of H, written

and called conjugation, which is uniquely determined by property

xxeZ(H) VxeH,

where Z denotes centre.
By the triviality of Z(H) and the division property we have

xx = xx = \x\2\ , xeH

for some non-negative quantity |x|. Therefore T = l implies involutivity: x = x.
Observing that

we deduce that | | is a Euclidean norm. The associated inner product will be
denoted by ( , ). It is also seen that

l*y| = MM, 1*1 = M
Imitating the notations in the case of C, we write Rex = x° =%(x + x), and Imx = jc
=j(x—x). Choose two elements i and j satisfying the orthogonality condition

0, (ij) = 0, and |i| = l/| = l.



558 S. Albeverio, K. Iwata, and T. Kolsrud

Equivalently

Γ=-i, 7=-Λ ί/+ji=0, and i 2 =/ 2 =-l.

These relations display the isomorphism between H and the Clifford algebra
over R2, and we see that {1, ij, ij} forms an orthonormal basis. Writing k = ij, we
obtain the familiar multiplication rules

i2=j2 = k2=— 1, ij=—ji = k, jk=—kj = i, ki=—ik=j.

Since the orientation {1, ij, (/'} is independent of the choice of the pair (ij), we may
speak of the canonical orientation of H.

Let E4 be a four-dimensional Euclidean space. We choose H as the difference
space for E4, viz. the additive group H acts transitively and freely on E4 from the
right. Using a basis {1, iJ9 k] of H and an origin 0 in E4, we introduce a coordinate
system {x0,*1,*2,;*;3} in E4:

peE4.

We can now define the Cauchy-Riemann operator. Regard the algebra H as a left
H-module. If/ is an H- valued continuously differentiable function on an open set
in E4, df is defined by

. (2-1)

df is a coordinate-free object, see Remark 2.9 (ii). By analogy with the complex
case we call d the (left) Cauchy-Riemann operator. Similarly we introduce also
d=d/dx° + id/dxί+jd/dx2 + kd/dx3. Note that successive application of d and cΓ
yields the Laplace operator, dd=dd = A.

The inhomogeneous Cauchy-Riemann equation

dA = F (2.2)

is our fundamental equation. To formulate the Euclidean covariance of this
equation, we fix group actions. The 4-dimensional spin group is naturally realised
in terms of quaternions. The set

Sp(l): = {αeH:|α| = l}

carries a group structure inherited from the multiplicative group H x = H\{0} and
is isomorphic to SU(2). The group action

(Sp(l) x Sp(l)) x H3((α,fr),x) κ> axb'1 eH

gives rise to an epimorphism Sp(l) x Sp(l)-»S0(4), the kernel of which is { ±(1, 1)}
^Z2. Hence the isomorphism (Sp(l) x Sp(l))/Z2 = SO(4). Furthermore the above
action yields the semi-direct product of Sp(l) x Sp(l) and the additive group H,
denoted by (Sp(l) x Sp(l))QH.

If one wants to include reflections as well, one can proceed as follows. Let ρ be a
group automorphism of Sp(l) x Sp(l) satisfying ρ o ρ = id. ρ induces a semi-direct
product Z2O(Sp(l) x Sp(l)) with binary operation
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Since we regard Z2 as 0(4)/S0(4), Z2O(Sρ(l) x Sp(l)) must act on H in the
following manner:

- l l l - x = 0 x S - x )

1,

where we choose the "time" reflection θt as a representative for 0(4)/SO(4).
Comparing ( — 1,1,1)- (axb ~ *) and (( — 1 , 1 , 1 ) (1 , α, ί?))x, we have ρ(α, b) = (b, a) and
hence

We have the following classification:

(2.4) Proposition. All possible four-dimensional (real) representations of Sp(l)
x Sp(l) are classified into the following 8 types (except for the trivial one)

(1/2,0) ax, (1/2,0) xa~l = ax

(0,1/2) bx9 (07Ϊ72J xb-^b*

(1/2,1/2) axb-1, (1/2,1/2) bxa'^^b^

(0,0) + (1,0) αxα-1,

(0,0)+(0,1) ferfr1.

(2.5J Kemαrfc. In (1/2,0), (0,1/2), and (1/2,1/2), the latter ones are conjugate
representations of the former ones. (1/2,0) and (0,1/2) are complex representations,
since we can introduce a complex structure in H by right (respectively left)
multiplication. Moreover, these are the so-called two-valued representations of
S0(4). On the other hand (1/2,1/2), (0,0)-h(l,0), and (0,0) + (0,1) give rise to
representations of S0(4) itself. Finally we remark that (1/2,1/2) (and its conjugate)
is the only representation which admits extension to Z2Θ(Sp(l) x Sp(l)). It is not
possible to find 0eGL(H) with 0((α,ί?) x) = (ί?,α) 0(χ) except for (1/2,1/2) and
(1/2,1/2). This fact is also reflected in the failure of covariance of Eq. (2.2) under
reflections.

A finite dimensional representation together with an action on a base manifold
induces infinite dimensional representations on appropriate spaces of vector-
valued (generalised) functions. We shall use the same notations for the induced
infinite dimensional representations of (Sp(l) x Sp(l))0H. It is not difficult to
show that d and ^intertwine the two representations (1/2,0) and (0,1/2).

The following commutative diagrams hold:

d/2,0)
ί

(2.6)

and

(0,1/2)

(2.7)

d/2,0) *
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Similarly we have four other commutative diagrams

(1/2,1/2)

(0,0) + (0,1

and
(1/2,1/2) (0,0) + (1,0) (0,0) + (0,1)

a 0 a a a (2.8)

(0,0) + (1,0) d/2,1/2) d/2,1/2)

(2.9) Remarks, (i) If one wants to construct intertwining maps for (1/2,0) and
(0,1/2), one has to consider the right instead of the left category. Incidentally,
(1/2,1/2), (1/2,1/2), (0,0) + (1,0) and (0,0) + (0,1) belong to the right category as
well.
(ii) The operator d is uniquely characterised up to real constants as a first order
right H-linear differential operator from the H-module C°°(£4;H) into itself and
intertwining (1/2,0) and (0,1/2) as in Eq. (2.6). Similarly for 3" and (2.7).

Our aim is to construct Euclidean field models by using random fields. Taking
into account the known result of axiomatic field theory ([35]) on the relation
between spin and statistics, we shall in the remainder of this paper be chiefly
concerned with the pair (1/2,1/2) and (0,0) + (0,1). We shall assign the notation A
(respectively F) for a generic element of the (generalised) function space carrying
the representation (1/2,1/2) [respectively (0,0)+ (0,1)].

Our argument this far can be summarised as follows:

(2.10) Proposition. // dA = F, then d(a-A) = a-F for any αe(Sp(l) x Sp(l))QH.

We emphasise again that the above representations are those of SO(4)OR4, but
we sacrifice the covariance under reflections.

(2.11) Remark. The direct sum (1/2,0) + (0,1/2) admits extension to Z2O(Sp(l)
x Sp(l)) and the pair {3,5} forms the Dirac operator interchanging the grading of

the Z2-module (1/2,0) + (0,1/2). Explicitly the Dirac equation can be written as a
system of equations, namely dA2 = Fί and ^A1=F2. In this representation the

Dirac operator is the matrix # = ( »- Λ I.
\d O/

Let us discuss the matter from a different angle. The exterior algebra Λ^R4 is
naturally isomorphic, as an S0(4)-module, to the direct sum H0H0HΦH whose
homogeneous components carry the representations (1/2,1/2), (0,0)+ (0,1), (0,0)
+ (1,0), and (1/2,1/2), respectively. However, we must take a slight change of the
grading of A^R4. This will be described below.

Assuming that R4 is equipped with a Euclidean inner product ( , )£, we first
choose a unit vector eeR4. Then 0 = 0seEnd(R4) is uniquely determined by the
properties

θs(e) = e, and θs(x)=-x, xe{e}j;
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We see that

Θse0(4) and βΛ0s(x)= -<?ΛX, xeR4.

In general any 0eEnd(R4) is naturally extended to End^R4). In particular
each element in S0(4) gives rise to an automorphism of the graded algebra A^R4.

Next, we fix an orientation of R4, Le. we choose OΦ weΛ4R
4. Combining this

with the canonical inner product on A^R4 lifted from R4, we may introduce the
Hodge star operator as follows:

where ]E denotes interior multiplication defined by

It is well known that *£ maps Λ2R
4 into itself and that A2R

4 is decomposed into
the eigenspaces of *£:

A2R
4 = A2t +R40Λ2> _R4 = {self-dual 2-vectors}0 {anti-self dual 2-vectors} .

At the same time this is the irreducible decomposition of the S0(4)-action and θs

intertwines two irreducible components.
We now introduce another grading of A^R4 as follows.

The representations (1/2,1/2), (0,0) + (0,1), (0,0) + (1,0), and (1/2,1/2) are
realised on the homogeneous components. We shall explicitly construct the
intertwining map between (H, (0,0) + (0,1)) and Λ0R

4ΘΛ2,-R4 To this end we
introduce a binary operation o on R4 as follows:

x °y : = (θs(x), y)Ee + ((θs(x) Λy- *£(0s(x) Λ y))E] Ee , x, y e R4 C A*R4 .

It is not difficult to verify that the linear space R4 with o forms an algebra
isomorphic to H, where e is the multiplicative identity and θs is the conjugation. If
we define a map R4-+A0R

4®A2, _R4 by

Φ : x i— > x J Ee + e Λ x — * E(e Λ x) ,

then we see that Φ is a linear isomorphism satisfying

and

(2.12) Proposition. We have the identities

Φ(θs(x) °u) = u]Ex + x Λ u — *£(x Λ u)

and

X°Φ~ί(v) = XΛV0 + V2]EX ,

for xeR4, we^R4, and v = v0 + v2εA0R
4®A2f_R4.
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(2.13) Remark. That Φ intertwines (H, (0,0) + (0,1))) and Λ 0R 4ΘΛ 2 >_R 4 is an
immediate consequence of Proposition 2.11. It gives also an alternative descrip-
tion of the Cauchy-Riemann operator in terms of differential forms. Let us agree to
write Γ(ΛPE4) for the C°° sections of the vector bundle APE4 of all p-forms on E4.
Identifying APE4 with ApE4 through the inner product ( , )E, we have

*EdA, AeΓ(AlE4),

and

ffoφ-i(F) = dF0-δEF29 FeΓ(A°E4®A2>-E4),

where δE is the coderivative operator. Therefore our fundamental equation reads

δEA=-F0, dA-*EdA = F2.

3. Invariant Random Fields

Let us now discuss the fundamental solution of 3 which is constructed from that of
- A, g(x) = l/(4π2|x|2). We denote by Sf = ί?(E4, H) the Schwartz space of rapidly
decreasing functions which we regard as carrying the representation (1/2, 1/2)
unless otherwise stated. We introduce another space

y : = [ψ e C°°(E4, H) : lim φ(x) =
I M^oo

We see that

is bijective with inverse

where

g*dζ(x)=lg(x-y)dζ(y)dy.
E4

The above bijection induces a locally convex topology and also the represen-
tation (0,0)4- (0,1) on y. (Sp(l) x Sp(l))QH acts naturally on &' and &", the
topological dual spaces of y and ίf respectively, through canonical pairings. It is
important to note that [δφ : φ e ίf} is not dense in ίf. Therefore the canonical
injection ι\ίf^y is not dense and furthermore i*\y~-*£f' is not injective.

We shall now consider the equation dA = F in the case where F is a generalised
random field. More precisely F is a system of random variables (F(φ) :φe&~}
defined on some probability space (Ω, J^,P) with the following properties:

P{F(ciφί + C2φ2) = c^φj 4- c2F(φ2)} = 1 , ci9 c2 e R, φl9 φ2 e *Γ ,

and

where the latter convergence is in probability.
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We identify F and F' if F(φ) = F'(φ) a.s. for each φe^~. Since SΓ inherits the
nuclear topology from < ,̂ according to Minlos-Sazonov-Kolmogorov's theorem
and the facts stated in the lemma below, one can always construct a unique
^"'-valued random variable F on the same probability space such that <<p,F>
= F(φ) a.s. for every φe^~. (See Itό [26], for instance.)

Let us assume that we are given a countable family of random variables
{Xi}?Lι on (Ω,^,P). The following result follows from known facts about Borel
isomorphisms of measurable spaces; see e.g. Royden [33] or Yamasaki [39].

(3.1) Lemma. // there exists a countable generating system {./i}^! of measurable
functions on a standard measurable space (E, @>\ and a probability measure μ on
(E, 38) such that the discrete time stochastic process (E, $, μ, {/J) is equivalent to
(Ω, &9 P, {Xi}\ then it is possible to construct an E-valued random variable X on
(Ω, &, P) such that Xt =f^X) a.s. for each i = 1, 2, . . . . In addition X is unique up to
null events.

(3.2) Remarks, (i) From now on we shall identify F with P and write <φ,F> for
F(φ).
(ii) The index vector space f is somewhat peculiar in contrast with those usually
taken. For instance, ff" does not admit a (smooth) partition of unity. This fact really
makes the matter difficult in discussing the Markov property of A solving dA = F
in general contexts (cf. Kusuoka [31]).

(3.3) Definition. A (generalised) random field X is called Euclidean invariant if
a - X is equivalent to X in the sense of law for all a e (Sp(l) x Sp(l))QH. We shall

write a-X=X to indicate this. In the case X = F one has to verify that

<α~1 φ,F> = <φ,F> for each

(3.4) Remark. In the literature on random fields a stronger condition is often
imposed, viz. the existence of a measure preserving flow

{Γβ;αe(Sp(l)xSp(l))ΘH}

satisfying

P{α F(ω) = F(Taω), Vα} = 1 .

In particular this is the case if F is canonically realised.
The content of the following result from [12] is now clear.

(3.5) Theorem. Suppose that a generalised random field F indexed by 2Γ is given on a
probability space on (Ω, ̂ , P). Then there exists a unique generalised random field

defined on (Ω, ̂ , P) such that

= <φ,F> a.s.,

Moreover if F is Euclidean invariant, so is A.

The basic example of F is white noise. Let ψ be a continuous negative definite
function (see Berg-Forst [16]) on H which is invariant under the action (0,0)
+ (0, 1) of Sp(l) x Sp(l). The Levy-Khinchin representation of ψ must be of the
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+ f
H\{0}

(3.6)

where jδeR, σ0, σ^O, and the Levy-measure v is Ad-invariant under Sp(l), i.e.
satisfies

(See also Albeverio et al. [8,9].) We shall only consider ψ with this invariance.
Then

Cψ(φ) : = exp / - J ψ(φ(xj)dx\ , φ e C?(E4, H) ,
\ E4 J

is the characteristic functional of some Euclidean invariant generalised random
field {<φ,ΛΓ> : φeS>] indexed by the Schwartz space 2 of test functions carrying
the representation (0,0) + (0,1). Let us avoid detailed discussions about the
continuity of Cv with respect to the ^-topology, and just give a sufficient
condition.

By Sobolev's inequality

if

, 1 1
and - = -

q p

1
τ
4

Therefore, if for some ε>0,

λ->0, (3.7)

Cφ(φ) = Cψ(g*d( — 3φ)) is well defined for all φe$~ and continuous in the
^"-topology.

(3.8) Definition. We shall call a negative definite function ψ satisfying (3.7)
admissible.

Although in general there may exist two non-equivalent ^'-valued random
variables such that ι*F = ι*F' a.s., N uniquely determines F with ι*F — N, provided
ψ is admissible. In this sense we call F the white noise with Levy characteristic ψ.

We have the following result from [12] on our random field A.

(3.9) Theorem. Given an admissible Euclidean invariant continuous negative definite
function ψ on (H, (0,0) + (0,1)), there exists a generalised random field
{<£, Ay : ξ e 5 }̂, unique up to law equivalence, such that { — (J5φ, Ay : φ e$~} is the
white noise with Levy characteristic ψ. The distribution of A is given by
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and therefore A is Euclidean invariant under the action (1/2, 1/2). // the Levy measure
has moments of order n for n = 2, 3, ..., then also A has moments of order n:

exist as continuous linear functionals on ̂  ®n.

The random field A described in the theorem will be referred to as the solution
of the quaternionic (inhomogeneous) Cauchy-Riemann equation dA = F with
Levy characteristics ψ. We shall call {Sn} the Schwinger functions of the random
field A.

(3.iO) Remark. In the pure Poisson case /? = σ0 = <7 = 0, and with v of finite
variation, one can solve the equation dA = F directly and a random field with
analytic "paths" is obtained. We shall come back to representations of this kind in
our forthcoming paper. (In this connection, see also [12].)

In the remainder of this section we shall discuss reflection in variance of A (cf.
[12]). We first consider sufficient conditions for reflection invariance and after that
we shall state the complete result.

A is by definition said to be (time-) reflection invariant if θtA = A, with θt as in
(2.3). It is easily seen that the following subdiagram of (2.8)

d/2,1/2)

Red |Rea (3.11)

(0~0)

can be extended to Z2Θ(Sp(l)xSp(l)) consistently with θt. This implies

Reg * dθtξ(x) = Reg * dξ(θ~ be), ξ e £f, x e E4. (3.12)

Therefore, if the Levy characteristic ψ depends only on Re λ, i.e. σ = 0 and v is

supported by {αeHx :Imα = 0}, then θtA=A.
We next observe

$\g*dξ(x)\2dx = ff g(x-y)(ζ(x),ξ(y))dxdy9 ξε<?, (3.13)
£4 E4 x £4

for dd = dd = A. Thus we see

i\g*dθtζ(x)\2dx=ι\g*dξ(x)\2dx.
£4 £4

Combining with (3.12) we deduce

J |Img * dθtξ(x)\2dx = j |Img * dξ(x)\2dx. (3.14)
£4 £4

The relations (3.12) and (3.14) tell us that the second order moment of the
generalised random field A is invariant under reflection. In particular, if A is

d
Gaussian distributed, i.e. v = 0, then θtA = A.

We can now formulate

(3.15) Theorem. The solution A of the quaternionic Cauchy-Riemann equation
dA = F with admissible Levy characteristic ψ is time reflection invariant if and only if
the Levy measure v is supported by the centre of H x.
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Proof. We have already proved the "if part. To prove the "only if part, we start
with the relation

Re
E4 (3.16)

which implies

supp v C {α : (α, f^x)) = 0 mod2π or (α, /2(x)) Ξ 0 mod2π} , m — a.e. x .

Here w^O is a general measure.
To see this implication, we may assume that

ψ(λ)= J (l-cos(M))v(dα).
H\{0}

It follows easily that then

2ιp(λ,) + 2φ(Λ2) - ιp(λ, + λ2) -ψ(λ±- λ2)

= f (l-cosία^^α-cosί^^M^^O,
H\{0>

with equality if and only if

(α,/l1) = 0mod2π or (α,/l2)=0mod2π, Vαesuppv. (3.17)

The assertion now follows upon integration with respect to m.
By assumption v is Ad-invariant under Sp(l), so (3.17) cannot hold unless one

of the Im^s is 0 or v({α e H x : Imα Φ 0}) = 0. Hence if (3.1 6) holds for m(dx) = dx and
the /s are continuous, we deduce that

suppIm/iΠSuppIm/2 has no interior, or v({αeHx :ImαΦθ}) = 0. (3.18)

After these preparations we turn to reflection invariance. If A is reflection
invariant, then one easily checks that F must be invariant under the mapping

φ h-> — g * (δφd) o 0~ 1 .

We therefore define

Tφ=-g*(ffφd).

Then

Re Tφ(x) = Re φ(x) , Im Tφ(x) = g * (<5(Im φ)d) (x) .

Note that if φ e Cg, say, then Tφ is harmonic and therefore real-analytic off supp φ.
We shall show that there is a φ1 e CQ and

Bxφsuppφί:Tφί(x)Φθ. (3.19)

That is, T is non-local. (The condition in (3.19) is equivalent to requiring that
Im jΓφiMΦO.) Then by analyticity, Tφ1 cannot vanish on any open subset of the
complement of supp φίt

Assuming (3.19) for the moment, we define φ2 = φ^( + x0)> and let St denote the
support of φt. For \x0\ sufficiently large, S1nS2 = 0, whereas suppImT^!
nsupp Im Tφ2 must contain non-empty open subsets of the complement of Sλ uS2.
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If A is reflection invariant, then J ψ(φ)dx = J ψ(Tφ)dx for any test function φ. Hence
we see from (3.18) with ft = Tφh that in order not to obtain a contradiction, v must
be supported by the real quaternions, i.e. by Z(HX), so the "only if part follows.

Let us now prove (3.19). Suppose the contrary holds. Then T is a local,
continuous and linear operator Cg-^C™. It is also translation invariant, hence a
differential operator with constant coefficients. Only the zero order term can be
non-zero, because T is homogeneous of order zero. We have already seen that T as
an operator on L2 is unitary. Consequently, Tis realised by multiplication with an
element in 0(4). We know that T preserves the real part. It follows that there is
some ceSp(l) such that

L , or Tφ = cφc~1, (3.20)

for any test function φ.
Now we note that the diagram

(0,0) + (0,1

(0,0) + (1,0)

commutes. Supposing that T satisfies the first identity in (3.20), we therefore get

acφ(a~ίxb)c~ίa~ί=cbφ(a~ίxb)b~ic~ί, x eE4

for all α, b e Sp(l), and φ e CQ(E^ H). It is easily seen that this is not possible. Π

(3.21) Remarks, (i) Minor modifications of the argument just given show that in
order for TF to have independent values at each point when F is a Poisson white
noise, T must be local.
(ii) In the above discussions we have seen that the behaviour of the solution A of
dA = F with pure Poisson noise F under reflection is compatible with the fact that
the commutative diagram (2.8) does not permit any extension to Z2O(Sp(l)
x Sp(l)) while its subdiagram (3.11) does. On the other hand, provided that F is

Gaussian A is always reflection invariant. In this case locality of T itself does not
really enter. What matters is the locality of ΓT* which equals the identity in this
particular case, hence is local.

It seems true that the Gaussian case is exceptional also from some other
observations concerning the Markov property, scaling property etc. We shall
develop these topics in our forthcoming paper. (See also the comments at the end of
Sect. 4.)

4. Schwinger Functions and Wightman Functions

In this section our attention is focused on the moments of the random field A with
characteristic ψ from Theorem 3.9. We shall assume throughout that in addition
to being admissible, ψ is infinitely differentiable in some neighbourhood of A = 0.

Let Xί9...,Xn be a finite family of random variables on a probability space
(Ω, ̂ , P). Assuming that their joint characteristic function is n times continuously
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differentiable at the origin, we set

~

and call it the cumulant of Xl9 ..., Xn.

(4.1) Lemma. Un is a symmetric n-linear form on the linear space L"(Ω, ̂ , P) of all
random variables on (Ω, ̂  P) with finite nth moments. Moments and cumulants are
related as follows. Let & denote all partitions Δ = {I} of {!,... ,n}. Then, writing

/={*,,. ..,U> £[*!... *„] = Σ Π um[xii9...9Xtj-
Δe& JεJ

Proof. It suffices to consider the case Xi = ...=Xn = X, due to the obvious
symmetry and multilinearity. The group of permutations of {!,..., n} acts

n

naturally on 0*. Since the order of the isotropy group of A e 0* equals Π im ! (m !)/m,
m = l

where iw is the number of 7's in A with m elements, 1 ̂ m^n, one obtains

Mn = right-hand side of Lemma (4.1)

= . Σ. r̂—^ 7l\Um[_X,...,Xj»>,

m=l

and hence

~-mm = ι m!
This completes the proof. Π

Under our assumptions on φ, the Levy measure v has moments of all orders
n ̂  2. From the formulae

J αΠαTv^llΓ, m = 0,2,...,
H\{0) m -M H\{0}

and

H\{0}

which are consequences of the (0,0) + (0,1 )-symmetry of v, we obtain the following
Taylor expansion of φ:

7 ίH\{0} / \ 3n\{0}

•
He3 n! m - o \ m / m + l

meven

x J α5-m|α|mv(dα
H\{0}
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We remark here that in order for ψ to be admissible, the first order term in its
Taylor development must vanish.

Let ξ e S f . Then

+ ί αgv(ιfaΛ J (Reg * dξ(x))2dx
H\{0)

f \tfv(dti}ί \Jrng *dξ(x)\2dx9
H\{0} / E4

and

H\{0}
meven

X
j

In what follows we shall discuss the problem of analytically continuing the
moments of A by letting (x°,x1,x2,x3)e£4 become complex.

Let us recall some fundamental notions and notations associated with
Minkowski space. By definition Minkowski space M4 is an affine space with
difference space R4 equipped with an inner product ( , )M of signature (3,1). We
denote by Q the associated quadratic form on R4.

In the following arguments we intend to distinguish the space of linear forms
y!1R4 = Hom(R4,R) from R4. One consequence of this is that interior multiplica-
tion is defined between elements of Λ*R4 and elements of Λ*R4, the alternating
algebra of R4. There exists a unique map ι/M6Hom(R4,vl1R4) corresponding to
the inner product ( , )M through the relation

<ηM y>=(χ> V)M > χ,ye*4. (4.2)
Since ηM is an isomorphism, the inner product ( , )M is transferred to Λ*R4 by ηM.
We shall use the same notation for the induced inner product.

(4.3) Definition. A vector x e R4 is said to be space-like, light-like or time-like
according as Q(x) is positive, zero, or negative.

The totality V of time-like vectors has an easily deduced remarkable property,
(ii) below. We shall need property (i) later on.

(4.4) Proposition. For x,y,zeV,
(ϊ)(x,y)2

M^Q(x)Q(y)>0,and
(ii) (x,j>)M <0 and (y,z)M<0 imply (x,z)M<0.

On account of (ii) the set V is divided into two equivalence classes: x, y e V are
called equivalent if (x,y)M<0.

(4.5) Definition. We say that (R4, ( , )M) is oriented in time if a preferred choice of
one of these classes is made. The chosen one is called the (open) forward cone. It
will be denoted by V+, whereas the remaining one will be denoted by V~.

In the following discussion we fix a time orientation. Let e0 e V. Then Q is
positive definite on the subspace {^O}M — {^^R4:(^^o)M = 0}. We regard
R4 = Re00{e0}^ as a decomposition of (the tangent space of) Minkowski space
into "time" and "space." Hereafter, by an orthogonal frame we shall mean a set of
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vectors {e0, eί9 e2, e3} CR4 such that Q(e0) = — 1 and {eί9 e2, e3} is an orthonormal
basis of {e0}if.

We now consider complexifϊcation, M$, of the Minkowski space M4.
More generally, suppose we are given an imbedding of a C°° manifold M in a

complex manifold Mc with complex structure J in such a way that the imbedding
z:M c»Mc decompose the tangent space into real and imaginary parts:

Tl(p)M
c = ι*pTpM@Jl(p)upTpM , p e M , (4.6)

then we refer to Mc as a complexίfίcation of M.
By assigning ^nTpM, the vector space of complex- valued n-linear forms on

TpM, to each p e M, we get a complex vector bundle

&nTM= (j JS
peM

On Mc we consider the subbundle

= (J ̂
peM

consisting of all holomorphic elements of £"1TPM
C, i.e.,

C

 Ξ {/e J*?TPM
C :/(ιιlf . . ., u, _ lf Jpui9 ui+ί, . . ., un)

c

(Cf. e.g. Kobayashi-Nomizu [30], vol. II.) This condition is equivalent to requiring
that the multi C-linear extension of / vanishes if at least one of the w's is of

antiholomorphic type, i.e. Jut= — ]/— Iw,- for some 1 ̂ i^n.
It follows from the decomposition (4.6) that for each p e M the mapping

τ(up) : J^nTl(p}M
c 9/W/o ι*p e <?

where f°up(ui,...,un)=f(ι*puί,...,upun) is a C-linear isomorphism. Hence for
every fe<£nTpM there exists a unique element JΈ JtfnTl(p}M

c which makes the
following diagram commute:

TpMx...xTpM

By the same reasoning we can associate each α e Homc(=^7n7pM, ̂ mTpM) with
6ίeHomc(J^nT^p)M

c

yJ^mTl(p)M
c). α is uniquely characterised by the following

commutative diagram:

τ(ι*p) \ I τ(ϊ*p) ^

— > <emτu
^

A local C°° section / oϊJJfnTMc is called holomorphic if the function /(MI, . . ., un)
is holomorphic for any n holomorphic vector fields ul9...,un.
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Suppose /eΓ(JS?πTM) is given. We say that a holomorphic section / of
3#?nTMc defined on some neighbourhood of ι(M) is a holomorphic extension off if
ϊ*7=/ According to the discussion above and the unique determination of a
holomorphic function by its values on a real environment, / is uniquely
determined by its trace z*J on M. (See e.g. Streater-Wightman [35] or lost [29].)
Similarly we say that a linear differential operator D : Γ(tfnTMc)-+Γ(3emTMc) is
a holomorphic extension of a linear differential operator D:Γ(^nTM)
-+Γ(<emTM) if BJ is holomorphic and **(/)/) =£>(**/) for every holomorphic
section / of 3VnTMc.

Let M$ be a four-dimensional complex affine space with difference space
R4(g)C, and denote by J its natural complex structure. We assume that the
Minkowski space M4 is imbedded into M£ such that the embedding ιM : M4

C> M$
induces the natural imbedding of the difference space R4c»R4(x)C. Then M4 is a
complexification of M4 in the sense described above.

We consider now the holomorphic extension Q of the quadratic form Q. Q is
determined as the quadratic form R4®C-»C satisfying the additional property

, zeR4

It follows that

χ,j;eR4.

For simplicity we shall drop the tilde and simply write Q from now on. It is
worthwhile noting that Q(z)eC\(— oo,0] if zeR 4 + JF+. This is a consequence
of (i) in Proposition 4.4.

Let us recall that H is also regarded as the difference space of the Euclidean
space E4. We fix an imbedding ιE:E4-+M% which satisfies the following
conditions:

('*)*(H) = {e0}if ΘRJ*0 , β(ω**) = M2 , x e H

We next define several domains on which analytic continuation will be
considered. Let Tn be the tubular domain in (M$)"with base V+, i.e.

l}. (4.7)

Tn is customarily called the forward tube.
In addition we define two open sets in (E4)

n as follows:

(E4)l = {x = (xl9 . . ., xj e (E4)
π : x, Φ Xj if i

and

(£4)"< Ξ{x = (x1? ...5xπ)6(£4)« : ιE(x) = (ιEM, •», ιE(*n))e T"} .

Analytic continuation of the Schwinger functions (moments) {Sn(ξl9 ..., ξn)} of
the random field A from Theorem 3.9 will be performed in accordance with the
following diagram:
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[Mj)n

U

(M4)
n (E4)J

holomorphic continuation

Since we have rather explicit formulae for the Sn it is possible to exhibit the
analyticity directly. We first show that the distribution Sn on (E4)

n is representable

as a pullback of a holomorphic section ϋ^n of 2tf nT(M%)n onto (£4)"Φ. We see next
that <Wn is analytically continued to the domain D which contains the forward tube.
Finally, by taking the boundary value of Wn we shall obtain (the Wightman
function or distribution) Wn on M4.

(4.8) Remark. Besides our purpose of exploiting explicit formulae for the Wn9 we
are more or less forced to perform the analytic continuation by hand. It is not clear
at the moment whether the standard procedures for analytic continuation from
axiomatic quantum field theory due to Nelson, Osterwalder-Schrader and others,
see e.g. Glimm-Jaffe [20], do apply in our model.

Let us now turn to an alternative description of the cumulants of A.
Identification of H with the difference space of E4 gives rise to the isomorphism
^ = ί^(E4,H)^^(7Έ4). In terms of the notation introduced at the end of Sect. 2,

φ(du) = - δEηE(u) + dη^u) - *EdηE(u), u e Γ(TE4),

where ηEeΐLom(R4

)A
1R4) corresponds to ( , )E in the same way as in (4.2).

Therefore, if ue^(TE4), we have

Reg * du(x) = - g * δjfijfμ) (x) = - f <</g(x - ) (y), u(y)ydy, (4.9)

and choosing an orthogonal basis {e°, el

9 e
2, e3} of A1R4 with respect to ( , -)E, we

get

|Img * du(x)\2 =i ||g * (dηE(u) - *EdηE(u)) (x)\\2

3

= Σ^ I ί g(* - V) (e° Λ βί - *ε(e° Λ el\ dηE(u) (y))Edy\2

= .Σ

= ί <DE(g(x-
(E4)

2

where /)£:C°°(£4)
fined by

i-^E(e^ei))Ag(x—J)(yl u(y))dy\2

3>g(χ — '))(yι>y2\ u®u(yι>y2Ϊ)dyldy2, (4.10)

ίx£4) is the differential operator de-

(4.11)
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Define also

g<")(y)=g(n)0'1, ...,3V)= J g(*-3Ί)...g(x-ytfx, ye(£4)"* - (4-12)
£4

(4.13) Remark. For n^3 the decrease at infinity of g(y) = c\y\ 2 is sufficient for
integrability, i.e. g(Λ) is well defined on (E4)

n

Φ for n ̂  3. For n = 2 we must interpret
(4.12) as the finite part of a divergent integral; cf. e.g. Hόrmander [25], Chap. 3.
Hence we understand that for n = 2

1

It is clear from the behaviour of g(π) that the cases n = 2 and n ̂  3 are different.
Accordingly we shall treat them separately, starting with the latter case n^3.

Using (4.9), (4.10) and Fubini's theorem we obtain

f (Reg * dtφc))"-m|Img * du(x)\mdx
n — m m/2

= J <Sym(d® . . . (x) d® DE® . . . ®DE)g(n\y), u®... ®w(y)Xy , (4.14)
(£4)"

0 ̂  m ̂  n, m even ,

where "Sym" denotes a symmetrisation which we shall now explain. The group of
permutations of n letters acts to the right on (E4)

n by

Rσ(x) = x σ = (xff(1), . . ., xσ(n}) , x E (E4)
n .

Sym(d®...®d®DE®...®DE) is the linear partial differential operator C°°((E4)
Π)

->Γ(£"lT(E4)
n) defined by

We first assume the existence of a holomorphic extension Gn of g(w) = ιEGn with
domain containing the permuted extended forward tube - to be denoted by Tp"e

hereafter - obtained by applying all complex Lorentz transformations and
permutations to the forward tube Tn in (4.7), and obtain a final formula for Ww

postponing for a while the discussion of existence itself.
Let ωE be the constant section oίA4E4 corresponding to the orientation of the

difference space H. M4 is not oriented so far. Here we choose one of the normalised
constant sections of Λ4E4, denoted by ωM. On M 4, the Hodge star operator is
defined by , - ι/ r\

*M/= ~ ̂ M\nu\f] ,

It is easily seen that the holomorphic extension ώM satisfies either ι|ώM = J ω £

or ι|ώM=-/ι:Tω£. Correspondingly (*M/)O(Ϊ£)*= ±/:Γϊ*£(/0(^)*) for
feAn'°M4 = ̂ fnTM4nAnM^. In any case the coderivative operator (5M on M4

defined by

coincides with 5£ in the sense that its holomorphic extension <$M satisfies
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for every holomorphic differential form / on M$. Finally, combining the formulae
above, we see that DE is analytically continued to the differential operator

DM : C*(Mά®

defined by

)=- Σ

® δM((e° Λel- 1/̂ T *M(*° Λ <?)) Λ/2),

if ι|ώM = J/—lω£. In the case ι|ώM= — J/— lω£, the minus signs in front of

— 1 *M change to plus signs. Here {e0,^1,^2,^3} is the dual of an orthogonal
frame {eθ9ei,e29e3} on M4.

Thus we obtain the following expression for the truncated version ̂ τ of the
holomorphic extension i^n of Sn, associated with i^n in a similar manner as in
Lemma 4.1.

m=0 \m/m-M H\O
meven

n — m m/2

X ~ '"* ~ -"»-•*'

Taking into account the relation

we introduce a linear partial differential operator

by

<"ι) (*ι) -l/1^ *M^M(WI) (*ι),

- - -1.« v ^/ v 2) ~ y ~ 1 * M^MV4!) (X2))M ->

and, in addition, we set

divw = - δMηM(u), u e Γ(TM4).

We now reach an explicit description of (the truncated Wightman distribution)
Wn which is associated with Wn as in Lemma 4.1, with the difference that this time
we must take care that the order of test functions is preserved,

wn

τ(Ul,...,un)= ΐ (")-W ί ""o""1!*
m=o \m/ m + l H\O

meven

n — m m/2

x <Sym(div ®... (g)div ®DM (g)... ® D^
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Here ι^Gn denotes a generalised function defined as boundary value of the
holomorphic function Gn in the region Tn.

(4.15) Remark. The exact function space is not really specified so far. The notation
y(TM4) is used merely for the sake of convenience. We intend to postpone
analytical estimates concerning the Fourier-Laplace transformation till our
succeeding paper.

Let us now turn to the point left open above: existence of a holomorphic
extension Gn of g(w). The key step for this is to represent g(w) as the Fourier-Laplace
transform of a distribution with appropriate support.

We fix coordinate systems. By choosing an orthogonal frame {e0, el9 e2, e3} on
M 4, with e0 in the forward cone, we introduce a coordinate system {x°, x1, x2, x3}
in the affine space M4. Let {z°, z1, z2, z3} be the complex coordinate system in M$
with ι$fZl = xf, 0 ̂  i ̂  3. It is natural to consider a coordinate system {y0, j;1, y2, j>3}

satisfying z|z° = |/— lj°, ιfzl = y, I^i:g3, on E4. The integral representation

2|p|

is our starting point. To avoid notational complication, we first consider a
1-dimensional analogue of the continuation problem. If ζl9...9ζn are complex
numbers with positive real parts which are fixed for the moment, then, after a bit of
calculation, we have

T Π C~C i | f~ r i l^= g-£2(f2-tl) t t t g -ζ n (f n -ω

1 n
X f g-{(ζl + .. +0)β + (0+l + ...+<:n)(l-β)}<fj+l-ίj)js ΓT

"Γ •••
ίl<ί2<...<ίn. (4.16)

Keeping this formula in mind, we introduce several maps and measures to deal
with our 4-dimensional case. According to the space-time decomposition
R^O®{^O}M? we write p0 (respectively p) for the time (respectively space)
component of p e Hom(R4, R). We denote the forward light cone in the momentum
space by F0*

+, i.e.

(4.17)

and define, for i = 0, 1, ...,n, maps



576 S. Albeverio, K. Iwata, and T. Kolsrud

We shall also consider the maps K", i=0, 1, ...,n, defined by

K"0 : (F0*
 +)"- 1 9 p ι-> (P("'0)(p), pw, . . ., p(n~ υ) e Hom(R4, R)n , (4.18a)

^•(F0*
+)n-1x(0,l)-+Hom(R4,R)'l> i= 1,2,. ..,«-!

(p,5) H+ (-p'1), ..., _p<i-υ (1 -S)P<-.0(p)_s(||̂ .0(p)|() -/*» <>(P)),

s(|| J*» 0(p)||, - "̂ i)(p)) + sP(" ί)(p)+p(i), p(ί+1), ...,p(n- 1}) (4.18b)

^:(>o|t+)n"13P^(-/'(1),-, -P^"1', P(n'n)(p))€Hom(R4,R)n. (4.18c)

We observe that

, (4.19a)

(4.19b)

(4.19c)
ί = 7

Since the closed forward cone

is convex, the image set of the map K" satisfies Wightman's spectrum condition
([34])foreachi = 0,l,...,n.

Let μ be the Lorentz invariant measure dp/2\p\ on F0**, and denote by / the
Lebesgue measure on (0, 1). Using the notation K o μ = μ o K ~ 1 for the image of a
measure μ under a map K, we introduce measures M" on Hom(R4,R)w

corresponding to the maps K" as follows:

Let

i = l

and
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Using (4.16) it is not hard to show that the Fourier transform

Gn(z): =/φ, •),

"0-"l*/^(4+i>-z<o)M? + M , zeT", (4.20)

is a holomorphic extension of g(π)|(E4)<.
Since g(n) is Euclidean invariant and symmetric, Gn has an analytic continu-

ation to the permuted extended forward tube, following known procedures (Jost
[29], Streater-Wightman [35]) of axiomatic quantum field theory. This is also true
for n = 2, assuming that we take the finite part, i.e. g(2) is defined by Eq. (4.13).

(4.21) Theorem. Let the functions gn on (E4)φ, n^2,be given by (4.12) for n ̂  3 and
by (4.13) for n = 2. Then each g(π) has a holomorphic extension Gn defined on the
permuted extended forward tube 7 ê . Denote the boundary value of the holomorphic
function Gn in the subregion Tn, the forward tube, by iuGw and set

^ u2)= Wf(u^ u2) = <c0 divW l®divw2

(4.22)
where

J α2v(<fα), c = σ+i J |
H\{0) H\{0}

For n ̂  3, se£

f αS-"|<Z|»v(dα)
H\O

meven

«-m m/2

x <Sym(div ® . . . ® div ®DM® . . . ®DM)uv ®...®un, ι^Gn> , (4.23)

T/ien { Wn] are the generalised functions (hyperfunctions) obtained by holomorphί-
cally continuing the cumulants of the random field A of Theorem 3.9. They satisfy
the postulates on invariance, spectral property, and locality in axiomatic quantum
field theory.

For n = 2, the holomorphic extension ϋ^2 is represented by elementary functions
with domain of holomorphy {ze(Mj)2:6(z1— z2)φO} as follows:

Zz) Γ + Co)8π2β(zυ

ι-z2)

(4.24)

and W2 = iM^2^ Here (η^ denotes the Mίnkowski metric and Q its associated
quadratic form.

Proof. It remains to prove (4.22) and (4.24), and the point is that we can easily see
the domain of holomorphy for /W2 To derive (4.22) we need to take the finite part.
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This can be achieved by regularising g to gε, say, so that the latter function is
meromorphic with respect to ε and let εj,0. (See e.g. Hόrmander [25], Chap. 3.)
Then we obtain (4.14) for n = 2 with g(2) defined as in (4.13), and therefore we have
(4.22).

On the other hand we have from the identities (3.13) and (4.9) that

= c f \g*du(x)\2dx + (cQ-c) f
E4 EA

= c ί

= ί {cg(yι
(E4)

2

+ (c0 - c) <d®dg(2\y\ u®u(y)ydy . (4.25)

Here we have again used the regularisation method for the divergent integral.
We set G2(z)=-logβ(z1-z2)/(16π2), τeT2. Then zfG2 = g(2) on (E4)

2.
Carrying out the differentiation we have

d®dG2(z) = o - I * 0 ' - - dz\ ®dz{
8π2Q(Zl-z2)

'

hence the formula (4.24). Finally this explicit formula (4.24) shows that the domain
of holomorphy of i^2 is {z e (M£)2 :Q(zl- z2) Φ 0}. Π

(4.26) Remarks, (i) The special form for n = 2 shows, again (see Sect. 3), that the
Gaussian case is exceptional. Another expression for this exceptionality is that the
functions H^2 are single-valued. Due to this fact, we obtain the same boundary
values from the tube Tn with base V+ [see (4.7)] and the tube with base - V+. In
other words, the cases zi+1 — zteR4±JV+ give the same result. It follows that in
the Gaussian case the field commutes for Q(x1 — x2)=t=0 in the sense that then

(Ω, A(x,)A(x2)Ω) = (Ω, A(x2)A(xJQ) .

(ii) One can regularise and replace g in the formulae above by

where ωε(p) = (|p|2 + ε2)1/2. Replacing F0*
+ in (4.17) by the forward mass hyperbo-

loid where Q(p) = — ε2, and performing corresponding modifications in (4.18) etc., it
is not difficult to see that the corresponding Wightman functions W^ε are in fact
tempered distributions for ε>0.
(iii) In (4.25) the parameters c0, c ̂  0 enter. c/c0 is a kind of gauge parameter. In the
Gaussian case c0 = c is the Feynman gauge and c0 = 0 is the Landau gauge,
(iv) In axiomatic approaches to relativistic quantum fields other requirements are
made in addition to the above verified properties of invariance , spectrum and
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locality, in particular the positivity property of Wightman functions. We shall
postpone the discussion of these properties to later work, since it is connected with
the above mentioned question of the proper choice of test function space. Our
fields being of gauge type, this point is related to well known problems of gauge
field theories, see e.g. Jakobczyk and Strocchi [27].
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