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Factorizations for Self-Dual Gauge Fields*
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Abstract. For a particular class of patching matrices on P3(C), including
those for the complex instanton bundles with structure group Sp(fc, C) or
0(2/c, C), we show that the associated Riemann-Hilbert problem G(x, λ) =
G_(x, λ) G+l(x,λ) can be generically solved in the factored form G_ =
Φι'Φ2'""Φn If Γ= Γn is the potential generated in the usual way from G_,
and we set Ψi = φι"-'φi, with ^Π = G_, then each \fii also generates a self-
dual gauge potential Γ,. The potentials are connected via the "dressing
transformations"

of Zakharov-Shabat. The factorization is not unique; it depends on the
(arbitrary) ordering of the poles of the patching matrix.

Introduction

In general, it is difficult to solve the Riemann-Hilbert problem associated with
Ward's construction of self-dual gauge fields [Wa]. Some time ago, Atiyah and
Ward wrote down an upper triangular ansatz for the rank-2 instanton bundles
[AW]; this problem was then solved explicitly by Corrigan, et. al. in [CFGY].
For bundles of higher rank, algebraic methods do not (to the author's knowledge)
yield upper triangular matrices. Nevertheless, as we show below, for the groups
Sp(/c, C) and 0(2/c, (C), patching matrices can be found that allow the Riemann-
Hilbert problem to be solved generically in a finite number of steps by means of
residues or partial fractions.

To state the main result, let G:P3((C)-»Sp(/c, (C) be a rational map given in
homogeneous coordinates by G(Z) = Δ~1(Z)'Δ~1(Z)-S(Z)9 where Δ_, Δ+ are
relatively prime homogeneous polynomials of degree n, and S is a matrix of
homogeneous polynomials of degree 2n. Let V± = {Z:Δ + (Z) = Q} and
U+=P3(<C)\V±9 and let ^ = l / + u l / _ . Let Jί be the open subset of the
Grassmannian Gr(2, 4) whose points x correspond to projective lines Lx lying in
.̂ The patching matrix G defines a 2/c-dimensional vector bundle $ on *̂, and

we suppose that for some x, <f \LX is trivial. Then we shall show
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Theorem. For a generic G as above, there exists a Zariskί-open subset Ql of Jt such
thatforxeW, G\LX factors as G_(x, λ)-G~ I(x9 λ\ with G±(x, λ): U± nLx^Sp(/c, <C),
and

G-(x,λ) = φ1(x,λ) -φn(x,λ) (1)

with each φ^x, λ) of the form I — A^x, λ). At varies algebraically with x, and for
each λ in its domain, is a nilpotent of order 2 in sp(fc, C). An identical result holds
for the groups 0(2k, C).

From the construction, it follows immediately that if φ1 = φl9 ψ2 = Φi' $2, - -., φn =
φί φn = G-9 the quantities

ΓjA(x,λ):=φ7l-DAφp for j =!,...,* (2)

all determine self-dual gauge potentials. (The differential operators DA are defined
below.) They may be "generated" from ΓOA = / by a sequence of transformations
of the form

ΓJ^Φ^ ΓJ.^ ΦJ+Φ^ DΛΦJ. (3)

Although our motivation comes from looking at the original monad or ADHM
construction [ADHM], the factorization does not depend on the rationality of G.
It can be obtained (in general) whenever G\LX is meromorphic with a suitable pole
structure; in particular, G need not originate with the ADHM construction.

The factorization is not unique; it depends (as does the set ̂ ) on the (arbitrary)
ordering of the n poles of Λ,\LX. This is a partial analogue, for self-dual gauge
fields, of Uhlenbeck's factorization theorem for harmonic maps [Uh].

In the first section of this paper, we review the ADHM construction and
demonstrate the existence of patching matrices having a particular form. Section 2
connects this with Ward's construction and the Riemann-Hilbert problem. In
Sect. 3 we show how to factor rational maps into the complex symplectic groups,
and use this in Sect. 4 to attack the Riemann-Hilbert problem for self-dual gauge
fields. Section 5 briefly mentions some consequences of the preceding results.

1. Algebraic Charts for the ADHM Construction

Assume in what follows that E is an algebraic vector bundle of rank 2k on P3(C),
trivial over the generic line, arising from the monad construction of Barth and
Horrocks. (See [ADHM, At, Do, OSS] and references quoted therein.) We shall
suppose the structure group to be Sp(fc, C), the case of O(2fc, C) being essentially
identical. Thus E is determined by a map J2/(Z):IH-^(IK, Ω\ where M and IK are
comolex vector spaces of dimension n and 2n -f 2k respectively, Ω is a non-
degenerate symplectic form on IK, and ZeC4\{0}. The requirements on <tf(Z) are
(1) that it be injective, (2) that the map J^(Z):1K->]H* defined by ^(Z) = ^\Z)Ω
be surjective, (3) that J*(Z)o^(Z) = 0, (4) that stf(Z) be linear in Z and finally (5)
that there exist a pair (X, Y) such that &(Y)°<$/(X) is an isomorphism. The reality
conditions [ADHM] guaranteeing that E\LX is trivial for xeS4 c Gr(2,4) are not
important in what follows. We choose and fix bases in H and IK, and take Ω in
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the specific form

- -'•
The bundle E is defined as Ker^/Im,*/, and we seek charts on P3(C) over

which £ is algebraically trivial. Specifically, we require charts on P3(C) of the form
Ua = P3(C)\Ffl, where Va is the zero set of a homogeneous polynomial Δa(Z). In
addition, we want Ker^|£/α to decompose as the direct sum (Im«a/|l/e)©F f l,
where the decomposition is algebraic - i.e., given by rational maps. The patching
matrices defined on Ua π Ub for Ker & -> P3(C), will then be block upper triangular,
with the lower right-hand blocks Gab(Z) giving the patching for E over UavUb.
Such charts are readily obtained:

For each Z, the n x (2n + 2/c) matrix ^(Z) has rank n, so it contains at least
one nxn invertible submatrix. Running through the different possibilities will give

) charts for Ker^. In particular, let α = (ι'1,...,iM) be an n-tuple with

1 ̂  ι'ι ^ ••• ̂  in ̂  2n + 2/c, let fy(Z) be the/h column of St(Z\ and let Pa be a non-
singular matrix such that Λβ(Z):= ^(Z)Pfl = (6£l | ••• |fc ί n | *). Let Δa(Z) = Det^ | •••
|fcίn)(Z); this is a homogeneous polynomial of degree n. Let Fα = {Z:4β(Z) = 0},
and let t/Λ be the complement of Va in P3((C). By the assumptions on jtf(Z\ the
collection {C/Λ} is a Zariski open cover of P3(C).

If Y lies in Ker ̂ |ί/α, we write

p-iy = P" I and @a(Z) = [αa(Z)|β,(Z)], (5)

where αa is n x n and £fl is n x 1. Since αα is invertible, &(Z)Ύ = 0 = 8a(Z)P~ 1 Y
gives ξa = - α - J (Z)βa(Z)ηa, and we can define a chart «Pβ : [/„ x C" + 2* -̂  Ker ̂  | I7β

by

If ZeUanUb, then for some τ/fl and ηb,

and it follows that ηa = Kab(Z)ηb, where

τ being the projection onto the last n H- 2/c components. Notice that Kab is Δ~ 1(Z)
times a matrix of homogeneous polynomials of degree n.

Let Aj(Z) be they th column of j/(Z), so that Im s/(Z) = span{^ (Z): 1 ̂ j g w}.
The {^-(Z)} are linearly independent in K for all Z Φ 0, and since Im jaf c Ker J*,
the matrices Aa(Z):=τ°P~ 1s/(Z) are of rank n in l/β. We are looking for algebraic
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complements to \mstf in Ker^; it will be convenient to isolate a subcollection of
the {Ua} on which these can be found without further refinement of the charts.

Proposition 1. For 2"(1 + nk) of the charts described above, Pa may be chosen so that
(a) PflESp(/c + n,C).
(b) The topnxn block of Aa(Z) is -ofa(Z).
In particular, the matrix

Ra(Z):=A*(Z) °n*2k]
*2k J

(9)

is invertίble in U

Proof. It is readily checked that the following substitutions in &(Z) are effected
by matrices satisfying the above conditions:
1. For 1 ̂ 7^ n, {-col(j)^col(n+j)9cόl(n+j)-+col(j)}9

2. For 1 ̂ 7^H, and 1 ̂ w^/c, {col(7*)<->col(2n + w), col(n+j')<->col(2n + /c + m}.
We get T charts from (1). Composing a transformation of type (2) with one of
type (1), we can put any of the last 2k columns into any one of the first n slots.
There are then 2 W ~ 1 possible replacements for the remaining n- 1 slots coming
from additional transformations of type (1) for a total of 2" + 2fcn 2"~ 1 = 2"(1 + nk)
charts.

The columns of Ra(Z) then give the desired direct sum decomposition over Ua.
To trivialize Ker Λ\ Ua and Ker Λ\ Ub using this, we should have to divide the first
n columns of Ra(Z) and Rb(Z) by, say ZΛ and Zβ respectively to obtain objects
homogeneous of degree 0; it turns out that the resulting factor of ZΛ/Zβ drops out
of the quotient block, so that E is algebraically trivial over Ua9 and we omit this step.

Let Y9WeEz. If ZeE/ f l, the symplectic form on E is defined by
ω(Y,W) = Ω(Ψa Ya, Ψa-Wa\ where Ya and Wa are local representatives of the
equivalence classes. For the charts described above, we may choose unique local
representatives of the form

= κ.<z,.Γ0 l-Γ° l.
LyJ Ly«J

An easy computation then gives ω(Y9 W) = y*aΏk wfl, and if ZeUb as well, we get
ω(Y, W) = yt

b'Ωk-wb. Thus the patching matrix for the quotient given by the lower
right-hand block of

preserves the form Ωk, and we have

Proposition 2. The quotient bundle E is algebraically trivial over each of the charts
in Proposition 1. In the intersection of two such charts, the patching matrix takes
values in Sp(fe, <C) and has the form
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where Δa and Δb are homogeneous polynomials of degree n, and the entries of Sab

are homogeneous polynomials of degree 2n.

(The last assertion follows on inspection of R^K^R^)
The matrices Gab are not difficult to construct; for example, taking P^ = /,

P2 = β, if we write

^(Z) = [α|p|κ|τ], (11)

where α, p, K and τ have n, n, k and k columns respectively, the lower right block
of R~ίKl2R2 is

Γ=
L

_ _ (12)
/cα p τ + fc — κ<r p /c

In what follows, we shall only require one pair (Ua, Ub) from the above collection,
and we shall take Δa and Δb to be relatively prime, which holds in the general case.

2. The Relation to Ward's Construction

If xeGr(2,4), let Lx denote the corresponding line in P3(<C). Ward's construction
[Wa] begins by restricting both the cover and the patching matrices to project!ve
lines. Using the fact that E\LX is trivial for generic lines (a consequence of the
assumptions on j/(Z) above), the restricted patching matrices on such lines split
as Gab\Lx = Gfl(x, λ)-G^1(x9 λ\ with Gfl(x, λ), Gb(x, λ) holomorphic in lίfl:= UanLx,
Ub:= UbnLx respectively. Here A is a complex coordinate on Lx, and x appears
parametrically; Ga and Gb can both be taken to depend holomorphically on x. In
an affine chart ^ C4 on Gr(2,4), one can write x as a 2 x 2 complex matrix so
that Gab(Z)\Lx takes the form Gflί)(χ π,π), where π = (π0,π1) are homogeneous
coordinates on Lx [PR]. Defining the linear operators

DA = n,d/dxAO - π0d/dxA1 (A = 0,1), (14)

the functional form of Gab now gives DAGab(xmπ,π) = 0, which leads to

G-\DAGa) = Gb\DAGb) in U f luU6. (15)

The global quantity defined on Lx by expression (15) is holomorphic and
homogeneous of degree 1 in π; it is thus linear in π and can be written as
ΓAo(x)πι ~ ΓA1(x)π0 for A =0, 1. The potential defined by Γ:= ΓABdxAB is then
self-dual (or anti self-dual, depending on conventions) by virtue of the fact that
\_DA,DB~] = 0. Given the above, we observe that it is only necessary to split one of
the Gab(x - π, π) to obtain Γ. This is the Riemann-Hilbert problem under discussion.

From now on, we take Gab in the form given by Proposition 2 above. A "generic"
point x in the 4-dimensional Grassmannian Gr(2,4) refers to a line Lxc=P3((C)
such that (1) Lxn F f ln Vb = φ, (2) Lx is in general position with respect to Va and
Vb (so that it intersects each in n distinct points), and (3) E\LX is trivial. Thus for
generic Lx, we shall have (1) L.czU.uU,,. (2) Ua*Pι(C)\{pl(x)9...9plt(x)}9

U^^P^CJXl^iίx),...,^^)}, the deleted points corresponding to the sets F f lnLx

and VbnLx respectively, and (3) {p l (x) , . . . 9 p n (x) }n{q l (x) , . . . ,q n (x) } = φ.
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Restricted to Lx, the functions Δa9 Δb and the entries of Sab become homogeneous
polynomials in the components of x and π. Assuming the point corresponding to
π = (0,1) does not coincide with one of the p, (x), we set /I = π1/π0, Λ = (l,λ)
and conclude that G(x π,π) which is homogeneous of degree zero in π, can be
written as

1 S(x,A), (16)

where we have dropped the indices on the matrices and absorbed a rational
function of x into the original S(x,/l). Strictly speaking, the (x,λ) are local
coordinates on the flag manifold J^12 consisting of all ordered pairs {(line in
P3(C), point on the line)}; see Wells [We]. The Riemann-Hilbert problem is then
to find a Zariski-open set ^c=Gr(2,4) such that xe^=>G(x,Λ,) factors as
G.(x9λ) G~l(x9λ)9 with G_(x,Λ) (respectively G+(x,Λ)) holomorphic in UJ#
(respectively UJ^r), where Uί = J2Γ

12|([:4\{(x,π):4(x π,π) = 0}.

3. Factoring Maps into Sp(A, <C)

Suppose D is a closed disk centered at p in the complex λ plane and that
G:D\{p}-»Sp(fc,C) is holomorphic with a simple pole at λ = p. Then G(λ) =
(λ - p)~ *G_! + GO + (λ - p)H(A), with H holomorphic in D. Write G_ 1 and G0 in
block form:

G = I "m Pm I, where the entries are fe x fc blocks, (17)

and define χ = y'_ Xα0 - α'_ ^Q, and χ = 5L t j80 - jSL ̂ o Finally, suppose that χ,
α _ l 5 and δ_l are invertible. Then we have

Lemma 3. Under the assumptions stated,
(a) The following expressions for the 2k x 2k matrix A are identical:

(b)
(c) [/-h(/l — p)~M] G(A) is α holomorphic map from D to Sp(fe,<C).

Proof. Writing out the left-hand side of (c), we see that A must satisfy the
(apparently) overdetermined system of equations

ΛG_ 1 = 0, ΛGo + G.^0. (19)

The system turns out to be consistent provided that (a) holds; as shown below,
this is a consequence of the identities on the Laurent coefficients resulting from
the requirement that G(Λ,)eSp(fc, C). The inverses of α_! and <5_ x are required
here. Once (a) is established, (c) follows directly. Condition (b) is immediate from
the identities below and the form of A. We remark that invertibility of the matrices
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required is generic. To verify (a) write

_yW δ(λ)_
Then G*(λ)ΩkG(λ) = Ωk is equivalent to

which gives conditions on the components of Gm:

7-ια-ι= α-ι7-ι» y-ιαo + ?όα-ι = α-ιyo + αόy-ι> (20.1)

δt_ίβ_1=βt_ 1δ_1, δ*_ j β0 + δt

0β.l = ̂ '_ ̂ o + βO<5_ i, (20.2)

[Λ fc~l
, (19) gives 8 equations, which break up naturally into 2 sets:

c dj

W °, J ° Λ - 1 > (Π) /> ° 1.S ° Λ "^

l ί χ is invertible, then the first version of A given in (18) above can be formed, and
it is easily checked that the α, . . . , d so determined satisfy (I) above. We must check
that (II) is satisfied as well. Suppose α _ j and δ.l are also invertible. Then (20.3)
shows that γ.1 and β_l are invertible, and (20.1) gives

i-^oL'iyL^-^y-iali/i-i, α.^/L^l}^. (20.4)

We now claim that

x*-\β-1=v'-ίy:1

ίt. (20.5)
Writing out the left-hand side of (20.5), we get

Jαil/ϊ-i^^^^
where we have used (20.4) and χ = χ*. Similarly, the right-hand side of (20.5) gives
y'oβ-i ~αo^-ι> and ^e tw° expressions are identical by virtue of (20.3). This
shows that χ is invertible and allows us to write down the second expression for
A, which involves χ"1. It is then easily checked, using (20.4) and (20.5), that the
two expressions are identical and the rest of the proof follows.

Setting G-(λ):=I-(λ-pΓlA, and G~l(λ):=U + (λ-pΓlA'] G(λ) (recall
that A2 = 0), we have solved the Riemann-Hilbert problem for G(λ) on any
positively oriented contour in D\{p) equivalent to dD. Moreover, G_(λ) is the
unique solution with G_(oo) = /. (See Novikov, et. al. [NMPZ] for a general
discussion.) Finally, we observe that both of G±(λ) take values in Sp(fc, C) in their
respective domains.
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4. The Riemann-Hilbert Problem for Self-Dual Yang-Mills Fields

Returning now to G(x, λ\ choose a simple, positively oriented contour ^x on Lx

surrounding the n points of Var\Lx. Order these points as {Pι(x),p2(x),...,pπ(x)}.
Choose contours % to surround only {Pι(x),p2(x),...,p, (x)}, w^h ^n = ̂ x. Let
Di be the closure of int^. The following construction works for a generic x (see
the remarks below): On D1\{p1(x)} apply the lemma to get

G(x,λ) = (I-(λ-pί(x)Γ1Al(x))'Gί(x9λ), (21)

with G^x.λ) holomorphic in Dl9 hence in D2\{p2(x)}, and taking values in
Sp(fc,(C). Continue with G^^x, λ) in Di\{pi(x)} to obtain

G f _ λ(x, λ) = (I - (λ - Pί(x)Γ M,(x)) G,(x, λ) (22)

or, equivalently,

(23)
j=ι

arriving at the factorization

(24)

valid on the original curve %>x.

Remarks. At each stage of the factorization, one must restrict the domain of x
further by cutting out the Zariski-closed subsets of Gr(2, 4) in which the k x fe
determinants of the required terms made from the Laurent expansion of G vanish.
The end result of this process is the set tfl referred to above. Evidently, G_ is

i
holomorphic in Uα|^. Since the A{ are nilpotents of order 2, Gl 1 = Y[ (/ +

j = n

(λ - PJ(X))~ 1 Aj(x)\ so that G~_ 1 - G = G~ * is holomorphic in UJ% and the problem
is solved.

Even for the case k = 1 (S/(2, <C)), the stated conditions are not necessary, only
sufficient. This can be seen from the following example for n = 2, k = 1. Take

f / , ΓZ0 Z2 Zi Z3 0 0 Ί
J*'(Z)= ° 1 3 , with ε^O.

LZ2 Z0 Z3 Zt Z2 εZ3J

Using (12), we find

Z3Ί

\\

εZ2Z

i

Γy -zΊ
Using the standard coordinates x = , one finds, after a routine compu-

LZ 9 J
tation at the pole pt(x) = z/(l — y), that

l+zz + yy — (y +
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which evidently vanishes when ε = l . On the other hand, for ε = l , we find
immediately that

'λ-1 o"

so that E is, in fact, trivial over the generic line. We mention that if ε Φ 1, there
are no difficulties, and the construction goes through as advertised.

The restriction to "generic G" in the statement of the theorem eliminates the
possibility that one or more of the determinants may vanish identically and ensures
that Aa and Λb are relatively prime.

In this procedure, one introduces "artificial" singularities into the gauge
potential; this happens as well in the Atiyah-Ward construction [At]. The
Riemann-Hilbert problem may be solvable for some of these x with a different
ordering of the singular points, or, since we only have a sufficient condition, it
might be solvable in a different form. In addition, requiring that Lx be in general
position with respect to the pair (Va9 Vb) cuts out another set of the Grassmannian
on part of which the problem might be solvable.

Although G_(x, λ) is certainly unique, the factorization is not; it depends on
the (arbitrary) ordering of the singular points. Indeed, for certain values of x, the
factorization exists for one such ordering and fails for another.

5. Backlund Transformations Associated with the Factorization

At this point, we may choose to forget that we know where to put the contour
#x, and observe that for each i, the partial factorization given in (23) above permits
the construction of a sequence of self-dual gauge potentials ΓiABdxAB via

ΓM(x, π) = GΓ *(χ, π) DAGt(x9 π), (25)
with

Gt (x, π) = Π (/ - (λ - P^)ΓlΛj(x)) (26)
j=ι

obtained by solving the Riemann-Hilbert problem on the contour #f. The
potentials are related by the Backlund transformations (or "dressing transfor-
mations" of Zakharov & Shabat) [ZS, Ch, PSW, Cr, MCN]:

ΓM = GΓ I ΓI.M GI + GΓI^GI. (27)
For j < n, these hold for x in supersets of .̂ The potential Γt may be regarded
as having been obtained by i successive such transformations applied to the trivial
solution /Ό = /. Of course, these transformations are not well-defined on
isomorphism classes of bundles; they do not, for example, respect topological
invariants like Chern classes.

To relate this to the standard treatments of the Riemann problem [NMPZ],
set φj = I — (λ — pj(x))~1Aj(x) and consider the situation at the ίih stage of the
induction. On the contour ,̂ we need to solve the problem Gi-ί = φi Gi'9
equivalently, we have the singular solution G = φίφ2"-'φi-ί'Gi_l(x,λ) to the
"Riemann problem with zeros" for G on %. If a regular solution exists, it differs
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from this by the interpolation of a factorization of /; this is exactly what we get,
since

As mentioned earlier, an analogous result holds for the even dimensional
orthogonal groups 0(2fc, C). Here one takes the quadratic form

-[I Ό"
on IK and requires that Im s#(Z) be totally null with respect to Q. Everything goes
through with the obvious modifications.

As was also mentioned, the factorization does not depend on Gab(Z) having
come from the monad construction. It is only necessary that G have the correct
form (meromorphic with a finite number of simple poles that can be isolated from
the rest on some open subset of the Grassmannian). These factorizations are quite
similar to those obtained recently [Uh] for harmonic maps.

Finally, we mention a simple relation between the nilpotents At(x) and the
Γy -zΊ

gauge potential Γ. In the standard coordinates x = , the normalization

G_(x, oo ) = / gives Γy(x) = Γz(x) = 0. Sufficiently far from λ = 0, we can, for each
x and i, write \_λ - pf(x)] ~ i = λ~ 1 + λ~2pi(x) + O(λ~2\ so that

Now (15) gives
(3, + λ- 1 a f )G_=r 1 G_ Γ1, (28)

(3,-A-1a,)G. = -r1G.-r,,
and, equating the lowest order coefficients we get

Γf, and dz £W = - Γ9 (29)
1

as the infinitesimal version of the factorization. The quantity βι(x) =

is the first of an infinite number of conserved "charges" for the self-dual Yang-Mills
fields [Ch, Ta].
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