Factorizations for Self-Dual Gauge Fields ${ }^{\star}$

David E. Lerner
Department of Mathematics, University of Kansas, Lawrence, KS 66045, USA

Abstract

For a particular class of patching matrices on $P_{3}(\mathbb{C})$, including those for the complex instanton bundles with structure group $\operatorname{Sp}(k, \mathbb{C})$ or $O(2 k, \mathbb{C})$, we show that the associated Riemann-Hilbert problem $G(x, \lambda)=$ $G_{-}(x, \lambda) \cdot G_{+}^{-1}(x, \lambda)$ can be generically solved in the factored form $G_{-}=$ $\phi_{1} \cdot \phi_{2} \cdots \cdot \phi_{n}$. If $\Gamma=\Gamma_{n}$ is the potential generated in the usual way from G_{-}, and we set $\psi_{i}=\phi_{1} \cdots \cdot \phi_{i}$, with $\psi_{n}=G_{-}$, then each ψ_{i} also generates a selfdual gauge potential Γ_{i}. The potentials are connected via the "dressing transformations" $$
\Gamma_{i}=\phi_{i}^{-1} \cdot \Gamma_{i-1} \cdot \phi_{i}+\phi_{i}^{-1} D \phi_{i}
$$ of Zakharov-Shabat. The factorization is not unique; it depends on the (arbitrary) ordering of the poles of the patching matrix.

Introduction

In general, it is difficult to solve the Riemann-Hilbert problem associated with Ward's construction of self-dual gauge fields [Wa]. Some time ago, Atiyah and Ward wrote down an upper triangular ansatz for the rank-2 instanton bundles [AW]; this problem was then solved explicitly by Corrigan, et. al. in [CFGY]. For bundles of higher rank, algebraic methods do not (to the author's knowledge) yield upper triangular matrices. Nevertheless, as we show below, for the groups $\operatorname{Sp}(k, \mathbb{C})$ and $O(2 k, \mathbb{C})$, patching matrices can be found that allow the RiemannHilbert problem to be solved generically in a finite number of steps by means of residues or partial fractions.

To state the main result, let $G: P_{3}(\mathbb{C}) \rightarrow \operatorname{Sp}(k, \mathbb{C})$ be a rational map given in homogeneous coordinates by $G(Z)=\Delta_{-}^{-1}(Z) \cdot \Delta_{+}^{-1}(Z) \cdot S(Z)$, where Δ_{-}, Δ_{+}are relatively prime homogeneous polynomials of degree n, and S is a matrix of homogeneous polynomials of degree $2 n$. Let $V_{ \pm}=\left\{Z: \Delta_{ \pm}(Z)=0\right\}$ and $U_{ \pm}=P_{3}(\mathbb{C}) \backslash V_{ \pm}$, and let $\mathscr{P}=U_{+} \cup U_{-}$. Let \mathscr{M} be the open subset of the Grassmannian $\operatorname{Gr}(2,4)$ whose points x correspond to projective lines L_{x} lying in \mathscr{P}. The patching matrix G defines a $2 k$-dimensional vector bundle \mathscr{E} on \mathscr{P}, and we suppose that for some $x, \mathscr{E} \mid L_{x}$ is trivial. Then we shall show

[^0]Theorem. For a generic G as above, there exists a Zariski-open subset \mathscr{U} of \mathscr{M} such that for $x \in \mathscr{U}, G \mid L_{x}$ factors as $G_{-}(x, \lambda) \cdot G_{+}^{-1}(x, \lambda)$, with $G_{ \pm}(x, \lambda): U_{ \pm} \cap L_{x} \rightarrow \operatorname{Sp}(k, \mathbb{C})$, and

$$
\begin{equation*}
G_{-}(x, \lambda)=\phi_{1}(x, \lambda) \cdots \cdot \phi_{n}(x, \lambda) \tag{1}
\end{equation*}
$$

with each $\phi_{i}(x, \lambda)$ of the form $I-A_{i}(x, \lambda) . A_{i}$ varies algebraically with x, and for each λ in its domain, is a nilpotent of order 2 in $\operatorname{sp}(k, \mathbb{C})$. An identical result holds for the groups $O(2 k, \mathbb{C})$.
From the construction, it follows immediately that if $\psi_{1}=\phi_{1}, \psi_{2}=\phi_{1} \cdot \phi_{2}, \ldots, \psi_{n}=$ $\phi_{1} \cdots \cdot \phi_{n}=G_{-}$, the quantities

$$
\begin{equation*}
\Gamma_{j A}(x, \lambda):=\psi_{j}^{-1} \cdot D_{A} \psi_{j}, \text { for } j=1, \ldots, n \tag{2}
\end{equation*}
$$

all determine self-dual gauge potentials. (The differential operators D_{A} are defined below.) They may be "generated" from $\Gamma_{0 A}=I$ by a sequence of transformations of the form

$$
\begin{equation*}
\Gamma_{j A}=\phi_{j}^{-1} \cdot \Gamma_{j-1, A} \cdot \phi_{j}+\phi_{j}^{-1} \cdot D_{A} \phi_{j} \tag{3}
\end{equation*}
$$

Although our motivation comes from looking at the original monad or ADHM construction [ADHM], the factorization does not depend on the rationality of G. It can be obtained (in general) whenever $G \mid L_{x}$ is meromorphic with a suitable pole structure; in particular, G need not originate with the ADHM construction.

The factorization is not unique; it depends (as does the set \mathscr{U}) on the (arbitrary) ordering of the n poles of $\Delta_{-} \mid L_{x}$. This is a partial analogue, for self-dual gauge fields, of Uhlenbeck's factorization theorem for harmonic maps [Uh].

In the first section of this paper, we review the ADHM construction and demonstrate the existence of patching matrices having a particular form. Section 2 connects this with Ward's construction and the Riemann-Hilbert problem. In Sect. 3 we show how to factor rational maps into the complex symplectic groups, and use this in Sect. 4 to attack the Riemann-Hilbert problem for self-dual gauge fields. Section 5 briefly mentions some consequences of the preceding results.

1. Algebraic Charts for the ADHM Construction

Assume in what follows that E is an algebraic vector bundle of rank $2 k$ on $P_{3}(\mathbb{C})$, trivial over the generic line, arising from the monad construction of Barth and Horrocks. (See [ADHM, At, Do, OSS] and references quoted therein.) We shall suppose the structure group to be $\operatorname{Sp}(k, \mathbb{C})$, the case of $O(2 k, \mathbb{C})$ being essentially identical. Thus E is determined by a map $\mathscr{A}(Z): \mathbb{H} \rightarrow(\mathbb{K}, \Omega)$, where \mathbb{H} and \mathbb{K} are complex vector spaces of dimension n and $2 n+2 k$ respectively, Ω is a nondegenerate symplectic form on \mathbb{K}, and $Z \in \mathbb{C}^{4} \backslash\{0\}$. The requirements on $\mathscr{A}(Z)$ are (1) that it be injective, (2) that the map $\mathscr{B}(Z): \mathbb{K} \rightarrow \mathbb{H}^{*}$ defined by $\mathscr{B}(Z)=\mathscr{A}^{t}(Z) \Omega$ be surjective, (3) that $\mathscr{B}(Z) \circ \mathscr{A}(Z)=0$, (4) that $\mathscr{A}(Z)$ be linear in Z and finally (5) that there exist a pair (X, Y) such that $\mathscr{B}(Y) \circ \mathscr{A}(X)$ is an isomorphism. The reality conditions [ADHM] guaranteeing that $E \mid L_{x}$ is trivial for $x \in S^{4} \subset \operatorname{Gr}(2,4)$ are not important in what follows. We choose and fix bases in \mathbb{H} and \mathbb{K}, and take Ω in
the specific form

$$
\Omega=\left[\begin{array}{cc}
\Omega_{n} & 0 \tag{4}\\
0 & \Omega_{k}
\end{array}\right], \quad \text { where } \quad \Omega_{m}=\left[\begin{array}{cc}
0 & -I_{m} \\
I_{m} & 0
\end{array}\right]
$$

The bundle E is defined as $\operatorname{Ker} \mathscr{B} / \operatorname{Im} \mathscr{A}$, and we seek charts on $P_{3}(\mathbb{C})$ over which E is algebraically trivial. Specifically, we require charts on $P_{3}(\mathbb{C})$ of the form $U_{a}=P_{3}(\mathbb{C}) \backslash V_{a}$, where V_{a} is the zero set of a homogeneous polynomial $\Delta_{a}(Z)$. In addition, we want $\operatorname{Ker} \mathscr{B} \mid U_{a}$ to decompose as the direct $\operatorname{sum}\left(\operatorname{Im} \mathscr{A} \mid U_{a}\right) \oplus F_{a}$, where the decomposition is algebraic - i.e., given by rational maps. The patching matrices defined on $U_{a} \cap U_{b}$ for $\operatorname{Ker} \mathscr{B} \rightarrow P_{3}(\mathbb{C})$, will then be block upper triangular, with the lower right-hand blocks $G_{a b}(Z)$ giving the patching for E over $U_{a} \cup U_{b}$. Such charts are readily obtained:

For each Z, the $n \times(2 n+2 k)$ matrix $\mathscr{B}(Z)$ has rank n, so it contains at least one $n \times n$ invertible submatrix. Running through the different possibilities will give $\binom{2 n+2 k}{n}$ charts for $\operatorname{Ker} \mathscr{B}$. In particular, let $a=\left(i_{1}, \ldots, i_{n}\right)$ be an n-tuple with $1 \leqq i_{1} \leqq \cdots \leqq i_{n} \leqq 2 n+2 k$, let $b_{j}(Z)$ be the $j^{\text {th }}$ column of $\mathscr{B}(Z)$, and let P_{a} be a nonsingular matrix such that $\mathscr{B}_{a}(Z):=\mathscr{B}(Z) P_{a}=\left(b_{i_{1}}|\cdots| b_{i_{n}} \mid *\right)$. Let $\Delta_{a}(Z)=\operatorname{Det}\left(b_{i_{1}} \mid \cdots\right.$ $\left.\mid b_{i_{n}}\right)(Z)$; this is a homogeneous polynomial of degree n. Let $V_{a}=\left\{Z: \Delta_{a}(Z)=0\right\}$, and let U_{a} be the complement of V_{a} in $P_{3}(\mathbb{C})$. By the assumptions on $\mathscr{A}(Z)$, the collection $\left\{U_{a}\right\}$ is a Zariski open cover of $P_{3}(\mathbb{C})$.

If Y lies in $\operatorname{Ker} \mathscr{B} \mid U_{a}$, we write

$$
P_{a}^{-1} Y=\left[\begin{array}{l}
\xi_{a} \tag{5}\\
\eta_{a}
\end{array}\right], \quad \text { and } \quad \mathscr{B}_{a}(Z)=\left[\alpha_{a}(Z) \mid \beta_{a}(Z)\right]
$$

where α_{a} is $n \times n$ and ξ_{a} is $n \times 1$. Since α_{a} is invertible, $\mathscr{B}(Z) Y=0=\mathscr{B}_{a}(Z) P_{a}^{-1} Y$ gives $\xi_{a}=-\alpha_{a}^{-1}(Z) \beta_{a}(Z) \eta_{a}$, and we can define a chart $\Psi_{a}: U_{a} \times \mathbb{C}^{n+2 k} \rightarrow \operatorname{Ker} \mathscr{B} \mid U_{a}$ by

$$
\Psi_{a}\left(Z, \eta_{a}\right)=P_{a}\left[\begin{array}{c}
-\alpha_{a}^{-1}(Z) \beta_{a}(Z) \tag{6}\\
I_{n+2 k}
\end{array}\right] \cdot \eta_{a} .
$$

If $Z \in U_{a} \cap U_{b}$, then for some η_{a} and η_{b},

$$
Y=P_{a}\left[\begin{array}{c}
-\alpha_{a}^{-1}(Z) \beta_{a}(Z) \tag{7}\\
I_{n+2 k}
\end{array}\right] \cdot \eta_{a}=P_{b}\left[\begin{array}{c}
-\alpha_{b}^{-1}(Z) \beta_{b}(Z) \\
I_{n+2 k}
\end{array}\right] \cdot \eta_{b}
$$

and it follows that $\eta_{a}=K_{a b}(Z) \eta_{b}$, where

$$
K_{a b}(Z)=\tau \circ P_{a}^{-1} \circ P_{b}\left[\begin{array}{c}
-\alpha_{b}^{-1}(Z) \beta_{b}(Z) \tag{8}\\
I_{n+2 k}
\end{array}\right],
$$

τ being the projection onto the last $n+2 k$ components. Notice that $K_{a b}$ is $\Delta_{b}^{-1}(Z)$ times a matrix of homogeneous polynomials of degree n.

Let $A_{j}(Z)$ be the $j^{\text {th }}$ column of $\mathscr{A}(Z)$, so that $\operatorname{Im} \mathscr{A}(Z)=\operatorname{span}\left\{A_{j}(Z): 1 \leqq j \leqq n\right\}$. The $\left\{A_{j}(Z)\right\}$ are linearly independent in \mathbb{K} for all $Z \neq 0$, and since $\operatorname{Im} \mathscr{A} \subset \operatorname{Ker} \mathscr{B}$, the matrices $A^{a}(Z):=\tau \circ P_{a}^{-1} \mathscr{A}(Z)$ are of rank n in U_{a}. We are looking for algebraic
complements to $\operatorname{Im} \mathscr{A}$ in $\operatorname{Ker} \mathscr{B}$; it will be convenient to isolate a subcollection of the $\left\{U_{a}\right\}$ on which these can be found without further refinement of the charts.

Proposition 1. For $2^{n}(1+n k)$ of the charts described above, P_{a} may be chosen so that (a) $P_{a} \in \operatorname{Sp}(k+n, \mathbb{C})$.
(b) The top $n \times n$ block of $A^{a}(Z)$ is $-\alpha_{a}^{t}(Z)$.

In particular, the matrix

$$
R_{a}(Z):=\left[\begin{array}{l|l}
A^{a}(Z) & \begin{array}{l}
0_{n \times 2 k} \\
I_{2 k}
\end{array} \tag{9}
\end{array}\right]
$$

is invertible in U_{a}.
Proof. It is readily checked that the following substitutions in $\mathscr{B}(Z)$ are effected by matrices satisfying the above conditions:

1. For $1 \leqq j \leqq n,\{-\operatorname{col}(j) \rightarrow \operatorname{col}(n+j), \operatorname{col}(n+j) \rightarrow \operatorname{col}(j)\}$,
2. For $1 \leqq j \leqq n$, and $1 \leqq m \leqq k,\{\operatorname{col}(j) \leftrightarrow \operatorname{col}(2 n+m), \operatorname{col}(n+j) \leftrightarrow \operatorname{col}(2 n+k+m\}$.

We get 2^{n} charts from (1). Composing a transformation of type (2) with one of type (1), we can put any of the last $2 k$ columns into any one of the first n slots. There are then 2^{n-1} possible replacements for the remaining $n-1$ slots coming from additional transformations of type (1) for a total of $2^{n}+2 k n \cdot 2^{n-1}=2^{n}(1+n k)$ charts.

The columns of $R_{a}(Z)$ then give the desired direct sum decomposition over U_{a}. To trivialize $\operatorname{Ker} \mathscr{B} \mid U_{a}$ and $\operatorname{Ker} \mathscr{B} \mid U_{b}$ using this, we should have to divide the first n columns of $R_{a}(Z)$ and $R_{b}(Z)$ by, say Z^{α} and Z^{β} respectively to obtain objects homogeneous of degree 0 ; it turns out that the resulting factor of Z^{α} / Z^{β} drops out of the quotient block, so that E is algebraically trivial over U_{a}, and we omit this step.

Let $Y, W \in E_{z}$. If $Z \in U_{a}$, the symplectic form on E is defined by $\omega(Y, W)=\Omega\left(\Psi_{a} \cdot Y_{a}, \Psi_{a} \cdot W_{a}\right)$, where Y_{a} and W_{a} are local representatives of the equivalence classes. For the charts described above, we may choose unique local representatives of the form

$$
Y_{a}=R_{a}(Z) \cdot\left[\begin{array}{l}
0_{n} \\
y_{a}
\end{array}\right]=\left[\begin{array}{l}
0_{n} \\
y_{a}
\end{array}\right] .
$$

An easy computation then gives $\omega(Y, W)=y_{a}^{t} \cdot \Omega_{k} \cdot w_{a}$, and if $Z \in U_{b}$ as well, we get $\omega(Y, W)=y_{b}^{t} \cdot \Omega_{k} \cdot w_{b}$. Thus the patching matrix for the quotient given by the lower right-hand block of

$$
R_{a}^{-1} K_{a b} R_{b}=\left[\begin{array}{cc}
* & * \tag{10}\\
0 & G_{a b}
\end{array}\right]
$$

preserves the form Ω_{k}, and we have
Proposition 2. The quotient bundle E is algebraically trivial over each of the charts in Proposition 1. In the intersection of two such charts, the patching matrix takes values in $\mathrm{Sp}(k, \mathbb{C})$ and has the form

$$
G_{a b}(Z)=\Delta_{a}^{-1}(Z) \cdot \Delta_{b}^{-1}(Z) \cdot S_{a b}(Z)
$$

where Δ_{a} and Δ_{b} are homogeneous polynomials of degree n, and the entries of $S_{a b}$ are homogeneous polynomials of degree $2 n$.
(The last assertion follows on inspection of $R_{a}^{-1} K_{a b} R_{b}$.)
The matrices $G_{a b}$ are not difficult to construct; for example, taking $P_{1}=I$, $P_{2}=\Omega$, if we write

$$
\begin{equation*}
\mathscr{B}(Z)=[\alpha|\rho| \kappa \mid \tau], \tag{11}
\end{equation*}
$$

where α, ρ, κ and τ have n, n, k and k columns respectively, the lower right block of $R_{1}^{-1} K_{12} R_{2}$ is

$$
G_{12}(Z)=\left[\begin{array}{cc}
-\tau^{t} \alpha^{t^{-1}} \rho^{-1} \tau & \tau^{t} \alpha^{t^{-1}} \rho^{-1} \kappa-I_{k} \tag{12}\\
\kappa^{t} \alpha^{t^{-1}} \rho^{-1} \tau+I_{k} & -\kappa^{t} \alpha^{t^{-1}} \rho^{-1} \kappa
\end{array}\right] .
$$

In what follows, we shall only require one pair $\left(U_{a}, U_{b}\right)$ from the above collection, and we shall take Δ_{a} and Δ_{b} to be relatively prime, which holds in the general case.

2. The Relation to Ward's Construction

If $x \in \operatorname{Gr}(2,4)$, let L_{x} denote the corresponding line in $P_{3}(\mathbb{C})$. Ward's construction [Wa] begins by restricting both the cover and the patching matrices to projective lines. Using the fact that $E \mid L_{x}$ is trivial for generic lines (a consequence of the assumptions on $\mathscr{A}(Z)$ above), the restricted patching matrices on such lines split as $G_{a b} \mid L_{x}=G_{a}(x, \lambda) \cdot G_{b}^{-1}(x, \lambda)$, with $G_{a}(x, \lambda), G_{b}(x, \lambda)$ holomorphic in $\mathfrak{U}_{a}:=U_{a} \cap L_{x}$, $\mathfrak{U}_{b}:=U_{b} \cap L_{x}$ respectively. Here λ is a complex coordinate on L_{x}, and x appears parametrically; G_{a} and G_{b} can both be taken to depend holomorphically on x. In an affine chart $\cong \mathbb{C}^{4}$ on $\operatorname{Gr}(2,4)$, one can write x as a 2×2 complex matrix so that $G_{a b}(Z) \mid L_{x}$ takes the form $G_{a b}(x \cdot \pi, \pi)$, where $\pi=\left(\pi_{0}, \pi_{1}\right)$ are homogeneous coordinates on $L_{x}[\mathrm{PR}]$. Defining the linear operators

$$
\begin{equation*}
D_{A}=\pi_{1} \partial / \partial x^{A 0}-\pi_{0} \partial / \partial x^{A 1} \quad(A=0,1), \tag{14}
\end{equation*}
$$

the functional form of $G_{a b}$ now gives $D_{A} G_{a b}(x \cdot \pi, \pi)=0$, which leads to

$$
\begin{equation*}
G_{a}^{-1}\left(D_{A} G_{a}\right)=G_{b}^{-1}\left(D_{A} G_{b}\right) \quad \text { in } \quad \mathfrak{U}_{a} \cup \mathfrak{U}_{b} \tag{15}
\end{equation*}
$$

The global quantity defined on L_{x} by expression (15) is holomorphic and homogeneous of degree 1 in π; it is thus linear in π and can be written as $\Gamma_{A 0}(x) \pi_{1}-\Gamma_{A 1}(x) \pi_{0}$ for $A=0,1$. The potential defined by $\Gamma:=\Gamma_{A B} d x^{A B}$ is then self-dual (or anti self-dual, depending on conventions) by virtue of the fact that $\left[D_{A}, D_{B}\right]=0$. Given the above, we observe that it is only necessary to split one of the $G_{a b}(x \cdot \pi, \pi)$ to obtain Γ. This is the Riemann-Hilbert problem under discussion.

From now on, we take $G_{a b}$ in the form given by Proposition 2 above. A "generic" point x in the 4 -dimensional Grassmannian $\operatorname{Gr}(2,4)$ refers to a line $L_{x} \subset P_{3}(\mathbb{C})$ such that (1) $L_{x} \cap V_{a} \cap V_{b}=\phi$, (2) L_{x} is in general position with respect to V_{a} and V_{b} (so that it intersects each in n distinct points), and (3) $E \mid L_{x}$ is trivial. Thus for generic L_{x}, we shall have (1) $L_{x} \subset \mathfrak{U}_{a} \cup \mathfrak{U}_{b}$, (2) $\mathfrak{U}_{a} \cong P_{1}(\mathbb{C}) \backslash\left\{p_{1}(x), \ldots, p_{n}(x)\right\}$, $\mathfrak{U}_{b} \cong P_{1}(\mathbb{C}) \backslash\left\{q_{1}(x), \ldots, q_{n}(x)\right\}$, the deleted points corresponding to the sets $V_{a} \cap L_{x}$ and $V_{b} \cap L_{x}$ respectively, and (3) $\left\{p_{1}(x), \ldots, p_{n}(x)\right\} \cap\left\{q_{1}(x), \ldots, q_{n}(x)\right\}=\phi$.

Restricted to L_{x}, the functions Δ_{a}, Δ_{b} and the entries of $S_{a b}$ become homogeneous polynomials in the components of x and π. Assuming the point corresponding to $\pi=(0,1)$ does not coincide with one of the $p_{i}(x)$, we set $\lambda=\pi_{1} / \pi_{0}, \Lambda=(1, \lambda)$ and conclude that $G(x \cdot \pi, \pi)$ which is homogeneous of degree zero in π, can be written as

$$
\begin{equation*}
G(x \cdot \Lambda, \Lambda)=G(x, \lambda)=\prod_{1}^{n}\left[\lambda-p_{i}(x)\right]^{-1} \cdot \prod_{1}^{n}\left[\lambda-q_{j}(x)\right]^{-1} \cdot \tilde{S}(x, \lambda) \tag{16}
\end{equation*}
$$

where we have dropped the indices on the matrices and absorbed a rational function of x into the original $S(x, \lambda)$. Strictly speaking, the (x, λ) are local coordinates on the flag manifold \mathscr{F}_{12} consisting of all ordered pairs \{lline in $\boldsymbol{P}_{\mathbf{3}}(\mathbb{C})$, point on the line) $\}$; see Wells [We]. The Riemann-Hilbert problem is then to find a Zariski-open set $\mathscr{U} \subset G r(2,4)$ such that $x \in \mathscr{U} \Rightarrow G(x, \lambda)$ factors as $G_{-}(x, \lambda) \cdot G_{+}^{-1}(x, \lambda)$, with $G_{-}(x, \lambda)$ (respectively $\left.G_{+}(x, \lambda)\right)$ holomorphic in $\hat{\mathfrak{U}}_{a} \mid \mathscr{U}$ (respectively $\hat{\mathfrak{U}}_{b} \mid \mathscr{U}$), where $\hat{\mathfrak{U}}_{i}=\left.\mathscr{F}_{12}\right|_{\mathbb{C}^{4}} \backslash\left\{(x, \pi): \Delta_{i}(x \cdot \pi, \pi)=0\right\}$.

3. Factoring Maps into $\operatorname{Sp}(\boldsymbol{k}, \mathbb{C})$

Suppose D is a closed disk centered at p in the complex λ plane and that $G: D \backslash\{p\} \rightarrow \operatorname{Sp}(k, \mathbb{C})$ is holomorphic with a simple pole at $\lambda=p$. Then $G(\lambda)=$ $(\lambda-p)^{-1} G_{-1}+G_{0}+(\lambda-p) H(\lambda)$, with H holomorphic in D. Write G_{-1} and G_{0} in block form:

$$
G_{m}=\left[\begin{array}{ll}
\alpha_{m} & \beta_{m} \tag{17}\\
\gamma_{m} & \delta_{m}
\end{array}\right], \quad \text { where the entries are } k \times k \text { blocks }
$$

and define $\chi=\gamma_{-1}^{t} \alpha_{0}-\alpha_{-1}^{t} \gamma_{0}$, and $\hat{\chi}=\delta_{-1}^{t} \beta_{0}-\beta_{-1}^{t} \delta_{0}$. Finally, suppose that χ, α_{-1}, and δ_{-1} are invertible. Then we have
Lemma 3. Under the assumptions stated,
(a) The following expressions for the $2 k \times 2 k$ matrix A are identical:

$$
A=\left[\begin{array}{ll}
-\alpha_{-1} \chi^{-1} \gamma_{-1}^{t} & \alpha_{-1} \chi^{-1} \alpha_{-1}^{t} \tag{18}\\
-\gamma_{-1} \chi^{-1} \gamma_{-1}^{t} & \gamma_{-1} \chi^{-1} \alpha_{-1}^{t}
\end{array}\right]=\left[\begin{array}{ll}
-\beta_{-1} \hat{\chi}^{-1} \delta_{-1}^{t} & \beta_{-1} \hat{\chi}^{-1} \beta_{-1}^{t} \\
-\delta_{-1} \hat{\chi}^{-1} \delta_{-1}^{t} & \delta_{-1} \hat{\chi}^{-1} \beta_{-1}^{t}
\end{array}\right]
$$

(b) $A \in \operatorname{sp}(k, \mathbb{C}) ; A^{2}=0 ; I+(\lambda-p)^{-1} A=\exp \left[(\lambda-p)^{-1} A\right] \in \operatorname{Sp}(k, \mathbb{C})$ for $\lambda \neq p$.
(c) $\left[I+(\lambda-p)^{-1} A\right] \cdot G(\lambda)$ is a holomorphic map from D to $\operatorname{Sp}(k, \mathbb{C})$.

Proof. Writing out the left-hand side of (c), we see that A must satisfy the (apparently) overdetermined system of equations

$$
\begin{equation*}
A G_{-1}=0, \quad A G_{0}+G_{-1}=0 \tag{19}
\end{equation*}
$$

The system turns out to be consistent provided that (a) holds; as shown below, this is a consequence of the identities on the Laurent coefficients resulting from the requirement that $G(\lambda) \in \operatorname{Sp}(k, \mathbb{C})$. The inverses of α_{-1} and δ_{-1} are required here. Once (a) is established, (c) follows directly. Condition (b) is immediate from the identities below and the form of A. We remark that invertibility of the matrices
required is generic. To verify (a) write

$$
G(\lambda)=\left[\begin{array}{ll}
\alpha(\lambda) & \beta(\lambda) \\
\gamma(\lambda) & \delta(\lambda)
\end{array}\right]
$$

Then $G^{t}(\lambda) \Omega_{k} G(\lambda)=\Omega_{k}$ is equivalent to

$$
\gamma^{t} \alpha=\alpha^{t} \gamma, \quad \delta^{t} \beta=\beta^{t} \delta, \quad \alpha^{t} \delta-\gamma^{t} \beta=I_{k},
$$

which gives conditions on the components of G_{m} :

$$
\begin{array}{ll}
\gamma_{-1}^{t} \alpha_{-1}=\alpha_{-1}^{t} \gamma_{-1}, & \gamma_{-1}^{t} \alpha_{0}+\gamma_{0}^{t} \alpha_{-1}=\alpha_{-1}^{t} \gamma_{0}+\alpha_{0}^{t} \gamma_{-1}, \\
\delta_{-1}^{t} \beta_{-1}=\beta_{-1}^{t} \delta_{-1}, \quad \delta_{-1}^{t} \beta_{0}+\delta_{0}^{t} \beta_{-1}=\beta_{-1}^{t} \delta_{0}+\beta_{0}^{t} \delta_{-1}, \\
\alpha_{-1}^{t} \delta_{-1}=\gamma_{-1}^{t} \beta_{-1}, \quad \alpha_{-1}^{t} \delta_{0}+\alpha_{0}^{t} \delta_{-1}=\gamma_{-1}^{t} \beta_{0}+\gamma_{0}^{t} \beta_{-1} . \tag{20.3}
\end{array}
$$

Writing A as $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$,(19) gives 8 equations, which break up naturally into 2 sets:

$$
\begin{array}{rlrl}
a \alpha_{-1}+b \gamma_{-1} & =0 & a \beta_{-1}+b \delta_{-1} & =0 \\
a \alpha_{0}+b \gamma_{0} & =-\alpha_{-1}, & \text { (II) } & a \beta_{0}+b \delta_{0} \tag{II}
\end{array}=-\beta_{-1} .
$$

If χ is invertible, then the first version of A given in (18) above can be formed, and it is easily checked that the a, \ldots, d so determined satisfy (I) above. We must check that (II) is satisfied as well. Suppose α_{-1} and δ_{-1} are also invertible. Then (20.3) shows that γ_{-1} and β_{-1} are invertible, and (20.1) gives

$$
\begin{equation*}
\delta_{-1}=\alpha_{-1}^{t_{-1}^{-1}} \gamma_{-1}^{t} \beta_{-1}=\gamma_{-1} \alpha_{-1}^{-1} \beta_{-1}, \quad \alpha_{-1}=\beta_{-1} \delta_{-1}^{-1} \gamma_{-1} . \tag{20.4}
\end{equation*}
$$

We now claim that

$$
\begin{equation*}
\chi \alpha_{-1}^{-1} \beta_{-1}=\gamma_{-1}^{t} \delta_{-1}^{t^{-1}} \hat{\chi} . \tag{20.5}
\end{equation*}
$$

Writing out the left-hand side of (20.5), we get

$$
\left[\alpha_{0}^{t} \gamma_{-1}-\gamma_{0}^{t} \alpha_{-1}\right] \alpha_{-1}^{-1} \beta_{-1}=\alpha_{0}^{t} \gamma_{-1} \alpha_{-1}^{-1} \beta_{-1}-\gamma_{0}^{t} \beta_{-1}=\alpha_{0}^{t} \delta_{-1}-\gamma_{0}^{t} \beta_{-1}
$$

where we have used (20.4) and $\chi=\chi^{t}$. Similarly, the right-hand side of (20.5) gives $\gamma_{0}^{t} \beta_{-1}-\alpha_{0}^{t} \delta_{-1}$, and the two expressions are identical by virtue of (20.3). This shows that $\hat{\chi}$ is invertible and allows us to write down the second expression for A, which involves $\hat{\chi}^{-1}$. It is then easily checked, using (20.4) and (20.5), that the two expressions are identical and the rest of the proof follows.

Setting $G_{-}(\lambda):=I-(\lambda-p)^{-1} A$, and $G_{+}^{-1}(\lambda):=\left[I+(\lambda-p)^{-1} A\right] \cdot G(\lambda)$ (recall that $A^{2}=0$), we have solved the Riemann-Hilbert problem for $G(\lambda)$ on any positively oriented contour in $D \backslash\{p\}$ equivalent to ∂D. Moreover, $G_{-}(\lambda)$ is the unique solution with $G_{-}(\infty)=I$. (See Novikov, et. al. [NMPZ] for a general discussion.) Finally, we observe that both of $G_{ \pm}(\lambda)$ take values in $\operatorname{Sp}(k, \mathbb{C})$ in their respective domains.

4. The Riemann-Hilbert Problem for Self-Dual Yang-Mills Fields

Returning now to $G(x, \lambda)$, choose a simple, positively oriented contour \mathscr{C}_{x} on L_{x} surrounding the n points of $V_{a} \cap L_{x}$. Order these points as $\left\{p_{1}(x), p_{2}(x), \ldots, p_{n}(x)\right\}$. Choose contours \mathscr{C}_{i} to surround only $\left\{p_{1}(x), p_{2}(x), \ldots, p_{i}(x)\right\}$, with $\mathscr{C}_{n}=\mathscr{C}_{x}$. Let D_{i} be the closure of int \mathscr{C}_{i}. The following construction works for a generic x (see the remarks below): On $D_{1} \backslash\left\{p_{1}(x)\right\}$ apply the lemma to get

$$
\begin{equation*}
G(x, \lambda)=\left(I-\left(\lambda-p_{1}(x)\right)^{-1} A_{1}(x)\right) \cdot G_{1}(x, \lambda) \tag{21}
\end{equation*}
$$

with $G_{1}(x, \lambda)$ holomorphic in D_{1}, hence in $D_{2} \backslash\left\{p_{2}(x)\right\}$, and taking values in $\operatorname{Sp}(k, \mathbb{C})$. Continue with $G_{i-1}(x, \lambda)$ in $D_{i} \backslash\left\{p_{i}(x)\right\}$ to obtain

$$
\begin{equation*}
G_{i-1}(x, \lambda)=\left(I-\left(\lambda-p_{i}(x)\right)^{-1} A_{i}(x)\right) \cdot G_{i}(x, \lambda) \tag{22}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
G(x, \lambda)=\left(\prod_{j=1}^{i}\left[I-\left(\lambda-p_{j}(x)\right)^{-1} A_{j}(x)\right]\right) \cdot G_{i}(x, \lambda) \tag{23}
\end{equation*}
$$

arriving at the factorization

$$
\begin{equation*}
G(x, \lambda)=\left(\prod_{j=1}^{n}\left[I-\left(\lambda-p_{j}(x)\right)^{-1} A_{j}(x)\right]\right) \cdot G_{n}(x, \lambda)=G_{-}(x, \lambda) \cdot G_{+}^{-1}(x, \lambda) \tag{24}
\end{equation*}
$$

valid on the original curve \mathscr{C}_{x}.
Remarks. At each stage of the factorization, one must restrict the domain of x further by cutting out the Zariski-closed subsets of $\operatorname{Gr}(2,4)$ in which the $k \times k$ determinants of the required terms made from the Laurent expansion of G vanish. The end result of this process is the set \mathscr{U} referred to above. Evidently, G_{-}is holomorphic in $\hat{\mathfrak{U}}_{a} \mid \mathscr{U}$. Since the A_{i} are nilpotents of order $2, G_{-}^{-1}=\prod_{j=n}^{1}(I+$ $\left.\left(\lambda-p_{j}(x)\right)^{-1} A_{j}(x)\right)$, so that $G_{-}^{-1} \cdot G=G_{+}^{-1}$ is holomorphic in $\hat{\mathfrak{U}}_{b} \mid \mathscr{U}$, and the problem is solved.

Even for the case $k=1(S l(2, \mathbb{C}))$, the stated conditions are not necessary, only sufficient. This can be seen from the following example for $n=2, k=1$. Take

$$
\mathscr{A}^{t}(Z)=\left[\begin{array}{cccccc}
Z_{0} & Z_{2} & Z_{1} & Z_{3} & 0 & 0 \\
Z_{2} & Z_{0} & Z_{3} & Z_{1} & Z_{2} & \varepsilon Z_{3}
\end{array}\right], \text { with } \varepsilon \neq 0
$$

Using (12), we find

$$
G_{12}(Z)=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]+\frac{Z_{0} Z_{1}+Z_{2} Z_{3}}{\left(Z_{1}^{2}-Z_{3}^{2}\right)\left(Z_{0}^{2}-Z_{2}^{2}\right)}\left[\begin{array}{cc}
Z_{2}^{2} & \varepsilon Z_{2} Z_{3} \\
\varepsilon Z_{2} Z_{3} & \varepsilon^{2} Z_{3}^{2}
\end{array}\right]
$$

Using the standard coordinates $x=\left[\begin{array}{cc}y & -\tilde{z} \\ z & \tilde{y}\end{array}\right]$, one finds, after a routine computation at the pole $p_{1}(x)=z /(1-\tilde{y})$, that

$$
\chi\left(p_{1}(x)\right)=\frac{2(\varepsilon-1)}{1+z \tilde{z}+y \tilde{y}-(y+\tilde{y})}
$$

which evidently vanishes when $\varepsilon=1$. On the other hand, for $\varepsilon=1$, we find immediately that

$$
G_{12}(Z) \left\lvert\, L_{0}=\left[\begin{array}{cc}
\lambda^{-1} & 0 \\
2 & \lambda
\end{array}\right] \sim I_{2}\right.
$$

so that E is, in fact, trivial over the generic line. We mention that if $\varepsilon \neq 1$, there are no difficulties, and the construction goes through as advertised.

The restriction to "generic G " in the statement of the theorem eliminates the possibility that one or more of the determinants may vanish identically and ensures that Δ_{a} and Δ_{b} are relatively prime.

In this procedure, one introduces "artificial" singularities into the gauge potential; this happens as well in the Atiyah-Ward construction [At]. The Riemann-Hilbert problem may be solvable for some of these x with a different ordering of the singular points, or, since we only have a sufficient condition, it might be solvable in a different form. In addition, requiring that L_{x} be in general position with respect to the pair $\left(V_{a}, V_{b}\right)$ cuts out another set of the Grassmannian on part of which the problem might be solvable.

Although $G_{-}(x, \lambda)$ is certainly unique, the factorization is not; it depends on the (arbitrary) ordering of the singular points. Indeed, for certain values of x, the factorization exists for one such ordering and fails for another.

5. Backlund Transformations Associated with the Factorization

At this point, we may choose to forget that we know where to put the contour \mathscr{C}_{x}, and observe that for each i, the partial factorization given in (23) above permits the construction of a sequence of self-dual gauge potentials $\Gamma_{i A B} d x^{A B}$ via

$$
\begin{equation*}
\Gamma_{i A}(x, \pi)=G_{i}^{-1}(x, \pi) \cdot D_{A} G_{i}(x, \pi), \tag{25}
\end{equation*}
$$

with

$$
\begin{equation*}
G_{i}(x, \pi)=\prod_{j=1}^{i}\left(I-\left(\lambda-p_{j}(x)\right)^{-1} A_{j}(x)\right) \tag{26}
\end{equation*}
$$

obtained by solving the Riemann-Hilbert problem on the contour \mathscr{C}_{i}. The potentials are related by the Bäcklund transformations (or "dressing transformations" of Zakharov \& Shabat) [ZS, Ch, PSW, Cr, MCN]:

$$
\begin{equation*}
\Gamma_{i A}=G_{i}^{-1} \cdot \Gamma_{i-1 A} \cdot G_{i}+G_{i}^{-1} D_{A} G_{i} . \tag{27}
\end{equation*}
$$

For $i<n$, these hold for x in supersets of \mathscr{U}. The potential Γ_{i} may be regarded as having been obtained by i successive such transformations applied to the trivial solution $\Gamma_{0}=I$. Of course, these transformations are not well-defined on isomorphism classes of bundles; they do not, for example, respect topological invariants like Chern classes.

To relate this to the standard treatments of the Riemann problem [NMPZ], set $\phi_{j}=I-\left(\lambda-p_{j}(x)\right)^{-1} A_{j}(x)$ and consider the situation at the $i^{\text {th }}$ stage of the induction. On the contour \mathscr{C}_{i}, we need to solve the problem $G_{i-1}=\phi_{i} \cdot G_{i}$; equivalently, we have the singular solution $G=\phi_{1} \phi_{2} \cdots \cdot \phi_{i-1} \cdot G_{i-1}(x, \lambda)$ to the "Riemann problem with zeros" for G on \mathscr{C}_{i}. If a regular solution exists, it differs
from this by the interpolation of a factorization of I; this is exactly what we get, since

$$
G=\left(\phi_{1} \cdots \cdots \cdot \phi_{i-1} \cdot \phi_{i}\right) \cdot\left(\phi_{i}^{-1} \cdot G_{i-1}\right) .
$$

As mentioned earlier, an analogous result holds for the even dimensional orthogonal groups $O(2 k, \mathbb{C})$. Here one takes the quadratic form

$$
Q=\left[\begin{array}{cc}
Q_{n} & 0 \\
0 & Q_{k}
\end{array}\right], \quad \text { where } \quad Q_{m}=\left[\begin{array}{cc}
0 & I_{m} \\
I_{m} & 0
\end{array}\right]
$$

on \mathbb{K} and requires that $\operatorname{Im} \mathscr{A}(Z)$ be totally null with respect to Q. Everything goes through with the obvious modifications.

As was also mentioned, the factorization does not depend on $G_{a b}(Z)$ having come from the monad construction. It is only necessary that G have the correct form (meromorphic with a finite number of simple poles that can be isolated from the rest on some open subset of the Grassmannian). These factorizations are quite similar to those obtained recently [Uh] for harmonic maps.

Finally, we mention a simple relation between the nilpotents $A_{i}(x)$ and the gauge potential Γ. In the standard coordinates $x=\left[\begin{array}{rr}y & -\tilde{z} \\ z & \tilde{y}\end{array}\right]$, the normalization $G_{-}(x, \infty)=I$ gives $\Gamma_{y}(x)=\Gamma_{z}(x)=0$. Sufficiently far from $\lambda=0$, we can, for each x and i, write $\left[\lambda-p_{i}(x)\right]^{-1}=\lambda^{-1}+\lambda^{-2} p_{i}(x)+O\left(\lambda^{-2}\right)$, so that

$$
G_{-}(x, \lambda)=I+\lambda^{-1}\left(\sum_{1}^{n} A_{i}(x)\right)+\lambda^{-2} H\left(x, \lambda^{-1}\right)
$$

Now (15) gives

$$
\begin{align*}
& \left(\partial_{y}+\lambda^{-1} \partial_{\tilde{z}}\right) G_{-}=\lambda^{-1} G_{-} \cdot \Gamma_{\tilde{z}} \tag{28}\\
& \left(\partial_{z}-\lambda^{-1} \partial_{\tilde{y}}\right) G_{-}=-\lambda^{-1} G_{-} \cdot \Gamma_{\tilde{y}}
\end{align*}
$$

and, equating the lowest order coefficients we get

$$
\begin{equation*}
\partial_{y}\left(\sum_{1}^{n} A_{i}(x)\right)=\Gamma_{\tilde{z}}, \quad \text { and } \quad \partial_{z}\left(\sum_{1}^{n} A_{i}(x)\right)=-\Gamma_{\tilde{y}} \tag{29}
\end{equation*}
$$

as the infinitesimal version of the factorization. The quantity $Q_{1}(x)=\left(\sum_{1}^{n} A_{i}(x)\right)$ is the first of an infinite number of conserved "charges" for the self-dual Yang-Mills fields [Ch, Ta].

References

[ADHM] Atiyah, M. F., Drinfeld, V. G., Hitchin, N. J., Manin, Yu. I.: Phys. Lett. 65A, 185-187 (1978)
[At] Atiyah, M. F.: Geometry of Yang-Mills fields. Fermi Lectures (1978)
[AW] Atiyah, M. F., Ward, R. S.: Commun. Math. Phys. 55, 117-124 (1977)
[Ch] Chau, L. L.: Geometric integrability and equations of motion in physics. In: Integrable Systems. Song Xing-Chang (ed.). Singapore: World Scientific 1988
[Cr] Crane, L.: Commun. Math. Phys. 110, 391-414 (1987)
[Do] Donaldson, S.: Commun. Math. Phys. 93, 453-460 (1984)
[CFGY] Corrigan, E., Fairlee, D. B., Goddard, P., Yates, R. G.: Commun. Math. Phys. 58, 223 (1978)
[MCN] Mason, L., Chakravarty, S., Newman, E. T.: J. Math. Phys. 29, 1005-1013 (1988)
[NMPZ] Novikov, S., Manakov, S. V., Pitaevski, L. P., Zakharov, V. E.: Theory of solitons. New York: Plenum Press 1984
[OSS] Okonek, C., Schneider, M., Spindler, H.: Vector bundles on complex projective spaces. Boston: Birkhäuser 1980
[PR] Penrose, R., Rindler, W.: Spinors and space-time, vol. 2. Cambridge: Cambridge University Press 1986
[PSW] Prasad, M. K., Sinha, A., Wang, L. L.: Phys. Lett. B87, 237 (1979)
[Ta] Takasaki, K.: Commun. Math. Phys. 94, 35-59 (1984)
[Uh] Uhlenbeck, K.: J. Diff. Geom. 30, 1-50 (1989)
[Wa] Ward, R. S.: Phys. Lett. 61A, 81-82 (1977)
[We] Wells, R. O. Jr.: Bull. AMS (new series) 1, 296-336 (1979)
[ZS] Zakharov, V. E., Shabat, A. B.: Funkts. Analiz. 13(3), 13-22 (1978)
Communicated by S.-T. Yau
Received November 2, 1989

[^0]: * Supported by the General Research Fund of the University of Kansas

