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Abstract. In this paper we prove the existence of the interband-light-absorption
coefficient and investigate its asymptotics for a number of models.

1. Introduction

The interband light absorption coefficient (ILAC) is an important characteristic of
doped semiconductors. By using approximations widely accepted in semiconductor
physics this quantity can be written as [1,2]:

α 0 + — 2

Vω bn m
 Λ

 n X m X

provided the temperature is sufficiently low and the Fermi energy lies in the gap
between the valence and the conductance bands. In (1.1) the constant α0 is
determined by fundamental physical constants and the band structure of the ideal
(non-doped) semiconductor. V denotes the volume of the semiconductor sample Λ.
ω is the light frequency and λ = — Eg + ω, where Eg is the distance (gap) between the
valence and the conduction band, λ* and ψ* are the eigenvalues and orthonor-
malized eigenfunctions respectively of the operators Hj, given on A by

Hi = -Δ±q (1.2)

with appropriate (e.g. Dirichlet) boundary conditions on dΛ. These Hamiltonians
describe the motions of electrons and holes in the conduction and valence bands
under the influence of the random (impurity) potential q(x). The energy levels Λ*
are counted from the bottom of the respective band.1

It is known (see [1,2]) that the ILAC has several asymptotic regimes depending
on the form of the random potential, the frequency interval, etc. In particular,
suppose q(x) is a homogeneous Gaussian random field with mean zero and cor-

1 For simplicity we consider only the case of equal effective masses of electrons and holes. This
allows us to normalize the constants in front of the kinetic energy to 1
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relation function b(x) = M {q(0)q(x}}2 which decays fast enough for |JC|—•oo. Then
according to [2], for - λ > 6*(0) we should have

\na(λ)~\nn(λ) . (1.3)

Here the symbol ~ denotes asymptotic equality and n(λ) is the density of states of
the operator i /J . (It is clear that the density of states for Hj agree due to the
symmetry of the Gaussian distribution.) It is well known (see e.g. [1-3]) that for

(1.4)

In a recent paper [4] it is argued that if b(x) = b(0)e~ylx] then

\na(λ)~^\nn(λ) . (1.5)

In the present paper we give a rigorous proof of the asymptotic relation

^Inn(λ) , (1.6)

where γί = 1 — inf (b(x)/b(0)). Due to ergodicity of the Gaussian field q(x) a positive
definite function b(x) satisfies the inequality \b(x)\<b(0), i.e. l^y<2. Thus for
general Gausian potential the asymptotic behaviour of the In oc(λ) is not determined
solely by the asymptotics of \nn(λ), like (1.3) or (1.5). This is the case only if
b(x) is nonnegative in which case we have (1.5). We also present arguments which
show that for a certain class of random potentials it is natural to expect (1.5) when
the random potential has symmetric distribution with noncompact support
and the asymptotics (1.3) when the random potential is bounded from below or
from above. In fact we prove for a certain class of random potentials that
lnα(/l)~ln(«+ *n~ (λ)), where «* is the density of states for H±.

The paper is organized as follows. In the Sect. 2 we prove that the ILAC (1.1),
more precisely the distribution function AΛ{λ) for which (1.1) is the density, with
probability 1 has a nonrandom weak limit A(λ) as AfWid and obtain a represen-
tation for the Laplace transform Ά(t) of A(λ) in the form of a Wiener integral.
Section 3 contains the proof of the asymptotic formulas for A (λ) as λ -* — oo in the
case of the Gaussian and the Poisson random potentials, which give in particular the
rigorous variants of (1.5) and (1.3). This proof is based essentially on the mentioned
representation. In Sect. 4 we investigate alloy type potentials. The last section
concerns a brief discussion of our results and some related questions. In the
appendix we prove that the construction of A (λ) is independent of the boundary
conditions chosen.

M{X} denotes the expectation value of the random variable X
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2. Self-Averaging of the ILAC

Denote by χ(λ) the characteristic function of the semiaxis (0, oo). Then the
distribution function which corresponds to the density (1.1) is

ΛΛ(λ)=V-ί Σ χ(λ-λ+-λ;)Imn(A) ,

m,n

= V-1 Sp J EX{λ-μ)Eχ(dμ) , (2.1)

where
(2.2)

and E% (λ) are the resolutions of identity of the operators H% defined by the
Dirichlet problem in a region A for the Schrδdinger equations with the potentials
±q respectively acting in L2(A). We shall suppose in this paper that A is a
rectangular parallelepiped. Then the symbol yl/JRd has an unambiguous meaning.3

Theorem 2.1. Let q(x), x e lRd, be a metrically transitive random field with continuous
realizations and such that

M{e~tqi0)}<oo , teWL . (2.3)

Then there exists a non-random nondecreasing function A (λ) such that
(i) with probability 1 (p. 1)

]imAΛ(λ) = A(λ) (2.4)

at all continuity points λ of A.

(ϋ) If
Ά(t)=\ e~λtA(dλ) (2.4)

is the Laplace transform of A (λ) then

Ά(t) = \ M{P + {t^x)P-(t,x^)}dx , (2.5)

where P± (t,x,y), t^.0, x, jμeIRd, are the kernels of the semigroups e~tH± and
H± = —Λ±q are random Schrδdinger operators acting in L2(lRd).

The proof of this theorem requires several auxiliary results. Denote by AΛ(t) the
Laplace transform of (2.1):

AΛ(t)=V~1 £ e~t^ + λ^Imn=V~ίSpe-tH^e-tH:i . (2.6)~1

m,n

If Pj[ (t,x, y), /Ξ>0, x,ysΛ are the kernels of the semigroups e~tHx, then

AΛ(t)= V-1 I PX(t,x,y)Pχ(t,y,x)dxdy . (2.7)

Note that our results are valid for a much wider class of regions
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Applying the Cauchy inequality to the right-hand side of (2.7) we obtain that

ΆA(t)£(R2(20Rϊ(2t))112 , (2.8)
where

N±(t)=V-1Spe-tH* (2.9)

are the Laplace transforms of the prelimit densities of states

According to the Feynman-Kac formula (see e.g. [6]) the kernels Pjf (ί, x, y) have
the representations:

PHt^,y)=P(t,x-y)El)\
y

x(e±oqixis))χΛ(x(.))) , (2.10)

where p(t,x) = (4πt) 2 e 4 ί , EQ\V

X denotes the Wiener expectation for x(0) = x
conditioned on x(t)=y and

| θ otherwise

Lemma 2.2. IfΛί^Λ2 then

0£Pl(t9x9y)£P±2(t9x9y) . (2.11)

The proof of this lemma follows easily from the representation (2.10).

Lemma 2.3. d

7V y l

± (0^(4π0" y K" 1 J e±tqix)dx . (2.12)
Λ

Proof. By using the Jensen inequality we have

This inequality (2.9), the Markov property of the Wiener process and (2.10) give4

-1 I pΛ{t,x,x)e±tq{x)dx ,
Λ

where pΛ(t,x, y) is the kernel of the operator etΔΛ and ΔΛ is the operator of the
Dirichlet problem for the Laplacian. Applying to this kernel Lemma 2.2 with q = 0,
Λ1=Λ, Λ2 = Rd we arrive at (2.12). •

We can now prove Theorem 2.1. It follows from the Lemmas 2.2 and 2.3 that the
quantity VAA(t) for fixed ί > 0 is a superadditive function of A, i.e. if A = Λ1KJA2

and interior {A1 r\A2) = 0 then

4 This inequality can be obtained also from Golden-Thompson inequality Sp {eA+B}^SpeAeB

with A = — AΏ

Aτ B = + q. We use arguments based on (2.9) and (2.10) since similar ones will be used
below in more complicated situations
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Thus according to the subadditive ergodic theorem [7] for fixed / > 0 with/?. 1 there

exists the nonrandom limit

Ά(t)=limΆΛ(t) (2.14)
d

Now to prove (2.4) we use a simple generalization [8] of the well known continuity
theorem for the Laplace transform of nondecreasing functions. The conditions
required for this theorem are satisfied because of (2.3) and (2.12).

To prove (2.5) we take into account that according to the subadditive ergodic
theorem

A(t)= lim M{AΛ(t)} . (2.15)
ΛTΈL*

Thus, since due to the metrical transitivity of the potential
+ (t,x,y)P~(t,y,x)} depends only on the difference x—y and for any

lim V'1 J φ{x-y)dxdy = \φ(x)dx

we have only to prove that for any fixed t > 0

lim M{V~1Sp(P+p--P + P^)} = 0 , (2.16)

where P± and P% are the integral operators in L2(Λ) defined by the kernels
P ± (t, x, y) and P} (ί, x9 y) for fixed t > 0. But the expression under the lim sign in the
left-hand side of (2.16) can be written as S1+S2, where

(P+-P + ) .

By using (2.11) and the Cauchy inequality we obtain that

OSSίS(M{V-1Sp(P+)2}M{V-1Sp(p--P;)2})1!2 . (2.18)

It follows from the semigroup property of the PΛ, (2.11) and (2.12) that the first
factor in the right-hand side of (2.18) admits the estimate

(Sπtyd/2M{e-2t«i0)}<oo .

Furthermore, writing down the Wiener integral representation for the difference
P~ -PΛ which follows from (2.10) and applying to it the Cauchy inequality we
obtain that t

The mathematical expectation of the right-hand side of this inequality in view of

(2.13) has the estimate

which shows that lim M{S'1} = 0 if lim V~1Sp{p(pΛ-p)} = 0. But since the

functions /?(/, x9 y) and pΛ(t, x, y) are rather simply connected [9] (pΛ is obtained
from/? by alternating reflecting procedure) the last limit relation can be proved by
direct calculations. In a similar way we establish that lim S2 = 0. •

ΛfWLΛ
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Corollary 2.1. The Laplace transform A(t) of A is given by:

~2 / \ C 2/ \ r t x r t v w / - 5 9(x(s))-q(x-y(s))ds . / Λ i m

A(t) = $ p2(t,x)Et

0>
x

0x Efax M(e ° )dx . (2.19)

Here E^x is expectation over the Wiener measure conditioned by x(0) = x and x(t)
=y. The first expectation is over x( ), the second one over y( ) .

This corollary follows from (2.5) and (2.10). Finally, we prove an estimate on
A(t) which we will use later on.

Proposition 2.1. Under the assumptions of Theorem 2.1 the Laplace transform A (t) of
A(λ) satisfies:

A(t)^$p(t,x)2M{e-tiqi0)-qix))}dx . (2.20)

Remark. The analogous result on the IDS:

is well known (see e.g. [8]). It follows, for example, from (2.12).

Proof

-J(«(*(s))-flU-:v(s))ds ,
(e ° )dx

^lp{t,xf - ί dsMxEίUxi-VxE^Uyi-))
1 o

ίe-t(q(x(s))- q(χ- y(s))\^χ

by application of Jensen's inequality,

1 *
=τ $ ds ί M ί ί (p(s,y)p(t-s,y-x)p(s,x-z)

1 0 R d IRd IR^

p(t-s9z)e~tiq(y)~qiz)))dzdydx

1 *
=- $dsM{$$$p(s,y)p(t-s,y-x)p(s,z)

t o

p(t-s9z+x)e'tq(y)-qiz+x)}dzdydx

= 7 ]dsM{$llp(s,y)p(t-s9x-z)p(s9z)
1 0

p(t-s,x+y)e-tiqiy)-q(x+y))}dxdzdy

1 *
=- [ ds \\\p(s,y)p(t-s,y + x)p(s,z)

1 o

p(t-s,z-x)M{e-t(qiy)-qix+y))}dzdydx

= f p(t,x)2M{e-t{q{0)-q{x))}dx .

In the last step we used the stationarity of q. •
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Remark. One could, of course, define (2.1) by imposing Neumann boundary
conditions rather than Dirichlet ones. We prove in the Appendix that this procedure
leads to the same limit A (λ). This is therefore also true for any boundary conditions
between Dirichlet and Neumann, e.g. for periodic boundary conditions.

3. Asymptotic Behaviour of the ILAC for the Gaussian and the Poisson Potentials

In this section we prove the following results on the asymptotic behaviour of the
ILAC:

Theorem 3.1. Let q(x) be a metrically transitive Gaussian random field with
continuous correlation function b(x).

Then
λ2

lnA(λ)=-—[b(0)- inf b(x)}~\\ +0(1)) as/l->-oo . (3.1)
4

Let us define now the Poisson random potential. Denote by μ(dx) the Poisson
random measure μ(dx) e IRA This is the pure atomic measure such that the random
variables μ(Aγ) and μ(A2) are independent for any Borel sets in JRd, if A1nA2 has
empty interior, and the random variable μ(A) takes on nonnegative integer values

(c\A\Y
n = 0,l... with probabilities e~c^ —, where c>0 (density) and \Δ\ is the

Lebesgue measure of the Borel set A. For a smooth function f(x) with compact
support the integral

(3.2)

defines with probability 1 a metrically transitive random field, which we will call the
Poisson random potential. This potential is more complex and general than the
Gaussian one. In particular, if f(x) in (3.2) has the form f(x) = gu(x) and c->oo,
g->0, g2c = l then all joint probability distributions of the random variables
v(xί)...v(xn)9 v(x1) = q(x1—M(q(x))), tend to the respective joint distributions of
the Gaussian potential with zero mean value and the correlation function of the
form b(x) = J u(x— y)u(y)dy.

Theorem 3.2. Suppose that the function f(x) in (3.2) has a unique negative and
nondegenerate minimum at x = 0 and a unique nonnegative and nondegenerate
maximum at x = x0. Then

l

As in the case of the integrated density of states (see e.g. [8]) we can obtain the
above asymptotic formulas from a corresponding formula for the Laplace
transform Ά (t) oϊA (λ) by means of the Minlos-Povsner Tauberian theorem. This is
easily done in the same way as in [8] once we known the asymptotic behaviour of
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Proposition 3.1. Under the assumption of Theorem 3.1 we have

lnJ?(O = yi6(O)ί2(l+0(l)) αsί-oo , (3.3)

where γt = 1 - inf b(x)/b(0).
xeWLd

Proof. As in the case of the integrated density of states we obtain (3.3) as a result of
upper and lower bounds which agree asymptotically for large t. We use heavily the
Wiener integral representation of A(t) given in (2.19).

Upper Bond. By Proposition 2.1 we have

A(t)^$ p(t,x)2M{e-t{q{0)-q(x))}dx

since q is Gaussian and:

= et2M{qm J p(t9

by stationarity of q(x), thus:

- inf b(x)]
xeΈLd

for t large enough.

Lower Bound. Set Ωί = {x(-)\\x(s)\^η for all O^s^t-δ}, Ω2 = {y(-)\y(s)\^η
for all 0 ̂  s ̂  t — (5}, where 5 and 77 will be determined later and let x0 be a point such
that inf b{x)=b (x0) (if b (x) ̂  0 then any point x0,\x0\^RfoτR large enough, may

play this role). Then

A(t)^ J p(t,x)2

\ \ M{e~^{x{s))~q{x~Λs))ds}dP\;%dP^%dx .
Ωi Ω2

The random variable in the exponent is Gaussian, hence

,,, -ϊ(q(x(s))-q(χ-y(s))ds
M(e 0 )

= e ° °

Take ε > 0 and take η so small that |6(z j-b(0) | < ε/2, |fc(z2+x0) - (έ(^o))l ^
^ l , \z2\^η. Then for x( )e ί2 1 ? j ( ) G β 2 this expectation is not less than

Qxp{(t-δ)2[b(0)-b(xo)-ε]-Kδt}

for a suitable constant K. Hence

J pη(t- δ, 0, Xi)/? (δ, x0 - xx + x2)
\xi\,\x2\.\x3\£η

pη(t -δ,x2, x3)p(δ, xo-\-x3)dxί dx2dx3 (3.4)
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where pη(s,x — y) is the probability that the Wiener trajectory x(τ), x(0) = x,
x(s)=y, satisfies the inequality \x(τ)\^η, O^τ^s. This probability is the solution
of the heat equation for which pη(0,x9y) = δ(x-y), \x\9\y\^η9 pη(τ,x, y)\]x[=η

=pη(τ, x, y)\\y\ =η = 0, 0 ̂  τ ̂ s. Based on this fact, it is easy to show that the integral
on the right-hand side of (3.4) has a lower bound C1e~C2t/η2 for some constants C1

and C2. As a result

thus

jim ^

and sending ε->0 and i?->oo we obtain the desired bound. •

Remark. For b(x)^0 the result of the proposition may be interpreted as a kind of
asymptotic factorization of A (t) into N+(t)N~ (t) since it is known that N± behave

like Qxplt2 ——- (1 + 0(1)) > (see [8]). This can be interpreted as the more or less

independent behaviour of the electrons and holes in such a Gaussian potential:
electrons and holes dig their own wells. In our proof this is reflected in the form of
trajectories which gives the main contribution to the Wiener integral representing
A(t). Recall that in the case of the density of states the main contribution to the
respective representation of its Laplace transform is given by the trajectories which
remain close to the origin all the time. It is easy to see that these paths are close to the
classical one because the classical path xcl(s) is the one which gives maximum to the
"action" functional

-]x2(s)ds+^] ]dsds'b'(x(s)-x(s'))
0 0 0

on the set {x(0) = x(t) = Q}, so xcl(s) = 0. The action functional to be considered in
the case of the ILAC reads

-} [x2(s)+y2(s)]ds+^\ \dsds'[b'(x(s)-x(s'))
0 0 0

+ b'(y(s)-x(s'))-2b'(x(s)-y(s'))] .

In this case the classical trajectoties xcl(s) and >>clCs) are given by

xcl(s) = sx and ycl(s) = (l-s/t)x

respectively. It is easy to see that they give the minimum rather than the maximum of
our action. The maximum, however, is given by the paths that remain close to zero
(respectively x0) up to time t when they jump to x0 (respectively 0).

Proposition 3.2. Under the assumption of Theorem 3.2 we have

InΆ(t) = c((2πt)dD)-*etyf(0)(l+o(l)) , αsί-» + oo , (3.5)

where v= 1 — f(xo)/f(fy = 1 — inf/(x)/sup/(x) andD is the Hessian of the function
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Proof. We will follow the scheme of the proof of Proposition 3.1. We need as in
the case of the Gaussian potential the explicit form of the generating functional

F(^(.)) = M<exp< - j q(x)\jj(x)dx>> of our random potential. In the Poisson
case I I R' JJ

F(ψ(-)) = exp{c $ dx(e-ίfiχ-y)φ(y)dy-l)} . (3.6)

Upper Bound. Proposition 2.5 and (3.6) for ψ(x) = δ(x) — δ(x —y) give the inequality

$ $ f (3.7)

Take positive and small number ηί and η, η1>η. Then it is easy to show that the
right-hand side I(t) of (3.7) admits the estimate

ί-d sup expίc/ifcxH/j} , (3.8)
\χ-χo\^ηι

where
Iί(t,x)= J etny-χ)~tny)dy , (3.9)

I2 = O(t-Max]expit[f(x0)- inf f(η)]

exp\t\ sup f(χo+y)-f(0)]\) . (3.10)

By using standards arguments of the Laplace method one can find that

/(ί,x) = [(2πί)"£*]-1/2exp j ί sup [f(y-x)-f(y)]\(l+o(ί)) , ί-oo ,

(3.11)

where Dx is the Hessian of the function /(•) — /(• ~^) a t i t s maximum. It is
important that due to the smoothness of f(x) and smallness of ηx and η this
asymptotic formula holds uniformly inx,\x — xo\^η. Thus inserting (3.11) in (3.8)
we can replace with small error o (1) (as η1 ,η^>0), Dx by D and take into account that

SUp SUp [f(y-χ)-f(y)]=f(χo)-f(0) .
\χ-χo\tkηi \y\<η

Since by our conditions, inf/(;/)</(0), |^ |<^, V?/>0, sup f(x)<f(xo)> we

obtain the right-hand side of (3.5) as an asymptotic upper bound for InA(t) as

Lower Bound. Corollary 2.1 and (3.6) with

Ψ(y) = ] [δ(x(s)-y)-δ(x-y-y(s))]ds
o

give that in the Poisson case

y-χ + y(s))ds
(3.12)

Now as in Proposition 3.1 we restrict the Wiener integrals to the set Ωx and Ω2

respectively for the trajectories x( ) and y( ). After that we split the ̂ -integral in the



Interband-Light-Absorption Coefficient 375

exponent of (3.12) on the integrals over the domains \y\^ηl9 \y\^η2, Ά\ >η The
first integral does not exceed t\\u\\ exp (t [f(x0) — inf f(y)]. The second integral

on the set Ω1 x Ω2 admits the following asymptotic estimate:

r e

nny~Xo)~f(y)λdy-O(η{)

.(3.19)

Let us choose now η = O(t~ί~a), a>0. Then O(tη) = O(t~a) = o(l), ί-+ + oo, and
eO(tη) = l +o(l), t-+oo. Since the Wiener measure of the set Ω1 x Ω2 has the lower
estimate Cίe~C2t/η2 (see Proposition 3.1) the contribution of this measure to the
lower bound of lnA(t) is of the order O(t3+2a). This contribution is negligible in
comparison with the exponentially growing contribution (3.13) due to the Poisson
potential. Thus the first term of the right-hand side of (3.13) is the leading term of
the lower bound of In A (/), i.e. this bound asymptotically coincides with the right-
hand side of (3.5). The proof is complete.

Remark. The conditions which we imposed on the function f(x) are not optimal.
We chose them to demonstrate with minimal technicalities the difference in the
asymptotic behaviour of the ILAC and the IDS (or their Laplace transforms). We
see that the latter contains only the value f(x) at its negative minimum while the
former contains also the value f(x) at its nonnegative maximum.

4. IDS and ILAC for Alloy-Type Potentials

In this section we consider an easy case of an alloy-type potential

q(x)= Σ f i/(*-0 (4-1)
ieZd

with ξt independent, identically distributed and / a C2-function of support inside
the unit cell Co = {(xx,..., xd)\ -1/2 < xt < 1/2, / = 1,..., d). Furthermore, we assume
that / has a unique nondegenerate maximum at x — x+ and a unique nondegenerate
minimum at x = x _ . Our method applies also in the case of a unique nondegenerate
extremum if / has definite sign. More general alloy-type potentials will be
considered elsewhere. The IDS of alloy-type potentials is known to exist under very
mild assumptions (see e.g. [10]). In fact, the so-called suspension trick allows us to
carry over results of Sect. 2 without further work (see [11]). If

M(e-tξo)<oo (4.2)

for alh G R then the IDS N(λ) and the ILAC A (λ) exist and their Laplace transforms
are given by

ff(O = £S ,°o ί duM(e-l"Ms> + u ) d s ) (4.3)
and C o

ί j w , -U<l(x(s) + u)-q(y(s) + u))ds

j duM(e o ) (4.4)
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respectively. The additional integration over du comes from the fact that (4.1) is
stationary merely with respect to lattice translations. In the sequel we always assume
(4.2).

First we give the asymptotic behaviour of N(t) for t-+ oo if the random variable
ξ0 can assume arbitrarily negative values. As usual results on N(λ) can be deduced
from this by means of a Tauberian theorem.

Denote by Po the distribution of ξ0 and by F the corresponding distribution
function, i.e. F(λ) = P0(( — oo, λ)). We will write Ffor its Laplace transform.

Theorem 4.1. IfsuppP0 is unbounded then

lnN(t)~ln(F(tf(x+)) + F(tf(x_))) as t^oo .
Proof.

Upper Bound.
N(t)^p(t,0) J duM(e-tξofiu))

Co

=p(t,0) J du{M_(e-tξofix+))Λ-M+(etξofiχ-))} ,
Co

where M± denotes expectation over the sets

Ω+={ξ0^O} and Ω_={ξo<0}

Sp(t,O){F(tf(x+))+F(tf(x_))} .

Lower Bound.
ΛTS*\ r ί θ f J iff ~ί 9(x(s) + u)ds

JV(O = £of

fo J duM(e o ) .
Co

We restrict the integration over x(s) to those path which stay close to 0, i. e. to the set
Ω0 = {x(')\x(s)^δ for all s^t}. By taking δ small enough we obtain

Λ , . . f -nnt Q *, c i , -ξoϊf(x(s) + u)ds

N(t)^> j dΨf^oxM J du(e o ) .
β 0 ' Co

For any β>0 we may take δ so small that on Ω0\f(x(s) + u) — f(u)\<ε, hence

N(t)^ j dVi%<M+ J du(e-tξ°ifiu)+ε))M_ J du(
Ωo ' I Co Co

By Laplace's method we get (for t large)
(Ωo) ί-d / 2{M+(<Γ^^^ .

Since Ψ^iΩ^C^e'1'2 we conclude again that

lnJ^(f)
h m l{F(tA))+F(tf())}- '

Theorem 4.2. If sup Po is unbounded then

lnΆ(t)~ln{F(t(f(x+)-f(x-)))+F(t(f(x-)-f(x+))}
as t-> + oo.
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Proof.

Upper Bound. By Proposition 2.5 we get

^ Σ Piftf ί du ί
ieZd Co Co

where /?(ί, 0 : = sup p(t, i+v)
ve2C0

f du J
Co Co

+ ( Σ /foO 2) ί duMie-*^^)- J ΛvΛf(β+ί«o/(w)) . (4.6)
V/eZ" / Co Co

First, we estimate the first term above:

j du j dwM(e-tξo(f(u)~f(w)))SM+(e-tξoifiχ-)-f(x+)))
Co Co

The second term was essentially already treated in our estimate on N(t). It is
obvious that the estimate for the first term is dominant.

Lower Bound. We use similar techniques as in Sect. 3. Set Ωί = {x( )\ \x(s)\^η for
O^s^t^t-δ}. We have

2(t)ϊCp(t,0) J du J ώ.EliΓ'^T'Mie-^*1^-^-''^) .
Co C o

To shorten notation we introduce

*(.)= J du\dw f dP^o'" ί dP^-"
Co Co ί2i Ωi

then

Now

(4.7)

y q y y /, ^ ^p h- = 1. We will c
p later, in fact, we are going to send it to 1. P
by Holder's inequality for any /?, ̂  with 1 ̂ p< oo and — h - = 1. We will choose

P Q
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Let us estimate the first factor in (4.7):

Co Co Ωx Ω2

w / -τξot~SδW(u + x(s))-f(w- jc'(s))}ds. _ _ . --^otϊ<5{/(M + x(s))-/(w-x'(s))}ds.

M+(e p ° )-\-M_(e p ° ) .

Again, by taking w small enough we obtain

\f(u+x(s))-f(u)\<ε for x()eΩι and
so

Jl du
\c0

. , , / f , f , -^ίoσ(«)-/(w) + 2eΛl
+ M_ J du ) dwe p V

\Co Co /J

Therefore

5. Discussion

1. We see that in all considered cases the asymptotics of the ILAC even on the
logarithmic scale is more complicated and sensitive to the structure of the random
potential than the asymptotics of the IDS. In general the ILAC decreases more
slowly than the IDS and thus the former decrease cannot be reduced to the latter
one. Such reduction is possible only in the simplest cases of the Gaussian potential
with a nonnegative correlation function, when according to Theorem (3.1) we
obtain (1.5), or the Poisson (3.2) or alloy-type (4.1) potentials with a constant sign
function f(x). It turns out that the case when the asymptotic behaviour of ̂ 4(0 can
be reduced to the asymptotic behaviour of N±(t) can be written in the following
transparent asymptotic relation:

N+(t)-N-(t) , ί-κχ) (5.1)

(on a logarithmic scale). If e.g. N+(t) dominates N~(t) (as in the mentioned
case of the constant sign Poisson or alloy-type potential), when In N~(t)
= —const ta{\ +o(l)), /-> + oo [3]) then the leading behaviour of A(t) is given by
N(t). Only in the case when Λ̂ ~ (t) and N+ (t) behave similarly the leading term of
A(t) detects the product N~N + . In particular, if the random potential has a
symmetric distribution like the Gaussian potential of (4.1) with symmetric £f's we
obtain A(t)~(N+(t))2, the squaring behaviour.
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Thus in these cases we have a kind of asymptotic factorisation of A(t). Since,
according to (1.1)

and
N+(t)-N-(t) = C2 γ^e-

tλ-e-tλ^

the validity of this asymptotic factorisation can be interpretet as the fact that the
quantum mechanical transition probability (rate of tunneling) \(φ~, φ + )|2 assumes
more or less the same and not too small value for all the states whose energies lie near
the spectrum edges ±00 of the operator H±.

2. Our results have an additional aspect. Namely, let us consider the time-
dependent potential

Then our basic representation of A(t) from Corollary 2.1 can be written as

since, by the Feynman-Kac formula, the expression under M(...) sign is the
fundamental potential (5.2). Our asymptotic formulas from Proposition 3.3, 3.4,
and 4.2 show that for a time-dependent random potential varying on the scale t the
mathematical expectation of the fundamental solution of the respective parabolic
equation may differ for large time from the corresponding solution for the time-
independent random potentials.

3. In this paper we considered random potentials that have so-called [3] classical
asymptotics of the IDS, i.e. asymptotics whose leading terms are determined solely
by the random potential and do not contain the Planck constant or the mass of the
particle (constant in front of the Laplacian). The more complicated cases arise when
the kinetic and potential energy terms of the Schrodinger operator give the same
order contributions to the respective asymptotic formulas. These asymptotic
formulas are all called the quantum case. They arise if the edges λf of the spectrum
of H± either are not + 00 or if λg = ± 00, but the respective random potentials are

singular I Gaussian white noise, Poisoon or alloy-type potential with point single im-

Vpurity potential f{x) or with screened Coulomb potential f(x)= —const I.
W )

We will consider respective asymptotics for the ILAC elsewhere. Here we only
mention a general lower bound that replaces the simple Wiener integral argument
which we used in Sect. 3 and 4. As it is shown in [3], the variational lower bound for
N(t) that asymptotically coincides with all known exact asymptotic formulas for
N(t) (both in classical and quantum cases)

-t \ \Vψ\2dx-t j (q(x)φ2(x)dx)}) , (5.3)

where the "trial" function ψ(x) is nonnegative, belongs to L 2 (R d )nC 1 (R d ) and
= 1. In the classical cases (Gaussian, Poisson, or alloy-type with continuous
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5(x)and/(x)respectively),taking^(x) = i^"d / 2(^i — I, where ||<p||L2 = l andiΐ->oo
\RJ

as t -> oo, we find that the kinetic energy term t J | Vφ \2 dx is negligible in comparison
with the potential energy In M(exp { — t J Vφ \2dx}). It turns out that there exists an
analog of the variational bound (5.3) for the ILAC. Since, as we have seen, the
Laplace transform of the ILAC can be written as the mathematical expectation of
the diagonal element of the fundamental solution of the parabolic equation with the
time-dependent random potential (5.2), we will formulate the above analog in this
more general setting. Let q(t,x) be a time-dependent potential and H(t)= —A
+q(t) be the Schrodinger operator with this potential. Denote by P(to,t) the

dP
solution of the operator-valued Cauchy problem -r- = PH(t), P(t0, t0) = 1 (it can be

ot

represented either as some Wiener integral or as a time-ordered operator exponent).
Consider also a "trial" time dependent potential v(t, x) and the respective Cauchy
solution Q(to,t). Then for any nonnegative

(P(0,2t)φ,φ)^ZtQχp\-](Q(0,s)(q(s)-v(s))Q(s,2t)φφ)\ , (5.4)
I o J

where Zt = (ψ,Q(092t)ψ).
It can be shown that for the potential (5.2) it suffices to take a time piece-wise

constant potential v(s,x):

where vί2 (x) are nonrandom, bounded from below and tending to -h oo as |x|-»oo
potentials and φ is the ground state of — ΔΛ- v1. The variational bound (5.3) can be
obtained by using the Jensen inequality in the Wiener integral representation of left-
hand side of (5.3). The proof of inequality (5.3) and its applications will be published
elsewhere.

6. Appendix

In the appendix we sketch a proof that the ILAC A (λ) is independent of the
boundary conditions chosen to define it. This proof is close to the analogous
procedure for the density of states (see [8] or [10]).

Let us indicate the Dirichlet and Neumann Hamiltonians by a superscript D and
N respectively. We set

AN

Λ(t)=ytre-tH-'Ne-tH-'N (1)

and define A°A analogously.
It is known that the integral kernel of e~tHΛ'N has a representation in

terms of Brownian motion. To make this precise, let us introduce a function

xt-2nL if (2n-l/2)L<xi<(2n
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then the integral kernel of e~tH*'N is given by:

e H* (x,y)= X E*-*x(e ° ) (3)
zeφ~ί(y)

(see [12, 6.3.11 and 6.3.12]).

Therefore we conclude

0^ΆN

Λ{t)-AD

Λ{t)=\- \ dx \ dy Σ K'xK'X

-U(φ(x(s)))-q(z'-φ(y(s)))ds „ „

( ° CΦ))ϋ()))

~ , , xx fl if j φ ) £ Λ f o r some 0 < s < ί
λ Λ y KJJ [0 otherwise

By the Cauchy-Schwarz inequality this expression can be estimated by

A A z,z'eφ-Hy)

1 V/2

-\dx\dy Σ ^Λ^ίGtΛ WO)^CF(O))
." Λ A z,z'eφ-ί(y) )

The first factor can be estimated in terms of the prelimit densities of states N^'N, (in

analogy to (2.8)) and hence is bounded. The second factor is just ΆN

Λ — ΆΌ

Λ for q = 0,

thus this term can be esitmated by

which is well known to converge to zero (see [8,10]).
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