Communications in
Commun. Math. Phys. 132, 315-347 (1990) Mathematical

© Springer-Verlag 1990

Super Loop Groups, Hamiltonian Actions
and Super Virasoro Algebras*

J. Harnad! and B. A. Kupershmidt?

! Department of Mathematics, Concordia University, and Centre de Recherches Mathématiques,
Université de Montreéal, C.P. 6128-A, Montréal, Qué., Canada, H3C 3J7

2 The University of Tennessee Space Institute, Tullahoma, TN 37388, USA

Abstract. The quotient l’,\GJ/G of a super loop group LG by the subgroup of
constant loops is given a supersymplectic structure and identified through a
moment map embedding JE*: E\GJ/G—>L "* with a coadjoint orbit of the
centrally extended super loop algebra Lg”. The algebra diffc st of super-
conformal vector fields on the circle is shown to have a natural representation
as Hamiltonian vector fields on LG/G generated by an equivariant moment
map J: [’E/G—rdnff‘SI* This map is obtained by composition of J JE* with a
super Poisson map J7:Lg"* - diffc S1* defining a supersymmetric extension
of the classical Sugawara formula. Upon quantization, this yields the corres-
ponding formula of Kac and Todorov on unitary highest weight representa-
tlons For any homomorphism p:u(1) —» G, an associated “twisted” moment map
Je: LG/G - cﬁf S'* is also derived, generating a super Poisson bracket realiza-
tion of a super V1rasoro subalgebra Vir of the semi-direct sum &\ff S'x Lg”.
The corresponding super Poisson map J**: Lg"*—»fo* is 1nterpreted as a
nonabelian generalization of the super Miura map and applied to two super
KdV hierarchies to derive corresponding integrable generalized super MKdV
hierarchies in Lg nE,

1. Introduction

In the Hamiltonian framework, the classical Sugawara formula [S] for a 1+ 1
dimensional field theory may be viewed as a Poisson map J”: Lg"* — diff S'* from
the dual of the centrally extended loop algebra Lg” to the dual of the algebra
diff S* of vector fields on the circle. The Poisson space Lg" * enters as a “universal”
phase space into which conformally invariant models may be mapped via their
currents. The latter are interpreted in the Hamiltonian framework as moment maps
generating the action of the loop group LG in terms of Hamiltonian flows. The
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coadjoint orbit O ;)= Lg"* (where (0, 1)eLg* @R = Lg" *) figures as a reduced
phase space underlying the Wess—Zumino—Witten model ([W], [H]) and also plays
an important réle in the representation theory of loop groups [PS]. This orbit
may be identified with the coset space LG/G (where G is understood as the subgroup
of constant loops) or, equivalently, with the group QG of based loops, an infinite
dimensional Kéhler manifold [PS]. The embedding JX:2G —, Lg"* defines a
moment map that generates the natural left LG-action in terms of Hamiltonian
flows.

The group Diff #! acts naturally on LG/G by reparametrization of loops and
this action is also Hamiltonian, with equivariant moment map J:LG/G — diff $**
defined by composition J=J?JE This factorization underlies the classical
derivation of the Sugawara formula for Hamiltonian models having LG/G as phase
space [H]. It may also be used as a starting point for quantization and for develop-
ment of the representation theory of the semi-direct sum diff S* x Lg”.

For applications to 2-dimensional super-conformal field theories, super-strings
and the associated representation theory of super-algebras, it is important to extend
the Hamiltonian framework to super loop groups LG, the algebra diffe st of
infinitesimal super-conformal transformations of the circle and their central
extensions. In the abelian case, i.e. loops in a vector space or torus, this is easily
done (see e.g. [GSW]), and gives rise upon quantization to the usual formulas for
generators of the super Virasoro algebra expressed quadratically in terms of bosonic
and fermionic creation and annihilation operators.

In the framework of representation theory, Kac and Todorov [KT] gave
formulas of the Sugawara type allowing the construction of all unitary positive
energy highest weight representations of the semi-direct product of the super
Virasoro algebra with affine super Kac—-Moody algebras. However the super
Virasoro generators are not directly expressed in terms of the full Kac—-Moody
generators, but rather in terms of two parts, corresponding to the bosonic and
fermionic contributions separately. The splitting is obtained by constructing the
Hilbert space as a tensor product of a fermionic Fock space and a bosonic one
that is an irreducible highest wieght module for the even part of the algebra. Thus,
these formulas are specific to such representations rather than intrinsic to the
algebras. The classical, Hamiltonian origins of such results are not a priori evident,
and it is of some importance in linking the representation theory to 2-dimensional
super conformal quantum field theory that they be derived through quantization
upon some suitably defined phase space.

A further domain of applications for formulas of the Sugawara type occurs in
the theory of classical completely integrable Hamiltonian systems. In particular,
the Miura transformation relating solutions of the MKdV hierarchy to those of
the KdV hierarchy may be viewed as an example of a “twisted” Sugawara formula
in the abelian one-dimensional case, with loops replaced by maps of the real line.
Infinite families of completely integrable systems on non-abelian loop or current
algebras may also be obtained from analogous constructions [Ku1]. The extension
of such considerations to super integrable systems of the super KdV and MKdV
type is known ([Ku2], [Ma]). The corresponding extensions needed for the
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non-abelian case require a suitable development of the Hamiltonian approach
to super loop groups.

It is our purpose in the present work to extend the Hamiltonian formulation
of loop groups, loop algebras and diff S*, together with their moment map
realizations, to their super-space counterparts. Thus, we are led to super loop group
actions and representations, super trace-residue pairings, super symplectic forms
and coadjoint orbits, super moment maps and a super version of the classical
Sugawara formula.

In Sect. 2, the super loop group LG and algebra Lg are introduced in terms
of a supermanifold extension of LG, with extended structure sheaf (LG) identified
essentially with sections of the Grassmann algebra bundle A(TLG). The super
circle ST is defined with extended structure sheaf & @ generated by adjoining an
odd nilpotent element 6 to the usual angular variable {¢ mod 27£Lon SL.A
superspace analogue of loops is used to characterize elements jeLG as maps
§:8'>G via the dual homomorphism §*:%(G)—»F (§f) of structure sheaves.
This leads to natural definitions for supergroup multiplication, adjoint and
coadjoint actions. Group and algebra super cocycles are introduced to define the
corresponding central extension R — Lg" —Lg together with the extended adjoint
and coadjoint representations.

In Sect. 3 a supersymplectic form is defined on the coset et space LG/G in terms
of the supercocycle. A non-equivariant moment ma JL: LG/G—»Lg* is derived
for the Hamiltonian super group action of fGonT /G (Theorem 3.3) and, using
the correspondmg cocycle, is used to define the extended equivariant map
JLa: LG/G —»Lg" *. This s map is injective, giving an identification of LG/G with the
coadjoint orbit O ) < Tg”* as super symplectic manifolds.

In Sect. 4, the algebra diff*S* of super conformal vector fields on S is
introduced, together with its representation in terms of Hamiltonian vector fields
on LG/G. The corresponding equivariant moment map J.IG /G—»dlff‘Sl* is
derived and shown, together w1th JE~ | to define a Poisson bracket realization of
the semi-direct sum diff* S* x Tg*. The map J factors through Lg** by com-
position of J-* with a super Poisson map J*: Lg"*—»drff‘Sl* (Eq. (4.32)). This
gives the phase space form of the super Sugawara formula, expressing the diff s
generators in terms of those for the super loop algebra. Unlike the purely even
case these expressions involve both quadratic and cubic terms. However, if the
even Lg” generators are spht into a sum J% + J%, where J% is defined on the even
part of phase space and J% on the odd part, the an st generators are expressible
quadratically in terms of these two terms, together with the odd Lg generators.
In physical terms, the Tg" moment map defines a super current, with even part
an ordinary current consisting of the sum of a bosonic current J% and a fermionic
one J while the odd part is just a Fermi field in the adjoint representation of g.

In Sect. 5, the moment maps J* and J are expressed in n terms of their Fourier
components and the Poisson bracket relations for dlff‘ S'x Tg” together
with the super Sugawara formula are given in terms of these components. In this
classical framework, the super-Virasoro algebra has no center. However, in
Sect. 6, a “twisting” of the diff*S! action is introduced, associated to each
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homomorphism p:U(1)—> G, as in the even case [HK]. The resulting “twisted”
diff* 1 representation is generated by a non-equivariant moment map and hence,
in terms of Poisson brackets of generators, gives rise to a center associated to a
nontrivial cocycle. In Sect. 7, these results are applied to determining hierarchies
of superintegrable systems on Lg"*, giving the super extensions of generalized
MKGJYV systems. Finally, in Sect. 8, the quantization of the moment maps derived
in Sects. 3-5 is shown to lead directly to results of the type found by Kac and
Todorov [KT] in their construction of unitary highest weight representations.

2. The Super Loop Group LG and Algebra Lg

Let LG denote the group of parametrized loops {g(¢) =g(c +2n)eG} in a Lie
group G, with pointwise multiplication. The Lie algebra of G is denoted g, and
the associated loop algebra Lg. The super loop group LG has an underlying
supermanifold structure with LG as reduced space and extended super structure
sheaf % (LG) consisting essentially of sections of the Grassmann algebra bundle
A(TLG). Thus, LG is a “split” supermanifold [K]. Since the tangent bundle may
be identified through left translation with the product LG x Lg, we may equally
consider the super structure sheaf as % (LG)® A(Lg). Thus “points” in LG may
be viewed as pairs (g,¥), where ge LG and y e Lg, the latter being regarded as an
odd generator. Expressions of the form gy or /g should be interpreted as denoting
sections of T(LG) obtained from y e T(LG)|,4 by left or right translation. We must
also allow a slightly more general extension of LG, which for the most part will
not be distinguished notationally, in which the odd generators y/(o) do not
necessarily satisfy periodic boundary conditions {{/(¢) = y/(c + 27)}, but possibly
anti-periodic ones {{/(¢) = — Y(¢ + 27)}. The corresponding odd parity spaces will
be denoted Lg™ and Lg~, respectively, and the super structure sheaves identified
with #(LG/G)® ALg*. In super-string terminology, the former corresponds to
the Ramond (R) sector and the latter, the Neveu—Schwarz j?/S) one.

We also introduce a super-space extensmn of the circle S¥, with ! as reduced
manifold and super structure sheaf % (S ) generated by the angular coordinate ¢
(mod 27) for S plus an odd nilpotent 6 anticommuting with the odd generators
in & (IfE) An element Ge & (S‘) may be decomposed into

a(o, 0) = a(o) + Oa(o), 2.1

where a(c) is an ordinary function on S! while a(c) is odd and either periodic (R)
or anti-periodic (NS).
A super loop group element may be identified either by the pair (g,y) or,
equivalently, the super-loop map
g :F——» G,
§:(0,0)—§(0,0),
denoted formally as

g=(expOy)g =g+ Oyg. (22

The latter consists of an ordinary map g:S* — G defining the loop group element
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geLG, together with a consistent sheaf homomorphism
7*:#(6)-F(S,

g*:fr>fog +0df(Ryy)eg,

where R,,.¥/(c) denotes right translation of y(a)e TG|,q to g(a). Composition h§j of

elements E,gefGJ is defined by the homomorphism obtained by composing the
sequence!

2.3)

()= #(G)» F(G)® F(G) 2L, 7 (s") @ #(5T)» #(57),

where the first map is comultiplication in the sheaf #(G) associated to group
multiplication in G, the second is the tensor product of the homomorphisms h*
and g*, and the third is multiplication of decomposable elements of & (fSHJ) ® F(SY)
followed by summation.

In the notation (2.1), this just corresponds to developing the product /g formally
in the obvious way. Denoting the components of & as (h, ¢), we have

(h+ 0dh)(g + O g) = hg + O(dhg + hyg), (24)
or, equivalently,
(h, )(9,¥) = (hg, & + hyh™?). 24

Thus, pointwise, LG appears as the semi-direct product LG x Ei*, the latter
considered an additive abelian subgroup. The identity element is

1d=(14,0 2.5)
and the inveyse is
gt=g7'—0g7"y, 2%)
or, equivalently
@¥) " =@ —9 ¥g). (2.6)
Left and right translation are denoted
L;(3) = hg, (37a)
R;(§) = gh, (2.7b)
or
Loy (9:¥) = (hg, & + hyh™1), (2.7a)
Ry (9, ¥) = (gh, Y +gdg™"), (2.7b)
and the adjoint action is
Ad;(9)=hgh™, 23)

! This sheaf theoretic formulation of the super loop group composition rule (271) was suggested to us
by S. Shnider
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or, in components
A, 5)(0,9) = (hgh™%,¢ + hph~* + (hgh™*)(hg~*h™1)). 2.8

The corresponding Lie super algebra g is identified with the super tangent
space at the identity or, equivalently, the sum Lg + Lg*, with suitably defined Lie
bracket. We again introduce pairs (X, &) of even and odd generators, XeLg, (e Lg*,
the second regarded as a linear element of A(Lg*). A super-algebra element may
equivalently be written

X(0,0) = X(0) + 0&(0) (2.9)

with an interpretation in terms of super loops similar to (2.2). The adjoint
representation in super space notation is

AJ,(X)=g%5" (310)
or, equivalently, in component notation
Ad, (X, O)=(gXg 9% + [¥,gXg™*]). (2.10)

Taking the super tangent vector to a curve through the identity, the infinitesimal
form of (2.10) becomes

adz(V) = [X, 71=[X, Y1+ 6([X,n] - [V, ]) .10)
or, equivalently

ady (Y, n) = [(X, &), (Y, )] = ([X, Y1, [X,n] — [ Y, &]), (2.11)

where Y =Y + 6y. ~
The super algebra Lg may also be represented as vector fields on LG, i.e.
derivations of the super sheaf % (LG). As in the even case, left and right-invariant
vector fields are determined either by translation of a super tangent vector at the
identity or differentiation of the right and left translation formulas (2.5a,b),
respectively, along a curve through the identity. The homomorphism

V:Lg— 7(LG) = der # (LG)

to the Lie algebra of super derivations obtained by differentiating the left translation
formula (2.7a) is defined by

ViX, - Vixg (2.12)
or -

V: XV, (2.12)
where

Vg=—[<Xg,%>+<é+[x,w],;$>] (2.13)

is the corresponding right invariant vector field. The notation { Xg, §/dg ) signifies
a functional derivation obtained by pairing the right invariant vector field Xg on
LG with the functional differential 6/dg at any point ge LG, while { & + [ X, /], 6/6y >
similarly signifies pairing the (odd parity) loop algebra element ¢ + [X,y]eLg*
with the functional differential /0y on Lg*. The sign in (2.13) is chosen so that
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(2.12) defines a homomorphism rather than an anti-homomorphism:
Ve Vil =Viz - 214
Similarly, we define a second homomorphism

corresponding to the infinitesimal right translation (2.7b) by

WX, 8-> Wy o), (2.15)
W XeWe, (éTS)
where
Wx=<gX,%>+<gég"1,%> (2.16)
is the associated left-invariant vector field, satisfying similarly:
Wz, Wil=Wi s 2.17)

We assume henceforth that g is endowed with a non-degenerate Ad-invariant
metric b:g x g—IR allowing an identification of g with its dual g* The super-
algebra Lg may similarly be identified as a dense subspace of the dual Tg*, with
typical elements denoted by a pair (ueLg*,meLg) and the embedding Ig = Lg*
defined by the dual pairing:

1 2r ~
(m), (X, 0)) =5 g da[b(m(), X(0)) — b(u(0), {(0))]. (2.18)

Identifying the element (u, m)e Lg* with the odd parity dual super-loop element
A=p+0m, (2.19)

the pairing (2.18) may be expressed succinctly as:
~ 1 2r ~
0

where the odd integral jd@ is understood in the usual Berezinian sense, i.e. as
picking out the highest (i.e. 8-linear) terms in the integrand. In general, we only
consider elements of Lg* that may be so identified with elements of Lg through
the parity reversing map

m+ 0u— pu + OmeLg*. (2.’-79)

(This reversal of parity is essential for the use of the Berezinian integral in dual
pairing to assure invariance under supersymmetry transformations.)
To proceed fur;_llgr, it is useful to introduce, as usual, two odd derivations on

the super sheaf & (ST):

0 0

q=5—05, (2.20)
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95%+0§;, (2.21)
which, together with the even derivation
0= a—i- (222)
generate the left and right super-translation algebras
[g,91=—20, [q,01=0 (2.23a)
[9,9]1=20, [2,01=0 (2.23b)
[g,2]=0. (2.23¢)

By standard conventions, the operator g is viewed as generating the (odd)
supersymmetry transformations, while 9 is used in constructing supersymmetric
quantities containing derivatives. We view 9 as defining the odd tangent space
distribution that determines the super-conformal structure on § ST (cf. Sect. 4). In
superspace terms, the supersymmetry transformations act on Lg and Tg* by:

5.X)=eq(X), 8,(7)=¢eq(R), 224)
or, in component form:

0,(X) =&, (1) = em,
5.(6) = —eX, d,(m)= —eu, (2.24)

where ¢ is considered as an odd “parameter.” The pairing (f.vl8) is clearly invariant
under such transformations.
Under the identification (2.19), the super coadjoint action, defined by:

(AZ¥ (), X > = (B, Ad;-1(X)) (2.25)
coincides formally with the adjoint action in superspace terms
Adx(m)=gag* (2.26)
but, in components, reverses the roles of even and odd parts:

AT ) (1m) = (gug ", gmg ™" + [V, gug ~*1). (2.26)

(Note: The second term [,gug~ '], though involving a Lie bracket of two odd
elements of the algebra does not vanish, but should rather be understood in terms
of dual pairing via the ad-invariance of b; i.e.

b([Y,gug 1, X) = bW, [gpg ™", X1).

The bracket [£,4] of two odd elements so interpreted should not be confused with
the superalgebra bracket [(0, £),(0,%)] which does, indeed, vanish.)_ —
Using the above conventions, we define a super-group 1-cocycle C:LG—-TLg* by

C@=26)3 ", (227)
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2n ~ —~
= | do[d0b(@@)37", X). (2.28)

N‘,_

C@.X>=

In component terms, this may be expressed

Clo. ) =W.g'9 " +5[¥.¥]) (2.27)
(where g’ = dg/do) or, equivalently

(Clg.¥).(X, €)>—— I dolblg'g™" +3[¥, ¥ 1, X) - b(y, 1. (2.28)

The cocycle relation
C(h,g) = Ad¥ C(3)+ C(h) (2.29)

is easily verified.
The corresponding super-algebra (scalar-valued) 2-cocycle

5:I,J\g-/>< lﬂzf—ﬂR
is defined by

X, Y)=— j do[dOb(X,2Y), (2.30)

or equivalently, in component form:

| ~
(X, 0, (Yom) =5 (f) do[b(X, Y") + b(¢,n)]. (2.30)

The invariance of ¢ under the super-symmetry transformations (5.\2:1) follows from
the superspace form (2.30) and the commutation relation (2.23c). The centrally
extended super algebra Lg” is identified with the space

La+R={(X,a)} (2.31)
with super Lie bracket
[(X,a),(V,b)]=([X, V1.6, 7)) (232)

or, in component notation

[(X, & a),(Y,n,b)]=([X, Y, [X,n] — [, &1, &((X, &),(Y, ). 232

The map (279) and pairing (ﬁé) may be extended to identify ngA as a dense
subspace of Lg”*, with elements of the form (,a) and dual pairing:

{(la) (X, b)) = (B X) +ab. (2.33)
The extended adjoint action is defined by:
Ad} (X, a)=(Ady(R),a+ (LG 1), X)) (2.34)
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or, in component form:

Ads (X, a)=(9Xg 1,989 + [¥,gXg ' Ta+<Clg™%, —¥),(X, 8)>). (234)

(As usual, it is not necessary to define a central extension LG* of the group LG
to define its adjoint action, since this only depends on the image in IG. 1t is
possible, however, just as in the even case [PS], to define LG as a circle bundle
over LG.) The corresponding extended coadjoint action is

—~
dA*(#, a)= (Ad*(u) +a2(§)§" ", a) (235
or, in components

ALk (mm,a) = (gug ™" + ap,gmg™" + ag'g™ ' + [, gug 1+ 1al¥, ¥l a). (2.35)

3. The Phase Space ﬁ/G and the lf,\gJ ~ Moment Map

Proceeding analogously to the even case ([H], [PS]), a functional differential 2-form
on LG is defined by

(0]

k 2n g cm e —_~
~ 4 | dofd0bE(2@)37 )5 6957, 3.1)
where k is an arbitrary real constant, J signifies functional exterior derivative and

b(%) means simultaneous exterior product of functional differential forms and
scalar product on g. In component form, this may be written

. k 2n i . izn .
@» = y (j)dab(é(gg )% dgg )+41z z\;dab(ét,l/ 3 o). 3.1

The meaning of this 2-form and its relation to the even case is clarified by the
following:

Lemma 3.1. Evaluating & on a pair of right-invariant vector fields gives

(Vg Vi) = k&K, V) + k<E@),[X, Y1, (32)
while on a pair of left-invariant ones
(W, Wy) =k&(X, V). 33)

Proof. Expressing V3 and V5 as a sum of parts tangential to the even (B) and odd
(F) parts of LG, we have:

Vi=V3+ V%, Vy=VE+VE,

vBe <X¢,5—‘3>, <€+ [X,v], -/:B’

Vg" _<Y(//’ %>’ V1}3’= —<l1+[Y,l/l],5$>,

where:
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and
X=X+6¢ Y= Y + On.

Evaluating & on the parts, we find:

k 2=
V3V =7, | dolbX.Y) +blg'g ™", [X, Y])],

k 27
(V% Vy) = o (f) do[b(&,n) + b([X,n] - [Y,&1,¥) + 3b(LX, Y1, [¥, ¥ 1],

@(Vf?’ Vg) = (Z’(V)'%’ V;) =0,

where the ad-invariance of b, the graded Jacobi identity and integration by parts
have been used. Summing thus gives

k 2n
(Vy, Vy)=5_ g do[b(X,Y) + b(¢,n)]

k 2n
t5r g do[blg'g™" +3[Y.¥1.[X, YD) + B([(X,n] - [V,EL¥)], (32)

—~
which is just (3.2) in component form.
Similarly, splitting

We=Wi+ Wi Wy=wEi+ wk,

where

and evaluating on each part gives

k 2=
d')(W)B%’ (Wg) = 7 j dO'b(X, Y,)3
T o

5 k 2z
T 0
dWE, W) =a(Ws Wi =0,
Thus, summing gives
k 2=
Wz, Wy) = = g do[b(X, Y') + b(¢, n)], (3.3)

which is (3.3) in component form. []

The meaning of @ is thus very simple; decomposing TLG into even and odd
tangent spaces, the restriction of @ to the even part is just k times the even part
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of the cocycle when evaluated on left invariant vector fields on LG, while on the odd
part it is just the scalar product determined by kb.

Now identify G = LG as the subgroup of even constant loops {(9€G,0)}. As
in the even case ([PS],[H]), we have the following theorem, showing that &
may be projected to define a sympletic LG-invariant form on the coset space
£G/G.

Theorem 3.2. The form & is left LG-invariant and right G-invariant. It is closed,
00> =0, and its kernel distribution is the vertical distribution corresponding to the
fibration n:LG - LG/G.

Proof. Left LG-invariance is verified since
2n ~ o~ ~ - - ~
L¥o= — Zk; [ do{d0b((2(Wh™") + h6(2(G)d~ )~ Yh(6§)G~*h™1)
0

=@,

the first equality following from the Leibniz rule for the derivation 2, the second
from the Ad-invariance of b and the fact that 8(2(h)h ~!) vanishes (since  is constant
on LG). Right G-invariance follows by inspection. To verlfy that @ is closed,
evaluate & on a triplet of left-invariant vector fields, using (3 3) and (2.17):

0Dd(W s, Wy, W3) = k(Wsé( Y,Z)—&([X, Y1, Z)) + cyclic permutations.

The first term vanishes because &Y, Z) is a constant on LG and the second summed
over cyclic permutations vanishes by the cocycle identity. To compute the kernel
distribution, evaluate & on a pair (Wj3, W5). If

_ k 2n ~ ~
D(Wz, Wy) =5 [ do [d0b(X, 2(Y)) = 0

for all YeLg, it follows that 2(X) vanishes (weakly) and hence X is of the form
(X,0), where Xeg is a constant loop. But such W; span the vertical tangent
distribution of the fibration «: LG—»fZ}//G d

In the following, & will also denote the super-symplectic form on LG/ G obtained
by projection. The left LG- action defined by (2 7a) projects to a left action, also
denoted by L;, on the quotient LG/G

L;(dG) = h§G. (3.4)
The corresponding homomorphism

V:Tg— 7#(LG/G) = der F(LG/G),

V:X-V; (3.5)
to the algebra of derivations of the sub-sheaf % (ITGJ/ G cF (fé) of ri;g_l\lg G-invariant
elements, obtained by differentiating (3.4) along a curve through h = Id, is obtained

by restricting V; as defined by (2.13) to % (LG/G). Evaluating the inner product
with @ gives:
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k 2n
Veldo=—o— (I, do[b(3(g'g™"), X) + (¢ + [X,¥], 6%)]

—8(J%), (3.7)

where
.7% =— I da[b(g’ -t +%['//’ l//]’X) - b(./’: é)] (38)

Thus, Vg is a Hamiltonian vector field generated by —.75‘?. Defining the map
J L:E/G—»E;*

by
T4:§Gka@)g ' =kC@) (39)
or, in components,
TE:(gG, ¥k, g'g ™" + 3y, ¥]), (3.9
we have
Je=(JrRy=" j do [dOb(2(5)5 ", X). (3:3)

Thus, J~ is just k times the cocycle (2.27) projected to LG/G, where it becomes a
1—1 moment map generating the left LG-action (3.4) by Hamiltonian flows.
Evaluating the Poisson brackets gives

(75,78 =Tk 5 + kaX, Y), (3.10)
and therefore J* is non-egulvanant, with cocycle ké. In finite form, the non-
equivariance is given by kC:

JloL; = Ad}eJt + kC(h), (3.11)

which is equivalent to the cocycle relation (2.29).
Summarizing, we have the following result:

Theorem 3.3. The left LG-action on LG/G is Hamiltonian, and generated by the
1 — 1 nonequivariant moment map (3.9) corresponding to the cocycle ké.

Following the usual procedure, the moment map J* may be extended to an
equivariant one
.TLA:E,\G//G—;I-EA*,
JEr: GG (kC(G), k) (3.12)

to the dual of the centrally extended algebra Lg” determined by the cocycle C.
Defining

Ty = (X, 0))" =T +ka, (3.13)

we get
{J(I}:)a J(Yb)} J [(X.a)(¥,b)] (3.14)
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and
Jino L= Adp*oJEn, (3.15)

Thus JL* is an equivariant moment map providing a super Poisson bracket
realization of the centrally extended algebra Lg”.

Define the (Kostant—Kirillov) super symplectic form on coadjoint orbits of
Lg” by:

a")o,b(ad ,ad} £ Nao = G [X, Y1) +ad(X, Y), (3.16)

where ;(f,%‘* and ﬁ,—?* are interpreted as vector fields on the coadjoint orbit
through (4, a)eLgA * induced by the infinitesimal coadjoint action. It follows from
the equlvarlance of JE* that the pull-back of @,,, restricted to the coadjoint orbit
Opp< Lg"* through the point (0, k) satisfies

TE*Goaplo (Vi Vi) = k<C@), [X, Y1) + k&(X, ¥) (3.17)

when evaluated on a pair of vector fields induced by the infinitesimal left action.
By Lemma (3.1), Eq. (3.2), this coincides with the evaluation of @ and hence, we have

TJEr*g, =a. (3.18)

orb I‘”(o. X

Summarizing these results, we have the following theorem.

Theorem 3.4. The extended moment map J JLA: LG/G—»Lg"* defined in (3.12) is an
equwarlant symplectomorphism between LG/G and the extended coadjoint orbit
Oppc< Lg™* with respect to the orbital super symplectic form Dory-

We emphasize that all the results of this section, when expressed in superspace
terms, appear as the natural extensions of the corresponding results for ordinary
loop groups and algebras. There is an underlying richer structure, however, that
becomes apparent in component form due to the presence of the anti-commuting
terms {y}. It is_worthwhile noting that, under the identification of the super
structure sheaf % (LG/G) with #(LG/G)® A(Lg*), the c super symplectic structure
restricts, according to (3.1), on the sub-sheaf y; < der % (LG/G) of derivations that
annihilate I® A(Lg*), to the standard symplectic form ([H],[PS])

k 2n
Wp=— 7 | dab(o(g'g™")3(09)9 ™) (3.19)
T 0

for LG/G. On the subsheaf Xcherf"(lTGJ/G) of derivations that annihilate
F(LG/G)®1, it restricts to

k 2z
wp=— [ dob(6y ; 6y). (3.20)

4r 0
Thus, the Poisson bracket induced on A(Lg*) is just the standard graded
commutator in terms of the Clifford algebra multiplication on A(Lg*) associated

to the metric

Ianb
ZE_E‘)‘ J(a)'
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Elements of the subsheaves #(LG/G)®I and 1® A(Lg*) mutually Poisson
commute. The moment map (3.9) may also be split into a sum:

JE=Jk+ Jk (3.21)
of two moment maps:
JL: Lf,\G//G - ILg*
T5:(9,9) —0,kg'g™"), (322)
and
T:LG/G - Ig*,
Tk ¥) kW, 309, ¥]) (3.23)

that mutually commute. The first part J5 has vanishing odd component, while its
even part is the usual (even) moment map on LG/G:

JL:LG/G — Lg*
JL gBw—kg'g1. (3.24)
The second part J projects to a Fermionic moment map on Lg* whose odd part

is just the identity map (the “chiral Fermi field” ) while the even part (the Fermi
“current”):

Ji:Lg* — Lg*,
JE Yek(y, Y] (3:25)
satisfies

{Jkx:JFx} =TF (3.26)
where

JEx=<JE XD

k 2=
=i [ dob([¥, Y], X(0)), (3.27)
[
XeLg.

Thus, J% is an equivariant moment map generating the natural (conjugation) action
of LG on Lg*. The two parts V% and V% appearing in the proof of
Lemma 3.1 are just the Hamiltonian vector fields on LG/G and Lg*, respectively,
induced by the two moment maps J% and J% The fermionic moment map J%
projects to Lg*, but is non-equivariant:

{TenTEs} =Than + ker(X, Y), (3.28)
where

The=<T5X), Thy=R T (329)

and

cr(X, Y Eil_zj dob(&,n) (3.30)
0
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for
X=X+0¢ Y=Y+0n. (3.31)
This again gives rise to an extended moment map
JLr:Lgt _)L"\g//\* E'L\é’* +R,
Tere Yok, 300,9. 1), (332)

embeddlng Lg* asa s a coadjoint orbit in the dual of a central extension Lg £~ Lg ®R
of Lg However, Lg; is not the superalgebra Lg*, but rather the central extension
of Lg defined on the same space Lg@®R by the nonsupersymmetric Lie bracket:

[(X,a),(Y,b)1=([X, Y],cx(X, 7)), (3.33)

i.e. using the fermionic part of the cocycle alone.

4. Hamiltonian Action of diff°S* on If,\GJ/G and fgf Ak

Denote by diff S* the algebra of superderivations of #(5'). A typical element may
be expressed relative to the (0, 9) basis as

a=40+f2, (4.1)

where
a=a(o) + Ou(o), 4.2)
B = B(o) + 6b(o). (4.3)

As in the super loop algebra, the even terms a(o), b(o) are periodic in ¢, while the
odd terms (o), B(¢) may be periodic or anti-periodic. The superconformal structure
on S" is determined by the (0|1)-dimensional non-integrable distribution spanned
by 2. The subalgebra diff* S* of superconformal derivations is defined to be those
preserving 2, i.e.

diffe ! = {aediff S*, [4, 2] o< D). (4.4)
This means that a superderivation 4 is in diffe S if it is of the form:
d=ad+192@9, 4.5
ie.
B=32a 46)
B=4%a, b=1id. (4.6)

The commutator of two such elements 4, ﬁzecﬁf"s Lis
[4,,d,] = a,@, — 4,a, +52(3,)2(a, @4.7)

& AT
=[a,,a,].
There is a natural homomorphism

U:diff S! - der Z(LG/G)
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to the algebra of right G-invariant derivations of & (ITGJ) defined by:
U:.a—U,,

Uas—[<6a(g),%> <6 W) ¢>] (43)

where J,(g) and J,(y)) are defined by
a4g = 0,(9) + 06,y g). (4.9)

This corresponds to the infinitesimal version of super-loop reparametrizations.
Explicitly, we have

0:(9) = ag' + Byy, (4.10a)
S.p)=(—P)g'g™" + 3By, Y1+ ay' +by. (4.10b)

For 4= 36&;ECSI, this reduces to
0:9) = ag' +3og, (4.11a)
o) =3a(g'g ™" + 3V, Y1) + ay’ +3ay. (4.11b)

Since Lg may be identified with g ® % (S 1) derivations dedlff st may be extended
linearly to Lg, thereby defining the semi-direct sum diff gff S* x Lg. The homo-
morphisms defined by Eqgs. (2.12), (2.13), (2.15), (2.16) and (4.8) then define
representations of diff $* x Lg in terms of functional vector fields on LG/G

Proposition 4.1. The functional vector fields U,,Vy and Wy defined by the homo-
morphisms (2.13), (2.16) and (4.8) satisfy

UaVil=Vizy (4.12)
LUz Wil= Wz, 4.13)
and therefore the maps
U x V:diff S* x fg—»derﬁ(ljﬁ),

UxV: @, X)-U,+ Vs, (4.14)
U x W:diff S* b(i\g/aderﬁ(fé),
UxW: @, X)~U,+ Wy (4.15)

are Lie algebra homomorphisms.
Proof. Direct computation. []

The next_theorem gives two further equivalent characterizations of the
subalgebra diffe s.

Theorem 4.2. The following conditions are all equivalent.
i) aedift St is in dific S*.
ii) The element dediff S! preserves the cocycle &

qaX), Y)+ X, a(Y)) =0. 4.16)
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iii) The vector field U,cder & (LG/G) preserves the symplectic form @&,
Ly, (@)=0. 4.17)

[Note: The equivalence (i)« (ii) is given, in a slightly different formulation,
in [KT].]

Proof. From the definition (ﬂ)) of ¢ we obtain, integrating by parts and using
the commutation relations (2.23),

qalX), )+ &X, a(y)) = -21; 2(5) do [ d0(2B — 2(a))b(2(X), 2(Y)).

Therefore, (4.16) is satisfied for all X, Y if and only if (4.5) is; i.e. d = \aie&i\f{f‘ St
Evaluating %, (&) on a pair (W5, W3) of left-invariant vector fields on LG, we find

Zy (w)(Wx, Wy) = U (@(Wg, Wy)) — O(LU, W], Wy) — (W, [U, Wy )
= —ké(aX,Y) - ki(X,aY),
where (§.V3) and (4.13) have been used. Thus, Egs. (4.16) and (4.17) are equivalent. [

Henceforth, only the subalgebra diff* ! of superconformal vector fields on S*
will be con51dered and the restriction of thg\l/lomomorphlsms (4.14), (4.15) to the
semi-direct sum diff* S* Lg Elements dediff°S* will normally be designated by
the superfunction e (S ) entering in the coordinate representation (4.5). The
dual diff* S'* will be identified with the space of (odd-parity) differential forms on
ST annihilating the (0|1)-dimensional distribution spanned by 2:

diffe 1% = {1 = Xdo — 6do))}, (4.18)
where
1= o) + 0l(0), (4.19)
I(o + 2m) = l(o), (4.20a)
Mo +2m) = + Ao). (4.20b)

Elements of diff° S'* will be designated by the superfunction 1 entering in the
coordinate representation (4.18). The dual pairing

d&iffe $1* x diff* ' >R
is again defined by Berezinian integration
~ 1 2n PN 1 2n ~ —
{Ayay, =5 i do [ d91(a) =5 g do [ dfAa, 4.21)
or, expressing 1 and 4 in terms of their components (4,1) and (a, @), respectively,

1 2=
(D@ 0)>, =5 (j) do[la— o). @.21)
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A super cocycle ¢, may be defined by

e 1 2n B N
é,(d,,d,) =£ g do | d0a, 2(@,

— j' do[a,ay + ooy ],

where
dy=a;+00;, d,=a,+0a,.
This then defines the central extension

diff$'~ = diff* S* + R = {(d,7)}
with super Lie bracket

[@y,71),(@5,75)] = ([d},d,], (@, @,)).

333

42

4.22)

(4.23)

4.29)

The next theorem is the main result of this section, showing that the vector
fields U, defining the representation of diff°S* on %#(LG/G) are derived from an

equivariant moment map.

Theorem 4.3. The symplectic vector fields U,, 4ediff* S* are Hamiltonian, with

U,|&=—d], (4.25)
where
T,=<J,ay, j do [d0a[b(8, 28) —1b(&,[€,£])], (4.26)
F=90)i %f @27
The moment map
J:LG/G — diff* §**, -
k (4.28)
is equivariant:
{j a ~E} =7 [451 (4.29)
In component form:
~ k 2n
= g do{a[b(E, E) + b(y/',y) — b(E, [y, ¥ 1)1 + a[b(E,¥) — 3b(¥, [¥, ¥1)1},
(4.26)
where
&=y + 0E, (4.27)
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E=gg ' +3ly,¥] (4.30)
The Poisson brackets with the generators J of left translations satisfy:
(T 7%} =Th, 431)

and_hence the pair {J,JE"} define a Poisson bracket realization of diff S* x Lg*
on LG/G.

Proof. A direct computation from the definition (4.8), (4.11a,b) of U, and the
formula (4.26) for J,.

In fact, this result may be derived another way that lends further insight into
the structure of the moment map (4.28). Define a map

]y:’L\gf"*—»éi\/fi“Sl*

by
~ 1 1
T I L P U
TGy = .| o2~ 3 006 L D) | @3
Then, from (437) and (4.3?3), we see that J is just the composition of J-*, with J7,
J=JoJtr, (4.33)

i.e. we have a factorization described by the diagram:
1G/G —— difies'*
jLA \ / ‘79’
G

The point is that J? is also a Poisson map with respect to the Lie—Poisson brackets
defined on Lg"* by

_[of o9 (8f &g

= A A 4.34
ter= (8] 55 )+ (5755 39

f,9eZ(Lg"*), (G,relg"*,

and on diff* $1* by
- [6F oG

{F,G}h: <l,[—~, —~]> N

04 04 1/, (4.35)

F,GeF (dilf* S'*), TediffcS'*.

This is stated in the following theorem, from which Theorem (4.3) may be deduced
as a corollary.

Theorem 4.4. The map J* :f.?;/ ~* s dife S1* preserves the Poisson brackets (4.34)
and (4.35), i.e.

(FoJ?,GoJ} = {F,G}°J?, (4.36)
F, Ge # (diff §'*).
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In particular, on linear elements

F=(2,8>,, G=<(4,b), (4.37)
FoJ¥ =(J%,ay,=J?
GoJ” =<J%,b),=J¢, (4.38)
we have
(77,78 =T%5 (4.39)

i.e. the dual map
FONdiff ST F(Lgh*),
F el (4.40)

is a homomorphism to the Poisson algebra on F (LE nE),

Proof. 1t is sufficient to prove the result in its linear form (4.39), since the~derivation
property of Poisson brackets then implies it is valid for all F,Ge# (diff Si¥),
Computing the functional derivative of J; gives

817 1 1
= —[2&@(;1) +2(@)i— ;d[ﬁ, ﬁ]],

o 2r

which should be viewed as an element of Lg. Substituting in (4.34) and using the
graded Jacobi identity gives

~y | S o AR -~
U7, 0} = 2 B [2a2(0) + 2@ , 2697+ 2(B)iiy

‘ 1 ~ -~
+4,<22b2(R) + 2(b)R) , 2a2(F) + 2@ R

1
— 25 {CDOLRRD) | 269() + 2@

+<22b2(p) + 2(B)f) , ali 1>}

(Note that since i is odd, the Jacobi identity implies that [, [, fi]] vanishes and
hence, by Ad-invariance, so do all terms of the form <{fi, [[4, i], X]).) Integrating
by parts and using identities of the type

b(f, ') = b(2(f), 2(i)) — 2(b(i3, 2(i1))),
b(@(p), i) = 32(b(2(R), 2(R))),
we find the factor with coefficient 1/4r reduces to:
<(2ab' — 225+ 2@2(0)i , 2(A)>,
while the one with coefficient 1/4r? becomes:
~ @ , @ —ba +32@2()[AA1).
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Adding gives the result
o oo (T I S
(77,75} = —< i, @b —ba %_@(a)@(b))<9(u) —3, A #]>>

= J[a,E]' O

We see from Theorem 4.4 that J? is also a moment map, generating
representatlons of diff S* as Hamiltonian vector fields on the symplectic leaves of
Lg**; i.e. on the coadjoint orbits. In view of Theorem 3.4, which identifies LG/G
with such coadjoint orbits via the moment map J-*, we see that Theorem 4.3
follows as a corollary to Theorem 4.4.

To obtain further insight into the moment map (4.28), note that, if we decompose
the Lg moment map J* into Fermi and Bose parts, as in (3.21):

L=ky +0(J5+JE), (4.41)
substitution into (4.28) gives:
J=I +6L, (4.42)
where
I =3b(J5+3J59), (4.43)
L= 2_1k [b(J 5, J5) + Kby, ¥)], (4.44)

and J%, J§ are the Fermi and Bose “currents”. (Note that b(J%, J%) vanishes because
of the graded Jacobi identity.) Equations (4.43), (4.44) may be viewed as the
supersymmetric version of the classical Sugawara formula, which thus differs from
the abelian case only by the presence of the additional 1b(J%, ) term.

5. Fourier Analysis
In this section, we re-express the results of Sects. 3 and 4 in terms of Fourier

components. Let {T,} be a basis for g, orthonormal with respect to the metric b,
and satisfying

[T, Ty] = fa T (5.1

Through the usual identifications Lg < Lg*, g~ g*, ZE (=N I:E*, we express the
odd part of J* (i.e. the Fermi field y) and the bosonic and fermionic contributions
to the even part (i.e. the currents J and J%) as Fourier series:

kY = Z Z Vaip T,e”'re, (5.2)

5= Y E}, Te ™, (5.32)
neZ @

=Y Y EL,Te ™™, (5.3b)
neZ 4

where peZ for periodic (R) boundary conditions and peZ +  for anti-periodic
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(NS) ones. The generators of the super loop algebra fg" are then {Y,,, E,, }, where

Ea[n = Ealn + Ealn (54)
are the Fourier components of the full current
JE=J5+JE=Y Y E,,T,e”™. (5.5)
neZ 4

From Eq. (3.25), it follows that the Fourier components of the Fermi current are
expressible as

ﬂl" 2k Z Zfabwblp!//cln P (56)

in terms of the Fermi field components.
The non-zero Poisson brackets following from Egs. (3.10),(3.26) and (3.28) are
then

{Vaip Y10} = KOup0p 4,05 (5.7a)
{Eaim Vs1a) =2 farVetn+or (5.7b)
{Ealm Eblm} = Z ffthcln+m - ink6n+m,06a,b, (57C)
{EaBlm Ebnlm} = Z fzbEﬁn+m - ink5n+m,05a,b$ (57d)
{Ealm lﬁb}q} = zf:b¢cln+q9 (576)
{Ealm Eflm} ZfabEc|n+m (57f)

The boson current components Ef, Poisson commute with both the Fermi field
Va1, and Fermi current components Eal,, Thus, the set {y,,, ,,l,,} generates a
Poisson bracket realization of LgF on the Fermi phase space Lg*, while the set
{EZ,} generates a realization of Lg" (central extension of the ordmary loop algebra
with the even part of the cocycle &) on the Bose phase space LG/G. The full set
{Waip» Eqn} generates a Poisson bracket realization of Lg" on the super phase
space LG/G. According to the results of Sect. 3, these Fermi, Bose and super phase
spaces are all interpretable as coadjoint orbits, within the spaces Lgj *, Lg"* and
Lg"*, respectively.

Next, we turn to the generators of the diff* S*-action on LG/G Decomposing
the moment map J into even and odd parts as in Eq. (4.42), each of these may be
expressed as a Fourier series:

r=3re™, (5.82)

L=Y Le ™, (5.8b)

neZ

where, again, peZ for periodic (R) boundary conditions and peZ + % for anti-
periodic (NS) ones. It follows from Eqs. (4.43) and (4.44) that the Fourier
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components for I and L are expressible in terms of those for ¥, J5 and J% as:

r "—ZZ[Efan%w n %Eglnlllalp—n]’ (593)

n {ZZ[EalmEfln—m] —-%gip[WalpWaln—p]}' (59b)

This may be interpreted as the classical super Sugawara formula. A comparison
with the quantum (i.e. representation theoretic) one of ref. [KT] will be given in
Sect. 8. Note that, by combining Egs. (5.9a, b) with (5.4) and (5.6), we may express
the generators {I",, L, } entirely in terms of the generators {y,,, E,,} of the super
loop algebra:

1
L= 2 g[Eal"'”aW-n 3k Xq:fgf'//blqwdn—q‘palp—n], (5.10a)
1 .
Ln = 2% ; ; EaImEaln—m - 5( ; ; lpd/alp‘//aln—p
1

2 zg:ZZfabEclmlpalq mlllbln q (510b)

q abc

From Eq. (4.39), we obtain the Poisson bracket relations defining the com-
plexified algebra diff, S*:

{LmLm} = _'i(n“_m)Lrﬁma (5113)
n

(L, T,} = ——i(z—p>1",,+p, (5.11b)

(T,T1=%L,., (5.11¢)

Finally, from Eq. (4.31), we obtain the Poisson brackets

{Lus Eajm} =M Eqgpim: (5.12a)
{LosYapp} = l(p +5 )t//.,|.,+,,, (5.12b)
{TpEgpn} = ig¢a|,.+p, (5.12¢)
{TpsVaig} =3Eaip+g- (5.12d)

Relations (5.7a—c),(5.11a—¢), (5. 12a —d) thus give a Poisson bracket realization of
the full super algebra dlff S'x Lg”.

We note that, at the classwal level, the diffs S* subalgebra (5.11a—c) has no
central extension. In the following section we shall see, however, that a classical
center may be obtained by introducing a slight modification to the representation
4.8).
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6. Twisted diff:.S! Action

Let p:U(1)> G be a group homomorphism and p:R —g its derivative at the
identity. The corresponding element of R*® g =g will also be denoted p. The
homomorphism defined by restricting (4.8) to diff°S! may be modified to define a
new one
~ ~
U*.diff* S* > derg # (LG/G),
U*: ar-U®,

U=U;+ Vy, (6.1)

where V_is the projection to l?G7G of the complex-valued right invariant vector
field on LG given by Eq. (2.13), corresponding to the element X ﬁe(fL\gf)‘E defined by:

X.=—iap. 6.2)

This is just the infinitesimal form of the “twisted” super conformal action on l’z}//G
obtained by combining a super reparametrization with the left translation obtained
by composing the Jacobian (exponentiated) with the homomorphism p. It is
straightforward to verify that (6.2) provides a representation of diff° S! in terms of
super vector fields on LG/G:

[U3,Us]1= Ul 6.3)
It also follows, since both U, and V;, are Hamiltonian, that U% is as well.

Theorem 6.1. The diff° S! representation defined by (6.1) is (infinitesimally) Hamil-
tonian, with moment map

J?:LG/G — Giffe, s1*

defined by
Jp =T +ib(p,J*), (64)
ie.
Ugld = —6é(J3), (6.5)
where
Jo=(Jray,=T0+7%, (6.6)
satisfies the Poisson bracket relations
{878} = Ty — kp*2,(@.B) 6.7)
with
p* =b(p, p). (6.8)

Proof. Immediate from Theorems 3.3 and 44. [

Note that the Poisson bracket relations (6.7) imply that the “twisted” moment
map J” is non-equivariant, giving a Poisson bracket realization of the centrally
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extended algebra diff* S * defined in (4.24). Denote by
Vir = diffe, §1* = {(dediff;. 5", seC)} (6.9)

the complexification of diff°S'* (i.e., the Ramond or Neveu-Schwarz algebra,
collectively called the super Virasoro algebra). The dual space is:

Vir* = diff, §'* + €

={(Lr) , Ze(diff*SH)% , reC} (6.10)
with pairing:
CAr), @9))=<T , aY,+rs. (6.11)
The super Lie-Poisson brackets on Vir* are then defined by
~ | 0F 6G OF 6G
T N= —a, — A~ C s v ) 612
tF.Glan <’1’[5/1’ 5/1]>v+"c”<51’ 51) (6.12)

F,GeZ(Vir*), (i,reVir*.

Theorem 6.2. The map
7o Tgnn Vi

defined by

~ P ~ —~

I (i, 1) = (I (1) + ib(p, ), — rp?) (6.13)
preserves the Poisson brackets (6.11) and (4.34); i.e., defining

Tod @ = (T (@0, @),

=TJ7 +i¢b(p, ), @, —rsp?, (6.14)
we have
T JGa) = f)[’fs],é.xa,l?»- (6.15)

Proof. This follows along the same lines as Theorem 4.4, with the modification

oTi o1

.~y

50 5i ipd
1 e A ey
=5 2a9(p)— @i —— [ Al p—ipa. O
r r
In component form, the map (673) may be expressed as
T (@ r) = (o + Ou, — rp?), (6.13)
where
1 , 1 Sl
= bm,m)+ b, ) ——b(m, [, k1) | + ib(p,m’), (6.16)

1 1
a=5 [b(m, W=z bw u])] +ib(p, 1) (6.17)
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and
A=p+6m. (6.18)

Returning to the moment map J# we may, as in the nontwisted case, develop
the components

~

Jr=r*+0rr (6.19)
in Fourier series:
re=Y I%e e, (6.20a)
p
=Y Lhe ", (6.20b)
neZ
where
rﬁ‘:rp—pzpal//alp’ (6213')
Li=L,—nY pEsm (6.21b)
and
Pa=b(p,To). (6.22)
The Poisson bracket relations (6.7) then give:
(L8, Lo} = — i(n — m)LE s+ ikp?>8, 1 o, (6.23a)
{L5, T%} = — l(i—p)r,,”, (6.23b)
{re, o}y =315, +kp*p*6,4 400 (6.23¢c)

7. Super Integrable Systems

In previous work on integrable systems of PDE’s, the Miura map, relating the
KdV and MKdV hierarchies, was interpreted as a special case of the “twisted”
Sugawara formula and generalized to the non-abelian case [Kul]. The super KdV
system introduced in [Ku2] and the supersymmetric extension of the KdV system
([MR],[Ma]) may similarly be viewed as super Hamiltonian systems in Vir* and
used to define commuting superspace extensions of the MKdV system hierarchies.
In this section, we show how the twisted super Sugawara map (6 13) may be used
to determine two infinite families of commuting super integrable systems on the
super loop space Lg“ * associated with an arbitrary Lie algebra g.

Let H be a Hamiltonian functional on the space Vir*. The equations of motion
following from the Poisson bracket (6.12) are then:

oH oH
- 5253 1
u, = ud + 0u + sp*0 )< 5 >+(<16+ 26a)< 50 ), (7.1a)

o= @+ $ad) o — +spza3>(‘;—f>, (7.1b)

s, =0, (7.1¢)
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where
2(0) = (a(t) + Ou(?), s) (7.2)

denotes an integral curve. Define a 1-parameter family of Hamiltonians
2z
H.= | do[u® — cao’]. (7.3)
0

It is known that for ¢ = 1 or 2 these define completely integrable extensions of the
KdV system that belong to two hierarchies of commutative flows. The case ¢ =2
(super KdV) was studied in [Ku2] and ¢ = 1 (supersymmetric KdV)in [MR], [Ma].
Only the second, which is supersymmetric, admits a superspace formulation, with
Hamiltonian H, expressible in terms of Berezinian integration as

2z ~ ~
H,= | do[d0i2(J), (7.4)
0
and equations of motion:
1.=3[192(0)1 -1 (7.5)
In component form, the equations of motion (7.1a—c) are
u, = (3u® —u" — 3coa'), (7.6a)
o, =3u'a+ (2 + c)ua’ — ca”, (7.6b)
where we have fixed the level set of the trivial invariant to be
s=1% (7.7
to obtain the standard normalizations.
Now, denote by
~ P ~ ~
H*=H-J""eZF(Lg"*) (7.8)

the pull-back of He# (rV\i;*) to 1:; ~* The equations of motion in Lg** for
Hamiltonian H* and Poisson bracket (4.34) are

OH* oH* OH*
m,= —[m,W:l+r6< om )—[ﬂ,'gjl, (7.93)
OH* OH*
= —[”’W]"’ TR (7.9b)
r =0, (7.9¢)
where
(@), (1)) = (u(2) + Om(e), (1)) (7.10)

denotes an integral curve. The canonical map (ﬁé), defined in components by
(6.13), (6.16) and (6.17), takes such curves into solutions of (7.1a—c).
For the case H, of Eq. (7.3), we have
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oH¥ 2 .,. u c
o =;um+2mp—;7[u,u]—;ua, (7.11a)
OH*

1 u c c
_ ’ ’ _ . "o / A~ .11
o r(uu +2u u)+2r2 [m, u] + 2ica”p i +r2<x [u,ul, (7.11b)

where
rp?=—1% (7.12)

for the level set (7.7), with u and a defined by Egs. (6.16), (6.17). Substituting
(7.11a-b), (7.12) in (7.9a—c), we get nonabelian generalizations of the super MKdV
(c =2) and supersymmetric MKdV (c = 1) systems. To recover the purely bosonic
systems, set

ﬂ:o, “=0- (7'13)
Then Eq. (6.16) becomes

lr [b(m, m) + 2irb(p, m')] (7.14)

u=2—

and (7.9a) becomes

1
m, = [b(m, m) + 2irb(p, m')m — i(rb(m, m) + 2ir*b(p, m))$

+ ; [b(m, m) + 2irb(p,m') Y [m, 51. (7.15)

In particular, if m = v is a scalar (g = R'), this becomes

3 ’
v,=<v—2—rv”>, (7.16)
the usual MKdV equation. —

By appl}il}g the same procedure of pulling back Hamiltonians on Vir* under
the map (6.13) to the full commuting hierarchies of super-KdV ([Ku2]) and
supersymmetric KdV ([MR],[\I\:Ia]) type, we obtain two infinite hierarchies of
commuting flows in the dual Lg"* of any super loop algebra with Ad-invariant
metric. These then provide super extensions of the corresponding generalized
MKJdYV hierarchies.

8. Quantization and Representation Theory

The irreducible unitary highest weight representations of Vir x L}f ~ for compact
G were constructed by Kac and Todorov in [KT]. In this section, we briefly
indicate how quantization of the Poisson bracket algebra defined by Eqgs. (5.7),
(5.11) and (5.12), together with the classical Sugawara formula (5.10), leads to the
results of [KT]. —

First, since the super phase space LG/G may, according to the discussion
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following Theorem 3.4, be viewed as a product of the bosonic phase space LG/G
and the fermionic one Lg*, quantization leads to the tensor product

%=%F®%ﬂ (8.1)

of a Fermionic Hilbert space 5 with a bosonic one #5. The qflantized operators
correspondlng to the classical generators {Va p,E,,In,Ea|,,, ains I p» L} Will be
denoted {t//,,| » Ea|,,,Ea|,,,Ea,,,, ,L,}. From the Clifford algebra deﬁned by the
Poisson brackets (5.7a), standard quantization of free Fermions leads to the
fermionic Fock space #F as an infinite wedge product space (i.e. the infinite
dimensional irreducible Clifford module), with positive Fermi components {'//a| pp>0
acting as annihilation operators and negative ones {t//a |»)p<0 AS Creation operators.
For Ramond boundary conditions, the operators {lﬁalo} are represented, as usual
(see, e.g. [GO], Sect. 5.1), by Dirac matrices on the 2?-dimensional Clifford
module of vacuum vectors (d = dim g). The quantization E,,,,,-—».Efl,, may be done
in a variety of ways (see, e.g. [PS],[W],[H]), each leading to irreducible highest
weight representations of the affine Kac—Moody algebra Lg”* on a bosonic Fock
space 5. The classical relation (5.6) may be quantized to define a representation
of Lg” on #F generated by the operators

- 1
Efln=ﬁ;§f:b:wblp‘ljcln—p:' (82)

The meaning of the normal ordering operation :---: is, as usual, that annihilation
aperators are placed to the right, (cf. [GO], Sect. (5.1)).

For purposes of comparison with [KT], we give the following table of notational
equivalents.

Table I.
Present Notation Notation of [KT]
~ ] e (A
Vatr el = eIl ——(q)c: =
Ealn Q‘,:
Ealn ﬂ
Ealn Q:
fv ei(n/A)gg
P 2
L, L,
[ A Mg +c,

k=kg+— —=

5t3 2= 2

The quantity c, is the eigenvalue of the quadratic Casimir operator for g in
the adjoint representation. Equation (8.2) corresponds to Eq. (4.2) of [KT] (see
also [GO], Sect. 5.2). The operators {n/?,,l » Efln, Eﬁ,,} are extended trivially to the
tensor product ;@ Hp.
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The operators {{,,,, EX|,}, with
Ealn = Egln + EaB[n (83)

then define an irreducible unitary highest weight representation of Lg*, provided
the original representation of Lg” on #5 was such. The quantized version of
(5.7a—f) becomes

Waips Yorad+ = ikSasOp 14,05 (8.4a)

[Eojn ¥b1a] = i;fzbtﬁq,.ﬂ, (8.4b)

[Eapn Eym] = i;fzbﬁc...m + 1S, 4 1m0 00 (8.40)

[EE,. Ef\]= i;fzbﬁf.,,m + 1k g0, 4 m,0Oabs (8:4d)

LS Vni0] = iy fesVeintar (8.4¢)

B8 Bfin] =3 S0+ 15 B modur (840)

The value of the central term k is, as given in Table 1 ([KT], Theorem 4),

k=ky+ ‘;i @8.5)

where kp(= A(g)/2) denotes the corresponding value for the bosonic affine Kac—
Moody representation generated by {Eal,,} —

The extension of these representations to Vir ix Lg involves additional
normal ordering in the quantized form of the super Sugawara formulas (5.9a,b),
namely

- 1
_ﬁzg‘[E |"¢G|P n+3Ea|n¢a|p—n]: (863)

- 1 .
Ln=ﬁ{Z;:Efl aln m- ZZIP !//alp‘//a[n p} (86b)

The normal ordering in the first term of (8.6a) is irrelevant, since the factors
commute, while the second is ordered as in [KT], Eq. (5.6). The formula (8.6b) is
not explicitly given in [KT], but the normal ordering for the bosonic part is just
the usual one for the bosonic Sugawara formula, while that for the fermionic part
is the same as in the free quark model ([GO], Sects. 4.1 and 5.4).

The quantized form of the Poisson bracket relations (5.12a—d) becomes:

[in,Ealm] = - mEa|n+m9 (873.)
PPN ny\ ~
[Lm ll’alp] = - (p + '2—>!//a|n+pa (87b)

(I, Ep]= x/f.,.,.+,,, (8.7¢)
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~ i A
Fpﬁ'l’alq]+ =§Ea|p+q' (87d)

Finally, the quantized version of (5.11a—c) gives a representation of the super
Virasoro algebra:

(L Lp] = (0= )Ly s+ 51082 = Dy (832)

A A n PN

[Lmrp] =<§—P>Fn+p, (88b)
[ 1] = ,,+q+z (pz—%)é,,+,,,o, (8.8¢)

12

where, according to [KT], Theorem 4, the value of the central charge c is:

df. kg
c=§<l +7>. (8.9)

If the same quantization procedure is applied to the “twisted” generators of
Sect. 6, we obtain the operators

PN

e PR WA (8.10a)
Lt=L,~nY pFu (8.10b)

The resulting central charge is the sum of that obtained classically, as in Egs.
(6.23a—c), plus that obtained from the quantization:

(L, I61=(—mLe,, + [é n(n® — 1) — kp2n3]5,,+,,,,0, 8.112)
[(Ls,T0]= (5— p>I“n+m, (8.11b)

[fe, e ]+—2 p+q+112(p — 1)+ ikp2p?S 4 g0 (8.11c)
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