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Abstract. The quotient LG/G of a super loop group LG by the subgroup of
constant loops is given a supersymplectic structure and identified through a
moment map embedding JLA:£G/G-+ΈC£* with a coadjoint orbit of the
centrally extended super loop algebra LgΛ. The algebra difΓS1 of super-
conformal vector fields on the circle is shown to have a natural representation
as Hamiltonian vector fields on LG/G generated by an equivariant moment
map J:LG/G-> cfifPS1*. This map îs obtained by composition of JLΛ with a
super Poisson map Js':L$A*->difϊcS1* defining a supersymmetric extension
of the classical Sugawara formula. Upon quantization, this yields the corres-
ponding formula of Kac and Todorov on unitary highest weight representa-
tions. For any homomorphism p:u(l) -• G, an associated "twisted" moment map
Jp:LG/G-> diffcS1* is also derived, generating a super Poisson bracket realiza-
tion of a super Virasoro subalgebra Vir of the semi-direct sum diff^S1 ix LgΛ.
The corresponding super Poisson map J^p:Σg/Λ*->^ϊr* is interpreted as a
nonabelian generalization of the super Miura map and applied to two super
KdV hierarchies to derive corresponding integrable generalized super MKdV
hierarchies in LgΛ*.

1. Introduction

In the Hamiltonian framework, the classical Sugawara formula [S] for a 1 + 1
dimensional field theory may be viewed as a Poisson map J^ Lg Λ * -• diff S1* from
the dual of the centrally extended loop algebra LgΛ to the dual of the algebra
diff S1 of vector fields on the circle. The Poisson space LgΛ * enters as a "universal"
phase space into which conformally invariant models may be mapped via their
currents. The latter are interpreted in the Hamiltonian framework as moment maps
generating the action of the loop group LG in terms of Hamiltonian flows. The
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coadjoint orbit Θi0Λ) c LgΛ* (where (0, l )Glg*φR = LgA *) figures as a reduced
phase space underlying the Wess-Zumino-Witten model ([W], [H]) and also plays
an important role in the representation theory of loop groups [PS]. This orbit
may be identified with the coset space LG/G (where G is understood as the subgroup
of constant loops) or, equivalently, with the group ΩG of based loops, an infinite
dimensional Kahler manifold [PS]. The embedding JL:ί2Gcz_>LgA* defines a
moment map that generates the natural left LG-action in terms of Hamiltonian
flows.

The group Diff^1 acts naturally on LG/G by reparametrization of loops and
this action is also Hamiltonian, with equivariant moment map J: LG/G -•diffS1*
defined by composition J — J^°JL. This factorization underlies the classical
derivation of the Sugawara formula for Hamiltonian models having LG/G as phase
space [H]. It may also be used as a starting point for quantization and for develop-
ment of the representation theory of the semi-direct sum diffiS1 ix LgA.

For applications to 2-dimensional super-conformal field theories, super-strings
and the associated representation theory of super-algebras, it is important to extend
the Hamiltonian framework to super loop groups LG, the algebra difΓS1 of
infinitesimal super-conformal transformations of the circle and their central
extensions. In the abelian case, i.e. loops in a vector space or torus, this is easily
done (see e.g. [GSW]), and gives rise upon quantization to the usual formulas for
generators of the super Virasoro algebra expressed quadratically in terms of bosonic
and fermionic creation and annihilation operators.

In the framework of representation theory, Kac and Todorov [KT] gave
formulas of the Sugawara type allowing the construction of all unitary positive
energy highest weight representations of the semi-direct product of the super
Virasoro algebra with affine super Kac-Moody algebras. However the super
Virasoro generators are not directly expressed in terms of the full Kac-Moody
generators, but rather in terms of two parts, corresponding to the bosonic and
fermionic contributions separately. The splitting is obtained by constructing the
Hubert space as a tensor product of a fermionic Fock space and a bosonic one
that is an irreducible highest wieght module for the even part of the algebra. Thus,
these formulas are specific to such representations rather than intrinsic to the
algebras. The classical, Hamiltonian origins of such results are not a priori evident,
and it is of some importance in linking the representation theory to 2-dimensional
super conformal quantum field theory that they be derived through quantization
upon some suitably defined phase space.

A further domain of applications for formulas of the Sugawara type occurs in
the theory of classical completely integrable Hamiltonian systems. In particular,
the Miura transformation relating solutions of the MKdV hierarchy to those of
the KdV hierarchy may be viewed as an example of a "twisted" Sugawara formula
in the abelian one-dimensional case, with loops replaced by maps of the real line.
Infinite families of completely integrable systems on non-abelian loop or current
algebras may also be obtained from analogous constructions [Kul]. The extension
of such considerations to super integrable systems of the super KdV and MKdV
type is known ([Ku2], [Ma]). The corresponding extensions needed for the
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non-abelian case require a suitable development of the Hamiltonian approach
to super loop groups.

It is our purpose in the present work to extend the Hamiltonian formulation
of loop groups, loop algebras and difΓS1, together with their moment map
realizations, to their super-space counterparts. Thus, we are led to super loop group
actions and representations, super trace-residue pairings, super symplectic forms
and coadjoint orbits, super moment maps and a super version of the classical
Sugawara formula.

In Sect. 2, the super loop group LG and algebra Lg are introduced in terms
of a supermanifold extension of LG, with extended structure sheaf #(LG) identified
essentially with sections of the Grassmann algebrajmndle Λ(TLG). The super
circle S1 is defined with extended structure sheaf ^(S1) generated by adjoining an
odd nilpotent element θ to the usual angular variable {σ mod2π|^on S1. A
superspace analogue of loops is used to characterize elements geLG as maps
gi^-tG via the dual homomorphism ^*:JΓ(G)-^#(5 I) of structure sheaves.
This leads to natural definitions for supergroup multiplication, adjoint and
coadjoint actions. Group and algebra super cocycles are introduced to define the
corresponding central extension R-*LgfΛ ->Lg together with the extended adjoint
and coadjoint representations. ^^

In Sect. 3 a supersymplectic form is defined on the coset space LG/G in terms
of the supercocycle. A non-equivariant moment map JL:Lδ/G->Zg* is derived
for the Hamiltonian super group action of EG on LG/G (Theorem 3.3) and, using
the corresponding cocycle, is used to define the extended equiyariant map
JLA :LG/G->LgΛ*. This map is injective, giving an identification of LG/G with the
coadjoint orbit 0(Ofk) <=LgA* as super symplectic manifolds.

In Sect. 4, the algebra (SίΓS1 of super conformal vector fields on S1 is
introduced, together with its representation in terms of Hamiltonian vector fields
on LG/G. The corresponding equivariant moment map J ΣG/G-^difΓS1* is
derived and shown, together with J L A , to define a Poisson bracket realization of
the semi-direct sum difFS1 ιxίcfA. The map J factors through Eg^* by com-
position of J L Λ with a super Poisson map J^:Σ$A*-+SϊϊίcS1* (Eq. (4.32)^^8
gives the phase space form of the super Sugawara formula, expressing the difΓS1

generators in terms of those for the super loop algebra. Unlike the purely even
case these expressions involve both quadratic and cubic terms. However, if the
even EcfA generators are split into a sum Jβ + J\y where J\ is defined on the even
part of phase space and J\ on the odd part, the dίfFS1 generators are expressible
quadratically in terms of these two terms, together with the odd Lg A generators.
In physical terms, the ΈQA moment map defines a super current, with even part
an ordinary current consisting of the sum of a bosonic current Jβ and a fermionic
one Jp while the odd part is just a Fermi field in the adjoint representation of g.

In Sect. 5, the moment maps JL and J are expressed in^terms of their Fourier
components and the Poisson bracket relations for diff^S1 ix LgΛ together
with the super Sugawara formula are given in terms of these components. In this
classical framework, the super-Virasoro algebra has no center. However, in
Sect. 6, a "twisting" of the cfiΪF'S1 action is introduced, associated to each
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homomorphism p:(7(l)->G, as in the even case [HK]. The resulting "twisted"
drn^S1 representation is generated by a non-equivariant moment map and hence,
in terms of Poisson brackets of generators, gives rise to a center associated to a
nontrivial cocycle. In Sect. 7, these results are applied to determining hierarchies
of superintegrable systems on £gfΛ *, giving the super extensions of generalized
MKdV systems. Finally, in Sect. 8, the quantization of the moment maps derived
in Sects. 3-5 is shown to lead directly to results of the type found by Kac and
Todorov [KT] in their construction of unitary highest weight representations.

2. The Super Loop Group LG and Algebra L$

Let LG denote the group of parametrized loops {g(σ) = g(σ+ 2π)eG} in a Lie
group G, with pointwise multiplication. The Lie algebra of G is denoted g, and
the associated loop algebra Lg. The super loop group LG has an underlying
supermanifold structure with LG as reduced space and extended super structure
sheaf &(LG) consisting essentially of sections of the Grassmann algebra bundle
Λ(TLG). Thus, LG is a "split" supermanifold [K]. Since the tangent bundle may
be identified through left translation with the product LG x Lg, we may equally
consider the super structure sheaf as tF(LG) (x) Λ(Lg). Thus "points" in LG may
be viewed as pairs (g,φ), where geLG and φeLQ, the latter being regarded as an
odd generator. Expressions of the form gφ or φg should be interpreted as denoting
sections of T(LG) obtained from φeT(LG)\ld by left or right translation. We must
also allow a slightly more general extension of LG, which for the most part will
not be distinguished notationally, in which the odd generators φ(σ) do not
necessarily satisfy periodic boundary conditions {φ(σ) = φ(σ + 2π)}, but possibly
anti-periodic ones {^(σ) = — φ(σ + 2π)}. The corresponding odd parity spaces will
be denoted Lg+ and Lg~, respectively, and the super structure sheaves identified
with &r(LG/G)®ΛL§±. In super-string terminology, the former corresponds to
the Ramond (R) sector and the latter, the Neveu-SchwarzJ[NS) one.

We also introduce a super-space extension of the circle S^ with S1 as reduced
manifold and super structure sheaf ^(S1) generated by the angular coordinate σ
(mod 2π) for S1 plus an oddjiilpotent θ anticommuting with the odd generators
in β(LG). An element de^(Sl) may be decomposed into

ά(σ,θ) = a(σ) + θφ), (2.1)

where a(σ) is an ordinary function on S1 while α(σ) is odd and either periodic (R)
or anti-periodic (NS).

A super loop group element may be identified either by the pair {g,φ) or,
equivalently, the super-loop map

denoted formally as

g = (exp θφ)g = g + θφg. (2.2)

The latter consists of an ordinary map g:S1-+G defining the loop group element
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geLG, together with a consistent sheaf homomorphism

where Rgi<τ)*ψ(σ) denotes right translation of φ(σ)eTG\ld to g(σ). Composition hg of
elements h,geΠ} is defined by the homomorphism obtained by composing the
sequence1

where the first map is comultiplication in the sheaf #"(G) associated to group
multiplication in G, the second is the tensor product of the homomorphisms^
and g*, and the third is multiplication of decomposable elements of # ( 5 r j ® #(S*)
followed by summation.

In the notation (2.1), this just corresponds to developing the product hg formally
in the obvious way. Denoting the components of h as (Λ, φ\ we have

(h + θφh)(g + θψg) = hg + θ(φhg + hψg), (2.4)

or, equivalently,

(Kφyig^^ihg.φ + hψh-1). (2.4)

Thus, pointwise, LG appears as the semi-direct product LC/ixLg*, the latter
considered an additive abelian subgroup. The identity element is

Id = (Id,0) (2.5)

and the inverse is

or, equivalently

{g^y^ig-K-g-^g). (2.6)

Left and right translation are denoted

L~h(g) = hg, (2Ja)

Hβ) = βK (2?7b)

or
), (2.7a)

φ ), (2.7b)

and the adjoint action is

1 This sheaf theoretic formulation of the super loop group composition rule (2.4) was suggested to us
by S. Shnider
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or, in components

^ih,φ)(g,Φ) = (h9h-1

9φ + hφh-1+(hgh-1)φ(hg-1h'1)). (2.8)

The corresponding Lie super algebra ΣQ is identified with the super tangent
space at the identity or, equivalently, the sum Lg + Lg1, with suitably defined Lie
bracket. We again introduce pairs (X, ξ) of even and odd generators, XeLq, ξeLg1,
the second regarded as a linear element of Λ(Lq±). A super-algebra element may
equivalently be written

(2.9)

with an interpretation in terms of super loops similar to (2.2). The adjoint
representation in super space notation is

Ads(X) = gXg~i (£ΪO)

or, equivalently, in component notation

Adig,ψ)(X9ξ) = (gXg-\gξg-1 + LΨ,gXg-1l) (2.10)

Taking the super tangent vector to a curve through the identity, the infinitesimal
form of (2.10) becomes

% Y ) = IX, Y] = [X, Y] + Θ&X,/?] - [ Y, ξ]) (£ΐί)

or, equivalently

^ γ > n) = l(x, &(Y, *ιΏ = ([*, Ώ, I*, n\-\J> ξ\\ (2.11)

where Ϋ=Y + θη. ^ ^
The super algebra Lg may also be represented as vector fields on LG, i.e.

derivations of the super sheaf P(LG). As in the even case, left and right-invariant
vector fields are determined either by translation of a super tangent vector at the
identity or differentiation of the right and left translation formulas (2.5a, b),
respectively, along a curve through the identity. The homomorphism

V:Lq->χ(LG) =

to the Lie algebra of super derivations obtained by differentiating the left translation
formula (2.7a) is defined by

V:(X,ξ)^V{Xtξ) (2.12)
or ^ ^

V: X^Vχ, (2.12)
where

is the corresponding right invariant vector field. The notation (Xg, δ/δg} signifies
a functional derivation obtained by pairing the right invariant vector field Xg on
LG with the functional differential δ/δg at any point geLG, while < ξ + [X, φ"], δ/δφ >
similarly signifies pairing the (odd parity) loop algebra element ξ -I- [Z,^]eLg±

with the functional differential δ/δφ on Lg1. The sign in (2.13) is chosen so that
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(2.12) defines a homomorphism rather than an anti-homomorphism:

iVg,Vγ ] = VίgtΫy (2.14)

Similarly, we define a second homomorphism

corresponding to the infinitesimal right translation (2.7b) by

W:(X,ξ)^W^ξ), (2.15)

W: X^WS, (115)

where

is the associated left-invariant vector field, satisfying similarly:

(2.17)

We assume henceforth that g is endowed with a non-degenerate Ad-invariant
metric fc:gxg->R allowing an identification of g with its dual g*. The super-
algebra Lg may similarly be identified as a dense subspace of the dual £g*, with
typical elements denoted by a pair (μeLg±,meLg) and the embedding Egfci*Eg*
defined by the dual pairing:

^ , ζ ( σ m . (118)

Identifying the element (μ,m)e£g* with the odd parity dual super-loop element

μ = μ + θm, (2.19)

the pairing (2.18) may be expressed succinctly as:

j ^j (2.18)

where the odd integral \dθ is understood in the usual Berezinian sense, i.e. as
picking out the highest (i.e. 0-linear) terms in the integrand. In general, we only
consider elements of Lg* that may be so identified with elements of Lg through
the parity reversing map

m + θμ-+μ + 0meLg*. (119)

(This reversal of parity is essential for the use of the Berezinian integral in dual
pairing to assure invariance under supersymmetry transformations.)

To proceed further, it is useful to introduce, as usual, two odd derivations on
the super sheaf &(§*):
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which, together with the even derivation

δ s έ (2 2 2>
generate the left and right super-translation algebras

ίq,q-]=-2d9 [<z,δ]=O (2.23a)

[ 0 , 0 ] = 23, [0,3] = O (2.23b)

fo,0] = O. (2.23c)

By standard conventions, the operator q is viewed as generating the (odd)
supersymmetry transformations, while @ is used in constructing supersymmetric
quantities containing derivatives. We view 2 as defining the odd tangent space
distribution that determines the super-conformal structure on Sx (cf. Sect. 4). In
superspace terms, the supersymmetry transformations act on Lg and Lg* by:

(124)

or, in component form:

δε(X) = εξ, δε(μ)^εm,
δε(ξ)=-εX\ δε{m)=-εμ\ (2-24)

where ε is considered as an odd "parameter." The pairing (118) is clearly invariant
under such transformations.

Under the identification (2.19), the super coadjoint action, defined by:

Γ (2.25)

coincides formally with the adjoint action in superspace terms

but, in components, reverses the roles of even and odd parts:

K ]). (126)

(Note: The second term \_ψ,gμg~ι~\, though involving a Lie bracket of two odd
elements of the algebra does not vanish, but should rather be understood in terms
of dual pairing via the ad-invariance of b; i.e.

The bracket [ξ, η] of two odd elements so interpreted should not be confused with
the superalgebra bracket [(0,ξ),(0,^/)] which does, indeed, vanish.)^ ^ ^ ^ ^

Using the above conventions, we define a super-group 1-cocycle C.LG-+ Lg* by

\ (127)
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i.e.

m o

In component terms, this may be expressed

~]) (2.27)

(where g' = dg/dσ) or, equivalently

<Cfo, tfr),(X, ξ)> = ̂  T dσlbtfg-1 + i l>, tfr],X) - * # , £)]. (2.28)
zπ o

The cocycle relation

K (2.29)

is easily verified.

The corresponding super-algebra (scalar-valued) 2-cocycle

c:Lξx Lgf-^R

is defined by

c(X9 Ϋ) = ̂ - f*dσ\dθb{X,9Y\ (2.30)
2π o

or equivalently, in component form:

c((X,ξ),(Y,η)) = ̂ - Tdσ[b(X, Γ ) + 6(5,η)l &)
2π

The invariance of c undei^the super-symmetry transformations (2.24) follows from
the superspace form (2.30) and the commutation relation (2.23c). The centrally
extended super algebra LcfA is identified with the space

{ ) } (2.31)

with super Lie bracket

[(*,α),(y,&)] = ax, y],c(x, Y)) (232)

or, in component notation

[(X, ξ, a\ (7, η, 6)] = ([X, 7 ] , [X,ly] - [7, ί ] , c((X, ξ),(7, ̂ ))). (2.32)

The map (£Ϊ9) and pairing (118) may be extended to identify LgΛ as a dense
subspace of £cfΛ *, with elements of the form (μ, a) and dual pairing:

<(A4(X,fc)>Λ = <AX> + ̂ . (2.33)

The extended adjoint action is defined by:

Xd> (X,a) = (AdJXla + iCig-'lXy) (234)
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or, in component form:

AdCg,φ)(X,ξ,a) = (gXg-\gξg-1 + lφ9gXg-ίla + {C(g-\-φ\(X,ξ)}y (2.34)

(As usual, it is not necessary to define a central extension LGΛ of the group LG
to define its adjoint action, since this only depends on the image in LG. It is
possible, however, just as in the even case [PS], to define LGΛ as a circle bundle
over LG.) The corresponding extended coadjoint action is

Ad; *(ft a) = (Ad*(/Ϊ) + aS(g)Γ S a) (235)

or, in components

1 + ag'g'1 + ίφ^gμg'1! +±α|>,£|,α). (2.35)

3. The Phase Space LG/G and the Z^Λ Moment Map

Proceeding analogously to the even case ([H], [PS]), a functional differential 2-form
on LG is defined by

where k is an arbitrary real constant, δ signifies functional exterior derivative and
b( *) means simultaneous exterior product of functional differential forms and
scalar product on g. In component form, this may be written

&=-^Jdσb(δ(g'g-1)ΐδgg-1) + -£-2Sdσb(δψΐδφ). (3.1)
4π o 4π o

The meaning of this 2-form and its relation to the even case is clarified by the
following:

Lemma 3.1. Evaluating ώ on a pair of right-invariant vector fields gives

ώ(V2, VΫ) = kc(X, Ϋ) + fe<C(g), IX, 7 ] >, (12)

while on a pair of left-invariant ones

ώ(WχyWγ) = kc(X,Ϋy (33)

Proof. Expressing V% and Vγ as a sum of parts tangential to the even (B) and odd
(F) parts of LG, we have:

y~ — yQ. _L yξ. y~ — y? _μ yZ

where:
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and

X = X+θξ, Ϋ=Y+θη.

Evaluating ώ on the parts, we find:

WVl Vf) = ̂  J*dσ[b(X, Y') + big'g'1, \X, Y])],

^ \ ξ , η ) + b(\_X,η] - [ Y, ξ],ψ) +

where the ad-invariance of b, the graded Jacobi identity and integration by parts
have been used. Summing thus gives

2[Vr) = ̂  [dσ[b(X, Y') + b(ξ, η)2

+ JdσlHgg + &ψ,n IX, τr\) + b{[_x,η] - \γ,ξ\ψ)i (3.2)

which is just (3.2) in component form.
Similarly, splitting

where

and evaluating on each part gives

Thus, summing gives

χ, Wf) = ̂  I dσ[b(X9 Γ) + b(ξ, η)l (3.3)

which is (3.3) in component form. •

The meaning of ώ is thus very simple; decomposing TLG into even and odd
tangent spaces, the restriction of ώ to the even part is just k times the even part
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of the cocycle when evaluated on left invariant vector fields on LG, while on the odd
part it is just the scalar product determined by kb.

Now identify GaLG as the subgroup of even constant loops {(#eG,0)}. As
in the even case ([PS], [H]), we have thejbllowing theorem, showing that ώ
may be projected to define a sympletic LG-invariant form on the coset space
LG/G.

Theorem 3.2. The form ώ is left LG-invariant and right G-inυariant. It is closed,
δώ = 0, and its kernel distribution is the vertical distribution corresponding to the
fibration π: LG-> LG/G.

Proof. Left LG^-invariance is verified since

Ljf ώ = - ^ T dσ\ dθbiδ^Qήh-1) + hb(β(β)g~ γ)h~1^ h{δg)G~xh-1)

= ώ,

the first equality following from the Leibniz rule for the derivation Q), the second
from the Ad-invariance of b and the fact that δ(@(h)h~x) vanishes (since h is constant
on LG). Right G-invariance follows by inspection. To verify that ώ is closed,
evaluate δώ on a triplet of left-invariant vector fields, using (33) and (2.17):

δώ(Wχ, Wf9 W2) = k(WχC(Ϋ,Z) - c([X, Y], Z)) + cyclic permutations.

The first term vanishes because c(7, Z) is a constant on LG and the second summed
over cyclic permutations vanishes by the cocycle identity. To compute the kernel
distribution, evaluate ώ on a pair (W^, Wy). If

ώ{Wχ, Wγ) = ̂ Jdσ$dθb(X,@(Ϋ)) = 0

for all ΫeΈ§, it follows that <3(X) vanishes (weakly) and hence X is of the form
(X,0), where Xe§ is a constaiiMoop. But such W% span the vertical tangent
distribution of the fibration π\LG^>CG/G. •

In the following, ώ will also denote the super-symplectic form on LG/G obtained
by projection. The left LG-action defined by (2.7a) projects to a left action, also
denoted by L ,̂ on the quotient LG/G:

L~h{gG) = hgG. (3.4)

The corresponding homomorphism

V:Lq^ χ(LG/G) = der &(LG/G\

V:X^Vχ (3.5)

to the algebra of derivations of the sub-sheaf #(LG/G) cz β(LG) of right G-invariant
elements, obtained by differentiating (3.4) along a curve through h = Id, is obtained
by restricting V% as defined by (2.13) to ^{ΠJ/G). Evaluating the inner product
with ώ gives:



Super Loop Groups 327

Vx J ώ = - ̂  J dσ[_b(δ(g'g ~'), X) + b(ξ + IX, φl δψft
£Tl 0

= -<5(4), (3.7)

where

g'g-1 +Kψ,ψlX)-b(ψ,ξ)l (3.8)

Thus, V% is a Hamiltonian vector field generated by — J | . Defining the map

b y ~
JL\gGv-+k<2)(g)g~* = kC(g) (3.9)

or, in components,

we have

J\ = <JL,X>=^J dσϊdθbmg)g-\n (£§)

Thus, J L is just fe times the cocycle (2.27) projected to LG/G, where it becomes a
1 — 1 moment map generating the left LG-action (3.4) by Hamiltonian flows.
Evaluating the Poisson brackets gives

{1% J\) = JL

ιm + kc(X, Y\ (3.10)

and therefore JL is non-equivariant, with cocycle kc. In finite form, the non-
equivariance is given by kC:

JLoL~h = Ad£° JL + kC(h\ (3.11)

which is equivalent to the cocycle relation (2.29).
Summarizing, we have the following result:

Theorem 3.3. The left LG-action on LG/G is Hamiltonian, and generated by the
1 — 1 nonequivariant moment map (3$) corresponding to the cocycle kc.

Following the usual procedure, the moment map JL may be extended to an
equivariant one

J L Λ :LG/G-+Lg Λ *,

JLA: gG^(kC(g),k) (3.12)

to the dual of the centrally extended algebra L§A determined by the cocycle c.
Defining

J ^ < J L A , ( X , a ) > A = J | + feα, (3.13)

we get
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and

JLAoL~h = Ad£*oJL\ (3.15)

Thus JLΛ is an equivariant moment map providing a super Poisson bracket
realization of the centrally extended algebra ΣcjfA.

Define the (Kostant-Kirillov) super symplectic form on coadjoint orbits of
LgΛ by:

ώ o r b ( ^ • , adf • ) | o w = <A IX, Ϋ] > + ac(X, 7), (3.16)

where ad£* and^adf * are interpreted as vector fields on the coadjoint orbit
through (μ,α)eLgA* induced by the infinitesimal coadjoint action. It follows from
the equivariance of J L A that the pull-back of ώOΓb restricted to the coadjoint orbit
0(0,*) c= LgA* through the point (0,fc) satisfies

JLA *<*ULn JY* vΫ) = k(C{g\ ix, y] > + kc(x, Ϋ) (3.17)

when evaluated on a^pair of vector fields induced by the infinitesimal left action.
By Lemma (3.1), Eq. (53), this coincides with the evaluation of ώ and hence, we have

JLA*ώorb\Θ{ok) = ώ. (3.18)

Summarizing these results, we have the following theorem.

Theorem 3.4. The extended moment map J^ A :LG/G->LcfA* defined in (3.12) is an
equivariant symplectomorphism between LG/G and the extended coadjoint orbit
Θ{Ofk) c Lg A * with respect to the orbital super symplectic form ώ o r b .

We emphasize that all the results of this section, when expressed in superspace
terms, appear as the natural extensions of the corresponding results for ordinary
loop groups and algebras. There is an underlying richer structure, however, that
becomes apparent in component form due to the presence of the anti-commuting
terms {ψ}. It is worthwhile noting that, under the identification of the super
structure sheaf β(LG/G) with &r(LG/G)®Λ(L§±\ the super symplectic structure
restricts, according to (3.1), on the sub-sheaf χB cz der #(LG/G) of derivations that
annihilate IO/^Lg 1 ), to the standard symplectic form ([H],[PS])

) ) (3.19)
*wr o

for LG/G. On the subsheaf χF c der #(LG/G) of derivations that annihilate
#XLG/G)(g)I, it restricts to

ωF = ̂ - T dσb(δψ A δψ). (3.20)
4π o

Thus, the Poisson bracket induced on ^(Lg*) is just the standard graded
commutator in terms of the Clifford algebra multiplication on Λ(LQ±) associated
to the metric

1 2π

— ί dσb( , ).
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Elements of the subsheaves #"(LG/G)(χ)I and I®Λ(Lg ± ) mutually Poisson
commute. The moment map (3.9) may also be split into a sum:

+ j (3.21)

of two moment maps:

% (3.22)

and

(3.23)

that mutually commute. The first part J% has vanishing odd component, while its
even part is the usual (even) moment map on LG/G:

JfrLG/G ->Lg*

JL

B: gB^kg'g-\ (3.24)

The second part Jp projects to a Fermionic moment map on Lg* whose odd part
is just the identity map (the "chiral Fermi field" \j/) while the even part (the Fermi
"current"):

JL

F: φ^ktψ,ψl (3.25)
satisfies

{JLF,X,JLF,Y}=JLF,[XW (3.26)

where

(3.27)

Thus, Jp is an equivariant moment map generating the natural (conjugation) action
of LG on Lg 1 . The two parts V\ and V\ appearing in the proof of
Lemma 3.1 are just the Hamiltonian vector fields on LG/G and Lg 1 , respectively,
induced by the two moment maps Jβ and Jp. The fermionic moment map Jp
projects to Lg 1 , but is non-equivariant:

fe JL

F,y} = him + kcF& n (3.28)
where

JL

FS = <JL

F,X\ JL

F^OLF,Y) (3.29)

and

Ϋ ^ ) * ) (3.30)
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for

X = X + θξ, Ϋ=Y+θη. (3.31)

This again gives rise to an extended moment map

1Λ\ (3.32)

embedding Lg± asa coadjoint orbit in the dua^of a central extension Lg£ ~ Lg© R
of L& However, Lg£ is not the superalgebra Lg A, but rather the central extension
of Lg defined on the same space Lg©R by the nonsupersymmetric Lie bracket:

)), (3.33)

i.e. using the fermionic part of the cocycle alone.

4. Hamiltonian Action of difΓS1 on LG/G and Zg**

Denote by diffS1 the algebra of superderivations of ^(S 1). A typical element may
be expressed relative to the (δ, &) basis as

ά = άd + Jf&, (4.1)

where

ά = a(σ) + θoc(σ), (4.2)

β = β(σ) + θb(σ). (4.3)

As in the super loop algebra, the even terms α(σ), b(σ) are periodic in σ, while the
odd terms α(σ), /?(σ) may be periodic or anti-periodic. The superconformal structure
on S^is determined byjhe (0| l)-dimensional non-integrable distribution spanned
by ®. The subalgebra diff^1 of superconformal derivations is defined to be those
preserving @9 i.e.

(4.4)

This means that a superderivation a is in diff0^1 if it is of the form:

a = ad + ̂ (a)@, (4.5)
i.e.

β = ̂ a, (46)

/? = iα, i = iα/. (4.6)

The commutator of two such elements α^^edifPS 1 is

(4.7)

There is a natural homomorphism

U: diffS1 -* der &{LG/G)
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to the algebra of right G-invariant derivations of &(LG) defined by:

where δa(g) and δa(φ) are defined by

άg = δa(g) + θδs(φg). (4.9)

This corresponds to the infinitesimal version of super-loop reparametrizations.
Explicitly, we have

δs(g) = ag' + βφg, (4.10a)

h(Φ) = (« - β)gfg~1 + ϊβlΨ, Φ~\ + # ' + bφ. (4.iob)

For ά = αedϊfΓS1, this reduces to

δs(g) = ag' + ±aφg, (4.11a)

(4.nb)

Since Lcj may be identified with g ® ^ ^ 1 ) , derivations ^ediffS1 may be extended
linearly to £& thereby defining the semi-direct sum diff 5 1 ix £ J The homo-
morphisms defϊnedj>y Eqs^(2.12), (2.13), (2.15), (2.16) and (4.8) then define
representations of diff S1 ix Lg in terms of functional vector fields on LG/G.

Proposition 4.1. The functional vector fields US9 ¥% and Wχ defined by the homo-
morphίsms (2.13), (2.16) and (4.8) satisfy

[ f » P * ] = ^ (4.12)

ίUa9Wjt] = WIKJt)9 (4.13)

and therefore the maps

U x F difΓS1 tx Lg -̂>der #(LG),

UxV: ( 4 ί ) ^ ί / f l - + F i 5 (4.14)

U x W:άmS1 ix Lg^der#(LG),

U x W: (ά,5t)\^υΛ+W2 (4.15)

are Lie algebra homomorphίsms.

Proof Direct computation. •

The nex^Jheorem gives two further equivalent characterizations of the
subalgebradifΓS1.

Theorem 4.2. The following conditions are all equivalent.
i) όecίίffS1 isinMcS\

ii) The element αediff S1 preserves the cocycle c:

c(ά(X),Ϋ) + c(X,ά(Y)) = 0. (4.16)
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iii) The vector field Uάedeτ&(LG/G) preserves the symplectic form ώ,

&UΛ{ώ) = 0. (4.17)

[Note: The equivalence (i)<-»(ii) is given, in a slightly different formulation,
in [KT].]

Proof. From the definition (2.30) of c we obtain, integrating by parts and using
the commutation relations (2.23),

*c(ά(X), Y) + c(X9 ά(Y)) = i - j*dσ Jdθ(2β -

Therefore, (4.16) is satisfied for all X, Y if and only if (4.5) is; i.e. ά =^αedϊffc S1.
Evaluating &Uά{ώ) on a pair (W^, Wγ) of left-invariant vector fields on LG, we find

= -kc(άX,Ϋ)-kc{X,άΫ),

where (3.3) and (4.13) have been used. Thus, Eqs. (4.16) and (4.17) are equivalent. Π

Henceforth, only the subalgebra difPS1 of superconformal vector fields on S1

will be considered^and thej estriction of thejiomomorphisms (4.14), (4.15) to the
semi-direct sum difPS1 KJ^Q Elements άediSc S1 will normally be designated by
the superfunction άe&iS1) entering in the coordinate representation (4.5). The
dual (fifΓS1* will be identified with the space of (odd-parity) differential forms on
S1 annihilating the (0|l)-dimensional distribution spanned by 3f\

difΓS1* = {l = λ(dσ - θdσ)}, (4.18)

where

λ = λ(σ) + θl(σ), (4.19)

/(σ + 2π) = /(σ), (4.20a)

λ(σ + 2π)= ±λ(σ). (4.20b)

Elements of difFS1* will be designated by the superfunction λ entering in the
coordinate representation (4.18). The dual pairing

is again defined by Berezinian integration

<X a}υ = γ f* dσ J dθλ{a) = ^ j " dσ J dθλa, (421)

or, expressing 1 and a in terms of their components (λ, I) and (α, α), respectively,

U^φ^^dσVa- λtx]. (4.21)
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A super cocycle cv may be defined by

Sv(flu S2) = ̂  T dσ J dθS19(S2) (422)

= ^ 2 J d σ [ α i α 2 + αiα'2], (4.22)

where

S 1 = α 1 + 0 α 1 , α2' = β2 + ̂ α2 (4.23)

This then defines the central extension

dϊfΓS l Λ =dΐfΓ5 1 +]R = {(β,r)}

with super Lie bracket

ί(d1,rί),(a2,r2n = (ίduά2lcv(άua2)). (424)

The next theorem is the main result jof this section, showing that the vector
fields Uά defining the representation of difPS1 on &(LG/G) are derived from an
equivariant moment map.

Theorem 4.3. The symplectic vector fields Uά9 όedifFS1 are Hamiltonian, with

Uά]ώ=-δJά9 (4.25)

where

l ^ I f o 2 22ί (426)

The moment map

k
J: gG^-

is equivariant'.

{jΛ}=J[S,iy ( 4 2 9 )

In component form:

3-a = A Idσ{a[b(E,E) + b(φ',ψ) - b(E, [_φ, ^ ] ) ] + α[b(£,^) - i&(^, iψ,ψ2)l}>

(4.26)

i = ψ + ΘE, (4.27)
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E = g'g~1+KΨ,Ψl (4.30)

The Poisson brackets with the generators J | of left translations satisfy:

{jJLχ)=Jh)' ( 4 3 1 )

andjience the pair {J,JLA} define a Poisson bracket realization of diffS1 tx LgΛ

on LG/G.

Proof. A direct computation from the definition (4.8), (4.11a,b) of Uά and the
formula (4.26) for J~.

In fact, this result may be derived another way that lends further insight into
the structure of the moment map (4.28). Define a map

by

Then, from (427) and (ί28), we see that J is just the composition of JL A, with Jy,

J = J*ΌJL^ (4.33)

i.e. we have a factorization described by the diagram:

LG/G — U duTS1*

The point is that J^ is also a Poisson map with respect to the Lie-Poisson brackets
defined on Lg Λ * by

andondifPs1* by

\ \δV δλ\/J (4.35)

^ G e ^ ί S r s 1 * ) , ledϊfΓS1*.

This is stated in the following theorem, from which Theorem (4.3) may be deduced
as a corollary.

Theorem 4.4. The map J<^:LgΛ*->diffc51* preserves the Poisson brackets (4.34)
and (4.35), i.e.

{FoJ*9GoJs'} = {F9G}oJy

9 (4.36)
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In particular, on linear elements

F = ilayΌ9 G = <!,£>, (4.37)

°J — \J ,b)v = J^, (4.3oJ

we have

{Jζ,Jf} = J?aΛ, (4.39)

i.e. the dual map

r*: a^Jζ ' (4-40)

is a homomorphism to the Poisson algebra on #(Zg A *) .

Proof. It is sufficient to prove the result in its linear form (4.39), since the derivation
property of Poisson brackets then implies it is valid for all F, Ge^(difΓ51*).
Computing the functional derivative of Jζ gives

^ ί 1 Γ

which should be viewed as an element of Lg. Substituting in (4.34) and using the
graded Jacobi identity gives

, 2b$)μ +3>(b)μ}

— (2ι{2b2ι{μ) + 2ι(b)μ) , 2a9(μ) + ®(a)μ}

(Note that since μ is odd, the Jacobi identity implies that [μ, [μ,μ"]] vanishes and
hence, by Ad-invariance, so do all terms of the form <μ", [[μ, μ], X] >.) Integrating
by parts and using identities of the type

b(μ, pi) =

(μ),iϊ)=

we find the factor with coefficient l/4r reduces to:

while the one with coefficient l/4r2 becomes:

- f < μ , {aV -bά'
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Adding gives the result

We see from Theorem 4.4 that Jy is also a moment map, generating
representations of diff S1 as Hamiltonian vector fields on the symplectic leaves of
LgΛ*; i.e. on the coadjoint orbits. In view of Theorem 3.4, which identifies LG/G
with such coadjoint orbits via the moment map J L Λ , we see that Theorem 4.3
follows as a corollary to Theorem 4.4.

Tojobtain further insight into the moment map (4.28), note that, if we decompose
the Lg* moment map JL into Fermi and Bose parts, as in (3.21):

JL = kψ + θ(jL + J$), (4.41)

substitution into (4.28) gives:

J = Γ + ΘL, (4.42)

where

±ϊ ±iφ), (4.43)

L s Yk[f?(Jέ'jLβ)+fc2ί#'? φ)ι ( 4 4 4 )

and Jp, Jβ are the Fermi and Bose "currents". (Note that b(Jp9 Jp) vanishes because
of the graded Jacobi identity.) Equations (4.43), (4.44) may be viewed as the
supersymmetric version of the classical Sugawara formula, which thus differs from
the abelian case only by the presence of the additional %b(Jp, ψ) term.

5. Fourier Analysis

In this section, we re-express the results of Sects. 3 and 4 in terms of Fourier
components. Let {Ta} be a basis for g, orthonormal with respect to the metric b,
and satisfying

lTa,TΛ = ΓabTc. (5.1)

Through the usual identifications Lgci^Lg*, g~g*,Lgci*Lg*, we express the
odd part of JL (i.e. the Fermi field ψ) and the bosonic and fermionic contributions
to the even part (i.e. the currents J\ and Jp) as Fourier series:

Tae-1'", (5.2)

Σ|Vnσ, (5 3a)
neZ «

ΓΛ (5.3b)

where peZ for periodic (R) boundary conditions and peZ + ̂  for anti-periodic
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(NS) ones. The generators of the super loop algebra Lg are then {ψa\P> Ea\n), where

Eφ = EB

φ + EF

φ (5.4)

are the Fourier components of the full current

neZ a

From Eq. (3.25), it follows that the Fourier components of the Fermi current are
expressible as

Eφ=^ΣΣfabΦblPΦφ-P (5.6)

in terms of the Fermi field components.
The non-zero Poisson brackets following from Eqs. (3.10), (3.26) and (3.28) are

then

{Ea\n>Ψb\q}=ΣfabΨc\n + q, (5.7b)
c

{Eφ, £ 6 | m } = ΣfabEφ+m ~ inkδn+mΛδa,b, (5.7c)
C

{EB

]n,E^m}=ΣfCa»Ef]n+m-inkδn+m,oδa<b, (5.7d)

Ψφ+q, (5.7e)

Ef,B+m. (5.70

The boson current components Eφ Poisson commute with both the Fermi field
φa\p and Fermi current components EF

φ. Thus, the set {ψa\P>EF

a\n} generates a
Poisson bracket realization of Lg£ on the Fermi phase space Lg*, while the set
{Eφ} generates a realization of Lg A (central extension of the ordinary loop algebra
with the even part of the cocycle c) on the Bose phase space LG/G. The full set
{^α|p,Efl|w} generates a Poisson bracket realization of LgA on the super phase
space LG/G. According to the results of Sect. 3, these Fermi, Bose and super phase
spaces are all interpretable as coadjoint orbits, within the spaces Lg£ *,LgA* and
£cjfA *, respectively. ^ ^

Next, we turn to the generators of the difPS1 -action on LG/G. Decomposing
the moment map J into even and odd parts as in Eq. (4.42), each of these may be
expressed as a Fourier series:

Γ = ΣΓpe-^, (5.8a)
P

i=ΣV" i M , (5.8b)
neZ

where, again, peΈ for periodic (R) boundary conditions and peZ + ̂  for anti-
periodic (NS) ones. It follows from Eqs. (4.43) and (4.44) that the Fourier
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components for Γ and L are expressible in terms of those for ψ9 J\ and J\ as:

ΓP = i Σ Σ [tf|«*β|p-. + itfi.*.,,-.], (5.9a)

(5.9b).=i{ΣΣ[£?ι«£fι--»]-ΣΣip[^iP^ι-P]l

This may be interpreted as the classical super Sugawara formula. A comparison
with the quantum (i.e. representation theoretic) one of ref. [KT] will be given in
Sect. 8. Note that, by combining Eqs. (5.9a, b) with (5.4) and (5.6), we may express
the generators {Γp,Ln} entirely in terms of the generators {ψa\p>Ea\n} of the super
loop algebra:

1 Γ 1 Ί

(5.10a)

n = W7 Σ Σ Ea\mEa\n-m ~ ^7 Σ Σ φΨalp
LK m a ^K p a

(5.10b)
m q abc

From Eq. (4.39), we obtain the Poisson bracket relations defining the com-
plexified algebra diffj-S1:

{Ln,Lm} = -i(n-m)Ln+m, (5.11a)

(5.11b)

{Γp,Γq-]=±Lp+q. (5.11c)

Finally, from Eq. (4.31), we obtain the Poisson brackets

(5.12a)

{L.,ψalp} = i(p + Ϊ\ψφ+P, (5.12b)

fί
{Γp, Ea\n} = ί-ψa\n + p> (5.12c)

2

{Γp,φaU}=$Ea\p+q. (5.12d)
Relations (5.7a-c),(5.11ajc),(5.12a-d) thus give a Poisson bracket realization of
the full super algebra dif^S1 K LgA.

We note that, at the classical level, the dif^S1 subalgebra (5.11a-c) has no
central extension. In the following section we shall see, however, that a classical
center may be obtained by introducing a slight modification to the representation
(4.8).
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6. Twisted ίfiff^S1 Action

Let p:U(l)-*G be a group homomorphism and p:R-»cj its derivative at the
identity. The corresponding element of R* (x) g = g will also be denoted p. The
homomorphism defined by restricting (4.8) to difPS1 may be modified to define a
new one

Up:aiSc S1 -» der c β(LG/G)9

Up:

Ui^Ui+V^ (6.1)

where Vχ,. is the projection to LG/G of the complex-valued right invariant vector

field on LG given by Eq. (2.13), corresponding to the element Z5e(Lcj)c defined by:

XΛ=-iffp. (6.2)

This is just the infinitesimal form of the "twisted" super conformal action on LG/G
obtained by combining a super reparametrization with the left translation obtained
by composing the Jacobian (exponentiated) with the homomorphism p. It is
straightforward to verify that (6.2) provides a representation of difΓS1 in terms of
super vector fields on LG/G:

m,vu = υyγ (6.3)
It also follows, since both U5 and Vga are Hamiltonian, that Uξ is as well.

Theorem 6.1. The difPS1 representation defined by (6.1) is (infinitesimally) Hamil-
tonian, with moment map

defined by

Jo = J + ib(pjL')9 (6.4)

i.e.

U>}ώ=-δ(J>), (6.5)

where

je = U",ayυ = je + JL

ίά (6.6)

satisfies the Poisson bracket relations

{J!,je} = Jfa-kp2cv(a,b) (6.7)

with
P2 = b(p,p). (6.8)

Proof. Immediate from Theorems 3.3 and 4.4. •

Note that the Poisson bracket relations (6.7) imply that the "twisted" moment
map Jp is non-equivariant, giving a Poisson bracket realization of the centrally
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extended algebra diffcS lΛ defined in (4.24). Denote by

S^ ={(άemc
€S\se(S:)} (6.9)

the complexification of difPS l Λ (i.e., the Ramond or Neveu-Schwarz algebra,
collectively called the super Virasoro algebra). The dual space is:

1 )* , rety (6.10)

with pairing:

<(2,r) , (α,5)> sΞ<2 , ά}v + rs. (6.11)

The super Lie-Poisson brackets on Vir* are then defined by

F, Ge#(Vir*), (I,r)eVir*.

Theorem 6.2. The map

defined by

(F(f t r) + i6(p, μ'\ - rp2)

preserves the Poisson brackets (6.11) and (4.34); i.e., defining

= jf + Kb(p,μ'),a}υ-rsp2, (6.14)

we have

{J& % = %.«*»)• (6-15)

Proof. This follows along the same lines as Theorem 4.4, with the modification

Ψ-ΊF-1"
δμ δμ

= — j 2ά$(μ) - 9(ά)μ - " [μ, μ] i - fp^. Q

In component form, the map (6.13) may be expressed as

) = (a + θu,-rp2% (6.13)where

\ \ (6.16)

(6.17)

u = 2r\ b(m,m) + b(μ\μ)--b(m9lμ,μ']) \ + ib(p,m'\
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and
μ = μ + θm. (6.18)

Returning to the moment map Jp we may, as in the nontwisted case, develop
the components

jp = Γp + ΘLp (6.19)

in Fourier series:

Γ i | W , (6.20a)

\ (6.20b)
neZ

where

Γp

P = Γp-pΣpaψa\P, (6.21a)
a

ίί = L»-»Σp.£.|., (6.21b)
a

and

Pa = Hp,Ta). (6.22)

The Poisson bracket relations (6.7) then give:

£ + m + ikp2n3δn+mtθ9 (6.23a)

s+ F, (6.23b)

kp2p2δp+q,0. (6.23c)

7. Super Integrable Systems

In previous work on integrable systems of PDE's, the Miura map, relating the
KdV and MKdV hierarchies, was interpreted as a special case of the "twisted"
Sugawara formula and generalized to the non-abelian case [Kul]. The super KdV
system introduced in [Ku2] and the supersymmetric extension of the KdV system
([MR], [Ma]) may similarly be viewed as super Hamiltonian systems in Vir* and
used to define commuting superspace extensions of the MKdV system hierarchies.
In this section, we show how the twisted super Sugawara map (6.13) may be used
to determine two Jnjinite families of commuting super integrable systems on the
super loop space Lg Λ * associated with an arbitrary^Lie algebra g.

Let H be a Hamiltonian functional on the space Vir*. The equations of motion
following from the Poisson bracket (6.12) are then:

ut = (ud + du + sp2d3)(^

αt = (da + ̂ d)~- (|W + sp2d3)(^y (7.1b)

* = 0, (7.1c)
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where

λ(t) = (a(t) + θu(t),s) (7.2)

denotes an integral curve. Define a 1-parameter family of Hamiltonians

Hc= J d σ \ u 2 - cococ'l (7.3)
o

It is known that for c = 1 or 2 these define completely integrable extensions of the
KdV system that belong to two hierarchies of commutative flows. The case c = 2
(super KdV) was studied in [Ku2] and c — \ (supersymmetric KdV) in [MR], [Ma].
Only the second, which is supersymmetric, admits a superspace formulation, with
Hamiltonian Hί expressible in terms of Berezinian integration as

H,= $dσjdθλ@{λ), (7.4)

and equations of motion:

λt = 3ίλ@(λ)J-Γ. (7.5)

In component form, the equations of motion (7.1a-c) are

ut = {3u2-u"-3c<xat)', (7.6a)

α, = 3u'α + (2 + c)uoc' - coί\ (7.6b)

where we have fixed the level set of the trivial invariant to be

to obtain the standard normalizations.
Now, denote by

H* = # o J ^ e # ( L g Λ * ) (7.8)

the pull-back of if e#(Vir*) to L(ΓΛ*. The equations of motion in £g Λ * for
Hamiltonian H* and Poisson bracket (4.34) are

( 7 9 a )

(7.9b)

r, = 0, (7.9c)

where

W) (7-10)

denotes an integral curve. The canonical map (6.13), defined in components by
(6.13), (6.16) and (6.17), takes such curves into solutions of (7.1a-c).

For the case Hc of Eq. (7.3), we have
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δHf 2 ^ , u r _, c ,
— — = -um + 2ιup —jlμ,μ] — μ α , (7.11a)
dm r r r

— — = (μu! + 2μ'ιϊ) + 2 —~ Γm, μ~\ + 21COL"p mα' + -=- α' [μ, μ\ (7.1 lb)

δμ r r2 r r2

where

rρ2=-τ (7.12)

for the level set (7.7), with u and α defined by Eqs. (6.16), (6.17). Substituting
(7.11a-b), (7.12) in (7.9a-c), we get nonabelian generalizations of the super MKdV
(c = 2) and supersymmetric MKdV (c = 1) systems. To recover the purely bosonic
systems, set

μ = 0, α = 0. (7.13)

Then Eq. (6.16) becomes

and (7.9a) becomes

mt = -~ [b(m, m) + 2irb(p, m')m — ί(rb(m, m) + 2ίr2b(p, m'))pj
r

+ - [b(m, m) + 2irb(ρ, m')]' [m, p\. (7.15)

In particular, if m = υ is a scalar (g = R 1 ) , this becomes

(7.16)

the usual MKdV equation.
By applying the same procedure of pulling back Hamiltonians on Vir* under

the map (6.13) to the full commuting hierarchies of super-KdV ([Ku2]) and
supersymmetric KdV ([MR],£Ma]) type, we obtain two infinite hierarchies of
commuting flows in the dual LQ Λ * of any super loop algebra with Ad-invariant
metric. These then provide super extensions of the corresponding generalized
MKdV hierarchies.

8. Quantization and Representation Theory

The irreducible unitary highest weight representations of Vir K Lg Λ for compact
G were constructed by Kac and Todorov in [KT]. In this section, we briefly
indicate how quantization of the Poisson bracket algebra defined by Eqs. (5.7),
(5.11) and (5.12), together with the classical Sugawara formula (5.10), leads to the
results of [KT].

First, since the super phase space LG/G may, according to the discussion
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following Theorem 3.4, be viewed as a product of the bosonic phase space LG/G
and the fermionic one Lg1, quantization leads to the tensor product

of a Fermionic Hubert space Jf F with a bosonic one ^fB. The quantized operators
corresponding to the classical generators {ψalp9Eζ{n,E

B

ln,Ealn,Γp,Ln} will be
denoted {φa\p9Eζln9Eξln9Eφ9Γp9Ln}. From the Clifford algebra defined by the
Poisson brackets (5.7a), standard quantization of free Fermions leads to the
fermionic Fock space 3tifF as an infinite wedge product space (i.e. the infinite
dimensional irreducible Clifford module), with positive Fermi components {φa\P}P>o
acting as annihilation operators and negative ones {ψa\P}P<o a s creation operators.
For Ramond boundary conditions, the operators {φa\0} are represented, as usual
(see, e.g. [GO], Sect. 5.1), by Dirac matrices on the 2[d/2]-dimensional Clifford
module of vacuum vectors (d = dimg). The quantization Eφ->.Eφ may be done
in a variety of ways (see, e.g. [PS], [W], [H]), each leading to irreducible highest
weight representations of the afϊϊne Kac-Moody algebra LgΛ on a bosonic Fock
space 3ίfB. The classical relation (5.6) may be quantized to define a representation
of LgA on Jfp generated by the operators

1
Cab''Ψb\pΦc\n-p'" (8.2)

The meaning of the normal ordering operation : : is, as usual, that annihilation
operators are placed to the right, (cf. [GO], Sect. (5.1)).

For purposes of comparison with [KT], we give the following table of notational
equivalents.

Table I.

Present Notation Notation of [KT]

Ψa\p

4.,.

The quantity c2 is the eigenvalue of the quadratic Casimir operator for g in
the adjoint representation. Equation (8.2) corresponds to Eq. (4.2) of [KT] (see
also [GO], Sect. 5.2). The operators {\j/alp,Eζln,Eξln} are extended trivially to the
tensor product 3
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The operators {\j/alp,Eζln}, with

Eφ^EF

φ + E»φ (8.3)

then define an irreducible unitary highest weight representation of LgΛ, provided
the original representation of LgΛ on J^B was such. The quantized version of
(5.7a-f) becomes

ίΦa\p9Φb\q]+ = i^«Λ+«.o> (8 4 a )

Φφ+q, (8.4b)

\n+m + nkδn+m,oδab, (8.4c)

+m + n f c ^ π + m , 0 ^ , (8.4d)

+- + n T <W<A6- (8.4f)

The value of the central term k is, as given in Table 1 ([KT], Theorem 4),

k = kB + Cj-, (8.5)

where kB( = λ(q)/2) denotes the corresponding value for the bosonic affine Kac-
Moody representation generated by {£*„}. ^ ^ ^^

The extension of these representations to Vir ιx LgΛ involves additional
normal ordering in the quantized form of the super Sugawara formulas (5.9a, b),
namely

fP = 4 Σ Σ :[#|.&ι,-. + Afci,--]:

( 8 6 b )

The normal ordering in the first term of (8.6a) is irrelevant, since the factors
commute, while the second is ordered as in [KT], Eq. (5.6). The formula (8.6b) is
not explicitly given in [KT], but the normal ordering for the bosonic part is just
the usual one for the bosonic Sugawara formula, while that for the fermionic part
is the same as in the free quark model ([GO], Sects. 4.1 and 5.4).

The quantized form of the Poisson bracket relations (5.12a-d) becomes:

[ L n , £ α | w ] = - m £ f l | π + m , (8.7a)

(8.7b)

(8.7c)
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φ ^ (8.7d)

Finally, the quantized version of (5.11a-c) gives a representation of the super
Virasoro algebra:

[LnXm\ = (n- m)Ln+m + — n(n2 - l)<5n+m,0, (8.8a)

(8.8b)

(8.8c)ί Γ p i Γ q \ + ^ L p + q + i ( p ±

where, according to [KT], Theorem 4, the value of the central charge c is:

If the same quantization procedure is applied to the "twisted" generators of
Sect. 6, we obtain the operators

fp

P = fp-pΣpaΨa\P, (8.10a)
a

U = Ln-nΣpaEa\n. (8.10b)
a

The resulting central charge is the sum of that obtained classically, as in Eqs.
(6.23a-c), plus that obtained from the quantization:

lH,Vm-\ = (n - m)H+m + Γ ^ φ 2 - 1) - kp 2 n 3 l^ + m , 0 , (8.11a)

m, (8.11b)

^(p2-i) + ikp2p2δp+q<0. (8.11c)
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