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Abstract. We compute the homotopy groups Πo and Πx of the classical
configuration space of an 0(3) invariant field theory o n X x R , where X is a
compact two dimensional manifold for arbitrary genus g and R denotes the
time coordinate. We also present the finite dimensional, unitary, irreducible,
inequivalent representations of the appropriate fundamental groups and
comment on some of their implications.

1. Introduction

In the recent past the 2 + 1 dimensional 0(3) sigma model with Hopf term added
to the action has been considered in the context of high temperature superconducti-
vity [1] and fractional statistics conceivable for a 2 + 1 dimensional system [2].
If the two dimensional space is taken to be S2 (equivalently, if the σ model field
n(x, ί)->the north pole as |x| -> oo), the coefficient of the Hopf term in the action
is arbitrary which in turn reflects the possibility of fractional statistics [2]. Recently
two of us (T. R. G. and R. S.) considered the case where n(x, t) satisfies periodic
boundary conditions (equivalently the two dimensional space is a torus). They
showed that there are two possible inequivalent quantizations and suggested that
only the usual Bose-Einstein and Fermi-Dirac statistics are possible [3].

In the present paper we generalize the analysis to include the case where the
two dimensional space is an arbitrary compact, orientable surface of genus g ^ 1.

When the genus g ^ 1, the fundamental group, 771? of the configuration space
of the σ model field theory is non-abelian and is different for each g. This therefore
provides examples to analyze the effects of IJ1 on the quantization procedure [4],
which is interesting in itself. A "physical" situation where a genus g surface could
be relevant may be conceived as follows:

Imagine a macroscopic lattice system with an 0(3) invariant Hamiltonian and
whose boundary is a Ag sided polygon. For large enough g this may be considered
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as an approximation to the actual physical boundary. Various types of boundary
conditions can be considered for such a system. Among these there is a class of
boundary conditions such that the basic variables assume the same values on pairs
of sides of the polygonal boundary. In a continuum limit, preserving the 0(3)
symmetry and the boundary conditions such a system can be approximated by an
0(3) invariant σ model with basic variables defined on a genus g surface. Physical
results derived from such a model, which are insensitive to the genus could then
be considered to be valid for a large class of boundary conditions. Results which
are sensitive to the genus could be used to discriminate between different boundaries
and boundary conditions.

Let us briefly consider the ambiguities in quantization introduced by a nontrivial
fundamental group of the classical configuration space.

Let Γ be a classical configuration space which is a differentiable manifold
admitting a suitable measure. One can construct a Hubert space of complex valued,
square integrable "functions" on Γ. If Π^Γ) is trivial then one may consider only
single valued functions and the Hubert space of square integrable functions then
constrains candidate quantum mechanical state spaces. However if the Π^Γ) is
nontrivial then there is a possibility of defining multivalued functions on Γ (as
functions obtained from singled valued functions on the universal covering space
of Γ) and constructing the corresponding Hubert spaces. These multivalued
functions are classified by unitary, one dimensional representations of Π^Γ). More
generally instead of "functions" one may consider sections of finite rank complex
vector bundles with structure group containing Π^Γ) as a subgroup. Hubert
spaces of such sections may now be classified by unitary, finite dimensional
representations oίΠ^Γ). Since in general there exist several unitarily inequivalent
representations one gets several inequivalent candidate state spaces for a quantum
system associated with Γ. Which of these is to be chosen in a given situation is
the ambiguity in quantization referred to above. Note that even if one chooses a
particular representation of Π^Γ), depending upon the algebra of physical
observables one may get further inequivalent physical state spaces, but at present
we concentrate only on inequivalence implied by inequivalent representations of
ΠX(Γ). For simple illustrative examples of these "77! effects" see Isham, in ref. [4].

In the present work we take Γto be the configuration space of an 0(3) invariant
sigma model defined on (a genus g surface) x R (time coordinate), compute its 770

and Π1 groups and classify the finite dimensional, unitary representations of Πί.
The paper is organized as follows:
In Sect. 2 we present an explicit description of the configuration space Γ and

compute the Π0(Γ)—the set of homotopically disjoint sectors of Γ (which signals
the possibility of the existence of topological solitons in a model).

In Sect. 3 we compute the Πί of these disjoint sectors, using some homotopy
invariant integrals.

In Sect. 4 we present the unitary, finite dimensional, inequivalent, irreducible
representations of Π1.

Section V summarizes the conclusions and includes a brief discussion of the
results.

An appendix is included to prove some of the results used in the main body.
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2. Computation of Π0(Γ)

Let X be a compact Riemann surface of genus g greater than 0 and let Γ be the
space of smooth maps from X to the sphere, S2 such that a fixed point of X goes
to the north pole of S2 (say). We take the sphere as the unit sphere in R 3 described
by a three dimensional vector n satisfying n n = 1. Thus,

Γ={n(X)/n:X->S 2 ;π n = l } . (2.1)

The homotopy classes of these maps will form a set Πo. We wish to determine
Πo. It is convenient to choose a model for X just as we have chosen the unit
sphere in R 3 as a model for S2. Recall that a genus g surface can be represented
as a 4g sided polygon in R 2 with pairs of sides identified [5]. Equivalently we
choose as a model for X the unit disc in R 2 with 4g boundary arcs identified pair
wise (Fig. 1). Introducing the (r, 0) coordinates in the unit disc, the Ag arcs can be
described explicitly as the set of points (see Fig. 1):

(r,0) = (l,0); 0,
where (2.2)

θt = - ^ , and θtg = 2π.

Label the arcs, r = 1, as: (for i = 1 •••#)

tfi = [04ΐ-4>04ΐ-3]> &i= [#4i-3>04i-2]

af1 = [0 4 l _ 2 ,e 4 ί -i]> K1 = [04i-i A J . (2.3)

The points (1,0,), i = 1 --4g are identified as the base point Po on X and all
the maps n are required to take Po to the north pole, n, of the S2. Also the arcs
α,-,^"1, bfrbf1 are identified Vi = 1 --g.

The maps can now be specified more explicitly as maps n(r,0) defined for
0 ^ r S 1, 0 S θ S 2π, such that,

i) n(l,0f) = ή for i = 0, l,...,4g-1;

Fig. 1. A model for a genus g surface. The arcs ap^1, bfc1 are identified and so are the points labeled Po
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ii) n(lθi + 3) = n(lθi+3-3) for <9e[O,π/20], (2.4)

and for ί = 4/ or 4/ + 1 with 7 = 0,1, ,gr — 1.

Theorem 2.1. Any n:X->S 2 is homotopic to a map n' :X-+S 2 which can be viewed
as a map from S2 to S2.

Proof. Let n be a given map from X to S2. Let nf denote its restriction to the fth

sector (Fig. 1). Now n f(l,0) gives a map from S1 to S2 since each of the arcs is
homeomorphic to a circle. Since Π^S2) is trivial this map is homotopic to a
constant map. Furthermore this constant may be chosen as ή since at θt and 0 f + 1

n(l, 0) = ft. This implies that there exists a 1-parameter family of maps from S 1 to
S2, πijία, 0), such that

(0
(ϋ)

(iii)

m ι (σ,0 i) = ]

mί(O,0) = i

m(l,0) = ί

mi(σ,0I +

11,(1,0),

ii for

l) =

VII

ft Vσe[0,

0^0 i + 1 .

1],

(2.5)

Note that (i) implies that for all σe[0, l]mf(a,0) is a map from S1 to S2.
It is straightforward to see that given a family of maps m^σ, 0), for every

0 S ε ^ 1 there exists another family m^σ, 0) such that m;(σ, 0) satisfies conditions
(i) and (ii) of Eq. (2.5) and satisfies,

(iii)' m'i(σ,θ) = & V l - ε ^ σ ^ l . (2.6)

Therefore without loss of generality we take m^σ, 0) to satisfy Eq. (2.6).

Define:

Mrlftσlβ) for 0 ^
n; (r ,0,σ)= I / Γ

mi — -1,0J for /(σ) = r =

where /(σ) is a smooth function satisfying,

= l , /(0)=l, /(I) =1/2. (2.8)

The conditions on /(σ) ensure that n'(r, 0, σ) is well defined for each of its
domains of definitions and is continuous at r = f(σ) by virtue of condition (ii) of
Eq. (2.5). Furthermore,

n;(r,0,O) = nf(r,0) for 0 = r = l and,

m ί ( 2 r - l , β ) for l/2 = r = f U j

Hence nj(r, 0,1) = ft for 1 — ε/2 ^ r = 1 and every n( is homotopic to a map is
constant outside r < 1 — ε/2 sub sector. This can be repeated for all the sectors. All
these n£, i = 1,..., 4#, maps match smoothly across the sector boundaries. Therefore
for every map n : X - > 5 2 , there exists n' X - ^ S 2 which is homotopic to n and
n'(l, 0) = ft V0 ^ 0 g 2π. But this can be viewed as a map from S 2 -• S2, proving the
theorem. •
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Since homotopy relation is an equivalence relation it follows that if n1 and n2

are homotopic then so are rit and ri2 viewed as maps from S2 to S2. Thus we have
a one to one correspondence between homotopy classes in Γ and those in Π2(S2).
This correspondence is also onto since any map from S2 to S2 (domain S2 viewed
as a sub-disc of Fig. 1) can be trivially extended to a map from X to S2. Hence
Γ = (J Γ, where Γn denotes the nth homotopy class of JΓ. The one-to-one and onto

neZ

correspondence can also be used to make Π0(Γ) = {ΓJneΈ} a group, isomorphic
to Π2(S2).

Thus we get Π0(Γ) ^ TL.
Incidentally this result can also be proved using the facts that a) K(Z9 2) = CP 0 0

and b) S2 is the 3-skeleton of (DP00, where K(Z, 2) is an Eilenberg-MacLane space
[6].

3. Computation of Π^Γ,)

In Sect. 2 we saw that the configuration space Γ splits into topologically disjoint
sectors Γn, neΈ. The quantization on /"can be then analyzed by looking at each
of the /~ys one at a time. Thus we need to compute Π^ΓJ, VneZ. It turns out
that Π^Γn) is isomorphic to Π^ΓQ) VweZ. This result is established in appendix.
(Section D)

Thus it is sufficient to compute Π^ΓQ). For this computation we need further
machinery. Given a map n: M -* S2, where M is some manifold of dimension k ^ 2,
define a closed two form ω as

ω = ocεabcnadnb A dnc, α = l/8π. (3.1)

Let S be a two dimensional submanifold of M, without boundary, i.e. dS = φ.
Define,

J ( n ) . (3.2)

As shown in the appendix, the integral is a homotopy invariant which gives the

Result, //n is homotopic to nu then / s [n] = /sCn'].

Now let us consider Γo = space of maps which are connected to the constant
maps. Consider a closed path in Γo. Such paths can be viewed as maps n: M -> S2,
where M = X x S1. M can be modelled as in Fig. 2, and the map n:M ->S2 can
be specified as a map n(r,θ9t) such that for each ίe[0,1], n(r,0,t) is a map from
X to S2 and n(r, 0, ί) satisfies,

(i) n(r,0,O) = n(r,6U) = n.

(ii) n(lθht) = ή Vi = 0,1,.. ., 4 0 - 1 ; and ίe[0, l ] . (3.3)

These conditions imply that each surface Sa, α = 1,...,2#, is topologically a
torus (Fig. 2). Furthermore the surfaces Sa and Sβ-i have identical values of n and
ω(n). For each α = 1,..., 2g define,

. (3.4)
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t=Ί

t = 0

Fig. 2. A model for M = X x S*,X being represented as in Fig. 1 while S1 is labeled by t with t = 0

and 1 being identified

Fig. 3. Tubes Ta and Tb used in describing Xa, Ya configuration

Since these are homotopy invariants we get that if i^ ~ n2 then

(3.5)

For each α = 1,...,2# define configurations XΛ such that XΛ is ίi outside a
small tube beginning at Sa and ending at Sα-i such that / α [^ α ] = 1 (see Fig. 3).
Since Xa restricted to Sa, is nVα'^α we have,

/ α [ * J = <W (3.6)

Now on the space of maps n(r, 0, ί) define a composition law as

n ^ r , θ,ί) = ni(r,0,2ί)

= n2(r,0,2ί-l) l/2gίgl. (3.7)

Clearly nx °n2 is well defined. An example is shown in Fig. 4. It is easy to see that

on2] = / α [nJ + / α [n 2 ] . (3.8)= ί
Theorem 3.1. Lei n be α configuration such that /α[n] = Ofor all α = 1,..., 2#. Then
n is homotopic to a map which can be viewed as a map from S2 to S2.

Proof. Let nα be the restriction on n to Sα. nα's are maps from torus T2 to S2 which
may be viewed as a map from S2 to S2 by Theorem 2.1. Furthermore since /α[n] = 0
Vα, each of nα's can be reduced to a constant map. Since all Sa have one point in
common—namely the fixed point Po on X, all these constants must be equal to
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Fig. 4. Configuration Xa°Ya°Xa

 ι° Ya

 1 as an illustration of the homotopy composition law

ή. Thus the given map n can be homotopically reduced to a map which is constant
on all surfaces, Sα's. But then it can be viewed as a map from S3 to S2. •

Now let n:M->S 2 such that /α[n] = mα. Define

(3.10)

Clearly /α[n] = 0 Vα = 1,...,2#. Hence ή is homotopic to a map that can be
viewed as a map from S3 to S2. Homotopy classes of maps from S3 to S2 constitute
the group Π3(S2) which by Hopf theorem is isomorphic to Έ [7]. The homotopy
classes of n maps can then be characterized by a homotopy invariant, H[n], defined
as: i ί[n] = / m [n], with /m[n] defined in Eq. (A.ll) of the appendix.

Theorem 3.2. Two maps nh n2 are homotopic to each other iff

/ α [ n i ] = /α[n2] Vα=l,...,2fif
and

Proof. Since each of the /α's and H are homotopy invariants it follows that
n i ~n 2=>all invariants are equal. Conversely let /α[n f], and H[nJ be equal for
i= 1,2 and α = l,...,2gf.

i.e.

=>nί ~ n 2 , since Xt

 loXt is homotopic to a constant map. •

Now let Z be a configuration which is ή outside a ball in M (so that
J α [Z] = 0Vα's) and such that H[Z] = 1. If # [ n ] = mH then n ~ ( Z ) m " . As a
by-product we see that any n:M->S 2 can be expressed as:

Hence Π^ΓQ) is generated by 2g + 1 generators X ^ Λ ^ , . . . , ^ , and Z. The
group composition law is specified if we specify the relations among the generators.
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Fig. 5 a-c. a M' connected to Sa by two tubes, b The tubes brought closer to touch each other without
disturbing the configuration inside M'. c The tubes fused together and detached from Sa to form a
handle on M'

From Theorem 3.2 proved above we see that,

ZoXa~XaoZ and,

XΛ°Xβ°χ-^X;1- (Z)k(a>β) for some integers /c(α,β). (3.12)

Computation of Π^ΓQ) will be accomplished if we obtain k(oc,β).
The computation of /c(α, β) is facilitated by the following observation.
Let M' be a region in M as shown in Fig. (5a). Let AT be connected by two

tubes to a surface 5α, say, as shown in the figure. Let n be a configuration which
is the north pole n outside M' and the connecting tubes and satisfying,

J ω[n] = 0. (3.13)

The two tubes can be brought closer to touch each other in a continuous
manner (Fig. 5a-c). Thus we get another homotopically equivalent configuration
n' which equals ή outside M' and the tubes, and matches n inside AT. On Sa itself
n' can be made equal to ή due to Eq. (3.13). Clearly the same can be done inside
the tubes. But then the tubes can be fused and detached from Sa to form a handle
on AT. In these continuous processes the configuration inside M' is unaffected. If
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there are several pairs of tubes connecting M to several surfaces Sα's then the same
procedure can be repeated independently for each pair. Thus the original
configuration n is homotopically equivalent to a configuration n' which is confined
to M' with several handles attached and matching with n inside AT.

It is convenient to label the configurations Xa's as,

} a=l,....g. (3.14)
= Λ2a )

Applying this reasoning to the configurations Xa°Yb

oX~1°Yb~
1 we see that

Xa°Yb°X~1°Yb

1 is homotopic to a configuration confined to two closed tubes
(coming from XaiX~ι and Yb, Yb

x) which are linked if a = b unlinked if a Φ b.
The closed tubes coming from Xa°Xb°X~ ι°Xb

 1 and Ya°Yb° Yΰ 1°Yb1 a r e always
unlinked.

In the appendix, (Section C) using these observations, fe(α, β) is computed. The
result is:

X α o X , o χ α - 1 o χ - 1 „ (Z)°, Yao Ybo yβ-1o Y-1 ^ ( Z )°

;:::ωd

Denoting the homotopy classes of Xa and Z by the same symbols, Eq. (3.15)
translates into the specification of group multiplication relations for the generators
oίΠ^Γo).

Thus to summarize, the fundamental group Π^ΓQ) is an infinite group
generated by 2g + 1 generators Z and Xa, Ya, a = 1,2,...,#, satisfying the group
multiplication:

- xΛ9 γaz = zγa,
Yb-Xai if aφb9

Z2ΎbXai if α = ft.

4. Representations of i7 1(i" 0)

In the previous section we computed the group Π^ΓQ) for generic values of the
genus g. If we denote by G the infinite group generated by X, 7, Z satisfying

V.y 7. Y Y'7 ΎΎ Y- V T2. V.Y (Λ \\
A C — Z / A , I Z/ — Li I , Λ I — Z, I Λ , ( 4 . 1 J

then

G = GxGx ••• x G (# factors). (4.2)

is homomorphic to Π^ΓQ).

Consequently any finite dimensional, unitary, irreducible representation R of
Π^ΓQ) is expressible as

i(Λ))] ~ Ri(G) ® R2(G) ® ® R^(G), (4.3)
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where R;(G) are various finite dimensional, unitary, irreducible representations of
G satisfying R,(Z) = R, (Z) ViJ. It follows that RLΠ^Γo)] is equivalent to RtίΠ1(Γ0)']
iff the corresponding Rf(G) and RJ.(G) are equivalent for all i = 1,... ,#. It suffices
then to classify finite dimensional, unitary, irreducible representations of G up to
unitary equivalence. This mathematical problem (and some of its generalizations)
has been solved in detail in ref. [8]. We summarize the results below.

(i) Since Z commutes with X and Y and therefore with all elements of G, in any
unitary, irreducible representation of G, Z = eiθl, where / denotes a unit matrix of
order n. For finite dimensional representations taking determinant of both sides
of Eq. (4.1) we see that ξ Ξ= e2iθ must be an nth root of unity for some n( = dim R(G)).

(ii) If A, B, ξl are unitary representatives of X, Y, Z 2 respectively then so are
A' = μA, B' = vB, Z2 = ξl9 provided μ, v are phases, i.e. μ = eia

9 v = eiβ.

(iii) It is easy to see that for every n and ξ an nth root of unity, An

9 Bn commute
with the whole group G and thus are multiplis of the identity matrix—the
multiples being phases. In view of (ii) above, we may choose A,B to satisfy
An = Bn = /.

The unitary k x k matrices A, B, Z2 satisfying

Z2 = ξΊ, ξn=l An = Bn = I, (4.4)

generate a finite group of matrices containing n3 elements.
Now applying the standard theory of representations for finite groups one gets

the

Result. Given π ^ l , for every q = l,2,...,n there are (q,ri)2 representations of
A,B,Z2 matrices, each of dimension n/{q,n); where (q,n) denotes the greatest
common divisor of q and n.

Taking q = n we see that there are n2, one dimensional representations and for
every q such that q and n are relatively prime there is an n dimensional
representation. In particular if n is a prime then there are (n — 1) representations
of dimension n each, apart from the n2 1-dimensional representations. When n is
a prime it is easy to describe these representations explicitly as:

a) The n2 one dimensional representations are given as:

= (ξo)
k; B =

where
and k,l=

b) The n dimensional representations are given as:

0
0

1

1
0

0

0
1

0

... o
Λ. 0

... o
, B =

M V M

ξ
0

0

0

ξ2

0

0 •••
0 •••

ό •••

0
0

Zz = ξ Inxn with ξ = {ξof, k = l , 2 , . . . , m - l .

For the case when n is not a prime, see ref. [ 8 ]
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(iv) Let us specialize to the 1-dimensional representations.
It is obvious that X = eia, Y=eiβ, Z2 = 1 = e2iθ gives a representation Vα, βe[0,2π),

0 = 0 or π. Furthermore all these representations are inequivalent. The one
dimensional representations described above when n is a prime integer are just
subsets of these. Thus the set of all inequivalent, unitary representations of G are
parameterized by α, βe[0,2π) and Θ = 0, π.

The 1-dimensional representations of Π1(Γ0)~ G x G x ••• x G are similarly
given by Xt = exp(iαf), Yt = exp(z'A), Z 2 = 1. Thus the set of these representations
is parametrized by 2g parameters oth/?, e[0,2π) Vί = 1,2,...,#; and 0 = 0, π.

(v) For non-one-dimensional representations of G also we get a family of
representations parameterized by two continuous parameters α and β and by a
discrete parameter taking a finite number of values (the value being dependent on
whether n is a prime or not). The parameters enter as shown in (ii) above. However,
depending upon the dimension k of the representation, eia, eiβ give equivalent
representations if they are fcth roots of unity. Similarly for non-one-dimensional
representations of ΠX{ΓO) there will be g times as many parameters.

Since there are non-denumerably many inequivalent representations of the
fundamental group, there is a corresponding non-countable infinity of inequivalent
quantizations V# ̂  1.

5. Summary and Discussion

The results derived above can be summarized as follows.

1. For a generic 2 + 1 dimensional 0(3) invariant non-linear sigma model on a
(genus g compact surface) x R 1 , the classical configuration space has countably
infinite number of homotopically disjoint sectors, labeled by elements of the 77O ~ Z
group, for all g ^ 0. The fundamental groups Π1 's of all these sectors are isomorphic
to il^Γo).

2. The fundamental groups fall into two classes:

i) g = 0: Π^ΓQ) is abelian. All its unitary, irreducible representations are one
dimensional and these can be parametrized by a single θ. In ref. [1] this has been
interpreted—albeit in a different framework—to suggest the existence of fractional
statistics (or ^-statistics).

ii) g > 0: Π^PQ) is non-abelian. It has 2g parameter family of inequivalent, unitary,
one dimensional representations. However, in addition, it has infinitely many
non-one-dimensional, unitary, irreducible, inequivalent representations allowing
for the possibility of "exotic statistics" [9,10].

In both cases there are infinitely many inequivalent quantizations.
These mathematical facts raise several questions. Two of these are singled out

below.

a) The issue of statistics for a quantum system is a subtle one. From the definition
of statistics adopted in ref. [10], we see that a quantum system may have several
inequivalent quantizations and yet fewer types of statistics—some of which may
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be "exotic." For the system discussed in the present work one may try to follow
two approaches. One may regarded the quantum field theory as a single system
with several inequivalent quantizations and analyze inequivalent quantizations
and statistics for a collection of such systems. This will amount to a generalization
of the procedure discussed in ref. [10]. Alternatively one may attempt to interpret
the quantum field theory itself as a collection of several subsystems and try to
specify their possible statistics. This approach may be viewed as raising the question:
under what conditions can a given quantum theory be interpreted as a collection
of subsystems obeying some (perhaps exotic) statistics?
b) If in some specific dynamical model, one introduces a motion of statistics for
the states—in some semi-classical approximation, say—a la Wilczek-Zee in [2],
then it seems that only the value of the Z generator is relevant for determining
the statistics. If true, then for all g ^ 1 we may have only the usual two statistics,
although infinitely may inequivalent quantizations, for quantizations involving one
dimensional representations. In view of the interpretation of the genus in terms of
a class of boundary conditions for a finite size lattice system, the genus zero case
appears to be a "set of measure zero" within this class of boundary conditions. At
least for systems with single component wave functions, the system may "largely"
exhibit the Bose-Einstein or the Fermi-Dirac statistics. One way to test these
heuristic arguments is to study a finite size lattice system with a probability
distribution for the class of boundary conditions and analyze its continuum limit
in detail.

Both of these questions will get stronger motivation if one can conceive of a
physical system where the mathematical results will become directly relevant and
testable.

Appendix

A. Homotopy Invariants
Let M be a 3 dimensional manifold and let n: M -> S2 be a smooth map, i.e. a set
of 3 maps nι:M-+IR such that £ n ' w* = 1.

i

Define a two form

ω = (xεabcnadnb A dnc, where α = l/8π. (A. 1)

Since only two of the dna's are independent it follows that

dω = <xεabcdna A dnb A dnc = 0. (A.2)

For a two dimensional surface S consider the integeral

(n). (A.3)

Under a smooth variation <5n of n maintaining the constraint n n = 1, the
integral varies, as,

<5/s[n] = J ω(<5n) = J δω(n). (A.4)

Now,

δω(n) = 3aεabcδnadnb A dnc + 2θLεabcd(naδnbdnc). (A.5)
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Lemma.

εabcδnadnb A dnc = 0. (A.6)

Proof.

εabcδnadnb A dnc = 2(δn1dn2 A dn3 + δn2n3 A dn1 + δn3dnι A dn2\ (A.7)

naaa =l=>δnini = 0 and dnlnl = 0, and not all nι can be zero simultaneously.
Let n 3 ̂  0 then,

δn3 = -{δnιnι + δn2n2)/n3 and d/i3 = - ( A i V + dn2n2)/n3 (A.8)

Λ left-hand side = -(2/n3)[<5n W A (dn'n1 + dn2n2) + drΐ{dnιnι + dn2n2) Λ dn1

+ (^n1^1 + δn2n2)dnι A dn2] = 0. • (A.9)

Therefore

a/5[n] = J 2oίεabcd(naδnbdnc) = J ToufffSitdrf. (A. 10)
s as

Thus we get the

Result.

ί/5[π]=0

if(ι)dS = φ

or (ii) if the variations of δn vanish on dS.

These are precisely the conditions we need in Sect. 2 and hence / s [n] are
homotopy invariants.

Since dω = 0, locally there exists a 1-form A such that ω = dA and A is defined
up to an exact 1-form.

Let Σ be a 3 dimensional submanifold of M, define

Λ ω . (A. 11)

Theorem A.I. /Γ[n] is α homotopy invariant provided either,

(i) dΣ = φ or (ii) ω | δΣ = 0 and <5n \dΣ = 0.

Proof It is easy to see that IΣ(ή) is well defined when either of the conditions (i)
and (ii) is satisfied.

Consider,

δIΣ(ή) = J δ(A Aω) = \δAAω + AA δω.

But

δω = d(2(xεabcnaδnbdnc) = dy from Eqs. (A.5,6)

dδA = δω = dy

δA — y + j8, where jS is a closed 1-form.

Λ δA = y + df. (locally)
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Thus locally we get,

δA Λ ω + A A δω = d(γ A A + fώ) + 2y Λ ω.

From the explicit expressions for γ and ω it is easy to see that γ A ω = 0.

dΣ

= 0 if (i) dΣ=φ or (ii) ω = 0 = <5n on δX since (5n = o<=>y = 0.

Again these are precisely the situations encountered in Sect. 2 and thus IΣ\_n\ is
also a homotopy invariant. •

Note. A A ω = A A dA looks like a Chern-Simon 3-form for an Abelian gauge
theory. In general, integrals of Chern-Simon forms are not topological invariants
since δ(A A dA) is not exact. However in the present case γ A ω = 0 ensures that
δ(A A dA) is exact and hence the integrals are topological invariants.

In fact if Σ is topologically S3 and if n\Σ is a map from S3 to S2 (i.e. n\dΣ = the
north pole ή of S2), then IΣ(n) can be normalized to integers and it essentially
computes the Hopf invariant [7].

B. Generators of
In Sect. 3 we introduced configurations XJs and Z which generate Π^ΓQ). These
can be constructed explicitly as follows. Recall that Xa is a configuration defined
so that,

(i) Xa:M-+S\
(ii) Xt outside and on the boundary of the solid tube shown in Fig. 3 goes to the

north pole, ή.

(iii) Xa\Saorsa-ι satisfies Isμa)=l.

Xa can be constructed as follows:
Let the tube be described by coordinates (p, φ, z) such that

O ^ z ^ l . (B.I)

Clearly z = constant defines a disc, D, of radius Δ, Fig. 6.
Let n = n(p, φ\ i.e. n is independent of z, such that

n(p=l,φ) = ίl and j ω(n)=l. (B.2)
disc at z

Thus Xa is constructed if we construct a map n:disc-+iS2 such that j ω= 1.
disc

The S2 can be described by angles Θ and φ and therefore n:disc-»S2 can be

Fig. 6. (p, φ, z) coordinates for a tube. D is a disc at z = z.
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described in terms of Θ = Θ(p9 φ), φ = φ(p, φ\ with

n1 = sin Θ cos φ, n2 = sin Θsin φy n3 = cos Θ. (B.3)

Thus gives

ω = 2α sin Θ dΘ A dφ. (B.4)

Define,

Θ{p,φ) = π(l-p/Δ) and φ(p,φ)=-φ for p#0,4. (B.5)

Then

ω = 2ocπ'ύn(πp)-dp Λdφ and J ω = 8 π α = l since α=l/8π. (B.6)
disc

This establishes explicitly the existence of Xa configurations.
The Z configuration was defined to be non-constant inside a ball contained in

M such that /ί[Z] = 1. Parameterizing the ball as 53,Z can simply be taken to
be the Hopf map from S3 to S2 [11].

C. Basic Algebraic Relations for Π^ΓQ)
In this section we calculate the basic algebraic relations among the generators.

Recall that in Sect. 3 we established that, X^Xβ X'^Xβ1 ~Zk(a'β) and that
the left-hand side configuration was homotopic to a configuration involving either
two linked or unlinked tubes such that n = n outside and on the tubes and the
integrals of ω over discs within each tube is ± 1.

Let T1 and T2 be two closed tubes either linked or unlinked but non-intersecting,
as shown in Fig. 7a, b.

Let ω be the restriction of ω to the tubes Th i = 1,2. Since ω is zero outside
the tubes we have ω = ω 1 + ω 2. Let Ah i= 1,2 be two 1-forms so that locally
ω( = dAh for i= 1,2.

Define A = At+ A2. Clearly dA = ω1-\~ω2 = ω. Now,

\A Λ ω = A2) Λ ωι A2) A ω2. (C.I)

Fig. 7a. Two linked tubes used in the computation of the Hopf invariant. The surface S, bounded by
C, necessarily intersects T2. b Two unlinked tubes. S does not intersect T2 giving the integral of ω2

over 5 to be zero
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Lemma.

. Λ ω ^ O for i = l,2. (C.2)

Proof. Inside a tube we can always choose the (p, φ, z) co-ordinates and write,

ω = ωpφ(p> φ)'dρ A dφ and A = A{ρ, φ) + β(z\ (C.3)

where,

A(p9φ) = Aβ(p,φ)dp + Aφ(Piφ)dφ, dA = ω; and β(z) = βz(z)dz, dβ = O. (C.4)

Clearly

AΛco = AΛω + βΛω = βΛω. (C.5)

Thus,

J A A ω = J βz(z)'ωpφ(ρ, φ)dz A dp A dφ

= j βz(z)dz since J ωpφ{ρ9 φ)dp A dφ = 1. (C.6)

To determine \βzdz consider a surface S as shown in Fig. 7a. S is bounded by
the curves C and C given by, C:p = p, φ = φ and C:p = 4, φ = φ (say). Since p = Δ
is identified to a point, C is actually a trivial curve and therefore S has only one
boundary component namely the curve C.

Now ω | s = 0 since dp A dφ\s = 0. Therefore,

f Γ\ Γ/-//I X / l ϋ /( j i[ /? Z'/"** 7 \

S S C C C

1

But i4| c = 0 since dp\c = dφ\c = 0 and §β = §βz{z)dz.
Therefore c °

It follows then that

A A ω = J Λ2 Λ ω x + J Aγ A ω2. (C.8)

τ 1 + τ 2 τ t τ2

Consider

J i42 Λ ωγ = I ^ 2 (p,φ,z) Λ ίωlpφ(ρ,φ)-dρ A dφ\

= j A2z(ρ9φ,z)'ωlpφ(ρ,φ)dρ A dφ A dz

1

= J co l p < p(p, φ)dp A ίiφ j A 2 z (p, <p, z)dz. (C.9)
disc 0

Note that the integral of Azdz is over a closed curve defined by p = constant,
φ = constant. If S' is a surface such that dS' is the closed curve, (e.g. the surface S
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itself) then the line integral of A2zdz is the same as the surface integral of d(A2zdz)
over S'. But this is the same as the integral of ω2 on S'.

If 7\ and T2 are unlinked then S' can be chosen so as not to intersect with T2

and then since ω2 is zero outside T2, Jω 2 = 0. However if T\ and T2 are linked

then S' necessarily intersects T2 giving Jω 2 = ± 1 . Therefore,

\A2Λωι= J ωx- f ω 2 = ± l or 0. (CIO)
Tj disci disc 2

Similarly j Ai A ω2 = the same expression as above = ± 1 or 0.

Thus

c Λ f -h 2 if the tubes are linked
I ΛΛω = < Λ f . (C.ll)

τ ; τ ( 0 otherwise.
Thus

{ tubes b l i n k e d
0 otherwise. v '

For the linked tubes corresponding to the Jfα, 7fl generators the integrals of ω
on the respective discs is + 1 giving us the algebraic relations in Sect. 3.

D. Computation of ΠX{ΓΉ\ NeZ
The method of computation of Πι(ΓN) follows closely the method of computation
of Π^ΓQ) with some modifications.

Consider FN > the space of maps from X to S2 for which / x [n] = j ω[n] = N.

Closed paths in ΓN can be viewed as maps n: M-^52, where M = 3£x S1. M can
be modeled as in Fig. 2, and the map n: M -• S2 can be specified as a map n(r, θ, t)
such that for each ίe[0,l], n(r,0,ί) is a map from X to S2 belonging to ΓN and
it satisfies,

(i) n(r,0,O) = n M , l ) = ii*,

(ii) 11(1,0^) = ή Vi = 0,1,..., 4 0 - 1 ; and ίe[0,l]. (D.I)

Here n* is the base point for the closed loops in ΓN. n* is chosen once and for
all throughout the computation of the fundamental group. We choose n* to be
non-trivial inside a disc r < r o ( < l ) and require that /χ[p*] = Λf. Note that all
closed paths in ΓN, based at n*, satisfy the condition that the integral of ω over
a surface t = constant is N.

These conditions imply that each surface SΛ, <x=l,...,2g, is topologically a
torus (Fig. 2). Furthermore the surfaces Sa and SΛ-i have identical values of n and
ω(n). For each α = 1,..., 2g define,

J (D.2)

Since these are homotopy invariants we get that if n1 ~ n2 then

,...,20. (D.3)
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Fig. 8. Tubes Ta and T3 used in describing the configuration Xa

Let 3:M-»S2 be a map such that

3(r,0,t) = n*(r,0) Vίe[0,l]. (DA)

Since n*(r, 0) is non-trivial only in a disc r < r0,3(r, 0, ί) is non-trivial only in a
tube Γ3 connecting ί = 0 and t = 1 surfaces.

For each α = 1,...,2# let Γfl be a small tube connecting the surfaces Sa and
Sa-ι and not intersecting the tube Tr Define Xa to be a configuration which is
(see Fig. 8):

(a) ή outside ΓαuT3,

(b) matches with 3(r, 0, t) inside Γ3 and (D.5)

(c) satisfies / α <[*J = <5α,α •

Also it follows that / t = c o n s t a n t [XJ = N Vίe[0,1].

Now on the space of maps n(r, 0, ί) define a composition law as

nxon2(r,0, t) = nx(r, 0,2ί) 0 ^ ί ̂  1/2

= n(r,0,2ί~l) 1/2 ̂  t ̂  1.

Clearly n1°n2 is well defined.
It is easy to see that

(D.6)

(D.7)

Theorem D.I. Let nbea configuration such that /α[n] = Ofor all(x=l,...,2g. Then
n is homotopic to a map which can be viewed as a map from S2 x S1 to S2.

Proof. Let nα be the restriction of n to Sa. nα's are maps from torus T2 to S2 which
may be viewed as a map from S2 to S2 by Theorem 2.1. Furthermore since
Jα[n] = OVα, each of nα's can be reduced to a constant map. Since all Sa have one
point in common—namely the fixed point Po on X, all these constants must be
equal to ή. Thus the given map n can be homotopically reduced to a map which
is constant on all surfaces, Sα's. But then it can be viewed as a map from S2 x S1

to S2. Note that unlike the case of Γ o sector, here, on the t = 0 and 1 surfaces
n(r,0 ί) is non-trivial and hence the map can not be viewed as a map from S 3 to

s2. m
Now let n:M->S2 such that /α[n] = mα. Define

(D.8)
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M'

t=0

M

—̂ s

Fig. 9a. M' connected to M by two small tubes, b The tube T3 brought closer to touch the other tubes
without disturbing the configuration inside M\ c The tubes fused together and detached from the t = 0
and ί = 1 surfaces of M to form a handle on M'

Clearly /α[n] = 0Vα= 1,...,2#. Hence ίi is homotopic to a map that can be
viewed as a map from S2 x S1 to S2. To exploit the Hopf theorem we have to go
through one more step. For each n:M->S 2 (i.e. a path in ΓN based at n*) we
associate a map n:M->S 2 which is concentrated in a ball in M and hence
can be viewed as a map from S 3 to S2. Note that n is a path in Γo. Now the Hopf
theorem can be applied to the n map. The map n is constructed as follows.

For a given map n, construct n as in Eq. (D.8). n can be viewed as a map from
S2 x S1 to S2. It is concentrated in M' and two small tubes connecting M to the
t = 0 and t = 1 surfaces of M (see Fig. 9a).

Let Γ3 be a tube in M which does not intersect M' and joins the surfaces t = 0
and t = 1, (Fig. 9a). Let ή* be a map from X to S2 such_that / x [ ή * ] = -N and
it is concentrated in the disc obtained by intersecting of Γ3 and the t = 0 surface.
The fact that Π0(Γ) is a group (isomorphic to Έ) guarantees the existence of such
a map. Define 3(r, θ t) = ή*(r, θ) Vie[0,1], and construct a map n': M -• S 2 satisfying
the following properties:

a) n' = n inside M' and the tubes connecting M'
to t = 0 and ί = 1 surfaces, (D.9)

b) n' = 3 inside T3 and c) nr = ή elsewhere.

Clearly,

/ α [ ί ' ] = OVα=l,. . . ,20 and / ί = 0 [ n Ί = / ί = i [ n / ] = 0 . (D.10)

Now following the sequence of steps shown in Figs. 9a, b, c, we obtain a map
which is concentrated in M' with a handle attached. Clearly this can be viewed as
map from S3. to S2 and this is our desired map ίi.

Now by Hopf theorem the homotopy classes of fi maps can be labeled by
integers and can be characterized by a homotopy invariant, / M [n] , defined in
Eq. (A. 11). For uniformity in notation we define //[n] = / M [n].

Theorem D.2. Two maps n^Πj are homotopic to each other iff

Vα = l,...,30 and //[nj = fl[n2].

Proof. Since each of the /α's and H are homotopy invariants it follows that
n i ~n 2 =>all invariants are equal. Conversely let / α [nJ, and H[n{] be equal for
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Ϊ = 1,2 and α = I9...92g.

H[n 1 ] = / f [ n 2 ] = > n 1 - n 2 ,

i.e.

ί i 1 -n 2

i.e.

=>n1 ~ n2, since X^1 °Xi is homotopic to a constant map. •

Choose a ball B is M such that it does not intersect the tube Tr Now let Z
be a configuration which is ή outside the ball and the tube T3 (so that /α[Z] = 0 Vα's)
and such that H[Z] = 1. It is easy to see that if H[n] = mH then n ~ (ZfH. As a
by-product we see that any n:M->S2 (in the /"N sector) can be expressed as:

Hence Π^Γ^ is generated by 2# + 1 generators Xl9X 2^-^X29^ a n ( * ?•
group composition law is specified if we specify the relations among the generators.
From the theorem proved above we see that,

Z°X*~X*°Z and,

Xa°Xβ°X* ^Xβ1- (Zf*'β) for some integers fc(α,β). (D.12)

Computation of Π^Γ^ will be accomplished if we obtain, k(ot,β). Note that
the generators XJs and Z differ from the Xa's and Z in the Γo sector only by the
presence of the additional tube T3 in their definitions. The observation made in
Sect. 3, which facilitated the computation of k(oc, β) for the Γo sector applies in the
present case as well. Repeating the arguments from Sect. 3 it is straightforward to
see that k(α, β)'s are the same as the corresponding fe(α, /J)'s. This establishes that
the fundamental groups of Γo and ΓN sectors are isomorphic for all NeΈ.
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