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I. Introduction

In this paper we will look at quantum field theory in the setting of Araki, Haag, and
Kastler. The system of local observables will be denoted by [si(O\ jtf, α, Rd}. For
details see Sect. II. We are interested in positive energy representations, denoted by
{π, U(a), V+,3^}.In this situation every vector analytic for the energy has the Reeh
Schlieder [9] property, which means that this vector is cyclic and separating for the
algebras π(X(0)) whenever O is a bounded region. As a consequence we find that
there exists a modular automorphism σt associated to every pair {π(j/(0))", Ω}.

Inspired by statistical mechanical examples one might think that the generators
of the modular automorphism group are connected with the energy belonging to the
region we consider. On first sight, however, there seems to be no connection
between the space-time-translations and the modular automorphisms. Therefore,
Buchholz and Junglas [5] have used the Hamiltonian of the vacuum sector in order
to construct K.M.S. states for the theory of local observables. In order to obtain a
kind of local energy H° such that exp { — βH°} is trace class they had to work with
the nuclearity condition of Buchholz and Wichmann [6]. Although this local
Hamilton operator had some properties similar to the modular operator, they failed
to establish a connection between these objects. This is because their "local"
Hamiltonian does not generate a group of automorphisms for the local region.

Recently Buchholz, DΆntoni, and Longo [4] found estimates suggesting that,
after rescaling, the modular operator of the double cone tends to the Hamilton
operator if the double cone tends to the whole space. In the last section we will
discuss a possible procedure proving this result.

We want to show that the space-time translations and the modular automor-
phisms, indeed, are closely related. Using the Malgrange Zerner theorem it easily
shows that expressions of the form

are the boundary value of an analytic function holomorphic in the variables (a, t)
provided αα represents the space-time translations, σt the modular automorphisms,
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and Ω is a vector with compact energy support. Using locality we will show that the
function E(a, t) can be analytically extended into a larger domain and that this
extension is periodic in t along the imaginary axis.

This paper is organized as follows: In Sect. II we describe the assumptions and
notations. In the third section we connect the space-time translations and the
modular automorphisms. Since the reason for this close connection is the fact that
the translations act locally one can generalize these ideas to other groups which act
locally. One example is the Bisognano Wichmann case, where the modular group of
the wedge domain acts locally, provided the cyclic and separating vector is the
vacuum. This situation will be investigated in Sect. IV. In the last section we discuss
in detail the situation described in the beginning taking account the results obtained
in Sect. Ill and IV.

II. Assumptions and Notations

In this paper we are dealing with a theory of local observables, a so-called Araki,
Haag, Kastler theory. This is a quantum field theory described in terms of bounded
operators. To every bounded open region O in Rd is associated a C*-algebra s#(O).
The C* inductive limit of the increasing family {s/(O)} is denoted by si.
Furthermore we have the translation group Rd acting on si as automorphism such
that aajtf(O) = £#(O + ά) holds for αeRd. If two domains Oί and O2 are spacelike
separated then we assume, as usual, that ^(O^) and j/(O2) commute elementwise
with each other. Such a system will be denoted by

By Rd we always mean the Minkowski space with points {Λ:O,JC} and scalar
product (x,y)—XQyQ — (x,y), where (x,y) is the usual Euclidean scalar product.
Therefore d fulfills the restriction d^2.

If Vc: Rd is an open but unbounded domain then si(V) will be the smallest sub
C*-algebra of si containing all £#(O) provided Oc: V.

In the triple {π, U(ά),J^} denotes tff a Hubert space, π a non-degenerated
representation of the algebra \si(C)\ si, α, Rd} on 2? and U(a) continuous unitary
representation of the translation group Rd implementing the automorphisms αα, i.e.

π(<*aA) = U(ά)π(A)U*(a) , αeRd , Ae<s/ .

The open forward light-cone will be denoted by V* . A representation
{π, U(ά), Jjf } will be called a representation with spectrum condition if the spectrum
of U(a) is contained in the forward light-cone, i.e.

where the bar over a set denotes the closure of this set. Representations with
spectrum condition will be denoted by
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If U(ά) is a continuous unitary representation of the translation group on the
Hubert space Jjf , then a vector ψ e J j f i s called entire analytic for U(ά) if the vector
valued function U(a)ψ defined on Rd has an extension as entire analytic vector
valued function defined on Cd. If {π, U(a), V+, Jtif } is a representation fulfilling
spectrum condition, and if ψ is an entire analytic vector for U(a) then the vector
valued function

is the boundary value of a vector valued analytic function F(z) which is
holomorphic in the forward tube T+ :

Let {π, U(a\ V+,3if}bea representation with spectrum condition of the theory of
local observables, and let ψ be an entire analytic vector for £/(α), then under mild
condition on π(j/(6>)) [2] one has the validity of the Reeh Schlieder Theorem [9] for
the vector ψ which means that ψ is a cyclic vector for the algebra π(jtf (0)). Since O is
bounded, the locality condition implies that this vector is also separating. From this
we conclude that we can use Tomita's theory of modular Hubert algebras [10, 11]
for the von Neumann algebra generated by π(j/(<9)). Before discussing this we need
some more notations and concepts used in the theory of local observables.

If V is an open set in Rd then we denote by V the following set :

V = int {x x — y is spacelike for every y e V] .

Here int { . } denotes the interior of the set in the bracket. A set Wis called a wedge
domain, if in a suitable Lorentz frame it is of the form :

A set D is called a double cone if it is of the form [a+V+}c\{b— V~}.\n order that
this set is not empty we must have bea+ V+ . If we have to distinguish between
different double cones we write D(a,b).

Sometimes one wants the commutant of a localized algebra to be also localized.
If this is the case for a suitable family of sets then we are calling such a representation
a representation with duality property.

ILL Definition. Let {s/(O\j/9ct9R
d} be a theory of local observables. Let

{π, £/(#), Jf } be a representation of this theory. We are saying {π, U(d), Jtf] has the
duality property. If one has the relation

when V is taken from the following family 3F of sets,

3F contains : wedges, double cones, and spacelike complements of double cones.

It should be remarked that we are not using the most general form of the duality
property, because one could enlarge the above family of sets. Furthermore one
should be aware of the fact that the duality property is not a property of the algebra,
but a property of representations.
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If {π, ί/(α), F+, J f } is a representation of the theory of local observables then
for any region V the von Neumann-algebra Jt(V) is the von Neumann-algebra
generated by π(«s/(K)),

If Ω is a vector entire analytic for U(ά) and if V φ 0 then Ω is a cyclic and separating
vector for J((V). Hence by Tomita's theory of modular Hubert algebras there exists
a modular operator A with AΩ = Ω defining the modular automorphism group
σt:Jί(V)-+Jί(V} given by the formula

σt(A) = AltAA~lt , AeJί(V) .

In addition there exists a modular conjugation /which is an antilinear operator with
/2 = 1 such that j(A): = JAJeJ^(V)f for every AeJΐ(V). The modular con-
jugation / has Ω a fixed point, i.e.: JΩ = Ω. The modular conjugation and the
modular operator are connected by the equation JA^AΩ = A*Ω for every
A e Jt ( V). Consequently σt (A ) Ω = A lt AΩ is not only defined for real t but also for t
having an imaginary part restricted to — ̂ 3m/^0. From this we conclude that
the vector valued function σt(A)Ω is analytic in the strip S(— j,0), where

Since ad Alt maps Jί(V} onto Jί(V} it is also true for Jt(y}'. Therefore one can
define the automorphism σt also on the algebra Jt(V)r. Usually however, one
identifies σt on Jί ( V)' with ad A ~ lt. The reason for this is the relation JAJ= A ~ 1 . So
with the standarad choice one obtains j(σt(A)) = σ t ( j ( A ) ) for AeJt(V) or
A E Jί ( V). Consequently one concludes that for B e Jί ( V) ' the expression σ, (B) Ω is
analytic in the strip S(0, j).

III. Locality and Periodicity

In this section let {<£/(#), sύ, α, Rd} be a theory of local observables,
{π, U(a), V+,3J?} a representation fulfilling spectrum condition and Ωe 3C be a
vector entire analytic for U(ά). Let Fc: Rd such that V is not empty and let D be a
double cone.

III.l. Definition. For A e Jί(V) and BeJt(D) and σf the modular automorphism
of {Jt(V\Ω} define

/eR

If needed we write EAB(a, t) and FA B(a, t) which implies EA B(a, t)

= FA* B*(a, t). Both these functions are boundary values of analytic functions.
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III.2. Lemma, (a) The function E(a, t) is the boundary value of an analytic function
E(z, τ) holomorphic in

T-χS(-±,0) .

(b) The function F(a, t) is the boundary value of an analytic function F(z, τ)
holomorphic in

(c) In both cases the boundary value is taken in the sense of continuous functions.

Proof. This is a consequence of the properties of the vector valued functions σt(A)Ω
and ua(B)Ω explained in Sect. II.

We now introduce the following two sets, which are not empty if D is sufficiently
small.

III.3. Definition. Put

With this notation we obtain :

III.4. Theorem. Under the assumptions made earlier in this section one has: E(z9 τ)
and F(z, τ) are two different branches of one holomorphic function H(z, τ), which is
periodic in τ in pure imaginary direction with period i,

whenever (z, τ) is in the domain of holomorphy o f H ( z , τ ) .
In particular one has

E(z,τ) = H(z,τ) , for (z,τ)e7- xS(-£,0) ,

E(z,τ) = H(z,τ) , for (z,τ)e T+ x 5(0,̂ ) .

The different branches are connected by means of the edge of the wedge theorem [3].
One has

E(a,t) = F(a,t) , for aeG2 , ίeR ,

for aeG, , ίeR .

Proof. IfaeG2 then a + D c F', hence α α (B) eJί(V). Therefore, it commutes with
σt(A)eJl(V). This gives E(a,t) = F(a,t) for aeG2.

For computing £" I α, / — - ) we make use of the equation JA*AΩ = A* Ω. Hence
we obtain \ /
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On the other hand one has

= (Jσt(A)Ω,*a(B)Ω)

Remark that j (σt(A*)) belongs to J((V)' and oca(B) belongs to Jt(V} for aeGv.
This gives the stated two connections between the functions E and F. This in turn
implies the other statements of the theorem.

We end this section with a remark on the K.M.S. conditions, which is one
characteristic in the theory of modular Hubert algebras. If a e G± then αβ(/?) belongs
to J((V). In this case the expression (Ω, <x,a(B)Δλσt(A)Ω) is defined and continuous
for O^λ^l and analytic in λ + it for 0<λ<l .

If on the other hand we fix A to be 1/2 then A^σt(A)Ω is defined and
consequently (Ω, aa(B)Δ*σt(A)Ω') possesses in a an analytic continuation into the

tube T~ . This means the following properties for the function Ela,t — ~

(α) For a e Gί it has an analytic continuation in t into the strip — 1/2 < 3mt < 0.

(β) For t e R the function E(a,t — J has in a an analytic continuation into the
tube T~. \ 2J

From this we conclude by the Malgrange-Zerner theorem that E I a, t — - J has a

continuation in both variables in some suitable subset of {a e T~ } x {t e S( — j, 0)},
which contains {αeGj x {teS(— j, 0)} as a limiting subset. Therefore, we can
conclude that E(a,t) has an analytic continuation into some subset of
T~ x{ίe £(-!,())}. On the other hand we know that for aeG1 the relation

E( a,t--\ = p( a,t+-\ holds. Consequently, the continuation of £(α,ί — -
\ 2) \ 2) \ 2

coincides with the continuation of F(α,f+-|. Hence for aeG1 we have

E(a, t — ι) = F(a, t). Expressing this in terms of expectation values, we obtain exactly
the K.M.S. boundary condition.

IV. The Case of Two Modular Automorphisms

Looking at the derivations and the results of the last section, we see that one
property was essential, namely that translations act locally, which means that it
sends the algebra associated with a bounded region onto the algebra of another
bounded region. Therefore we would expect similar behaviour of expectation
values if we replace the translations by another local transformation. This idea shall
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be exploited for the case where the translation is replaced by the modular auto-
morphism group of some bigger region, which will be the wedge domain.

If one starts with a Wightman field theory of a finite number of fields and
assumes that the whole Lorentz group acts on this theory, one can determine the
modular group and the modular involution for the wedge region, provided we can
pass from the Wightman fields to the algebra of local observables. These results are
due to Bisognano and Wichmann [1]. They showed that the modular transfor-
mations are Lorentz boosts having the wedge invariant and that modular involution
is composed by the time reflection and a reflection of the space at the hypersurface
(defining the wedge) such that the wedge is mapped to spacelike complement. Here
the vacuum vector is used as cyclic and separating vector. The physically very
interesting outcome of these investigations is that the modular transformations and
the modular involution are local transformations based on point-transformations
of the basespace Rd.

There is only one other situation known where one has the same strong
information for the modular automorphisms. This is the case of a massless free field
where the domain in question is the double cone. This result is due to Hislop and
Longo [8].

Leaving the last case aside we will look at the situation where the large region is
the wedge region. We furthermore assume that we have a vector Ω which is cyclic
and separating not only for the wedge region Wbut also for a subregion O c W. In
addition we assume that the modular automorphism σ^ of the pair (Jί(W), Ω} is a
continuous point-transformation, i.e.

This means we have a continuous group of homeomorphisms of the wedge region
y^y(t\ y, XO e W such that Oσt = {y(t); yεO}.

Next we take an open subset Oίc:O such that (Ol)σt c O for some open interval
7cR.

Now define again two functions

VI.l. Definition. For AtM(pύ and BεJt(θy put

where a? and σf are the modular automorphisms of [Jl(W), Ω} and (Jί(O), Ω}.
These two functions are defined and continuous for (s, t)eR2.

The functions are again boundary values of analytic functions. In detail we
obtain :

VI.2. Lemma, (a) The function E(s, t) is the boundary value of an analytic function
E(σ, τ) holomorphic in :

(the strip S(. , .) has been defined in Lemma 11.2)
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(b) The function F(s, t) is the boundary value of an analytic function F(σ, τ)
holomorphic in

Proof, (a) AΩ is in the domain of (Δw)*, which implies that (Aw)ιτAΩ is analytic in
— ̂ -<3wτ<0 and continuous on the boundary.

Since BeJt(θy it follows that B*Ω belongs to the domain of (Δ°)~1/2 which
implies the analyticity of (A°)ισB* Ω in the strip 0 < 3m σ<j. Since Ω is reproduced
by Δ° we obtain σ°(B*)Ω is analytic in 0<3mσ<|-. Taking now the adjoint we
have to replace σ by σ. This leads to the stated result.

(b) The second statement can be derived from the first one by remarking

It remains to exploit the locality condition. For this it is important that B
belongs to Jt(O}'.

VI.3. Theorem. Under the assumptions made in the beginning of this section one has:
E(σ, τ) and F(σ, τ) are two different branches of one holomorphic function H(σ, τ).
This function is periodic along the diagonal in pure imaginary direction with
periodicity z,

whenever (σ, τ) belongs to the domain of holomorphy of H. In particular one has

E(σ,τ) = H(σ,τ) , for 5(-J ,0)x5(-^0) ,
and

F(σ,τ) = H(σ,τ) , for 5(0, £) x 5(0, £) .

The functions E and F are connected as follows:

E(s,t) = F(s,ί) , /or /e/ , seR ,
βwrf

/ 4,*+^. /^
The analytic continuation through the points I x R respectively R2 are given by the
local form of the edge of the wedge theorem.

Proof. Let te/then ̂ (C^) belongs to O and hence σ^(A) and σf (B) commute for
seR. Therefore, we get by the edge of the wedge theorem an analytic connection
between E(σ, τ) and F(σ, τ).

Next compute E i s —, t — - j. This gives:

/ **?^/ \
S-2J ("ϋ
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= (J°σf (B)Ω, Jwσ?(A*)Ω)

= (j°(σ°(B))Ω,jw(σ?(A*)ΪΩ)

Here J° respectively Jw denote the modular conjugations for Jt(O) respectively

Jί(W). Now we compute F( s+-, t+- 1:

4'+lHΩ'σΓ λ(A)σ°, Λ(

JίA*)Ω,σ° λ

HJ ('-2)

= (Ω,jw(σ*(A*))j°(σ°(B*)):) .

A belongs to JKO^) and hence σ^(A*) is an element of Jί(W). This implies
jw(a*(A*})eJt(Wy. Similar we have BeJί(O)' which implies σ°(B*)eJt(O)'
and consequently j°(σ? (B* ))eJt(O). Since now Jί(O)<^Jί(W) is follows that
jw(σ?(A*)) andy°(σf(5*)) commute for all values of ί and ί and therefore:

for (
2) \ 2 2)

This proves the theorem.

V. Problems of Causality

We are going back to the situation described in Sect. Ill because here the
implications of local commutativity are more direct. We had a domain V and a
double cone Z>, an operator AeJ?(V) and an operator BeJt(D}. Then local
commutativity implies that αfl (B) and σt (A) commute for aeG2. (σt is the modular
automorphism of the pair {«^(F),O}.) Let us now take a domain O^V small
enough such that also Oί +αc Ffor a in some open neighbourhood TV of the origin
in Rd, and let us take AeJt(O^. Define

We obviously have G2c=G^1). Looking at the functions
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and
F(a,0) = (Ω,A

we see that
E(a90) = F(a90) for

Moreover, the functions E(a, 0) and F(a, 0) are boundary values of analytic
functions holomorphic in the tubes T~ respectively Γ+, and by the edge of the
wedge theorem also in G£\

There are now two possibilities. Either this extra analyticity is purely accidental.
In this case every modular automorphism σt spreads an operator, localized in a
subregion, into the whole region. The other possibility is that the analyticity of the
functions E(a, 0), F(a, 0), in the one variable, is a consequence of the analyticity of
the functions E(a, t), F(a, 0) in both variables.

The second situation appears rarely. The reason for this is the necessity of sharp
localization of the state in momentum space. If one has the vacuum state the
examples of the wedge domain and the double cone for the massless free field show
that one has localization properties for the modular automorphisms. Since all other
states of finite energy are obtained by smearing improper states of sharp momentum
it is clear that one loses by smearing the local properties of the modular
transformations. However, the modular operator belonging to a given bounded
region is not a unique object, but it is also connected to the cyclic and separating
vector one has chosen. This implies that not a single modular operator but the whole
family is of interest. Therefore, one should look at the possibility of extracting from
this family an object which is free from the accidental choice of the cyclic and
separating vector and which might act in a local fashion.

One should be aware that there might be an obstruction for this project. If we
look at the algebra of the free field with the vacuum as cyclic and separating vector
then in the massless case one has modular automorphisms which act locally.
However, for the massive free fields this is no longer the case. For the wedge domain
one has locally acting modular automorphisms even for interacting fields. The
source for these differences in behaviour is up to now not well understood.

We are now coming to the problem of interpreting the modular operator as a
function of some form of local energy. In order to obtain a result of this kind it has to
be shown that one finds the Hamiltonian when going with the radius of the double
cone to infinity. First we remark that the expression at(A)Ω, with α, as time
translation, is a vector valued function holomorphic in the upper half plane. The
expression σt(A)Ω, where σt is the modular automorphism of the double cone Z>, is
only analytic in the strip S( —1/2,0). Hence, one has to scale the variable when going
with D to infinity. If one succeeds to prove that after proper rescaling the limit

lim σf(f)
D->ao

converges, one faces the problem of showing that the limiting automorphisms act
locally and represent the time translations. One way of proving this needs two steps.
If we consider the vacuum sector and the vacuum as cyclic and separating vector the
modular group of the wedge domain is known. Hence, if the edge of the wedge tends
to spacelike infinity, it is easily shown that one obtains, after correct scaling, the
time translations. Using next the result of Sect. IV, one should be able to show that
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the modular automorphisms of the wedge domain and the double cones converge to
each other. The reason is the periodicity along the diagonal. Periodic functions
which are bounded on the boundaries are also bounded in the complex. In the limit
one obtains after scaling a function entire analytic and bounded along the diagonal.
This shows that the corresponding expectation values depend only on one variable.
This is equivalent to the statement that the corresponding automorphism groups
coincide. Details will be presented in a forthcoming paper.

There is another aspect of the result obtained in Sect. IV. K. Fredenhagen [7]
was able to compare the modular operator of the wedge domain with that of the
double cone provided it is in the wedge domain and its closure has one point in
common with the edge of the wedge. One should be able to obtain similar results for
an arbitrary double cone inside the wedge by using the periodicity of the expectation
value. The main problem here will be a good estimate of the envelop of holomorphy.
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