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Abstract. Resonances which appear as perturbed bound states are discussed in
the framework of Balslev-Combes theory. The corresponding metastable states
are constructed using the formal perturbation expansion to order TV— 1 for the
(nonexistent) perturbed bound states. They are shown to have exponential
decay in time governed by the complex resonance energies, up to a background
of order 2 TV in the perturbation parameter. The results apply in lowest order
TV = 1 to the perturbation of bound states embedded in the continuum and in
arbitrary order to cases like the Stark effect.

1. Introduction

According to standard textbook wisdom, resonances of quantum systems cor-
respond to metastable states which show exponential decay. The difficulties in
making this statement precise are notorious and well explained in [13]. While
Gamov's one-particle α-decay model still receives attention (see e.g. [16,17]),
relatively little is known in more general situations. In many cases the Balslev-
Combes theory of dilation analytic systems [1,11] or one of its variants [3,7,14,15]
allows an elegant definition of the complex resonance energies, but there is yet no
general description of the corresponding metastable states and their time evolution.
Notable progress has recently been made by Orth [10], who developed a theory of
resonances for TV-body Schrodinger operators based on the Mourre estimate rather
than dilation analyticity. The scope of our present contribution is more limited. We
will use dilation analyticity and perturbation theory in the spirit of Simon [12] to
discuss resonances which appear as perturbed bound states. By the same approach
we can cover cases like the TV-body Stark effect, where some results on exponential
decay have previously been given by Herbst [4].

In the Balslev-Combes theory, the resonance energies are the complex
eigenvalues of a "dilated" Hamiltonian H(Θ). For a typical TV-body system, H(Θ)
has a spectrum of the form shown in Fig. 1. To understand exponential decay in this
setting we must answer the following questions. What is - in good approximation -
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a metastable state ψ associated with a given resonance λ? Is there a time interval
where

(ψ,e-ίHtψ)πe~ίλt (1)

up to a relatively small background term?

2/mΘ

Fig.l

Of course we would like to answer these questions simply in terms of the
spectrum shown in Fig. 1 , assuming that Im λ is small compared to the separation of
λ from the rest of the spectrum. This seems to be impossible - mainly because there
is no general effective estimate for the resolvent (z — H(Θ})~1 in terms of the
location of z relative to the spectrum. For this reason we turn to the simpler case of a
perturbed Hamiltonian

dilated into
(2)

and we only discuss resonances λκ which result from the perturbation of a (real)
eigenvalue AQ of H0 .

Fig. 2

The unperturbed bound states \I/Q corresponding to the eigenvalue λ0 are then
obvious candidates for metastable states, and we can measure the background term
in powers of the small perturbation parameter K. As a typical result we will prove

(^e-iH^0) = e-iλ^ + 0(κ2) (3)

in the nondegenerate case, uniformly in 0 ̂  t < oo. Our next question is whether this
lowest order approximation for metastable states can be systematically improved.
More precisely: is there an expansion

+K"~VN-I (4)
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for metastable states which reduces the background term to higher order in K? A
natural candidate for (4) is the formal Rayleigh-Schrόdinger (RS-) perturbation
expansion for the (nonexistent) perturbed bound states. In fact, if the terms in this
expansion are well-defined, we can improve (3) to

(ψ?,e-itH«ψ») = e-iλ«t + 0(κ2N) . (5)

In this way we obtain a physical interpretation of the RS-expansion for the
"perturbed bound states" even in cases where no such states exist. We must
emphasize, however, that this simple scheme works only in cases like the Stark
effect, where λ0 is a discrete eigenvalue of H0. For embedded bound states the higher
order terms in the RS-expansion (4) are not defined in Hubert space, so that
additional approximations (like the truncation of Gamov functions) must be used
to construct metastable states. We will not investigate this possibility here.

2. Preliminaries

In this section we define the framework used throughout this paper.

(a) Balslev-Combes Theory. Hκ is a family of self adjoint operators defined for small
/c^O. U(Θ) is a strongly continuous one parameter unitary group such that for
fixed K

HK(Θ)=U(Θ)HKU(ΘΓ1

extends from real Θ to an analytic family in a strip |Im Θ\ < β. (In Hκ and elsewhere
we simply drop the variable Θ to indicate that Θ is set equal to zero.) The spectrum
of HK(Θ) depends only on Im Θ and is assumed to lie in the closed lower halfplane
for Im Θ > 0. The relation

HK(Θ)*=HK(Θ)

holds for real Θ and extends by analyticity to |Im Θ\<β. U(Θ) itself is defined for
complex Θ by the spectral representation

on the natural domain, satisfying U(Θ)* = U(Θ)~l. [We recall that U(Θ) must
be unbounded for Im(9φO if the spectrum of HQ(Θ) is to depend nontrivially
on Θ.] λ0 is an isolated or embedded eigenvalue of HQ with eigenprojection P0,
dimP0 = m0< oo. We assume that λ0 is separated from the essential spectrum of
HQ(Θ) for Im Θ φO. Then λ0 is a discrete eigenvalue of HQ(Θ). Its eigenprojection
P0(<9) is analytic in the full strip |ImΘ| <β. In particular,

has constant dimension m0 . The relation

P0(θ)=U(θ)P0U(θΓl

holds on the dense domain of U(Θ)~1. Since P0 has finite rank it follows that M0 is
in the domain of U(Θ) so that U(Θ) and U(Θ)~1 act as bounded operators from
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M0 onto M0(6>) and vice-versa. The norms of these maps will in fact enter in our
decay estimates. So far we have summarized the Balslev-Combes framework in
abstract form.

(b) Stability. For fixed Θ with Im Θ φO we now consider the perturbation of the
discrete eigenvalue λ0 of H0 (Θ) by the family HK(Θ). First we require stability in the
following sense [8]:

(i) There is a punctured neighbourhood W(Θ) of λ0 (i.e. a complex neigh-
bourhood with the point λ0 removed) such that the resolvent Rκ(Θ,z)
= (z — Hκ(Θ))~1 exists and is uniformly bounded for each fixed zeW(Θ) and

(ii) The perturbed spectral projection

Pκ(Θ) = (2πiΓi§dzRκ(Θ,z) (6)

satisfies
lim||Pκ(Θ)-P0(6>)||=0 . (7)
κ->0

Here Γ is an arbitrary loop in W(Θ} around λ0 . As a consequence of (i), RK(Θ, z)
is uniformly bounded for zeΓ and 0^κ<κ:0(Γ). Equation (7) implies that
dim PK(Θ) = ra0 for small K. Therefore λ0 is the limit as /c->0 of a group of perturbed
eigenvalues λκ having total algebraic multiplicity m0 . These are the eigenvalues of
the reduced operator

Θ} (8)

acting on MK(Θ) = ran PK(Θ). In fact, the spectrum ofHκ(Θ) depends only on the
sign of Im Θ, due to the relations

HK(Θ2)=U(Θ2-Θ1)HK(Θ1)U(Θ2-Θ1Γ
1 ,

which hold for small K if Im Θ1 and Im <92 have the same sign. By convention we
denote with λκ the eigenvalues of HK(Θ) for Im<9>0. These are the resonances
corresponding to the unperturbed eigenvalue λ0 . Our assumption on the spectrum
of HK(Θ) implies that Im/ίκ^0.

(c) RS-Expansion. For the purpose of using RS-expansions we restrict Hκ(Θ)to the
form (2). More precisely we assume that V(Θ) is given for |Im Θ\ < β as a densely
defined, closed operator with V(Θ}*=V(Θ}, such that (2) holds on a core of
HK(Θ). Then the iterated resolvent equation

Λκ(β,z)P0(β) = JΣ κmR0(Θ,z)Am(Θ,z) + κNRκ(Θ,z)AN(Θ,z) (10)
m = 0

Am(Θ,z) = [V(Θ)R()(Θ,z)]mP0(Θ) (11)

is valid for Im Θ Φ 0, z e W(Θ) and small K as long as the individual terms are well
defined (cf. [8], Lemma 8.1). We are interested in the case where the expandedp&rt -
i. e. the terms not involving ̂ κ (Θ, z) - remains well-defined for Im Θ = 0. Therefore
we assume that the finite rank operators Am(Θ, z) are analytic in Θ in the full strip
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|Im Θ\ < β for m = 1 N and all z in some punctured neighbourhood W of λ0 , with
the properties

Am(Θ,z) = U(Θ)Am(z)U(ΘΓ1 (12)
on M0(<9), and

suPμm(6>,z)||«x> (13)
zeΓ

for any loop ΓaW around λ0 . The order TV^ 1 will be specified in each case. For TV
= 1 our hypothesis only requires that V(Θ)PQ(Θ) is analytic in |Im Θ\<β with the
transformation law (12). For N> 1, however, it is implied that R0(Θ, z) exists for
|Im Θ\ <β and zeW, ie. that λ0 is a discrete eigenvalue of H0.

Our list of assumptions is now complete. Typical examples are:

a) Analytic perturbations of embedded eigenvalues in dilation-analytic systems
[12]. Here V(Θ) is bounded relative to HQ(Θ) so that our hypothesis is satisfied for
N=\.

b) The Stark effect for discrete eigenvalues of Coulomb systems [5, 8]. This is an
example where the formal RS-expansion for the (nonexistent) perturbed bound
states is well-defined to any finite order, and where our assumptions are valid for
arbitrary N.

At this point the reader may proceed directly to Sect. 3. We continue with a
discussion of the RS-expansion in the degenerate case as a preparation of Sect. 4.
Inserting (10) into (6) we obtain the expansion of PK(Θ) for fixed Θ with Im Θ φO:

where the expanded part BK(Θ} is analytic in the full strip \lmΘ\<β. Similar
expansions result for

and for the operator
Θ) (14)

acting on M0(<9). The RS-expansion of PK(Θ) is now obtained from the identity

valid for small K. To justify (15) we note that DK(<9)->1 as κ->0. Thus
DK(Θ)~II2PQ(Θ}PK(Θ} is well-defined as an operator from MK(Θ) to M0(<9). By
(14) it has a right inverse PK((9)P0(<9)Z)K(6>)~1/2, and this is in fact the inverse since

= dimM0(6)) for small K. We write the RS-expansion of PK(Θ) as

noting that the expanded part P^(Θ) is analytic in Θ in the full strip |Im Θ\<β,
satisfying

Here P^ = P^(Q) is the formal perturbative expression to order TV— 1 of the
"perturbed total eigenprojection ofHK" (which need not exist). Our aim is to derive
decay estimates under Qxp( — ίHκt) for the states in the space

0) , (16)
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which has dimension ra0 for small K. This is prepared by the following construction.
We define

(17)

as an operator on M0 for Im Θ > 0, noting that the right-hand side depends only on
the sign of Im Θ. For Im Θ < 0 (17) remains valid if D% is replaced by its adjoint. D%
has an expansion

(18)
d=p0(pp0=(dϊ)* ,

which is derived from the identity

PK(Θ)] [PK(Θ) - 1 ]

•[PZ(θ)-Pκ(θ)] .

By the argument given to justify (15), we see that the map

TK(Θ) = PK(Θ)P?(Θ)P0(Θ)U(Θ)(DΪΓII2'.M0^MK(Θ) (19)

has the inverse

M0 (20)

for Im<9>0 and small K. This is used to transform HK(Θ) into the equivalent
operator

(21)

acting on M0, which is independent of Θ for ImΘ>0. By construction, the
eigenvalues of hκ are the resonances λκ . We will prove below that

, (22)
on M0, where

tκ = PSP0(d?Γ112 (23)

maps M0 isometrically onto M% for small K. This shows in particular that

(24)
which gives the estimate

Im 4 = 0(0 (25)

for the width of the resonances. To prove (22) we first remark that M*(
= τanP^(Θ}P0(Θ)c:D(Hκ(Θ)) for |ImΘ|<j3.Indeed,z-#κ(<9)can be applied to
each term in the expanded part of (10), with the result

for z e W and m — 0 N— 1 . From the remainder in (10) we also see that

if Im<9φO. Now we write out (21) and use the decomposition

= HK(Θ)-(1-PK(Θ))HK(Θ)(1-PK(Θ)) .
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The contribution of the last term to hκ is of order κ2N, since

#K(<9)(1 -PK(0))PK"(60Λ^

and

are both of order KN. Using (18) we thus find

^K^r^w-'ww
+ 0(κ2N) ,

where we can now set 0 = 0.

3. The Nondegenerate Case in Lowest Order

In this section we discuss the simplest case m0=N=l to give the essence of the
argument.

Theorem 1. Let λ0 be a simple (discrete or embedded) eigenvalue of HQ with
normalized eigenvector ψQ . Let g e C0°° (R) be supported sufficiently close to λQ with
g = l in some open interval containing λQ. Then

t) (26)

for small K and ΰ^t< oo, where λκ is the resonance eigenvalue and

\b(κ,t)\£κ*cm(ί+tΓm (27)

for any m^O. a(κ) is given for (arbitrary) Θ in 0<ImΘ<β by

) . (28)

Proof. We fix Θ with 0 < Im Θ < β. By hypothesis there exists an open interval IB A0

with endpoints in the set W(Θ) defined in Sect. 2. Let geC^(I). Then

ε 0 /

This can be expressed in terms of HK(Θ) by

= f(θ,t)-f(θ,t) , M

where \I/Q(Θ)= U(Θ ) \l/0 . Here we have assumed for simplicity that Im λκ < 0 so that
/is contained in the resolvent set ofHκ(Θ) for small K. l f λ κ is real, then the integral
(29) must be modified by a detour around λ0 in the upper halfplane. This is of no
consequence for our estimates and will be ignored.
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Next we choose a loop Γ c W(β ) around 7 as shown in Fig. 2. For z inside Γ we
decompose the resolvent into singular and regular parts :

Rκ(Θ,z) = (2πiΓ1$dξRκ(Θ,ξ)(ξ-zΓ1 ,

noting that
Rκ(Θ,z)Pκ(Θ) = Pκ(Θ)Rκ(Θ,z) = 0 . (31)

(a) Contribution of the regular part. Using (31 ) we can write the contribution of
Rκ(Θ,z)tof(Θ,t)as

where

is of order K. By partial integration the last integral is seen to be bounded by amt ~m

for any w^O since #eQ°(/). The constants am involve norms of derivatives
(i.e. powers) of Rκ(Θ,z). In fact Rκ(Θ,z) is uniformly bounded for small K and
ze/: this follows from (30) since Γc W(Θ). As a result, the contribution of the
regular part to /(<9, t) is bounded by κ2cm(\ +t)~m for small K and any m^O. The
contribution to /(<9, /) is estimated in the same way.

(b) Contribution of the singular part. The singular part in (30) gives rise to the
term

a(κ)(2πiΓ1 J dze-iztg(z)(z-λκ)^-a(κ)(2πί)^ J dze-ίztg(z)(z-λκΓ
1 (32)

/

in jF(0, where a(κ) is defined by (28). We now use the fact that g = 1 on some open
interval 709 λQ to deform the path /in both integrals to the lower halfplane, as shown
in Fig. 3 :

Fig. 3

From the second integral in (32) we pick up the residue a(κ)e iλκt at the point
λκ. The remainder is given by (32) with both integrals taken along the path
(where g(z) = l for Imz<0). Using the identity

and the fact that (φQ(Θ\ Ψ0(θ)) = (ψ0, Ψo) = l, we see that a(κ) = \+O(κ2). Thus
we can write the remainder in the form
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(Imλjπ-1 j dze-iztg(z)(z-YκΓ
1(z-λκΓ

1

Ci

+ 0(κ2) j dze-iztg(z)(z-^Γ1 + 0(κ2) j dze-ίztg(z)(z-λκΓ
1 .

Ci Ci

For 0 ̂  ί < oo all three integrals have bounds of the form amt~m with arbitrary m ̂  0.
The proof is completed by noting that lmλκ = O(κ2). Π

Discussion. With Theorem 1 we can construct the metastable states

Since |#|2 also satisfies the conditions imposed on g we obtain the decay estimate

(φκ9e-m*φκ) = (ί-b(κ,0))e-tλ« + b(κ,t) (33)

with \b(κ, t)\^κ2cm(l +0~m f°r small K, 0^ί< oo and any w^O. To discuss the
decay of ι̂ 0 itself we choose O^gf^ l . By Theorem 1 we have

(ψ0,e-***g(Hκ)ψ0) = e-iλ* + 0(κ*) (34)

uniformly in 0^/< oo. Setting / = 0 we find

Inserting this into (34) we arrive at the result

(Ψo,e-ίH«tψ0) = e-iλ«t + 0(κ2) . (35)

4. The General Case

Here we extend the decay estimate to the general case within the framework of
Sect. 2, where m0 and TV are now arbitrary.

Theorem 2. If g is chosen as in Theorem 7, then, as an operator relation on the
unperturbed eίgenspace M0 ,

^, t) (36)

for small K and O g t < oo, where

\\B(κ,ί)\\£«*»cm(l+trm (37)

for any m^O and corresponding constants cm.

Proof. As in the proof of Theorem 1 we have

I

P0(Θ)U(Θ) ,
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for Im6>>0, where U(Θ) is the bounded operator M0->M0(<9). The resolvent
Rκ(Θ,z) has the singular part

Pκ(Θ)Rκ(Θ,z)Pκ(Θ} (38)

and the regular part RK(Θ, z) given by (30). The contribution of the regular part to
(F(t) is estimated as before, using that

P*(60*K(6^)W) = ̂

= 0(κ2N) .

As a result this contribution has a bound of the form (37) for any m §:0. Using (21)
we can write the contribution of the singular part (38) to /(<9, t) as

The contribution to /(6>, t) has the same form, with the difference that D" and hκ

are replaced by their adjoints. In both terms we deform the path /as shown in Fig. 3,
where the loop C0 now encloses the full spectrum of Λκ, i.e. all the resonance
eigenvalues λκ corresponding to λ0 . This loop gives rise to the term

in jp(0, which comes from f(Θ, t). The remainder is given by

/)~1 J dze-iztg(z)(z-h$yl(DZ*Y12

Ci

iΓ1 J dze~iztg(z)(z-hKr1(D^112 . (39)

Using (1 8) we can replace D* and its adjoint by d^ - committing an error of the form
(37). Then we combine the two terms of (39) to

(^)1/2(2πO~1 J dze-izίg(z)(z-h^Γί(hΐ-hκ)(z-hκΓ
1(d^112 ,

Ci

which by (24) has again a bound of the form (37). Π

Discussion. Metastable states with exponential decay laws are obtained from the
eigenvectors of hκ . Let

be normalized to 1, with hκψκ = λκψκ. Then

(^^-^^ = (1-6(10, 0)^-^ + 6(^,0 (40)

for small K and 05^< oo, where

16(10,01^^^(1 +0"m

for any m ̂  0. In the example of the Stark effect TV" is arbitrary and hκ has a complete
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set of eigenvectors [6]. In general, the Jordan normal form of hκ must be used to
exhibit the ί-dependence of exp( — ihκt). In analogy to (35) we can also find decay
laws for the states in M% with a time-independent background estimate. From (36)
and (18) we obtain

where tκ is given by (23). Choosing O^g^l and setting t = 0 we find

and therefore

(tκφ,e-iH«ttκψ) = (φ,e-ίh«tψ) + 0(κ2N) (41)

uniformly for states φ, ψ e M0 and 0 ̂  t < oo. In the nondegenerate case this is the
result quoted in (5) : then tκ φ is the formal "perturbed eigenstate to order N—l". As
a consequence of (41) we also note that ||exp( — ihκt)\\ ^ 1 +O(κ2N). In fact we see
no reason to believe that exp( — ίhκt) should be a contraction.

Acknowledgement. I am indebted to J.M. Graf for pointing out an essential error in the first
version of this paper.
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