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Abstract. Precise estimates for the validity of the amplitude approximation for
the Swift-Hohenberg equation are given, in a fully time dependent framework.
It is shown that small solutions of order &(έ) which are modulated like
stationary solutions have an evolution which is well described in the amplitude
approximation for a time of order &(ε ~~2). For the proofs, we use techniques for
nonlinear semigroups and oscillatory integrals.

1. Introduction

In this paper, we study the relation between a multi-scale nonlinear problem and
its associated amplitude equation in a fully time-dependent framework. In order to
keep the exposition sufficiently simple, we state and prove our results in the
framework of the Swift-Hohenberg equation

dtu(x, t) = (3ε2 - (1 + a2)2)φ, ί) - M3(x, ί). (1.1)

Here, u is a function R x R+->R. This equation has been studied in detail in [1],
and we summarize those of the results which are relevant for the current study.

1. Equation (1.1) has stationary (i.e., time-independent) solutions, for small ε
which are of the form

φ,ί)~2εcos(x). (1.2)

2. Equation (1.1) has front solutions which are of the form

φ,ί) = ε £ un(εx-ε2ct)eίnx,
nεZ

with the reality conditions
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The solutions are front solutions because the amplitudes un can be chosen to be
zero for y^ oo and nonzero for y-> — oo. In fact, the dominating terms in the sum
above are the ones with u± 19 and u± { is of order 0(1) while all other un are at least of
order Θ(ε).

3. A multiscale analysis shows that the amplitude u1 satisfies approximately the
amplitude equation

-3ul\ul\
2 = Q. (1.3)

The term with cdx is generated by considering the un in a frame moving with speed
s2c.

All the solutions above can be considered to be quasistationary, i.e., constant in
some frame of reference, or, for the case of front solutions, having constant
envelopes in some frame of reference. Therefore, they are amenable to a low-
dimensional study, which has been detailed in [1] and in [2].

In the present paper, we study the more complicated question of "full" time-
dependence. That is, we do not restrict our attention to a submanifold of special
solutions but instead ask for the time evolution of certain types of initial
conditions. It is a general principle of physics that in situations of the type
described above the "full" evolution is - for small ε - still accurately described by
the evolution of the amplitude through the amplitude equation (1.3), in which the
ε-dependent terms have been dropped. Here, we describe in detail the nature of this
approximation, and give bounds on its regime of validity. To make this
comparison more precise, we rewrite the function u(x, t) in the form

u(χ, t) = εv(εx, ε2t)eix + complex conjugate ,

and we assume v0(x) = v(x,G) is given. In terms of v, the evolution equation (1.1)
reads

Stv = (4d2 + 3 - 4iεd3

x - ε2d*)v - 3v\v\2 - e2ίx/εv3 . (1 .4)

Let us call the corresponding time evolution Tt. We want to compare it with the
time evolution St for the amplitude equation

dtw = (4d2 + 3)w - 3w|w|2 , (1.5)

and ask how the difference Ttv0 — Stv0 evolves in time.
Our result is the

Theorem 1.1. Consider any function v0 such that dk

xv0 is in L™ for k = 0, . . ., 4. There is a
T>0, an ε0>0 and a C< oo such that for all t e(0, T] and all εe [0,ε0] one has,

II Ttv0 - Stv0 \\^C min(εί ̂ 2, ε1/2ί3/4) . (1 .6)

Remark. The constant C only depends on || δ* ί;0 1| , for k = 0, . . . , 4. The solution itself
can be shown to exist already when one only assumes VQ in L°°. However, the
bounds will then show slight divergences near t = 0, because of the time which is
needed until the evolution has smoothed the initial data.

It is instructive to translate Theorem 1.1 back to the original equation (1.1),
and the original time scale. Denote by ft the time evolution defined by (1.1), and let
v0 e L°° be given. Define

u0(x) = (0>v0) (x) Ξ φ0(εxK* + ϋ0(εx)e ~ ix) . (1.7)
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With this definition, one has the relation

Thus we find,

Corollary 1.2. Consider any function v0 such that dk

xv0 in L°° for k = 0, . . ., 4. There is
a T>0 and an ε0>0 such that for all εe[0,ε0] and all ίe(0, T/ε2] one has,

I TtuQ(x) - εeix(Stε2υQ) (εx) - εe ~ *(Sfβ2ι;0) - (εx)| ̂  ε3C min(ί 1/2, ί3/4) .

Note that if ||t?|| «, = (?(!), then ||0Ί; 11^ = 0(6), so that Corollary 1.2 gives
interesting bounds for solutions of size ε. This is the size of stationary solution of
(1.1), cf. (1.2).

The difficulty in the proof of Theorem 1.1 is related to the fact that two
seemingly contradictory arguments are used to eliminate the correction terms: For
the differential operators we shall use a study of the semigroup they generate while
for the high frequency part e2ix/ε, we use WKB-like methods, which need
smoothness. This smoothness will only appear after a short time and a careful
study of local singularities is necessary. This is responsible for the bound (1.6),
while the reader might have expected &(st) instead.

The transformation 9 can be viewed as a zero order approximation to the
problem of finding a normal form for the Swift-Hohenberg equation. The general
problem can be formulated as follows: We are looking for a transformation ̂ ε

which satisfies approximately

where

X(u) (x, t) = (3ε2 - (1 + d2)2)u(x, ί) - u3(x, f),

Y(υ) (x, t)=(4d2 + 3)t<x, t) - 3φ|2(x, ί).

In this paper, we find the lowest order approximation, ,̂ to ̂ ε which is given by
(1.7).

2. A General Bound on Semigroups

The main purpose of this paper is a comparison of semigroups. We want to show
that they differ little, and we now explain the main techniques with which these
differences are estimated. Since some of the perturbations have high frequency
components as ε-»0, we need to prove sufficient differentiability at every stage of
the estimates.

The basic technique to do these estimates will always be the same, but the
details will vary sufficiently at every stage of the proof to make a separate
treatment necessary. To guide the reader, we therefore state and prove a "generic"
statement which is a typical example of our technique. It is a straightforward
generalization of the classical methods, cf. e.g., Lang [3], to the case of "semiflows"
with unbounded generator.
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Our general setting takes place in a Banach space ̂ , and we assume that we are
given a "free," possibly time-dependent, evolution operator SMo which satisfies
SM = 1, Stft>St,tt > = Sttt ,9 for ί^ f'^ί", and for which the derivative below exists:

We want to solve an "interacting" problem

dtvt = Ltvt + Ft + Gtvt + Jft(vt) . (2.1)

Here, we look for the unknown function 1 1— > vt as a map from R+ to 3$. The
intuitive interpretation of the various terms in (2.1) is as follows: Lt is the (time-
dependent) generator of the free evolution; Ft is an inhomogeneity; Gt is a linear
operator (or antilinear or a sum of these); ̂  is a nonlinearity.

The formal solution (2.1) with initial data VQ is given by

v, = St9 oυ0 + J dτSt. τ(Fτ + Gτυτ + ̂ τ(vτ)) . (2.2)
o

Typical assumptions on the various terms in (2.1) look as follows. Denote by || ||
the norm in J1. Then

As: ||

Ap: ||

AG: ||Gτt>||£g(τ)||f;||,

AN: \\^τ(v)\\ ^n(τ) \\v\\ h(\\v\\)9 where /z(ρ)^min(l,ρv) for some v>0.

We shall also need some sort of control on the functional derivative of the
nonlinearity Jf (the other terms have obvious functional derivatives).

A'N: ||^τ(ι;)-^τ(ϋOll^m(τ)||ι;-ι;Ί| /c(i|ι;|K||ι;ΊI)5 where fc(ρ)^min( 1,^/2)*'), for
some v'^0.

We shall now study Eq. (2.2) by considering a space B of functions R+ ->B.
More precisely, given some "final time" T>0, and a positive weight function
ί>:(0,Γ]->R+ we define

B = sup b(τ)\\Ότ\\<co\9

and we equip B with the norm

HM|| = rSup 6(τ)bt||.

Remark. In applications of this general scheme, the norm || || could contain spatial
derivatives oft; and the weight b could be chosen with a (mild) singularity at zero to
take into account the time scale on which solutions get smooth.

In order to study Eq. (2.2) we consider a map :̂B-»B, defined by

(Jlv\ = Sf. Ot>o + ί dτSt>τ(Fτ + Gτvτ
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If Jίυ = v, then vτ is a solution of (2.1) with initial data v0. It is useful to consider in B
the affine subspace Bw, with w e OS, defined by

Clearly, Bw is the set of functions with identical initial data v0 = w. To show that
Jίv = v has a solution in Bw, we show that Jt is a contraction of a ball in B. Let
EA = {v e B, |||t?||| < A}9 and assume that A is so small that A/b(τ) < 1, for τ e (0, T].
This condition will make our estimates on M simpler, but is otherwise inessential.
In this case, we always find Λ(||ι;||)^ ||t;||v for veEA. The other case is then handled
analogously. By our assumptions we get

ίv\\\

+ J dτb(t)s(t, τ) (f(τ) + g(τ)A/b(τ) + n(τ) (A/b(τ)) 1 + v) .
o

In order to make the estimates more transparent, we define the constants

S= sup s(ί,0)fe(ί),
T^ί>0

F= sup Jdτ6(tWt,τ)/(τ),
T^>0 °f (2.3)

G= sup \dτb(t)s(t,τ)z(τ)/b(τ),

ί+vN= sup dτb(t)s(t,τ)n(τ)/b(τ)ί

T^ί>0 0

With these notations, a sufficient condition for b(t) \\(Jίυ\\\ ^A to hold is

Sl l t o l l + F + GΛ + ΛM1^^. (2.4)

This is possible whenever C <\ (25}

(2-6)

The condition (2.5) says that the linear part of the perturbation is small and the
condition (2.6) can be satisfied for small initial data and small inhomogeneities.

Proof of Sufficiency of (2.6). Define x = AN1/v. Then (2.4) says

G)x. (2.7)

The difference of the two sides of (2.7) attains a minimum as a function of x when
the derivatives coincide, i.e., when

The difference is then seen to be non-negative if (2.6) holds.
Thus: if (2.5) and (2.6) hold, then Jί maps a ball of radius A in B into itself. We

now work out a condition which insures that Jt is a contraction on Bw, for
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sufficiently small ||w||. By definition,

(Jίυ)t — (Jίυ\ = J dτStt τ(Gτ(vτ — v'τ) + Λ^τ(vτ) — Λ^(v'τ)).
o

Using the assumption A'N, this leads to a bound

f,τ)g(τWτΓMk-ι>ίll

)m(τ)b(τ) ~ v'Av'b(τ)"11| vτ — v'τ \\.
o

If we define the constant M by
ί

M= sup ί?(ί)Jrfτs(ί,τ)m(τ)b(τ)~v/~1,

then we see that M will be a contraction of the ball of radius A into itself provided

(2.8)
S||ι;0||+F<l-G-M,4v .

This is always possible if (2.5) holds and M, || v0 1|, F are sufficiently small. Hence we
have shown the

Theorem 2.1. // the inequalities (2.5), (2.6), (2.8) hold, then Eg. (2.1) has, for all
sufficiently small initial data vQ e & a unique solution for t<T. This solution mil be
bounded by

\\\v\\\£A.

Remark 2.2. If t;0 = 0, then the condition (2.4) shows that if G < 1 , the constant A can
ί

be chosen of order Θ(F\ Note that if F, which is an integral j, goes to zero like ίy,
y>0, as ί->0, then this implies °

3. Proof of Theorem 1.1

We write the equation for δt, which is the difference

δt=Ttv0-Stv0.

We denote wt = u(^ = Stv0. Straightforward expansion leads to the equation

5A = LA + Fί + Λς(<5ί), (3.1)

Lt = 4δ^ + 3 - 4iε3;ί - έdl - 3(2| wt|
2 + wf

2/) - 3e2ί*/εw2 , (3.2)

with
j/(x) =/(*),

(3.3)
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and

) = - 3(2wt\δ\2 + wtδ
2 + δ\δ\2) - e2ix/ε(3wtδ

2 + δ3) . (3.4)

It is our aim to show that δt, which starts out being 0 at time f = 0, will grow
relatively slowly. Note, however, that the terms

432 + 3-6|wί|
2-3wί

2J,

give rise to an operator which is independent of ε. This operator is just the tangent
map to the flow defined by the semigroup Sί? and unless there is some cancellation,
or a suitable renormalization of the "free" evolution w,, we expect this term to give
rise to an exponentially growing error, (starting from zero). All other terms in (3.1)
will be seen to produce error-increasing "forces" which are of order ε. For those
having an explicit factor of ε, this seems fairly obvious, and for the rapidly
oscillating terms, this will follow by integration by parts. The difficulty in proving
these intuitively obvious statements comes from the necessity to provide the right
kind of regularity at the right point in the proof.

We next describe the steps through which the function δt will be estimated.

Step 1. We consider the "free" equation

ay1' = 4δ2w(1) + 3w(1) - 3ιι(iy 1}l2 . (3.5)

One has the bound

Lemma 3.1. For every initial condition u\}} satisfying \\ dk

xu
($} \\ ̂  < oo for k = 0, . . ., 4,

the norms H^w}1^ are uniformly bounded for all t>0 and k = 0, ...,4.

Remark. If we require only ||w(

0

1)||00<oo, then for any ί>0 all derivatives are
bounded, but not uniformly as ί-»0.

This lemma will be proved in Appendix A.

Step 2. We next study the operator

L<2> = 4d2 - 4iεd* - ε2d$ + 3 . (3.6)

This is a part of the operator Lt in (3.2). We have the following bound

Lemma 3.2. The operator L(2) is the generator of a semigroup S|2) = exp(ίL(2)) which
satisfies, for r = 0, 1,

, (3.7)

where

ar(t) = const min(r r/2, (ε2£)~r/4) , (3.8)

uniformly in £>0.

Remark. If v is differentiable, then we can write this in the more useful way

\\S^dr

xv\\^ar(t) \\v\\ 00. (3.9)

This lemma will be proved in Appendix B.
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Step 3. We next add the potential terms of (3.2):

G<2) = - 3 (2|W[1>|2 + (w^)2 J) - Ie2ixlε(u^.

We form a new semigroup S$> which is the solution of

with the initial condition S$\. = 1. (For the semigroups defined below, we shall not
repeat this condition.)

Lemma 3.3. There is a T> 0 and a constant C such that for r — 0, 1 one has the bound

O b l l o o , (3.10)

Proof. This is the first application of Theorem 2.1 . We begin with the case r = 0. The
Banach space will be L°°, and the weight function b will be constant. There is only
the original semigroup S(2) and a linear perturbation G(2). By Lemma 3.1, we see
that for 0 < t < T9 one has || G<2)|| ̂  < G l β By Lemma 3.2, we see that ||S<2)|| n < Sl5 for
all f >0. Therefore the condition (2.4) reads in this case:

The condition on contractivity reads TG1<1. Therefore, for sufficiently small
T>0, the Theorem 2.1 applies and this yields the Lemma 3.3 for r = 0.

In order to study the case r = 1 we use the equation

dx. (3.11)
t'

By the estimates of Lemma 3.1 and Lemma 3.2, we see that

||Gf>S<2_> A>v|| „ ̂  const a^s-t') \\w\\ „ .

Combining this with (3.10) for r = 0, we conclude that

βι(ί-OIML (3.12)
30

The last expression is a bound on

const J dsaQ(t — s)aί(s — t'),
f

which uses the explicit form of α0 and a^. Since the bound is dominated by that on
S^V^jo the proof of Lemma 3.3 is complete.

Step 4. We now add the other terms. We start with the inhomogeneous term

)3. (3.13)
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It can be rewritten as

where f}3 2> = (u<1>)3. We define further

είf 3>(x)= -(4ίε33 + ε2#)«<1)(x), (3.15)

which is the second term in (3.3). We have the following bounds, using Lemma 3.1 :

uniformly in ε, for 0^t<T. Note that H^F^IL diverges like <P(l/ε) as ε-»0.
Finally, we define the nonlinearity */f (3> as in (3.4) by

(x) = - 3(2W<^

- e2ixle(3ί4l\x)δ2(x) + <53(x)) . (3.1 6)

With this notation, (5 is given by the expression

δt = } dsS£XF?> + εFf 3> + Λ ?\δt)) ,
0

which by (3.14) can be rewritten as

^sdx)F^

By the bounds we have established on 5(3), and on S^d^ we see that the main
lemma applies for sufficiently small T> 0. The corresponding bounds for (2.3) are:

F^ const min(8ί1/2,ε1/2ί3/4),

M, N^ const t.

These constants depend only on the first four derivatives OΪU(Q\ Hence δt exists for
O^ί < T Applying the Remark 2.2, the assertion of Theorem 1.1 follows.

Appendix A

In this section, we prove Lemma 3.1. However, since our method is more general,
we present a general bound on solutions of semilinear differential equations, which
need not be parabolic. The idea is that the nonlinearity bounds those terms which
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are not damped by the positivity of the "kinetic" energy. We consider equations of
the form

dtut=-Put-utf(\ut\
2), (4.1)

where P is an elliptic differential operator, or, more generally associated to a
symbol

ξ), (4.2)

where α>0 and where R is a polynomial of degree <2k in ξ with sufficiently
smooth coefficients which are bounded together with their derivatives.

We also assume that /(ρ)->oo as ρ-»oo and /'(ρ)^0. This last condition is
somewhat too restrictive but makes the estimates easier. We denote by P the
operator P = P(x, — idx). The method we use generalizes immediately to operators
in several variables, when a is a definite form.

To make the notation less awkward, we pretend in all estimates that the
quantities are real, thus we write u2 instead of \u\2. The necessary adaptations to the
complex, or general vector-valued case are obvious.

Theorem 4.1. Assume \\u0\\OQ< oo and \\dxuQ\\ao< oo. Under the above assumptions
on P and /, the solutions of (4.1) are bounded in L°°. There is a

C = C(||ιι0IL,||5,ιiolL)<oo such that

Remark. By the standard regularity theorems, there is, for every p, a T>0, and a
C > 0, such that || dp

xut \\00<C for all t e (0, T), and for p ̂  p0. We may thus assume
that the initial data are in ̂ Po, for any p0 < °° we wish.

Proof. Our strategy will be to prove the result first in Sobolev spaces and then
derive the theorem from the Sobolev estimate. We give ourselves a weight function
he<£2k, h2eL2,h>Q which satisfies

^H, for p = l,...,2fe. (4.3)

We shall do bounds in L2(h2dx) and denote

(u, υ)h = J dxh2(x)ΰ(x)v(x) ,

and

Remark. The class of functions h which we really use is

Mx)=(l+α0(x-α1)
2)-1, (4.4)

with α0 >0 fixed, and a± arbitrary. Then the bounds (4.3) hold with H independent
ofαi.

Let β(x, ξ) be of the form

) , (4.5)

where b > 0 and where S is a polynomial of degree < 2n in ξ with sufficiently
smooth coefficients which are bounded together with their derivatives. We denote
by β the operator Q(x, — idx).
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Lemma 4.2. There is a constant G = G(b, S, H) such that

Proof. We have

u)h = (h\ Qu) = (wft, Quh) + (ufc, [ft, Q]h ~ 1 - uh) ,

where [ , ] denotes the commutator. Note now that [ft, 3 J] ft"1 is a sum of
differential operators of degree less than p,

Therefore, we find

where the Sj are polynomials of degree at most In— j in the second argument,
whose coefficients are bounded when ft is of the form of (4.4). By our assumptions,
we find that 2n

.Σ

is a symbol of order 2n and it satisfies

for some K = K(b, S, H). Therefore, we have

(uh2, Qu) = (wft, β0(x, - ίδJiiΛ) ̂  - G(wft, uλ)

for some G = G(b,S, H), by [3, Theorem 18.1.14-15]. This completes the proof of
Lemma 4.2.

We consider next an initial condition u0 e L°° and establish a bound on (uf, ut)h.

Proposition 4.3. There is a constant Cί = Cί(a,R,H, | | t t 0 l loo) suc^

Proof. Consider

= - (ut, Put)h - (wt, utf(u2))h .

By the lemma, this quantity is bounded by

,(ut, u,)h^ G(ut, ut)h - (ut, utf(u?))h.

Define now U such that /(l/)^G + l. Then

t^GJΛV- J ΛV(G + 1)
U2S17

^G J ΛV- f ΛV

f . Λ V - J A V .
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Thus, %dt(u9u)h^(G + ί)U—(u,u)h. From this differential inequality it follows at
once that

(ut, ut)h ̂  max(2(G +1)17, (u0, uQ)h) .

We next bound

\dt(u', u\ = - (uf, Pu\ - (t/, f(u2)u\

-2(uu'J\u2)uu\.

Note that the terms containing / are non-positive. Assume for simplicity that
, ξ) in (4.2) only depends on ξ. Fix any A e R. Then the identity

(u,Qu)h, (4.6)

holds when

Remark. When P is of the general form of (4.2), one can still find a Q such that (4.6)
holds. The definition of Q is more complicated, but the terms of highest order
remain the same in all cases.

We now apply Lemma 4.2 with Q as above and get

Therefore the identity (4.6) implies

(u\ Pu\ - A(u'9 u\ = (ii, βu) ̂  - C(w, u)h .

It follows that

d,(u', u\ ϊ - («', Pu\ ϊ C(u, u\ - A(u', u\ .

We have already seen that (ut, ut)h is bounded, and hence it follows that (u't, u't) is
bounded as well

We now have shown that (ut, ut)h and (u't, u't)h are bounded in t. From this the
proof of the theorem is completed as follows. We have

h2(x)u2(x)= J dy(u2h2)'(y)

^ ^ h
= 2 J dyuu'h2 + 2 J dyu2 — h2

— oo — oo "

\h'\
U,Uh M , M h U,Uh | f c |^ 00.

Thus, we find

but since K is independent of h among the h of (4.4), we find, using a± = x,
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Proof of Lemma 3.1. To simplify the notation, consider

d,ιι = 4d*u + 3u - 3φ|2 = 4d*u

and denote by u(k) the fcth derivative of u. Let

</>k(ί)= sup sup Hallo

We are going to show that if φk(0) < oo, then ψfc(ί) < oo for all t > 0. In fact, one can
even gain one derivative with a slight divergence near t = 0, but we do not need
these better bounds in this paper.

It is well known from local existence and regularity theorems that there is a
T= T(φk(0))>0 such that φk(T)<ao. So all we have to show is φk(t)< oo for t> T.
This will follow from the regularizing properties of the heat kernel. Indeed, if we
denote by Gt the heat kernel corresponding to the operator dtu = 4δ2w, then we

have

where the L1 norm is in the space variable. For ί > T, the evolution equation leads
to τ

u<*> =(3,GΓ) * tt*V > + J ds(δ,GΓ_s) «/(«ί*-~r1i J -
0

Here, * denotes convolution. In terms of the bounds, we get

where #fc_ x is a polynomial in 0/? with /<fe. From the bound on dxG, we obtain a
recursion relation of the form

for some polynomial Fk _ ̂  Since we have already shown 00(ί) < oo for all t > 0, the
result follows for all k by induction.

5. Appendix B, Proof of Lemma 3.2

To simplify the notation, we consider instead of L(2) the operator

02_ f e 33_ e2£4 e

We consider the kernel G of the corresponding semigroup. It is defined by

Gt(x)= f dkeikxe-t(k2+iεk3+ε2k4).
— oo

One has the following bound.

Proposition 5.1. For all £>0 and allr^O one has

||^Gt||1^constmin(rr/2,(ε2ί)"Γ/4). (5.1)

Remark. Clearly, this implies Lemma 3.2.
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Proof. We shall call (a) and (b) the two alternatives in (5.1). It is useful to consider
the rescaled function

gτ(y)= J dkeik*e-k2-iτk3-τ2k\
— 00

so that Gί(x) = ί~1/2gt(x/ί1/2) with τ = εί~ 1/2. This will allow us to treat the case
τ->0.

Lemma 5.2. For all α, β ̂  0 there is a constant Ca β such that for all τ, 0 ̂  τ ̂  1 , one
has

Proof. This follows by direct calculation. We have

= dkeikyPx,β(k)e-k2-iτk3-t2k4 . (5.2)
— 00

Here, Patβ is a polynomial whose coefficients are uniformly bounded for τ e [0, 1].
The assertion follows.

Taking α = 1 in Lemma 5.2 and integrating over y, the bound (a) of
Proposition 5.1 follows for τ = εί~1 / 2<l.

We introduce a second rescaling: gτ(y) = τ~1/2h(τ~ll2y).

Lemma 5.3. For all α, β^O there is a constant CΛiβ such that for all τ, τ ̂  1, one has

||(i+2

Proof. We can rewrite hf as

fct(z)= J
— oo

where now ^ = τ~1 / 2 = ε~1/2ί1/4. Since τ^l implies f / ί j £ l , the proof now follows
the same steps as in the case of Lemma 5.2.

If we re-express the results obtained so far in terms of G, we see that

with 0 = ε1/2ί1/4, so that Lemma 5.3 implies the bound (b) for εί~1 / 2>l. In
particular, when r = 0 then (a) and (b) together imply

|| Gt || ! ̂  const , uniformly in t > 0 .

We now prove the bounds of Proposition 5.1 for r ̂  1. The result will follow
essentially from scaling. We consider the case α = 1, only. Then the polynomial Pltβ

is of the form

(iKf + 0(0-1) (ikf ' 2 + 2iβ(ik)β " \2k + 3/τfe2 + 4τ2/c3)

- (iKf (2 + 6Wt + 1 2τ2fc2) - (ikf (2k + 3ίτfc2 + 4τ2fc3)2 . (5.3)
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Note now that, for all n, m ̂  0,

\k2\me-k2'2<Cm,

We see that for β ̂  1 all the terms in (5.3) can be bounded by expressions of the
form const |fc2Γ|τ2fe4|" with non-negative m, n. Therefore

uniformly in k and τ. Using the remaining part of the exponential to bound the
integration, we see that

for all β^ 1. This proves part (a) of Proposition 5.1. A similar calculation for h
leads to the polynomial

- (iq)β(2η2 + 6iηq + ί2q2)- (iq)β(2η2q + liηq2 + 4q 3)2 . (5.4)

The desired bound follows now as before by observing that

and checking that all terms in (5.4) can be bounded by terms with non-negative m
and n. The proof of Proposition 5.1 can now be completed easily.
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