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Abstract. We construct simplicial approximations of random fields on
Riemannian manifolds of dimension d. We prove convergence of the fields to
the continuum limit, for arbitrary d in the Gaussian case and for d = 2 in the
non-Gaussian case. In particular we obtain convergence of the simplicial
approximation to the continuum limit for quantum fields on Riemannian
manifolds with exponential interaction.

0. Introduction

Quantum fields on Riemannian manifolds have become recently a topic of major
interest in several connections. Besides the well known open problem of formulating
a mathematical theory of quantum gravity, in which quantum fields on manifolds
are traditionally thought to play a fundamental role, see e.g. [As], [Hal], we might
mention the explosion of activity in the study of quantum strings (and superstrings),
in which conformal fields over two dimensional Riemannian manifolds play a
central role, see e.g. [GSW], [AHKPS1,2]. More generally the study of conformal
fields with their relations to representation theory of infinite dimensional algebras
and groups (see e.g. [Kac], [PrS], [FreLM], [AHKMTT]), statistical mechanics
of 2-dimensional lattice systems (see e.g. [Kau], [ISZ]), completely integrable
systems (see e.g. [ISZ]) and topological objects like knots and braids (see e.g.
[ISZ], [Fro], [RehS], [Ga]) has attracted in recent years great interest, both in
mathematics and physics. We also mention that the theory of geometrical fields
like gauge fields, Markov cosurfaces, Higgs fields (see e.g. [BaJ], [Gr2], [GrKS],
[AHKH], [AHKHK1,2,3], [AHKI], [AIK]) also can be looked at as a natural
extension of the theory of scalar quantum fields on Riemannian manifolds.

Also from the point of view of stochastic analysis there is interest in studying
random processes and fields on Riemannian manifolds. To quote a couple of
contexts where this interest arises let us mention the role played by properties of
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diffusion processes (and random walks) in the study of differential geometrical
structures (and groups theoretical also), see e.g. [El], [E1R], the role of random
fields in stochastic geometry (integral geometry), see e.g. [Sa], and in the modelling
of rough or fractal structures, see e.g. [Ma], [Ad]. The interest in extending
stochastic analysis from flat space to manifolds and from the study of scalar
functions to the one of differential forms has also been pointed out from different
points of view, e.g. [I], [WoZ].

For constructing and studying quantum and random fields on manifolds a
useful tool is a simplicial approximation. In the case where the manifold is Rd

discrete regular approximations (replacing JRd by δZd) have been already studied
in detail. Let us mention classical work starting with Wiener and culminating with
Donsker's invariance theorem (and extensions thereof) (see e.g. [Wi]), as far as
processes are concerned, or the lattice approximation of Euclidean random and
quantum fields, see e.g. [GRS], [Si], [G1J], [AFHKL]. In the latter case
convergence has been proven for two and three space-time dimensional models.
Also for gauge fields and stochastic connections regular lattice approximations
have been studied and shown to converge in certain cases to the continuum limit,
see e.g. [CDeA], [Gr], [Dr], [AHKH], [DeADFG].

Simplicial approximations have appeared in the physics and mathematical
literature in connection with quantum gravity, see e.g. [Re], [CMS], [Kha], string
theory [AmD] and gauge fields models, see e.g. [DrM]. However to our knowledge
convergence to the continuum limit has not been proven in any model.

In the present paper we study systematically the simplicial approximation of
random and quantum fields on manifolds.

We exploit some basic results achieved in the mathematical literature concern-
ing finite element methods, e.g. [StrF], [Nit], and important work on approxi-
mations of eigenvalues and differential forms on Riemannian manifolds done by
Dodziuk, Dodziuk-Patodi and Mϋller in connection with the proof of the
Ray-Singer conjecture on equivalence of analytic and combinatorial torsion.

In Sect. 1 we recall basic concepts of algebraic topology like complexes and
triangulations (Sect. 1.1) and introduce combinatorial differential operators as
basic elements of simplicial approximation theory for differential operators or
forms (Sect. 1.2) (as developed in [Do], [DoP], [Mu], [Eck]).

In Sect. 2 we introduce real-valued simplicial fields associated with g-cochains
over a complex of a smooth triangulation of a (compact) connected Riemannian
manifold. We also define the analogue of Euclidean free quantum field measures
for simplicial fields and prove their convergence to the continuum limit as the
mesh of the triangulation converges to zero.

In Sect. 3 we study (correlation) inequalities for real-valued simplicial fields on
a manifold. We prove certain inequalities of Brascamp-Lieb type for Gaussian
measures associated with simplicial fields with free respectively Neumann boundary
conditions. We also provide an example to illustrate that the relation between
fields with Dirichlet boundary conditions and fields with free or Neumann
boundary conditions does not hold, in general, for triangulations of Riemannian
manifolds. We discuss both the cases with mass term and without it. In particular
we prove that locally we can bound expectations of the 0-simplicial measures
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associated with a Riemannian manifold with arbitrary (non-degenerate) metric by
expectations with a measure corresponding to free Euclidean field scaled by a finite
factor.

In Sect. 4 we introduce local interactions for simplicial fields on compact
2-dimensional Riemannian manifolds. In fact we give two possible definitions of
Wick powers and exponential functions of the free simplicial fields. We show their
belonging to the relevant Lp respectively L2 spaces (here we also use a result in
[FroZel]).

In Sect. 5 we prove that the simplicial approximations of Wick powers and
exponential functions introduced in Sect. 4 converge to a well defined continuum
limit as the mesh of the approximations goes to zero. We also provide a
representation of simplicial Wick powers fields in the same probability space as
the free Euclidean fields.

In Sect. 6 we study the simplicial approximation of a model of scalar random
and quantum fields on a 2-dimensional Riemannian manifold with exponential
interaction. This model has been studied originally for the case of R2 (H0egh-
Krohn's model), see [AHK]. For its relevance for (bosonic) string theory (Liouville's
model) see [AHKPS1], [AHKPS2]. See also [AFHKL], [AHPRS], [AR1,2], [A],
[Sc], [AK], [Ku] for further references and work on H0egh-Krohn's model. In
this paper we prove bounds of Brascamp-Lieb type for the interacting simplicial
fields with exponential interaction and their continuum limit. We also point out
some consequences of these inequalities and of the convergence result.

Let us finally remark that we expect our ideas to be also useful for providing
a rigorous foundation for topological quantum field theory.

1. Preliminaries

1.1 Complexes and Triangulations. In this section we shall introduce some basic
concepts of algebraic topology, referring to [SiTh], [Whi], e.g., as basic references.
Let V be a vector space over R. Let fceNu{0}. Let {vQ,...,vk} be vectors in V
such that {vί — v0,v2 — vθ9...9vk — v0} is linear independent. The convex set
generated by (t;0,..., vk} is denoted by [ι?0, vl,..., υk~\ and called a (closed) k-simplex

( k ]
(in Rfc). The set < v € [ v 0 9 v l 9 . . . 9 v k ' ] 9 v= ]Γ a^v^a^ >0, i = 0 , . . . , k > is called an

( « = o J
open k-simplex and denoted by (v0,..., ι?k). The vertices of [ι;0,..., t>k] are the points
vQ,...,vk. The closed faces of [u0,...,t;k] are the closed simplices [_vjo9vjl,...,vjh],
where {j0,... ,jh} is a nonempty subset of {0,1,..., k}. The open faces of [t>0,..., ι?fc]
are the open simplices (vjo,..., vjk).

A simplical (Euclidean) complex K is a finite set of open simplices σ\q\ in some
RD, where i runs over a finite subset Iκ of N, σ\q) is an open ^-simplex, 0 ̂  q ̂  D,
such that
i) if σ\q)eK then all open faces of its closure belong to K,

ii) for any 0 ̂  q g Z), if σ^nσf Φ 0, then σ(q) = σf.
One calls the maximum dimension of the simplexes of K the dimension of K.

Let [X] = (j σ(q\ then [X] is compact.
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For any zero simplex σί0) = [pj, /7;eRD, i.e. vertex, its star is defined as the
open set

(1.1)

For any ^-simplex σ(q) its star is by definition, the union of all simplexes σ(qΊeK,
q'^q such that σ(q) a σ(q>} (i.e. the union of all open simplices of K such that σ(q]

is a face of σ(q'}). Now let σ(q) be a q-simplex, with vertices υθ9...9υq. Two orderings
(Vj^ , . . . , vjq) and (vkί , . . . , vkq) of the vertices of σ(q) are equivalent if (fcλ , . . . , kq) is an
even permutation of (jί9...9jq), (this defines indeed an equivalence relation). An
oriented simplex σ(q) is a simplex together with a choice of one of the equivalence
classes. Ifvθ9...9vq are the vertices of σ(q\ the oriented simplex determined by the
ordering (vθ9...9vq) will be denoted by <ι?0,...,ι;4> (this is the same as orienting
the g-plane containing σ(q) by means of the ordered basis {v1 — v0, . . . , vq — v0}.

Let K be a simplicial complex. Let C4(K,R) = Cq(K) be the set of all formal
linear combinations, chains:

σ Ξ Σ f l i<<ΓίX «^R, σi = (v0,...,vq)εK (1.2)
i

subject to the identifications —ai^VQ9...9vqy = ai^vl9vQ9...9vqy.
For simplicity in the following we often do not differentiate between <σf> and

σf and write simply Σ a{σi for a chain. C^(X) is a vector space (over R) of dimension

the number of ^-simplices of K. We define the star of the chain σ as the union of
stσt for the ί for which a{ J= 0. Let <s> = <ι;0, . . . , vq + 1 > be an oriented (<? + l)-simplex.
The boundary δ<s> of <s> is the ^f-chain defined by

,f;1,...,ίJ,...,v1>, (1.3)
7 = 0

where A over a symbol means that symbol is deleted.

The boundary map Cq(K)^~ Cq+l(K) is a group homomorphism defined by

One has easily d2 = d-d = 0. For 0 ̂  <? ̂  dim K, let Cq(K) = Cq(K)*, where * denotes
the dual of Cq(K) (linear maps from Cq(K) into R) defined by the canonical pairing
<,) on K defined by

<<#>, σf >> = 5«f 5y, <#\ <ή '>eK. (1.5)

We call Cg(X) the space of ^f-cochains (it can of course be identified with Cq(K)).
Every cochain φ(q)eCq(K) can then be written as

with φ^eR, the summation being over all (oriented) g-simplexes in K. Let
dc = d*:Cq(K)-+Cq+i(K) be the adjoint of the boundary map
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Thus dc is defined by

= φ(dc\ (1.7)

with

φeC«(K), ceCί+1(K). (1.8)

One has easily dc dc = 0.
Let C(K) be the union of all Cq(k), Q^q^D. We can look upon dc as a map

from C(K\ into itself. dc is called the coboundary operator.
For each oriented g-simplex <σ> of X, let φ<σ>eCq(K) be defined by

1 if <σ'> = <σ>

l if <O=-<*> (1.9)
0 if σ'Φσ.

So if <σj >, . . . , <σm> is a basis for Cq(K\ then φ<σ >5 . . . , φ<σ > is the dual basis of
Cq (K).

We have then

^<Do,....v
=Σ><^o,...r,>' (L10)

where £' denotes the sum over all vertices vεK such that (v9v0,...,vq) is a
Γ

(g -h l)-simplex of K.
Let M be a (compact, connected and oriented) smooth (Riemannian) manifold

of dimension D. Let dM be its boundary (which can be void).
Let Λ:([K], [L])-+(M, 3M) be a smooth triangulation of M, i.e. X and L are

simplicial complexes, L c K, fo is an homeomorphism such that for each complex
of X, the map /z:[σ] -»M has an extension hσ to an open neighborhood U of [σ]
in the plane of [σ] such that hσ: U -> M is a smooth submanifold; and correspond-
ingly with K replaced by L and M by 3M.

Now let K be any simplicial complex, with vertexesp 1 ? . . .,/?m . Suppose pe[K].
For je{l,. . .,m}, the/h barycentric coordinate bp.(p) of p is defined as follows. If
pφSt(pj), then bpj(p) = 0; if peSt(pj)9 then pe(σ) for some simplex σ having p7 as a
vertex, and bp.(p) is equal to the barycentric coordinate of p in σ relative to the

m

vertex p7 in the sense that p= Σ bpj(p)pj. One has bpj in [K]->R continuous,
j = ι

^Pj(p) ̂  0, £ bpj(p) = 1 for each pe[K]. Identifying [K] with M by the existence

of the above homeomorphism h we can look upon the bp 9 p as points in M and
call bpι the barycentric coordinates of the point p in M.

7.2 Combinatorial Differential Operators. In this section we present some results
of simplicial approximation theory for differential operators or forms developed
in [Do], [DoP], [Mϋ] (see also [StrF]). Let us first introduce the continuum
version of the basic object we shall consider. Let M be a smooth manifold. Let
T(M, p) respectively T*(M, p), for pe M, be the tangent respectively cotangent space
at p and let Λk(T*(M,p)) be the space of all anti-symmetric /c-linear functions on
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T(M, p), called /e-forms associated with T*(M, p). Let Λk = Λk(M) = (J Ak(T*(M, p)).
peM

Let π be the projection map from Λk(M) onto M . Let α be a mapping for M into
/lfc(M) such that π α = /M (the identity on M). α is called a k-form on M. A fc-form
α is called smooth or C°° if α^ , . . . , yk)eC°°(M,R), where y, are smooth vector fields
on M and oι(vι9...9vk)(p) = Qi(p)(vί(p)9...,υk(p)). A differential form on M is a
mapping α:M->G(M) such that π α = *M, where G(M) = y G(Γ*(M,p)), with

D peM

G(T*(M,p)) ΞΞ 0 Λfc(T*(M,p)), with D = dimension M, the exterior (Grassmann)
k = 0

algebra of T*(M,p). A differential form is smooth if its components in Ak(M) are
smooth for each k. The set of smooth /c-forms on M is denoted by C°°(M,/lk(M))
or for simplicity by Λk alone. C°°(M,/1(M)), or for simplicity A, denotes the set of
all differential forms. Let a metric g be given on M. Let * be the Hodge star
operator defined on Λ (by *β Λ α = #α J β, with βεC™(M9 Ak(M)\ αeC^M, Ak(M)\
with #α the tangent k vector corresponding to α. J is contraction defined by

α, (1.11)

a J α(α2, α3, . . . , ak) = α(α, α2, . . . , αfc).

A natural scalar product in A is defined by

/ί, (1.12)

for θL,βeAk(q= 1,...,D). Let d:A-+M denote the exterior derivative (exterior
differentiation operator, antiderivation) of degree +1, uniquely defined (see e.g.
[Wa]) by d2 = 0 and df the differential of/ if /6C°°(M).

Let L2/l be the closure of A in the norm defined by the scalar product (1.12).
For dM = 0, let δ be the adjoint of d with respect to the scalar product (1.12).
Define as Laplace-Beltrami operator on M the operator Δ given by

the bar meaning operator closure (and f meaning restriction to Λ) (closure exists
by symmetry).

If dM Φ 0 we shall have additionally to consider the boundary conditions. Let
ADc:A be the subset consisting of (smooth) differential forms vanishing at the
vicinity of dM. The Laplace-Beltrami operator with Dirichlet (or relative) boundary
conditions on dM is given by

-AD^(d + δ)2\AD. (1.13)

Similarly, for ΛN c A a subset of differential forms, with vanishing their normal
part and normal derivative on the boundary, we define the Laplace-Beltrami
operator with Neumann (or absolute) boundary conditions on dM.

(1.14)
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If dM consists of disconnected components one can also consider other (self-adjoint)
boundary conditions.

Now let M be a compact, connected and oriented. For any Laplace-Beltrami
operator A defined above, let — λ(q\ and φ(q) denote its eigenvalues and respectively
corresponding eigenforms in Λq, i.e.

-Δφω = Wφω. (1.15)

It is known that, M being a compact smooth manifold, —A has a discrete
nonnegative spectrum. For any 0 ̂  q ̂  D we can and do order the eigenvalues so
that λ(q) ^ λ(q]

+ l . The Green operator is by definition the map G:L2Λ -» L2Λ satisfying
for any αe/l*7, GaeΛq and moreover

-ΔGoi = a-Hoί, (1.16)

where H denotes the projection in L2Λ on the subspace of harmonic forms (i.e.
forms α satisfying Act, = 0).

In the approximation theory the important role is played by the Whitney
mapping defined as follows [Whi]:

Definition 1.1. Let K be a smooth triangulation of M, with vertices pθ5 ,pπ The
Whitney mapping is a linear function

W:C(K)-*L2Λ

defined as follows: For [pJeC^JQ

WlPi]:=bpi, (1.17)

where fep. is the barycentric coordinate associated to p f. For

and

we set

WV»:=<7! f (-l)'VbPo Λ - Λ d& w _, Λ d&,(+1 Λ - Λ dbpq. (1.18)
i = 0

The fact that our triangulation is smooth implies that each continuous function

bp. is smooth outside the (D — l)-dimensional set 3Sί[pJ (where here — means
closure and d boundary). Moreover for any σ(q) we can apply the exterior derivative
d to Wσ(q) and the resulting form dWσ(q) is in L2Λ(q+1]. For a cochain σεCq(K),
let Wσ be the Whitney form associated to σ via the map given in Definition 1.1.
One can easily show, see [Do], that the Whitney map is local in the sense that

Wσ = 0 on M\Stσ (1.19)

and has the property

(1.20)
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Following [Do], ([Ec]), we define the following scalar product in the space of
cochains:

Definition 1.2 For σeC%K), σ'eCq'(K) we define

(σ, σ'):= (Wσ, Wσ'} = j Wσ Λ *Wσ' (1.21)

if q = q' and zero otherwise.
As pointed out in [Eck] (see also [Do], [DoP] [Mύ]) any scalar product in

C(K) leads to a combinatorial Hodge theory. Using the scalar product (1.21) we
define an operator δc formal adjoint to dc, as an operator satisfying

(δcσ,σ') = (σ,dcσf) (1.22)

for some σeC(K) and all σ'eC(K). If dM is empty (1.22) uniquely determines δc.
In this case we define a combinatorial Laplacian by

-Δc = (dc + δc)2. (1.23)

If the boundary dM is nonempty we can supplement (1.22) by suitable boundary
conditions.

Restricting ourselves to a subset C0(K) consisting of chains c vanishing on the
boundary, i.e. We = 0 on 3M, we get the operators dc

D and its adjoint δc

D. Using
them we define combinatorial Laplacian with Dirichlet (relative) boundary conditions
on dM by

-Δc

D:=(dc

D + δc

D)2. (1.24)

For dM Φ 0 and if no restriction on the domain is taken, we define the
combinatorial Laplacian with Neumann (absolute) boundary conditions on dM by
(1.23) and denote it by ΔC

N.
Additionally, for the case of nonempty and nonconnected boundary one can

also consider combinatorial Laplacians with mixed boundary conditions. If it will
be clear which combinatorial Laplacian we have in mind or some properties will
be satisfied for all boundary conditions, we will simply use Δc to denote any
combinatorial Laplacian under consideration.

Consider a combinatorial Laplacian Δc restricted to a space of ^-chains for
some 0 ̂  q ̂  D. Let φc

lGCq(K) be its normalized eigenvector corresponding to an
eigenvalue — λ\, i.e.

-4<# = λί# (1.25)

and (φc

t,φi) = 1, (the scalar product being defined in (1.21)) with indexing by
so that

A f ^ λ ? + 1 . (1.26)

By our definition, 0 ̂  λ\ and in particular for Dirichlet boundary conditions 0 < λ\.
Let H(q) denote a subspace of Cq(K) consisting of harmonic g-cochains i.e. φceH(q) if

-Δcφc = Q. (1.27)

By H we will denote also the projection operator onto the subspace of harmonic
cochains. Let GC:C(K)-+ C(K) be the combinatorial Green operator corresponding
to Δc i.e. a unique linear map satisfying:
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for any αeC4(K), Gcα is a g-cochain being in the domain of Δc and

- ΔcGcκ = α - Hoc. (1.28)

Definition 1.4. The De Rham map is a function

R:Λ->C(K)

satisfying for any 0 ̂  q ̂  D

:=£( J α ) σ ,
\* /

(1.29)

where the summation is over σ, σ running over all ς-simplexes in K (identified by
use of the canonical pairing (1.5) with all g-cosimplexes in Cq(K)). Jα is the integral
of α over σ. σ

We remark that de Rham map is well defined also on the subset WRA of L2Λ
and we have the following property [Do]:

RWσ = σ. (1.30)

For any αe/i, the form WR& can be considered as an approximation of α. In this
section we would like to describe the behaviour of this approximation, as well as
the behaviour of eigenvalues λc and eigenforms φc of the combinatorial Laplacian
Λc, when a complex K becomes "dense." For this we will consider a well behaved
family of smooth triangulations {Kπ}πeN satisfying K l l c=K l l + 1, i.e. Kn + l is a
subdivision of Kn.

To characterise more precisely such a family we introduce the following two
quantities: A mesh η of the smooth triangulation K is by definition a number

η = η(K) = sup diam (σ). (1.31)
σeK

A fullness Θ of K is by definition a number

mϊ^^, (1.32)

with infimum taken over all D-simplexes, D = dim M, in K.
Given K one can construct a family {Kn}neK by making successively standard

subdivisions of K as follows [Whi] ([Do]):
Let σ = (PO, p l 5 . . . , pq) be a simplex in RD, g ̂  D. The vertices of Sσ, the standard

subdivision of σ, are by definition the points

Pij = ϊ(pi + Pj\ i^j. (1.33)

Now we define a partial ordering of the vertices of Sσ. Following [Whi] one can
choose it as follows:

Pi j^pw if i ^ f c and ^/ (1.34)

and declare that the simplexes of Sσ are all those formed from ptj which are in
increasing order. (In this way for a ^-simplex σ we get 2q simplexes in Sσ.) For a
complex K we define its standard subdivision SK as the smallest complex containing
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all simplexes in (J Sσ. By induction we define a sequence of complexes
σeK

X! = K, Kn + i^SKn. (1.35)

Later on we will also use the other special case of standard subdivision, called by
us the regular standard subdivision (or shortly "regular subdivision"). In this case
for a g-simplex σ = (p0,Pι, , P q ) we define the vertices of Sσ as in (1.33), but
declare that the simplexes of Sσ are all similar to σ, i.e. each simplex in Sσ can be
obtained by contraction of σ by a factor % and possibly a translation accompanied
by rotation. Then we define a sequence of regular subdivisions by induction as in
(1.35).

01 1 U 01

Whitney standard Regular standard
subdivision subdivision

The standard subdivisions have the following important features:
a) Given a simplicial complex X, at most a finite number of shapes occur among
the simplexes of (J Kn, Kn = SnK.

n

b) The mesh η of SnK has the property

η(SnK)-*Q as tt->oo, (1.36)

and there is a constant 0 < c0 < oo such that for any rceN,

Co£θ(SnK)9 (1.37)

Θ being the fullness defined by (1.32).
Let Wn respectively Rn denote Whitney respectively De Rham map associated

to the complex Kn defined in (1.35). Now we can formulate the basic results of
simplicial approximation theory:

Theorem 1.3. Suppose {Kn}ne^ is a family of smooth triangulations of a C°° compact
Riemannian manifold M, defined by standard subdivisions. Then we have
a) For any αe/1

WnRnOL-^^OL inL2Λ. (1.38)

b) Let { — λϊ,φc

l} be the eigenvalues and eigenvectors of a combinatorial Laplacian
defined in C(Kn), i.e.

-Δ'φί = λiφϊ, AUG. (1.39)

Then there is an indexing {— λt, φ, } of eigenvalues and eigenvectors of a Laplacian
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Δ in continuum (with corresponding boundary conditions) so that

λϊ-^λι> (1-40)

and
Wnφ

cι ^_> o o> φi in L2Λ. (1-41)

c) Let Gc be the Green operator corresponding to the Laplacian Λ° defined in C(Kn).
Then for any αeΛ,

WnG
cRn<* -^> Gα in L2Λ. (1.42)

Proof.
a) This is proved in [Do] (see also [DoP] and, for functions [StrF]).
b) This is proved in [DoP].
c) This follows essentially from a),b), cfr. also e.g. [Mil] (Th. 5.15).

Remarks.
1. In the above statements a), b) one can replace the particular approximation
through the linear functions Wnφ\ by other approximations belonging to the
quadratic form domain of A.
2. In this paper we do not need the precise rate of convergence in a), b), c). Let us
mention that this rate has been obtained for a), b) in [Do], [DoP] (see also (StrF]),
and for c) in the work [Mil] (in the course of the proof of the Ray-Singer-conjecture
on equivalence of analytic and combinatorial (Reidemeister-Franz) torsion. For
the proof of the Ray-Singer-conjecture see also [Che]).

2. The Simplicial Fields

Let K be a complex of a smooth triangulation of a C°° compact connected
Riemannian manifold M and let L c K be a subcomplex triangulating dM (possibly
empty). Let 0 ̂  q g dim M.

Definition 2.1. A qth-Simplicial field is a map

given by

with the sum running over i = 1,..., dim Cq(K) and where σi are g-simplexes of K,
whereas φt denotes the z-th coordinate function on RdimCβ(*\

For any σeCq(K) we set

φ(σ):=Σφι(σi9σ). (2.3)
i

If the manifold M has nonempty boundary 3M, we can also define a g-simplicial
field φD with Dirichlet boundary conditions on dM. This field is by definition the
map from Rd u n CoW to Cq

0(K) and is given by (2.3) with the summation restricted
to g-simplexes σtφL. The field with Neumann boundary conditions on dM is by
definition identified with that given by Definition 2.1.
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By the very definition the following quadratic forms are well defined nonnegative
real functions:

(dcφ, dcφ) EE £ φiφj(dcσi9 dcσ^ (2.4a)
ij

(φ,φ) = Σφiφj(σi,σj), (2.4b)
ij

(φ, Hφ) = £ φ. φ/σi, Hσ, ). (2.4c)
U

For μo,m)e{(R+ xR+)\(0,0)} (with R+ = [0, oo)) we define

(φ, [Gc] - 1 φ) = (dcφ, dcφ) + A0(φ, Hφ) + m2(φ, φ) (2.5)

and with weR+

(</>D, [Gί>] " >D) = (ΛcΦz>, dcΦι>) + ™2(ΦD, ΦD)

Definition 2.2. A /ree q-simplicial measure is defined by

with Yldψi the Lebesgue measure on RdimCq<χ) and Zc a normalization factor

making μc

q into a probability measure.
If dM Φ 0, we define a /ree q-simplicial measure with Dirichlet boundary

conditions on dM by

( ] " > ) ) (2-8)

with Π^/>,i t'ιe Lebesgue measure on RdιmCo(*) an(j ̂  a corresponding normal-

ization factor. If dM + 0, then a q-simplicial free measure μc

qtN with Neumann
boundary condition is by definition equal to (2.7). Since the quadratic forms (2.5)
and (2.6) are strictly positive definite in the corresponding range of parameters, so
the g-simplicial free measures in the above sense are well defined. If in a given
context it is not necessary to mention the boundary conditions, we will use μc

q to
denote any of the above defined probability measures.

Before we make a more detailed analysis of g-simplicial fields, let us note that
they all converge to the corresponding ^-fields in the continuum limit. To see this,
let us consider a triangulation Kn of M given as the n-th standard subdivision of
a smooth triangulation K and define the following characteristic functionals:

:= μc

q(eίφ(Rn*}) (2.9)

with μq the free g-simplicial measure defined above for the complex Kn. Using the
properties of Whitney and de Rham maps one can see that the functional (2.9) is
also well defined on the set

} = \JWCq(Kn.) (2.10)
n'

which is dense in IίAq.
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Theorem 2.3. Let {Kn}neK be a family of smooth triangulatίons of a compact C°°
Riemannian manifold M, defined by standard subdivisions. Then, for any αe/lq u 0(q\
O^q^ dim M, we have

μq(ei^\ (2.11)

(212)

where μq is the Gaussian measure on (Λ9)' with mean zero and covariance

μq(φ(θί)φ(S)) = (a, (- Δ + λ0H + m2!)

where α, oίeΛq.

Proof. The proof easily follows from Theorem 1.3 (a,b).
Suppose α,ά6θ(ί) i.e. there is some n0eN such that oc,aeWnoC

q(Kno). Let μc

q be
a free g-simplicial measure defined for a triangulation Kn, Kno c Kn. Let {— λc

l9 φ]}
be eigenvalues and eigenvectors of a combinatorial Laplacian Δc on Cq(Kn) ordered
so that λ] ^λc

l + 1. It is assumed that the φ\ are normalized such that (φc

hφϊ) = 1.
Then we have

lfq(φ(Rn*)φ(Rn&)) = m2)~ l (φe

0, RH&)

1=1

We remark that λ0 in the first term on the right-hand side of (2.13) is not an
eigenvalue of — Zlc, but rather the parameter standing before the harmonic projector
H in Definition 2.2 of the measure μc

q. If the space H(q) is empty then we can take
λθ9 m = 0 and by convention the first sum on the right-hand side of (2.13) is equal
to zero. Take TVeN, ε > 0. Then using the fact that for (XEWnQCq(KnJ we have

WnRnoc = oc (2.14)

for all n ̂  n0, and using Theorem 1.3 (a,b) we get the estimates

"4'

(2.15)

N

i - Σ f c
N

/ =1 1^1

provided rceN is taken sufficiently big. We have also

if πeN is sufficiently big, and

ε
:4'

(2.16)

(2.17)

(2.18)
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Using the fact that each eigenvalue has finite multiplicity and the sequence of
different eigenvalues of the Laplacian — Δ in the continuum diverges to infinity,
we can estimate the sum of (2.17) and (2.18) by ε/2, provided NeN is taken
sufficiently big, depending only on ε. Combining the above estimations we get that
for any α,

\μc

q(φ(Rnθi)φ(Rnoί)) - μq(φ(a)φ(dί))\ < ε (2.19)

if HE IN is taken sufficiently big.
This implies (2.11) for aeO(q\ The proof for αeΛ* goes through the same

arguments plus the use of Theorem 1.3a) about the convergence in L2Λq of WnRn&
to α.

3. Inequalities for Scalar Simplicial Free Fields on a Manifold

Let M be a compact connected C°° Riemannian manifold with boundary dM
(possibly empty). Let K be a finite smooth triangulation of M and let L c K be a
subcomplex triangulating dM. In this section we will investigate 0-simρlicial fields.
In the case where dM = 0 or where we take Neumann-boundary conditions the
space H(0) of harmonic 0-cochains is nonempty. Then we have the following explicit
expression for the harmonic projection on C°(K):

where | M | means Riemannian volume of M and

(3.2)

with summation going over all j such that σJ6C°(X). From (3.1) we get

(3.3)

This implies that the quadratic form (φ,Hφ) is a convex function of (φj.
Note that by our definition the quadratic form (φ, φ) is also a convex function

of {φj. For our further purposes let us introduce the following partial order in
the space of probability measures on a finite dimensional vector space.

Definition 3.1. Let μ and μ be the probability measures on a topological vector
space V. We say that μ is less than μ in the sense of Brascamp-Lieb if for any feV
and neN

μ(\φ(f)\*)£μ(\φ(f)\n) (3.4)

with φ(f): V -»R: K'3/h->φ(/)(/):= /(/), V being dual to V. If (3.4) is satisfied we
write

μίμ. (3.5)
B-L

With the above notation we have
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Lemma 3.2 [Brascamp-Lieb]. Let μ be a perturbation of a Gaussian measure on a
finite dimensional vector space by a log concave function, i.e.

ιt(o~U \

(3.6)/*V ) — ( ~\J\μ(e u)

for some convex function U. Then

μ ^ μ. (3.7)
B-L

Using this Lemma and (3.3) we get easily

Proposition 3.3. Let μc

0 be defined by (2.7) with A0 ^ 0 and m0 > 0. Then

μco ^ M O ! A O = O: (3.8)
B-L

If λ0 > 0, then μoL0 = o *5 we^ defined and

ti> ̂  μoL0 = o (3.9)
B-L

Let σeX be a D-chain, D = dimM. Let dσ = Stσ\σ and denote by χδσ the
characteristic function of the image of (K\dσ). Using these notations we define the
following quadratic forms with ml > 0:

) = Σ 9t9tt*, Wdcaiy χdσ Wd'σj)
ij

+ ml £ φίφj(χΰσ Wσt, χ,lσ Wσj. (3.10)
ij

Thus the form [G^]'1 is obtained from the form [Gc]-1 with λ0 = 0, by
removing a quadratic form supported in dσ. Equivalently we can get (3.10) by setting

WφN(dσ^(\-χdσ)Wφ (3.11)

into [G0]'1.
Let μc

N(dσ) denote the Gaussian probability measure (with Neumann boundary
condition on dσ} having covariance given by the form [G^^]"1 in (3.10). Then
again invoking Lemma 3.2 we get

Proposition 3.4. Let μ€
0 respectively μc

N(dσ) be a Gaussian measure corresponding to
[Gc] ~ 1 respectively [G (̂(,σ)] ~ 1 defined with λQ = 0 and m0 > 0. Then

Mo ^ μe

w(w <3 12)
B-L

One can define also a form [G^(a<τ)] ~ 1 with Dirichlet boundary condition on dσ
by removing from [Gc] "1 the terms of the form <pi<pj\_(dcai9 dcσj) -f m2(σiy σ7 )] with
σ ί,σJ 6C°(X) such that σ^σ and σ;e5ίσ\σ. Let μc

D(dσ} denote the corresponding
measure. In the usual euclidean field theory on the lattice ΊLά (see e.g. [GRS], [Si],
[GJ]) one can relate the measure defined with Dirichlet boundary condition to a
measure with free or Neumann boundary conditions by inequalities of the form
(3.4). This is false in general for triangulations of Riemannian manifolds. Before



54 S. Albeverio and B. Zegarlinski

discussing in more detail the obstructions, let us consider the following
example.

Example 3.5. Let M c R2 be a square of side LeN. We choose a triangulation of
M defined by the bonds in ηZ2 and lines diagonals of unit squares in the direction

\\

\\
P3,

\\

Let {gμv} be a (nondegenerate) metric in M and let g = (det ̂ v)
1/2, where det means

determinant.

Let us compute matrix elements of the form (2.4). For that it is sufficient to
compute corresponding scalar products in the simplex (p0, Pl, p2), where p0 ΞΞ (0,0),
Pi = (n> 0), p2 ~ (0, η) and use symmetry arguments.

In the 2-simplex σ = σ(2) = (p0,p1?p2) we have the following barycentric
coordinates

X 1

n

X 1

n
X*

η
where σt = σS0) = (pt) are 0-simplexes.

Let us note that we have

^dxl=~g2lgdxί^giίgdx\

*dx2^~g22gdx1+g12gdx2.

The volume form is then equal

W Ξ 0 C / X 1 Λί/X 2 .

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

Using this information w e compute t h e part o f matrix elements ^ j
coming from the 2-simplex σ. With χσ being the characteristic function of the
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simplex σ we have

= $-dxί Λ *-dx2 =^$g12gdxl Λ dx2

a*] *] n σ (3.19)

(3.20)

1 i

(3.21)
and

(X,dWσ0> χσdWσ0) = |f - -dx1 - -dx2} Λ *( - -dx1 - -dx2}
σ\ η *? / \ f *? /

~ ~τί ί^11 ~^~ Q12 ~^~ y21 ~^ 922)9dx* Λ dx2 (3.22)
n <*
. 1 . 1 i , ,

(3.23)

-dx2 Λ *-dx2

^Ig^gdx^dx2. (3.24)
n "

Using (3.19)-(3.24) one can easily determine also the other scalar products

(lσ.dWσί,χa dWσ]), for σ' being 2-simplexes in Sίσ0 and σ,, σj€Stσ0. Combining

these results and numbering 2-simplexes in Stσ0 anticlockwise beginning from
σ(ι2) = σ(2) Ξ (p0,pί,p2), we get:

and (3.25)

(dWσ0,dWσι)=-^ j (g^+g^gdx1 Λ dx2 (3.26)
^ t^'+Λ2')

(dWσ0,dWσ2)=-^ J (g^ + g^gdx^dx2, (3.27)

(3.28)
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The remaining matrix elements (dWσ0,dWσj) are determined similarly.
Now consider matrix elements (σh σ, ) of the form (φ, φ) given in (2.4b). One

can easily see that

(σί,σι/) = 0 if σόStσj, (3.29a)

and

(σ ί,σ j)>0 if σ^Stσj. (3.29b)

In particular we have here strictly positive off diagonal elements.
Let us note that the form (φ,Hψ) given by (3.3) has all off diagonal elements

strictly positive and contrary to the forms (φ, φ) or (dcφ, dcφ) is nonlocal.
Now let us come back to the general case. We can use the form

(<PD, [Gί>] " VD) = (deφD, dcφD) (3.30)

to define a corresponding combinatorial free measure μ€
D with Dirichlet boundary

conditions on dM (and mass m0 ΞΞ 0) (in the sense that μc

D is determined as the
Gaussian measure with mean zero and covariance GC

D). By analysing formulas
(3.25-3.28) of Example 3.5 we can draw the following conclusions, not only true
for the example but rather true in any dimension:

Proposition 3.6. Let M be a cube in Rd with edges of length I Let K be its regular
triangulation defined by a lattice c)Zd,(//<5EN), and parallel hyperplanes dividing
each cube of the lattice into two d-simplexes. The measure μ€

D given by the form
(3.30) is identical with the free measures μ$ with Dirichlet boundary conditions on
dM of euclidean scalar massless field theory on the lattice δZd iff

gμv = δμv.

Let us remind (see e.g. [G1J], [Si]) that a probability measure μ on IRD satisfies
GKS inequalities if for any n, weN, ij9 ir = 1, . . . , D,

(3.3 la)

(3.31b)

where μ(/, g) = μ(fg) — μ(f)μ(g) One says that μ satisfies FKG inequalities if for
any nondecreasing functions F and G

μ(F,G)^Q. (3.32)

The inequalities (3.31) and (3.32) are called ferromagnetic inequalities. It is known
(see e.g. [G1J], [Si]) that for a Gaussian measure μ0 with mean zero and covariance
matrix C l V(zj= I,...,/)) to satisfy (3.31) is necessary and sufficient that Cί7 ̂ 0
(cfr. [Le]). To satisfy (3.31) it is sufficient to have the strong ferromagneticity
condition

(C-%^0 for ΪΦj (3.33)
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(see e.g. [Gi], [FKG], [Si], [G1J]). We also observe that the GKS inequalities
(3.31a,b) hold in all cases, for the general free measure μ0 as defined in Sect. 2.
From Example 3.5 we see that to have ferromagnetic inequalities it is sufficient to
require

012^0, (3.34)

gij + gil^0 for iϊj. (3.35)

In particular for the metrices

(3.36)

the condition (3.33) does not hold.
We remark that given a constant metric (3.36) one can get (3.33) by "passing

to corresponding normal coordinates," what in our case means a correct choice
of triangulation. These considerations can be extended to the case D > 2. Let us

note that since off diagonal elements (σi9σj)9 σ^Stσ^i Φj of the quadratic form
(φ9φ) are strictly positive, inclusion of a mass term in the definition of free
0-simplicial measure always destroys the strong ferromagneticity condition (3.33).
The term λ0(φHφ) has the same effect if one wants to consider a measure with
boundary conditions other than Dirichlet. Motivated by Euclidean field theory on
lattice one can try to cure this drawback by taking instead of the term (φ, φ) the
other local mass term defined by

φ2(K) = ΣΦ?(σί,l). (3.37)
i

In this case we have to investigate the continuum limit once again. We postpone
that to the next section.

Now let μc

0 be defined as in (2.7) or (2.8) but with m2φ2(K) instead of w2(φ, φ)
respectively m2(φD,φD). Then we have

Proposition 3.7.

μco ^ μ'o. (3.38)
B-L

Proof. We have from (3.37)

φ2(K) - (φ, φ) = £ φf(σi9 1) - £ </W;K, σ, )

= Σ Φ?(σi» σj) - Σ 9i9j(°i°j
ίj iJ

=Σ <PΠ σn Σ σj} - Σ Φi
i \ j:j*i J i*j

We can write this in the form

φ2(K) - (φ, φ) = £ (φ£ - φ/fa, σ,). (3.40)
i*j

Since (σ^σ^^O, (3.40) is a convex function and use of Lemma 3.2 ends the
proof.
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We would like to close the section by one more comparison lemma, we will use
later on. Let K be a smooth triangulation of a C°° manifold M of dimension D.
Let {Kn} be the family of triangulations constructed by standard subdivisions of
a smooth triangulation K. Let σ be a D simplex in K. After applying if necessary
a smooth affine diffeomorphism we can and do identify σ with a standard D-simplex
in Rβ. Then all D-simplexes σneKn, σn^σ are obtained by a scaling with a factor
2~" and, if necessary, by translation and rotation. In this case the 0-simρlexes
σί,0)eKπnσ are the vertexes of the lattice 2~nZD. We note that by our assumption
a metric {gμv} on M is nondegenerate, so there is a number 1 ̂  λ < oo such that
in the sense of quadratic forms we have

λ-lδμv^gμv(x)^λδμv (3.41)

for any xeh(σ)c:M,h being a triangulation homeomorphism. We now have the
following

Proposition 3.8. Let μc

N(dσlr denote a Gaussian measure defined on RdιmC (κ«nσ) wiί/i
covariance given by the quadratic form

φ, φ),}, (3.42)

w/iere m2, r2 > 0 and 5 indicates the use of diagonal metric <5μv in the definition of
corresponding quadratic forms. Let μ€

N(dσ) respectively μc

0 be the restriction to

RdιmC (/c"nσ) of the free Q-simplicial measure with Neumann boundary conditions
on dσ respectively without boundary conditions, defined with m > 0, λ0 = 0 and metric
{gμv} satisfying (3.41). Then

μco ^ μc

N(dσ) ^ AN^),;.-'- (3 43a)
B-L B-L

and if additionally λ0 in the definition of μc

N(dσ) is equal to zero we have

B-L

Proof. If (3.41) is satisfied, then we have for any D-simplex σMeKπnσ,

λi - 1 + (j>/2))(^ wdcφ^ χ^ wdcφ)δ ^ (χσn wdcφ^ χσn wdcφ^

^ λ(^(DI2»(χσWdcφ, χσnWdcφ)δ (3.44)

and

λ - (DI2\Xσn Wφ, Xσn Wφ)δ ^ (χσn Wφ, χσn Wφ)g

^λDI2(χσWφ,χσWφ}δ. (3.45)

This implies if λ0 = 0 the inequalities

[GA- t j - ' ̂  [c;] - 1 g [GU - 1 (3.46)
and use of Lemma 3.2 ends the proof for λ0 = 0. Now additional use of inequality
(3.8) in Proposition 3.3 proves the validity of (3.43).

Remark. The merit of Proposition 3.8 is that locally we can bound expectations
of the free 0-simplicial measure μo with arbitrary (nondegenerate) metric by
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expectations with a measure corresponding to usual free Euclidean field rescaled
by some finite factor.

4. Local Interactions for Simplicial Fields

In this section we would like to discuss local functions of the g-simplicial free field.
We take a compact smooth Riemannian manifold M of dimension D and its smooth
finite triangulation K. A possible definition of local functions of the field, natural
from the point of view of conventional Euclidean field theory on lattice and possible
ferromagnetic correlation inequalities, is the following

Definition 4.1. For AfeN and fcεCq(K) a Wick JV t h monomial : φ N : ( f c ) of the
g-simplicial free field is defined by

:<?":(/<) ̂  φf:^,/'), (4.1)

where : y means the normal ordering with respect to a free g-simplicial measure
μc

q and the summation runs over all g-simplexes σ teX.
For a 0-simplicial field one can consider also the following alternative definition

of Wick Nth-monomial. Let us set for a 0-simplex σ teX:

σ. = (J*ttχ.ΓV (4.2)

This definition is such that the sequence Wat converges to the delta function (in
the sense of distributions) in the formal continuum limit.

Definition 4.2. For JVeN and /ceC°(K) we set

\φN\(f^Σ'V(δjYl A(°J>fe)> (4 3)
j

where φ(dj) is given by (2.3). We call \φN[ the triple dots Λf t h Wick power. Let us
note that by the very definitions we have

μc

q( ψN' (fc))2 =

and for the 0-simρlicial field

μco( •: ΨN ! (/°))2 = Σ (Λ **)(*„ G'δjnσj, fc\ (4.4)
tj

Note also that for N = 1 the right-hand side of (4.4) is different from μc

0(φ(fc))2 =
(/c, Gcfc\ but as one can easily see in the continuum limit with fc = Rf the limit
of both formulae is the same. It is clear that the local functions given in Definition
4.1 and Definition 4.2 are in L2t(μc

q) with corresponding Q^q^D and 1 g t < oo.
Moreover for q = 0 we have

Proposition 4.3. Let {Kn}ne^ be a family of smooth triangulations of a two dimensional
compact Riemannian manifold M defined by standard regular subdivisions of the
given smooth triangulation K. Let μc

0 be a free Q-simplicial measure defined in Sect.
2, with m0 > 0. Then for any /eΛ°, AΓeN and 1 ̂  t < oo.

μc

Q(:φ":(Rnf))<^CN. (4.5)
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with a constant 0<C N j ί <oo independent of {Kn}. Moreover there is a constant
0 < α0 (independent of the metric) such that for any 0 < α ̂  α0 the function

:e*«:(RJ)=Σ^:φN:(Rnf) (4.6)

is well defined in L2(μc

0) and we have

μc

q(:e**:(Rnf))2<C (4.7)

with a constant 0 < C < oo independent of {Kn}.
The same holds for the local functions given by Definition 4.2.

Proof. By hypercontractive estimates for Gaussian measures [Ne] (see also [Grl],
[Si]) to prove (4.5) it is sufficient to show it for t = 2. It is also sufficient to consider
a localised problem in a D-simplex σeX, i.e. to consider χσf instead of fεΛq

(where χσ is characteristic function of the /z(σ)-image of the simplex σ). We shall
also need the following lemma, which is a consequence of some considerations in
[FroZe]:

Lemma 4.4. Let μ, μ' be Gaussian measures on lRd such that

μ ^ μ' (4.8)
B-L

For αelRd and NeN, let :φN:μ (a) be the local function given by

i =!,...,</

with : :μ normal ordering with respect to μ. Then

μ(:φN:μ(a))2^μ'(:φN:μ,(a))2. (4.10)

Proof. From (4.8) we have in particular, that in the sense of quadratic forms

μφtφj^μ'φiψj. (4.11)

Then from the definition (4.9) we have

μ(:φ%(α))2 = £ ai(μφiφj)
Naj

N N N

1=1 ij l 1=1 1=1

with μl =Ξ μ for / = 1,..., N.
The right-hand side of (4.12) can be written as follows

μ(:φN:μ(a))2 = (g) J~x(<*t Π φf^μφ^φ^ίaj f\ φV\\. (4.13)
1 = 2 [_iJ\ 1 = 2 ) \ 1 = 2 / J

Now application of (4.11) to the square bracket on the right-hand side of (4.13) gives

( N N N

1 = 2 l i j ' 1 = 2 l 1 = 2 J J J

with φ\l) denoting the integration variable. Now we can apply the same arguments
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to the round bracket on the right-hand side of (4.14), writing it in the form

N Γ / N \ / N

ί = 3 \ _ i J \ l l l = 3 l J l \ J J i = 3

Iteration of this procedure leads to

μ(:φ"»)2 = (W^α, ft <Pi° Π <P^j

= μ'(:<PNV(«))2 (4.16)

which ends the proof of the lemma.

Now we come back to the proof of Proposition 4.3. From Proposition 3.3,
Proposition 3.4 and Proposition 3.8 we have

(4 17)

with 1 ̂  λ < oo such that in the sense of quadratic forms, for any xe/z(σ),

λ"Mμv^fifμv(x), (4.18)

and the measure μc

0 is a 0-simplicial free measure defined on jRdimC°(K"> with metric
{0μv}, whereas μc

N(dσ)tλ-ι is the euclidean measure defined in Proposition 3.8. Using
(4.17) and Lemma 4.4 we get

φN'1(RnXσf))2 (4.19)

with normal ordering on the right-hand side of inequality (4.19) with respect to
the measure μc

N(dσlλ-ι and on the right-hand side of the latter equality with respect

Since the expectations on the right-hand side of (4.19) are known to converge
(see e.g. [GRS], [Si], [G1J]) as n -» oo and moreover there is a constant 0 < C0 < oo
independent of {Kn} such that

(4.20)

so we get (4.5) and (4.7) (using additionally the orthogonality of Wick monomials
of different degrees). This ends the proof of Proposition 4.3 for the functions :φN:
given by Definition 4.1.

Let us see what one can do for the triple dots Wick powers given by
Definition 4.2. First of all let us note that

(σi9 Gcdj) = X (<τί9 σk)μc

0φkφk,(σk , σ}). (4.21)
k,k'

Hence

μco( ! ΨN \ (Rf))2 = Σ (Rf> σMσβ'ffjnσj, Rf)

Σ ΠC^. .̂ ^o .̂̂  K;,̂ )]̂ ^/)- (4.22)
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Now let us write the right-hand side of (4.22) in form similar (4.13) from the proof
of Lemma 4.4. We have

μco( ': ΨN ': (Rf))2 = (g) J Σ n>o<<^>) (4-23)
••=2 \ktk\ J

with

nv= Σ (κ/,ff()Π[fa,**M?] (4 24)
i,k2,...,kN 1 = 2

By the same induction arguments as in the proof of Lemma 4.4, if "on σ" (in the
sense of (4.17))

μco ^ AW1* (4 25)
B-L

then for supp / c σ

μco( ! </>" ! (Rf))2 ^ Σ W> *i)( Σ fo> *k)0 W ' (<Pk<Pk )(σk , ̂ )V '( ,̂ Λ/) (4.26)
i,j \fc,k' /

This ends the proof of our Proposition 4.3 for the case of local functions given by
Definition 4.2.

Remark. It should be possible to adapt a recent result proven in the continuum
by S. Kusuoka [Ku] to prove that: eaφ:(Rnf)eLί+ε(μc

0) for α < α i and some
<*! > α0,ε > 0 (α0 as in (4.6)), uniformly in the mesh η and similarly for \e*φ\(Rnf).

5. Continuum Limit

Let (Kn}n^ be a family of smooth triangulations of M, constructed by standard
regular subdivisions of K. In Sect. 2 we saw that for any 0 ̂  q ̂  D,

limμ^(K"α)) = μ,(^(α)). (5.1)
Λ-* 00

For the considered measures, this is equivalent to

lim μ</ ft φ^Λ)) = μq( f\ φ(α,)) (5.2)
n->c» \ i = l / \ i = l /

for any NeN and α ίe/!4,i= 1,. . . ,JV. In the present section we would like to
consider the continuum limit in the case when D = 2 and q = 0, for expectations
containing Wick powers. Hence from now on we will take D = 2 and q = 0.

We have

Proposition 5.1. For any N, JV'eN andfJ^C^(M\ i= 1,...,ΛΓ',

lim μc

0( :φN:(RJ): f[ φ(Rnfiγ] = μ,(:φN'(fY ft φ(ft)\ (5.3)
Π-+QO \ 1=1 / \ i = l /

where μc

0 is a Q-simplicial free measure respectively free measure in continuum defined
with m0 > 0.

The corresponding limit result holds for :e*φ:(Rnf) as well as for local functions
\φN'\ and \eΛφ\, for all 0 ̂  α ̂  α0, with α0 as in Proposition 4.3.
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Proof. It is sufficient to consider the case when fi = g,i=l,...,N9 for some
0eC°°(M)and/,0^0, supp/n<3M = 0. Let us set

Then we have

μc

Q(:φN(RJ): :(φ(Rng))N:) = Σ (RJ, σ£)( Σ Q/σ,, Rng)'^

(5.5)
» \ J /

Let us remark that using the identity

£tt>,.(x)EEl (5.6)
ί

and Holder inequality we get

Σ Wnffi(x)(Σ Cy(σJS Λ^))^ ̂  (Σ Wta(x)Cy(a,, Λ^)Y
V j / \ y /

^(^GcR^(x)f. (5.7)

Therefore

μc

0(:φN:(Rnf):(φ(Rng))N:) £ J * ̂ M^/(x)(^G^^(x)f. (5.8)

Since WnG
cRng > Gg in // + 1 ? so it converges (for D = 2) in any Lp, 1 < p < oo.

This implies that for the right-hand side of (5.8) we have

lim J* WnRJ(x)(WnG*Rng(x)r = f */

(5.9)

To show (5.3) we write (5.5) as follows (recalling the notation σ, = [pj)

j* ^πKπ/(x)Σ ̂ ^(^(^^^(p^Γί

= $*WnRJ(x)(WnG
cRng(x))N

+ Σ f ί)ί*^,Λ»/WΣ^.σιM(^GC^(Pi)- Wi.G^^W)*. (5.10)k = ι \ f c y

By Holder inequality we get

1/2

ί*Σ ̂ σ^l^G^^p,)- W;GβK^(x)|2

_ l / 4

i

\ 1/4

$*(WnRnf(x)nWnG
cRng(x))«N-») . (5.11)
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The last factor on the right-hand side of (5.11) is uniformly bounded in n (in fact
it converges as w->oo, by the argument following (5.8), in Lp,p> 1). The second
factor from the right-hand side of (5. 1 1) can be bounded by using Holder's inequality
and the identity (5.6) by a sum of terms of the form

X I / N Y \ ι / Λ Γ
ί*Σ ^n^(x)(WnG

cRng(Pi))N' i(WmG*Rng(X)y (5.12)
» / \ /

with some ΛΓ, ΛΓ'eN dependent only on N and k.
We remark

r' = tfQ:9*

))N' )2)1/2 (5.13)

Now using Proposition 4.3 we see that the right-hand side of (5.13) is uniformly
bounded as n->oo.

Hence to finish our proof we shall have to show that

lim {*£ HtaMI WnG
cRng(Pi) - W»GcRng(x)\2 = 0. (5.14)

n-»oo i

To see this, let us observe that on D-simplexes in Kn the gradient of WnG
cRng(x)

is constant (since there we have a linear function). Therefore we have the estimate
(cfr. [StrF])

j*Σ W^WWσRdW-WnG'RngMl2 £ η2

nC$dWnG
cRng Λ *dWnG

cRng,

(5.15)

with a constant 0 < C < oo dependent only on the metric. Using the fact that
WnG

cRng converges to Gg in H+ 1 norm, (5.15) together with (5.10)-(5.14) implies

J * WnRnf(x)^Wnσi(x)(WnσRng(Pi))N £ f * WnRJ(x)(WΛG
c Rng(x)y + Cηl

1 (5.16)

with some constant 0 < C < oo independent of n. This together with (5.8) and (5.9)
finishes the proof of (5.3).

To show the same statement for :eΛφ:(Rnf) we use (5.3) together with
Proposition 4.3 (inequality (4.7)).

The statements for \ \ local functions can be proven similarly.

Remark. One can give a simpler proof using the convergence of WGcRf in || || ̂
norm, which holds in two dimensions, see [Ni] (on the other hand this convergence
requires more complicated considerations than the convergence in H+1). For
another proof of the convergence of the lattice approximation in the case where
M is a torus, see [Sc].

Remark. In the discrete approximation of Euclidean fields over R2 where the
lattice is taken to be the regular one δZ2 it is useful, cfr. [Ne], [GRS], [Si], [G1J]
to realize the discretized fields on the same probability space as for the fields
associated with the continuum (this is sometimes called the "active picture"). We
remark that we can obtain a similar "continuum representation" for our local
functions (4.1) respectively (4.2).
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Let us define, in analogy to the above mentioned procedure, the functions

(5.17)

where ΐ is such that (pι)eK and Cki is given by (5.4). We also define, in
correspondence with the local functions (4.2)

fi(x) = G-l/2W(Gc)l/2σi. (5.18)

Then by explicit calculation we get

μo(φ(/ι)φ(Λ)) = Cy, (5.19)

and respectively

(σίG
cσj). (5.20)

This implies that the local functions (4.1) and (4.2) of simplicial fields have the
following representation:

(5.21)

and respectively

! <PN :

Proceeding similarly as in the proof of Proposition 5.1 and of Proposition 4.3 it
is not difficult to prove the following:

Proposition 5.2. For anyfeCco(M) there is a subsequence {Kn.}n,e^ such that

Urn ΣW. )%o(^,K;j) =:<?%„(/) (5.23)
n' -* oo

in LP(μQ\ 1 ̂  p < oc.
The corresponding limit result in L2(μ0) holds for the corresponding random
variable :eaφ:(Rf) for all 0^α<α 0 and some α 0 >0 (independent of the metric)
defined with the use of random variables

Corresponding results hold also with the local functions :φ(/,)N: respectively
:eΛφ:(Rf) replaced by the corresponding triple dots function :φ(fi)N' respectively
:.eΛφ':(Rf).

6. Exponential Model on a Manifold

Let UQ be a free 0-simplicial measure corresponding to a triangulation K of the
manifold M, discussed in previous sections. Define the exponential interaction
associated with K by

with a finite (nonnegative) measure dp(a); the summation runs over all i with
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tfj-eC^K) and : : denotes the normal ordering with respect to μc

0, supp p c ( — α0, α0)
(with α0 depending on the given metric, as given by Proposition 4.3). To the
interaction Uκ(φ) we associate the following probability measure

(6'2)

The essential properties of this measure are described by

Proposition 6.1. For any /eC°°(M) and neN,

lf\φ(Rf)\*£ti\φ(Rf)\" (6.3)

and

0 g μ'MΛ/), φ(Λ/)) g μc

0(<P(K/))2 (6.4a)

as

2 2 < 20 g μ<(:φ2:(Rf\:φ2:(Rf)) £ μ<0(:φ2:(Rf))2. (6.4b)

Proo/. Since by definition (6.1) the function ί/κ(φ) is convex, (6.3) follows from
Lemma 3.2 (based on Brascamp-Lieb's result). To see that (6.4a) holds let us write
it in the following form (with fc = Rf):

c) ~ Φ(fc))2, (6.5)

with μc an isomorphic copy of μc. The integration variables on the right-hand side
of (6.5), φ respectively φ, correspond to μc respectively μc. Let now change the
integration variables, setting

1

(6.6)

Using the fact that the measure μc

Q ® μc

0 is invariant with respect to this change,
we can write (6.5) as follows

c\ 9 ( f c ) ) = &®~μc*e-v«(^(η(fc))\ (6.7)

with Z the normalization factor and

Vκ(ξ, η) = u*(-(

We remark that the conditional expectation of η ( f c ) 2 given ξ corresponding to
the probability measure μc ® μc is equal to

c\2

Since Kx(^, ly) is a convex function of?/, using again the Brascamp-Lieb inequalities



Simplicial Approximations on Riemannian Manifolds 67

(Lemma 3.2) we get

Eξ

κ(η(fc)2)^μco(η(fcn (6.10)

This together with (6.7) implies (6.4a).
To see that (6.4b) holds we use the same representation and change of integration

variables as above. This gives

(6.11)
\ * / /

Applying Lemma 3.2 to the right-hand side of (6.11) we get then (6.4b).

Remark. Using Brascamp-Lieb inequalities one can prove also other inequalities
for correlation functions (cf. [Fo], [FrδZe]).

Let μ0 be a Gaussian measure with mean zero and covariance

(-Δ + λH + m2I)~\ (6.12)

where A is a Laplace-Beltrami operator for functions on the two dimensional
Riemannian manifold M,H is the harmonic projection, (A,m2)e(R+)2 (and
(λ,m2) /(0,0) in case no Dirichlet boundary conditions on dM are assumed). Let

^(x)ωx, (6.13)

be the exponential interaction on M , where ωx is the volume element corresponding
to a given metric and dp(a) is a nonnegative finite measure supported in { |α| < α0}
with some 0 < α0 < oo (independent of the metric) chosen so that UM(φ)eL2(μ0)
(cf. [AHK], [AHKPS] and above Proposition 4.3). Define a probability measure
with exponential interaction in continuum given by

One can easily see, using properties of UM(φ\ that μ is well defined, at least when
M is compact, cf. [AHK], [AHKPS]. In the case where M is non-compact one
can construct μ( ) as a weak subsequences limit of

as ΛjM, with A compact, by using Brascamp-Lieb inequalities and by going
through subsequences.

Theorem 6.2. The measure μ with exponential interaction on a Riemannian manifold
defined in (6.14) is the limit (in the sense of characteristic functional and convergence
of moments) of the probability measures μc as the mesh η converges to zero, μ satisfies

μ^μ0 (6.15)
B-L

i.e. (3.4) holds for the measures considered here. Moreover (6.4a, b) holds with μc

respectively μc

0 replaced by μ respectively μ0.
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Proof. The proof is constructed following the model of the proof of correlation
inequalities in the flat space, cf [AHK]. First one discusses the case m2 > 0, using
the convergence of the lattice approximation given in Sect. 5, which yields μ as
limit for η {0 of the probability measures μc (in the sense of characteristic functionals
and convergence of moments). Moreover one uses Proposition 6.1. The continuity
of expectations in m then yields the proof for the case λ > 0 and m2 = 0.

Remark. One can get the same result directly in the continuum limit, for M compact
(or M replaced by a compact subset of it) using the decomposition of μ0 into
orthogonal modes and a finite modes approximation for the interaction UM(φ).

Remark. Let us note that use of Brascamp-Lieb inequalities allows to considerably
simplify the proofs (given in [Ze]) of extremality and global Markov property for
euclidean field with a general exponential interaction in two dimensions. (For other
applications of these inequalities see e.g. [BraLie], [BriFLS], [Fo], [FrδZe].)

Remark. We expect that the above convergence of simplicial approximation implies
also GKS and FKG inequalities if we take λ0 = 0. To prove this we shall take a
local mass term

instead of (nonlocal, antiferromagnetic) term

—y2 Lt i j »' j

and choose an interaction given by a ::—Wick ordered local functions. The proof
depends in a critical way on a choice of "normal" triangulation corresponding to
a choice of normal coordinates associated to a given metric. (As we saw in
Example 3.5, for a given metric {gμv}> an arbitrary choice of triangulation can spoil
ferromagneticity.) It is easy to get a proof of mentioned correlation inequalities

for canonical metrics
2

, defined with some constants T^eC, in case of the
d-dimensional torus.

We postpone a study of the general case to future work.
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