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Abstract. We prove for small ε and α satisfying a certain Diophantine condi-
tion the operator

H = -ε2A + — cos 2πO'α + θ) j € Z
2π

has pure point spectrum for almost all θ. A similar result is established at low

energy for H = — —^ — K2(cos2πx-f cos2π(αx + 0)) provided K is sufficiently

large.

1. Introduction

In this paper we shall study some of the spectral properties of the operator

Hc(θ) = h K2υ(x, θ) (1.1)

acting on LiCR), where

υ(x9 θ) = - cos 2πx - cos 2π(αx + θ). (1.2)

We shall also study its finite difference approximation on /ι(Z) given by

H(θ) = -ε2A + v(j9 θ) = -ε2A + -̂ cos 2π(α/ + θ). (1.3)
2π

In one dimension the finite difference Laplacian has matrix elements Ay = 1 if
\i — j\ = 1 and zJzy = 0 otherwise. When α is rational the spectra of H and Hc
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are known to be purely absolutely continuous and their generalized eigenstates
are Bloch waves ψ(x) = elkxp(x), where p is a periodic function of x. We shall
consider the case where α is irrational and K is large or ε is small. In addition, α
is assumed to satisfy the following Diophantine condition:

|nα|ι >Cl/n2 π ^ O . (1.4)

Here |θ|ι is the absolute value of θ modulo 1 defined so that 0 < |θ|ι < \. Weaker
conditions on α would suffice, but we shall restrict α as above for convenience.
We first discuss the finite difference operator.

Theorem 1.1. Let α be as in (1.4). For ε sufficiently small and θ G 1R/Z belonging
to a set of measure one, H has pure point spectrum, with eigenfunctions which decay
exponentially fast.

This theorem has also been independently established by Sinai [1]. Our proof
also applies if the cosine is replaced by any C2 periodic function / which is
even and has exactly two critical points which are nondegenerate. Returning
to the special case (1.3), if α is irrational, then for 2πε2 < 1/2 it is known
that H has no absolutely continuous spectrum [2, 3, 4] and when 2πε2 > 1/2,
H has no point spectrum [2, 5]. If 2πε2 < 1/2 and α irrational but very well
aproximated by rationals, i.e. if α is Liouville, then the spectrum of H is purely
singular continuous [3, 6]. The existence of some point spectrum for ε small and
α sufficiently irrational has been established in [7].

In the continuum it is a classic theorem of Dinaburg and Sinai [8] that,
for any K, Hc has many Bloch wave eigenstates ψ(x) = qp(x)elkx, where qp is
quasi-periodic in x. These eigenstates correspond with the presence of absolutely
continuous spectrum. Our next theorem shows that if K is sufficiently large Hc

has pure point spectrum at low energy.

Theorem 1.2. Let α be as in (1.4). If K is sufficiently large, then for almost all θ,
the spectrum of Hc in the interval [-2K2, —2K2~\- 10#Vl + α2] is pure point. The
eigenfunctions decay exponentially fast.

This theorem provides the first existence proof for eigenstates of Hc. From
general considerations it is known that the spectra of H and Hc are essential.
Although many of the techniques and results described above work only for
the lattice we shall see that our analysis of Hc is nearly identical to that of H.
When K is small, the operator "dual" to Hc has been shown to have pure point
spectrum [9] by methods closely related to those described here. Moreover the
estimates of [9] together with the ideas in [2] or [5] easily imply that Hc has
no point spectrum for small K. We conjecture that Hc has purely absolutely
continuous spectrum in this case. For large ε, H is also believed to have only
absolutely continuous spectrum.

Determining the nature of the spectrum of H can be viewed as a small
divisor problem. Small divisors appear in our analysis of the Green's function
G(£*) = (H—E*)"1 because there are eigenvalues El of H which come arbitrarily
close to E*. To overcome this problem we develop a multiscale perturbation
scheme in which we keep track of the "location" of the small divisors [10, 12].
For a fixed energ E* and scale n, the location of the small divisors is given by



Localization for Quasi-Periodic Schrδdinger Operators 7

a family of disjoint singular intervals Sn(E*,θ*) = {Pn} defined below. These are
certain intervals of length /„ > 12_{, such that H(θ*) restricted to Pn with Dirichlet
boundary conditions [denoted H(Γn,θ*)] has an eigenvalue E*(0*) such that for
n > 1 and some fixed β > 0,

^/ n

2 3 ). (1.5)

The uniqueness of El

n is proved in Sect. 4. See Sect. 2 for the precise definition
of Sn. Many of the ideas appearing here were first used in the case where v(j),
j G Zd, are independent random variables [10, 11]. Here however, the randomness
only appears in the parameter 0, and the v(j) are highly dependent.

If an interval A does not meet any member of Sn(E*,θ*) then the Green's
function for H(Λ)

decays exponentially fast, provided \x — y\ > ln and |0 — 0*|ι < δn/3. See
Theorem 2.2 for a precise statement, and Appendix A for the proof.

The key observation, which uses the fact that there is only one incommensurate
frequency α, is that the centers cl

n G TL of the intervals Pn belonging to £„(£*, 0*)
satisfy the following relation for each θ* :

(1.6)

See Theorem 2.1. The reason why w(cjpCΪ) is small is the following. If H(Pn,θ*)
and #(/;(, 0*) have eigenvalues which nearly coincide, (as in (1.5)) we will show
that the potential restricted to Pn or Vn must either be nearly translates of each
other, in which case \(cl

n — c^)α|ι, is small or they are nearly reflections of each
other, so that \(cl

n + C{}OL + 20* |ι is small. This will be proved inductively using
perturbation theory. In Sect. 3 we show that the decay estimate on G and (1.6)
imply Theorems 1.1 and 1.2.

The above inequality imposes a special geometric pattern on the intervals
Pn G Sn as can be seen from the following lemma:

Lemma 1.3. Let a,b,c G TL, be distinct points. Ifm(a,b) < δ and m(b,c) < δ, then
either \a-b\ > δ~l/2d/3 or \b-c\ > δ~^2C{/3. Also if\a-b\ < δ~l/2C{/5, then
there is a unique c such that \a — b\ = \c — c and m(c, c) = \(c-\- c)α + 20* |ι < 3δ.

Proof. If |(i-;>|ι < δ, then by (1.4), \i - j\ > δ~l/2Cι. Thus we need only
consider the case where \(a + b)oc + 20* |ι < δ and \(b + c)α + 20* |ι < δ. From
these inequalities we deduce \(a — c)α|ι < 2δ so \a — c\ > δ~l/2Cι/V2, and
our first assertion follows easily. To prove the next assertion we can assume
\(a -f b)oί + 20*|ι < (5; otherwise \(a — b)α|ι < δ, which by (1.4) contradicts our
distance assumption. If \(b — c)α|ι < (5, then m(c,c) < \[(c + a — b)α + cα]+20*|ι <
|(α + Z?)α + 20*|1+2|(^-c)α|1 < 3(5, where c = c + (α-&). If |(Z7 + c)α + 20*|! <δ,
then we set c = c — (a — b) and a similar inequality holds. The uniqueness of c
follows from the first part of the lemma. D

We call c the "mirror image" of c, because, for all 7, v(—j + c, 0*) = v(j + c,
0*) 4- @(δ). This lemma together with (1.6) shows that each interval In of width
/„ can contain no more than two intervals /n_ι. A third interval is excluded, since

Const. /„ < Ciδ^l1/4.
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For the lattice, SQ has a very simple description. Intervals consist of single
sites, EIQ — v(i, 0*) and

where OQ = ε. Since \v(a,θ*) — v(b,θ*)\ > m(a,b)2/2, (1.6) holds for n = 0. Also
note that if A is an interval such that A Π So = 0, then since ||J || = 2, and J has
only nearest neighbor matrix elements,

\GA(E*;x,y)\ = (\υ{j) - E»ΓlεΔ]"(X,y} \v(y) - E.\
n=Q

~l

Σ

In the case of Hc we define ΓQ to be intervals of width 1 centered at cl

Q e TL. Let
|E* + 2K2| < 10K and define

So = //i : inf [£2φ) - £*] < 2K

It is easy to se that these intervals are centered at near minima of v(x) ana that
they are widely separated = Kl/4. Notice that if A ΠSo = 0 then \GA(E*,x,y)\ <
exp[— yo\x — y\], where yo = (2K)1/2. This follows from the maximum principle.
(The constant yo can be improved to K /const by using a simple W.K.B. estimate.)
For n = 0, (1.6) holds with c>o = K~l. See Appendix C for further discussion of
the n = 0 case.

It is important to note that since Γm and Vm are integral translates of each
other the spectrum of H, σH, satisfies

σH[/i, 0*] = σH[lί,θ + (4 - c>] = σH[l{ , θ* - (20* + (<£ + c>)] . (1.7)

The same identity holds for Hc. In the second equality we have used the evenness
of the cosine: v(x+cj

n, 0*) = v(— x+c^, —0* —2cj

nα). Since we are in one dimension,
the eigenvalues as functions of θ never cross and are smooth in θ. Hence the
evenness implies

£>(») = £j,(-0-2c4α). (1.8)

To prove (1.6), we shall show that (1.7) holds for the particular eigenvalues
£i+1(0) i.e. Ei+1(e*) = Ei+1(0* ± w(4+1,ci+1)). Our key estimate gives a bound
from below, |rf2^+1(0)/^02| > 2/3 when |d£;+1(θ)/dθ| is small. Hence if E;+1(0),

EJ

n+l(θ) satisfy (1.5) then we obtain (1.6) in the following form

2δn+l > |EΪ+1(0*) - £ί+1(β*)| = |£ί+ι(β*) - £i+ι(θ* + m)| > ̂  , (1.9)

where m = ±m(c|I+1,cj+1). The last inequality of (1.9) follows from the lower
bound on \d2E/dθ2\ and an elementary lemma, Lemma 5.7. See Sect. 5, for details.

The outline of this paper is as follows. Most of the paper is devoted to
discussing the finite difference operator H with occasional references to what
needs to be modified for the analysis of Hc. In the next section we give a precise
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definition of Sn and present key identities we shall need for our analysis. The
proof of Theorems 1.1 and 1.2 are given in Sect. 3, assuming that (1.6) holds
for all n, and that the Green's function decays. In Sect. 4 we assume (1.6) for
fixed n and establish properties of the eigenvalues En+\ and the corresponding
eigenfunctions. In Sect. 5 we also assume (1.6) and establish a lower bound on
|d2Eί+1(θ)/έ/02| when |dE;+1(θ)/dθ| is small. This enables us to prove (1.6) at the
next scale, n-f 1, as in (1.9). Some technical comments about the continuum case
appear in Appendix C.

2. Definitions and Formulas

Let £*, 0* be fixed. For n = 0, So is defined in Sect. 1 and (1.6) holds. Let n > 0.
Now assume that Sn is defined and that we have proved by induction that (1.6)
holds. We define Sn+ι = Sn+ι(E*,0*) as follows. Let

4 - 4 | : 4 / E S w } . (2.1)

The cl

n denote the centers of Γn. For n > 1, if sn > 4/2, let Γn+i have length
/π+1 = /2 and center cl

n+1 = cl

n. In this case Γn+i contains a single interval of Sn.

If sn < 4/2 we note that each interval Il

n € Sn has a "mirror" image Tn whose
center satisfies \cl

n — cl
n\ = sn and

4 c< ) = |20* + (4 + c>U < 12^y2 . (2.2)

This follows from (1.6) and Lemma 1.3. These considerations also imply that the
center of any other interval Vn G Sn satisfies

> ln+2 > /«+ι . (2.3)

The intervals Vn+l are now defined to be centered at cl

n+l and of width /n+ι, where

4+ι = 5K + ^]> Uι = t (2.4)
The collection of intervals consisting of Sn and of its mirror image is called Sn.
Note that in the present case Γn+i contains precisely 2 elements of Sn. By (2.3)
Pn+i do not overlap (see Fig, 1).

a -[ L Jn J ι

c1

n

Γ Ί
1 * Jn

c

i+l L Jn J n+1

CJn

0 [ ] ]Jn J n * l
cn+l c

-c-
L

n
Fig. 1. a The intervals Il

n and I}

n are separated by more than 4/^. The denote the centers of the

intervals Vn, Il

n. In this case cl

n+l = cl

n and c^+l = cj

n. b The interval /„ and /„ are separated by less

than 4/^. The interval In+ι is much larger than indicated in the figure

For n = 0, we define Si as above except that 1$ and /$ above are replaced by
L2, L4 where L = jlnε). This is because k is small and we want h to be large.
This special convention will be adopted in the remainder of this paper.
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Definition. An interval Pn+i belongs to the family of singular intervals Sn+ι (£*, #*)
if H(Pn+l) has an eigenvalue El

n+l(Θ*) such that

|E* - E;+I I < δn^ = expί-jS/^), (2.5)

where /? = |lnε|. The nonsingular intervals /n+ι are called (n -f l)-regular. The
length /n+ι of the intervals /n+ι is chosen so that its boundary, d!n+\, does not
meet Γm for m < n. This can be done using Lemma 2.4 below. An arbitrary
interval A is said to be n-regular if every point (or interval) of A Π SO is contained
in an m regular interval Im c A for some m < n.

In the continuum, the definitions are as above except β = K/2, <S0 = K~l.
Later we shall use the notation δ-\ = ε1/4, K1/4 for the discrete and continuum
cases respectively.

Next we formulate condition ^n on the centers of the singular intervals.

Condition <βn. For all m < n whenever cl

m, cj

m are centers of intervals Il

m, Vm e Sm

then
m(cln,cίn)

2<8\Eί

m-Eit\<16δm. (2.6)

Note that (2.6) is a stronger version of (1.6).

Theorem 2.1. Ifε is small ^n holds for all n, Θ* and E*.

The following remarks hold for all m < n, assuming ^n holds.

Remarks, a) The last inequality in (2.6) follows from the fact that both El

m and
EJ

m belong to the interval \E - E*| < δm.
b) If sm > 4^, then J^+1 contains precisely one interval Vm in Sm and IJ

m+i\I]

m is
the union of m-regular intervals.
c) If sm < 4/^, then Γm+l contains exactly two intervals in Sm, /m, ϊm. By (1.7) and

(2.2) the spectrum of H(Im) and H(Im) differ by (9(δ^/2)._
d) If sm_ι < 4/^_j then, by (2.3) the pairs of intervals in Sm_ι are so far separated
that sm > 4/2 and 5m+1 > 4ξ+1.

Theorem 2.2. For ε2 sufficiently small (independent of n) if ^n-\ holds and A is
n-regular then

\GA(E,x,y)\<exp-yn\x-y\ (2.7)

for all \E - E*| < δn/3t \θ - θ*| < ^n/3 provided \x - y\ > fn

/6. Moreover yn >
γ > \ |lnε.

For notational compactness we shall generally omit the Θ dependence of G.
Analogous theorems hold in the continuum:

Theorem 2.3. If K is sufficiently large and E* € [-2K2,-2K2 + lOKx/l + α2],
then y>n holds for all n and θ*. For large K (2.7) holds as above if we set yn >
y > K /const and require \θ — θ*\ < δn/16πK2. Derivatives of G in x,y G R also
satisfy (2.7). See (2.9) below.

The proof of Theorem 2.2 is given in [10, 12]. See Appendix A where the key
steps are explained. Theorem 2.1 will be proved by induction on n.
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In the proof of the above theorems we shall frequently express GA = [H(Λ) —
E]~l in terms of G/ where / is a subinterval of A. Let us define

GAj = GA\j Θ G j .

On the lattice, we can write

H(Λ) = H(I) + H(A\I) - ε2Γ ,

so by the resolvent identity

GΛ = GAj+ε2GΛJGΛ. (2.8)

Here Γ denotes the symmetric matrix corresponding to the boundary of / in A

ΓXiy = l if (x9y) e dl and (x9y) £ dA

= 0 otherwise.

On the lattice we have represent dl as a set of unordered nearest neighbor pairs
(α,α;) such that a G /, a' £ I. We shall frequently identify the boundary of a set
with the corresponding matrix, as above. The continuum analogue of (2.8) is

GA(x,y) = GAtI(x,y)+ £ GAtI(x9z)GA(z9y)9 (2.9)
zedl\dΛ

where G denotes the normal derivative of G with respect to z.
The key estimates involve derivatives of E^θ) with respect to θ. Note that,

since we are in one dimension, there is no level crossing, and El

n(θ) is well defined
and smooth in θ. The first and second derivatives of an eigenvalue E(θ) of H(I)
are given by first and second order perturbation theory:

^E(θ) = (ψ,υ'ψ} *>' = §, (2.10)

^E(θ) = (ψ,v"ψ}-2(ψ,v'GΪ(E)v'ψ}, (2.11)

where ψ is the normalized eigenfunction corresponding to £(#), and G^(E) is the
Green's function projected onto the orthogonal complement of φ. If E denotes
the eigenvalue of H(I) closest to E, and ψ its eigenfunction, then after projecting
out ψ we have

(ψ,v'GΪ(E)v'Ψ) = %^ + (ψ,v'G^(E)v'ψ). (2.12)
L, — sL

The same formulas hold for HC9 except v is replaced by K2v. In Sect. 5 we show
that when dE/dθ is small, \{φ9v

fφ)\ is bounded below and \E — E\ is small: hence
by (2.10) and (2.11), \E"(Θ)\ is large. This is the key step in our proof which
enables us to justify (1.9) and (2.6).

Using (2.10) it is easy to see that for any eigenvalue E(θ) of //(/, 0),

\dE(θ)/dθ\ < 1, \dE(θ)/dθ\ < 4πK2 (2.13)

for the discrete and continuum cases respectively. This will be used to obtain
narrow intervals in θ near 0* where our theorems and lemmas apply.
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We conclude this section with a technical lemma, assuming ^n holds.

Lemma 2.4. If A = [a, b] is an interval then there is a deformed interval Λf =
[at, b'] such that af, b' £ Pm, for all m<n, and \a - α'| + \b - bf\ < 3ln.

Proof. By construction the intervals Γn are separated by a distance of at least
2ln. The endpoint b can be moved to b\ by a distance of less than /„ so that
dist(&ι,/^) > ln/2 for all I Similarly b\ can be moved to ί?2, by a distance of less

71-1

than /w_ι, so that dist(b2,^_ι > /n-ι/2, etc. By using the fact that ln/2 > X /m
m=0

we see that b' = bn belongs to no Γm, m < n, and \b — b'\ < 3/n/2. The other
endpoint, a, is treated similarly. D

This lemma enables us to adjust the approximate length of /^+1, which is 1%
or I*, by (9(ln) so that the endpoints do not meet Vm € Sm, for all m < n. See
Appendix D of [10]. This is a requirement of our definition of Sn+ι. Furthermore,
using the special "selfsimilar" structure of Sm or Sm described in Lemma 1.3, we
can choose /π+ι independent of i. This is convenient because otherwise equalities
relating El

n to EJ

n have exponentially small corrections.

3. Pure Point Spectrum

We shall follow the strategy of [11] to prove that H has pure point spec-
trum. By a theorem of Berezanskii [13, 14] it is sufficient to prove that every
generalized eigenfunction decays exponentially fast. By a generalized eigenfunc-
tion we mean any nonzero solution to the equation H(Θ)ψ = E(θ)ψ such that
|φ(/)l ^ const. \j\2.

Let E(θ) be a generalized eigenvalue and let An be an interval of length 2ln

centered at 0.

Lemma 3.1. There is an N = N(Θ,E(Θ)) such that for all n> N, ΛnΓ\Γn£ 0 for
someΓn€Sn(E(θ),θ).

Proof. If not, there is a sequence s = «, -» oo such that As Π // = 0 for all
// G SS(E). Now using Lemma 2.4, choose A's to be s-regular intervals such
that 0 G Λ's c As and dist(Q,dA's) > ls/2. If H(θ)ψ = E(θ)ιp, then ψ(j) can be
determined from its values on dA's. For j G A'S9

(3.1)

Here G' is the Green's function of H(A'S) and Γ1 — dAf

s. For \j\ < ls/4 we see
that \j — k\ > /5/4, so that by Theorem 2.2 and the subquadratic growth of φ,

Since y > 1 and /s can be arbitrarily large ψ(j) = 0. This contradiction proves
the lemma. D
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Lemma 3.2. For almost all θ* and any generalized eigenvalue E(θ*), there is a
finite N - N(Θ*,E(Θ*)) such that for all n>N, Sn(E(θ*),θ*) has a unique interval
In c~ An+2- These intervals have a common center c^ and \CN\ <; 3//y/2.

Proof. The existence of the interval /* follows from Lemma 3.1. If there are
two intervals /*, Γn c Λn+2, with I'n G Sn, then by Theorem2.1 and (2.2),

the corresponding centers satisfy m(c*,c^) < 12δn Since |c* — c'n\ < cl* the
Diophantine condition (1.4) implies that

m(c*n,O = |(cn* + c> + 20*\, < 12δ^2. (3.2)

The set of 0* for which (3.2) holds has measure less than 6δ^2 and is independent
of E(θ*). Since the number of possible pairs of centers in An+2 is less than 4/^+2

the probability that An+2 contains 2 singular intervals is less than Const, δn l^+2-
Since the sum over n is finite, by the Borel-Cantelli lemma, with probability one
with respect to 0*, there is an N < oo so that /* is unique for all n > N and so
c* = c^ all n > N by construction. D

Proof of Theorem 1.1. Let E(θ*) be a generalized eigenvalue and N(θ*) as in the
previous lemma. Let |x| > IN+I We claim that there is an interval A containing
x such that for some n,
a) A is n regular,
b) dist(dΛ,x) > |x|/3 > ln/2.
Therefore by Theorem 2.2 and the polynomial bound on \p

? / y l x l
εz < exp —|φ(x)| = 2^ GΛ(E;x,z)Γzz'ψ(z') ε" < exp ( -

z,z'

where Γ = dA.
To establish our claim, let n > N + 1 be defined so that /n+ι > |x| > /„.

[x 3x1
—, —- does not meet /*_j because [c*^! = |c^| < 21 N. By

Lemma 3.2, since A' c: Jn+1, we see that A meets no member of Sn-\. Using
Lemma 2.4, we can deform the interval A to A so that it is ^-regular and b)
holds.

The proof of Theorem 1.2 is exactly the same, except that we use Theorem 2.3
and the formula

ψ(x)= X GA(E,x9z)ψ(z)9 (3.3)

to recover φ from its values on dA. Recall G is the normal derivative of G.

4. Eigenfunctions of H(In+\)

In this section we establish some basic facts about the eigenvalues and eigenfunc-
tions of H(In+ι) for Jn+1 e Sπ+ι. We shall assume that ^n holds [see (2.6)]. If In+\
contains a single element /„ 6 Sn (i.e. sn > 4fy then we show that there is only one
relevant eigenvalue En+\ near £* and the eigenfunction is localized well inside
/„. If /n+ι contains two singular intervals (i.e. sn < 41%) /+ and I~ e Sn, then
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there are two relevant eigenvalues En+\ and En+\ The eigenfunctions are well
localized in /+ U /~. We use the one dimensionality of space to ensure that there
are no level crossings, so En(Θ) is a smooth function of θ. The following lemma
can be used to bound differences of eigenvalues. In more than one dimension
these differences can be obtained by induction (see [9]).

Lemma 4.1. Let ψι and ψ2 be eigenfunctions of H(Λ), where A is an interval. If
there is an a G ΊL such that

< i ||v.||s ι= 1,2, (4.1)

then the corresponding eigenvalues satisfy

/ε\4 ( / + 1 )

\Eι - E2\ > ί - J (finite difference),

\Eι - E2\ >e-
(4K+l}l (continuum) .

The proof of this proposition is standard (see [15]). A proof is given in Appen-
dix B.

Proposition 4.2. If In+ι € Sn+ι and sn > 4/j;, then H(In+\) has a unique eigenvalue
En+ι in the interval \E — E*\ < δn/3 for \θ — 0*| < δn/3 and the corresponding
eigenfunctίon satisfies

\ψ(x)\ < e~^-χl/3 (4.3)

for \x-cn\ > 4/y2. Moreover ||G^+1(£n+i)|| < 3<5~1, where G^+l denotes the Green's
function for In+\ on the orthogonal complement ofipn+\.

Proof. We first suppose that sn > 41% and sπ_ι > 4/;;_1. Then /n+ι\Λ and /n\/n-ι
are respectively n and (n — 1) -regular, hence A = Jn+ι\/n_ι is n regular. For n = 0
let A = /ι\{c0}. Let E e σH(/n+ι) be such that |E-E*| < δnβ. Let |x-cn| > ln/2
and Γ = dln-i- We determine the value of ψ(x) from its values on the boundary
of/,,-1:

φ(x) = ε2 Gχ(£, x, y)/Vφ(/) . (4.4)

The decay of ψ, (4.3), now follows from Theorem 2.2 and the inequality

\x-y\>\x- cn\ - \cn - y\ > \x - cn\ - /π_! >l\x-cn\> I5

n

/β .

To obtain decay for ln/2 > \x — cn-\\ > 2ln-\ = 2l}/2 we set A = In\In-ι which is
(n — l)-regular and apply (4.4) and Theorem 2.2 as before. Note that cn = cn-\.

Next we suppose sn-\ < 4ll_{. Then /„ c= /M+1 contains precisely two intervals
d, I~-ι in Sn-ι. Set A = /π+Λί/^ U I^). A is (n - l)-regular, because (2.3)
shows that In+\ cannot contain three (n — l)-singular intervals. Let \E — JE*| <
δn-ι/3 and set Γ = dl^ U dl~_^ Then again applying Theorem 2.2 to (4.4) one
obtains

- x| + exp \c~_v -

(4.5)
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1 /9 Λ
for \cn — x\ > 4ln = ^n-ι- In tne last Duality we used cn = (c*_{ -f c~_l)/2 and

Thus any eigenvalue in the interval \E — £*| < δn/3 corresponds to an

eigenfunction localized in an interval of width less than 4/« 2. If /n+1 € Sn+ι,
then by definition there is an eigenvalue En+ι such that \En+ι — E#\ < δn+\. By
Lemma 4.1 it is unique since any other eigenvalue E satisfies

Our bound on GL(En+]) follows easily from this estimate. If In+\ is the "mirror"

image of In+\ ^ Sn+i, then by (2.2), w(cn+ι,cπ+ι) = 0(δ^)9 and so by (1.7) and

(2.13) the spectrum of H(I*+l and H(I~+l) differ only 0(δ^). Therefore the same

argument applies for In+ι G Sn+ι Π

Next we consider the case where sn < 4l2. Then each In+\ G Sn±\ contains
two intervals /+, I~ G Sn and sπ_ι > 4/j^ and 5n_2 > 4/^_2. See the remarks
following Theorem 2.1.

Proposition 4.3. If In+\ G Sn+\ and sn < 4l2, then H(In+\) has exactly two eigen-

values En+ι, En+ι in the interval \E — £*| < ^w_ι/3 for \Θ — 0*| < <5n . Γ/ze
eίgenfunctions satisfy

in.. , , =>4ιn+ 4- Rm~ 4- /ΌΓ/S3^
(4.6)

w/z^r^ A2+B2 = 1 απJ φ+ and ψ~ are the normalized eigenfunctions ofH(I+) and
H(I~) respectively whose eigenvalues E+, E~ are closest to £*. Also

Proof. For n > 1, the intervals /+ and /~ contain just one singular interval
each, /Jlj, I~_{. As explained in the previous lemma A = In+^I*^ U I~_^) is
(n-l)-regular and for E G H(/π+0, |E-£*| < δn_ι/3, and |0-0*| < δΛ_ι/3, we
can conclude that the corresponding eigenfunction ψ decays exponentially fast
for x away from c+_l9 c~_j as in (4.5).

To establish (4.6), first note that for 7 G /„ = /+,

(H(In)-E)ψ(j)=ε2(Γψ)(j),

where Γ = dln. Therefore in /^,

ψ = aipϊ + 82G^(E)Γψ = aipϊ + Θ(δ3

n) . (4.7)

The last term above is obtained using ^ ||Γφ|| = |φ(c+ ± ln/2)\ < exp—yln/2
and \Gn(En)\ < 2δ~\ from Proposition 4.2. Similar estimates hold for /~. These
estimates together with the orthonormality of ψn+ι and \pn+\ yield (4.6). Now
since any eigenfunction corresponding to E in the interval \E — £*| < δn-\/3 has
the form (4.6), there can only be two such eigenvalues, £n+ι, £n+ι. The existence
of these eigenvalues follows by using ψf as trial wavefunctions,

|| + |£± - E*| < δ3

n

See Remark c) following Theorem 2.1.
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The bound on G^(£*) = G^(£n+ι) follows from the fact that En+ι and
En+ι are the only two eigenvalues in the interval |£ — £*| < <5n_ι/3. D

Corollary 4.4. There is a unique eigenvalue En+ι for H(In+\), In+ι e Sn+ι such that

|£n+ι — E*| < ̂ n{.j. Hence En+\ is well defined.

Proof. If sn > 41% the result follows from Proposition 4.2. If sn < 41% then
Proposition 4.3 shows that ψn+ι and \pn+\ are supported in /+ U /~ which has

width /^ = I2. Therefore by Lemma 4.1,

\En+ι — £«+ιl ^ exp—jS/M+1 > δπ+1 s exp ( —-̂  1 . D
V J /

Lemma 4.5. //5n > 4/^ then for \θ — 0*| < ̂ n/3

^n

3~5 r = = o,l,2. (4.8)

Proo/ By Proposition 4.2, |tpn+ι(/)| < exp— y/n/3 for 7 outside /„. For 7 inside
/„ we have as in the derivation of (4.7),

WH = aψn + ε2G^-(En^)Γnψn+i , (4.9)

where Γn - dln. By Corollary 4.4 ||G^(En+ι)|| ^ ^n'1 since |JBn+1 -£*| < 5Λ+1.
Thus the last term of (4.9) is bounded by δ~l e~^n/2 < δ* hence

(4.10)

This bound and (2.10) yield (4.8) for r = 0, 1.
For r = 2 we shall use (2.11),

We must estimate

G^(En+i) - G^(£n) -Ginί^+O [Γn + (£n+1 - £M)

(4.11)

restricted to /„. This equation follows from the resolvent identity. We have used
the orthogonal projections Pn and Pn+\ onto ψn and ψn+ι respectively and the
relation Pn -f P^ = / = Pn+ι -I- P ĵ.^ The last two terms of (4.11) are bounded
using (4.10).

\\PΪ+lPn\\ = \\Pn~ Pn+lPn\\ = 11% - Pn

and

which follows from Corollary 4.4 and Proposition 4.2. The second term on the
right side of (4.11) is bounded similarly since \En - £Λ+ιj < ®(δ%), by (4.10).
Therefore the case r == 2 follows if we prove
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Let χn be the characteristic function of the interval

[j :\Cn-j\<ln/4}c:In.

By the decay of φ given in Propositions 4.2 and 4.3 we have

To prove \\ΓnG^χn\\ is small let A = 7n\/n-ι or /Λ(Cι u C-i) and Γ = dln-ι
or 3(7^ U7^) depending on whether 7n contains one or two singular intervals.
Then

χn - ΓnGAPnχn . (4.12)

Since A is n — 1 regular GA(E) decays exponentially fast for \E — E*| < <5n_ι/3.
Hence ΓnGAχn and ΓnGAΓ are exponentially small and ||G^(£n)|| < ^(5^).
The first two terms on the right side of (4.12) are now clearly less than &(δ3).
To estimate the final term we use ||ΓnGnχn|| < <5* and ||G^(£n)ll ' 11(1 - Xn)ψn\\

<e π
In the continuum the results of this section hold provided \θ — θ*\ < δn/4

is replaced by \θ — θ*| < δn/lβπ. See Theorem (2.3) and (2.13). The proofs are
almost exactly the same if we use (2.9), (3.3) and Theorem 2.3. For the case n = 0
we use the results of Appendix C. These same remarks apply to our final section.

5. Proof of Theorem 2.1

In this section we shall assume condition #n holds [see (2.6)] and then establish
^n+i, thereby proving Theorem2.1. To do this we shall express En+{(θ) in terms

d d2

of En(θ). The resulting estimates on — En+ι(θ) and —^ En+ι(θ) enable us to
justify (1.9) and hence <Kn+ι. dθ dθ

First let us consider the case where sn > 4l2. Recall that Lemma 4.5 implies
that for r = 0,1,2,

<δn~^ for \θ-θ*\<δn/3. (5.1)

This is the key estimate for this case.
If sn < 4l2 we shall need a few lemmas, Let 7+, I~ e Sn denote the two

subintervals of 7w+ι € Sn+ι which are centered at c+, c~, respectively. When
θ == θs = — cn+ια = — (c+ -H c~)α/2, 77(7^) are mirror images of each other. In
fact

and so

Note that by ^n and (2.2)
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Also by the remark following Theorem 2.1, since sn < 41^ we have sn-\ > 4/^_1

so that /* contains a single interval /^ of 5n_ι. Now we measure the deviation
of (5.2) away from θ = θs.

Lemma 5.1. For \θ — θ*\ < δn/3 and n > 1,

(5.3)

; i/2- θs the left side of (5.3) is 0. Since \θs - 0*| < βδnf we have

in

1/2. By Proposition^ and (2.11) for |0 - 0*| < <5n_ιA

Proo/ At

|0-0 S |< '

The lemma now follows by expressing the left side of (5.3) as an integral of the
second derivative. D

The following estimates, ^n, will be established by induction on n:
@n\ For 0 < m < n and |0 - 0*| < <5m/4,

d 7 1 /— Em(θ) > m i n i m i , τU0 + c ' α l i ] . (5.4)
dθ L

Recall that δQ = 2ε and <$_! - ε1/4.
Note that dEl

m(θ)/dθ vanishes at 0 = — cl

ma by using the symmetry (1.8). @n

says that E'm is small only near a symmetry point.

Lemma 5.2. //sm < 4l2

m and @m holds then, for all 0 such that |0 — 0*| < δm/4,

^E±(θ) >^_ι- (5-5)

Proof If (5.5) fails then @m implies that for some 0 in the interval |0 —0*| < δm/4
and some choice of -f or —,

On the other hand, by (2.2)

The above two estimates imply that \(c* — cm)α|ι < 3^^_j which violates the
Diophantine condition (1.4), because |c+ — c~\ < 41^. D

Let E'(θ), E"(θ] denote the first and second derivatives of E with respect to
0. Recall that En+ι is the eigenvalue closest to £n+ι.

Lemma 5.3. Suppose sn < 4% and @n holds. If |^+1(θ)| < δn for some |0 - 0* | <
δn/4, then

:

"+1V

^
and

(5.6)

(5.7)
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and

\θ + cn+la\l< const <5n

3/2. (5.8)

The same results hold with En+± and En+\ interchanged.

Proof. We shall use expressions (2.11) and (2.12) to estimate E'^+l. First note that
by Proposition 4. 3 and Lemma 5.1,

E'n+l = (ψn+1,v'ψn+l) = A2(ψ+,v'ψ+) + B2{ψ-,v'ψ^) + &(δ2

n)

= A2-j^ E+(θ) + B2^ E~(θ) + &(δ2)

= (A2 - B2) A E+(θ) + &(δ*/2/δn^) .

Now if |£^+1(θ)| < δn, then Lemma 5.2 and the above equation show that
A2 = B2 = 1/2. Similarly we have

\(ψn+l,ι/φa+ί)\2 = \dE+/dθ\24A2B2 > { δ^ . (5.9)

Next we claim that |£±(0) - £n+ι(0)| < 0(<53) whenever \A\ ̂  \B\. This result
follows by taking the scalar product of ψ^ with both sides of the identity

hence

(ψ±,ψn+ι) (E± - En+l) = A2(E± - £π+1) =

The last estimate follows from the decay of ψn+ι given by Proposition 4.3. A
similar argument using φn+ι, En+\ shows that \E£ — En+ι\ ^ ̂ (^«) ^ δ% Hence

|En+ι(θ) - En+l(θ)\ < θ(δl) < δ2

n . (5.10)

To obtain (5.8) note that since \E+(Θ) - E~(θ)\ < (9(6%), <gn implies that

2|cn+1α + 0|! = |(c+ + c-)α + 2Θ\, = &(δ^} .

The proof of (5.6) and (5.7) is now complete using (5.9) and (5.10) to bound the
first term on the right-hand side of (2.12). The last term of (2.12) is bounded
using the bound HG^H = (9(δ~\) of Proposition 4. 3. D

Remarks. If En+ι(θ*) > En+\(θ*), then this relation holds for all θ, since no level

crossing can occur. Hence (5.6) shows that E'n+l(θ) is increasing and E'n+l(θ) is
decreasing whenever \E'n+l(θ)\ < δn and \θ — θ*\ < δn/4. Also both En+\ and

En+ι are symmetric about #s (see Fig. 2). It is important to note that Ef

n+l cannot
re-enter the band \E'n+1\ < δn, since it is increasing there. Hence the set of 0's

where \θ — 0*| < δn/4 and \E'n+i\ < δn is an interval If En+ι < En+ι then the
same arguments apply with £, E interchanged.
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n+1

n+1

Fig.2a and b. Graphs of £n+ι, En+ι and of Ef

n+ί, En+l restricted to

sn < 4/2. Note that θs = -cn+ia

1 — 0*| < <Sn/4, assuming

Lemma 5.4. Suppose sn > 4% and that Q)n holds. If |£^+1(0)| < δn for some θ,
|0-0*| < δn/4, then \E%+l(θ)\ > 2/3 and E'^(θ) has the same sign for all such θ.

Proof. Let p be the largest value of m < n such that sm < 4/^. Then by (5.1),
\E'n+1(θ)\ = \E'p+l(θ)\ < δp+1, hence (5.7) implies that \E^(Θ)\ is large. Applying

(5.1) again, we conclude |E^+1(0)| is large. If sm > 4/^ for all m we use the fact
that |£#(0)| > 5/6 and apply (5.1). D

We now establish &n [see (5.4)] by induction.

Lemma 5.5. Q)n+\ holds.

Proof, ^o clearly holds since the critical points of the cosine are nondegenerate.
Now suppose $)m holds and that |£^+1(0)| < δ^ for some 0 such that |0 — 0*| <
δm+ι/4. Since Ef

m+l(θs) = 0, where θs = — cm+ια, Lemmas5.3 and 5.4 imply that

where ξ is some point between 0S and 0. This establishes ^m+ι. In order to apply
Lemma 5.3 and 5.4 we must check that \θs - 0*| < δm/4. When sm < 4l2

m this
follows easily from (5.8). If sm > 4l2

m then (5.1) implies that |JE^+1(0)| = \E'm(θ)\ <
δ^. By induction 2)m implies that |0 — 0S| < δ^ and since |0 — 0*[ < δm+ι,
\θs — 0*| < δm/4 follows. Finally note that by the remarks following Lemma 5.3
ξ clearly belongs to the subinterval of \φ — 0*| < δm/4, where \E'm+γ(φ)\ < δm

hence the lemmas can be applied as above. D

The next lemma gives a weak form and uses only tne results of Sect. 4
and
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Lemma 5.6. If cl

n+l denotes the centers of Sn+ι, then

m(4+1,c;;+1)
2< const δl. (5.12)

Proof. Let 7*+1, k = i,j belong to Sn+\ and centered at c*+1. Let Ek

+l be the
eigenvalue of H(Ik

+i) closest to E*. First suppose that sn > 4l2. By (5.1)

|£j - E{ I < |£ί - £j+1| + |£i+1 - £^+1| + |£^+1 - £> | < 2<5n

3 + 2 5n+1 ,

hence <βn implies that m2(cl

n,c
j

n) < 3δ%. Since ck

n+i = ck

n the lemma is proved for
this case. Now suppose sn < 4l2. Then for each k,

I 772/C J7/C I _ _ I Γ?2fc+l 17/C I ̂  /n/s3\

l^n ~^π+ll OΓ l£n -£n+ll ^ ^(^n)5

where /^, /^fc+1 c /^+1 are the two singular intervals in Sn. This is easily

established using ψn+\ \ I»k or φπ+ι \ /^+1 as a trivial wave function together
with the estimates of Proposition 4.3. See the argument leading to (5.10). Let us
label the centers c^+1 = c^k + sn. Then it follows from ^n that either m(c^,c^')

or m ( c ^ , c + ) < const^n

3/2. By (2.2) we know that for fc = i, j,

α + 20* |! = |(2cf + sn)α + 20* ι

which implies that |(cj;; — c^)α|ι ^ 0(<S«1/2). If we use this estimate together with
those on m above we obtain

or \(cj + ci+)x + 2θ*\,<Cδ. (5.13)

Note that for example the case

is excluded because it and \(c2

n

j - cj')α|ι < ^(^«/2) would imply |sπα|ι < (9(δn/2)
which violates the Diophantine properties of α. Since ck

+l — c2k + \sn, (5.12)
follows from (5.13). D

The proof of the following elementary lemma will be left to the reader.

Lemma 5.7. Let E (θ) be an even C2 function for θ G [α, b] such that whenever
\E'(Θ)\ < δ, then \E"(Θ)\ > 2/3 and E"(θ) has a single sign for all such θ. Then

\E(Θ) - £(6/')| > I M2(θ, &} Ξ i min(|θ + tf\9 \θ - θf\)2 ,

provided M(θ,θf) <δ/4.

We shall set En+l(θ - cn+lu) = E(θ) and δ = δn. Note that E(θ) = E(-θ)
follows from (1.8). The hypothesis of Lemma 5.7 is met using Lemmas 5.3-5.6,
where [a,b] = [0* - δn/4,θ* + δn/4].

Proof of Theorem 2.1. We claim that as in (1.7),

EJ

n+l (θ* +m) = E'n+l (θ*) , Ej

n+l (θ* +m)= E'n+l(θ*) , (5.14)
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where \m\ = m(c^+1,c^+1). By Lemma5.6 |m| < cδn . Clearly EJ

n+l(Θ* + m) is an
eigenvalue of #(/^+1), by (1.7). To identify it with El

n+l(θ*), note that using (5.12)
and the bound \dE(θ)/dθ\ < 1,

| £ ( 0 * +m) -E*I < | £ ( θ , +m) - £ ( θ * ) l + | £ ( θ * ) -£*l

By Propositions4.2 and 4.3 we conclude that EJ

n+l(θ* -j-w) equals either El

n+l(θ*)

or £π+1. The geometric structure of E and E (see Figι2) now allows us to

conclude that (5.14) holds, so that in particular EJ

n+l(θ* -f m) ̂  £j,+1(0*). Since

E(θ + cn) Ξ ^n+ι(0)> wnere ^ satisfies the previous lemma,

Iwl 2

= ^(θφ+c^α)-

where m = (cl

n+l —cj

n+])a or m = — [20* + (cj +cy )α]. This completes our induction.

Appendix A. Proof of Theorem 2.2

The proof of Theorem 2.2 is by induction on n. For n = 0, see Sect. 1. Now let A
be n-regular. We shall first suppose that A contains a single n-regular interval /„
and possibly many other m-regular intervals for m < n. The interval /„ contains
either a single interval /„_! e Sπ_ι or two intervals I~_{9 1^ in SM_I. There is an
interval 7n_ι cz /n which contains /^ U J^lj or /n_ι such that
a) A = A\ϊn-\ is (n — 1) -regular,
b)

c) length /„_! < 5/y2.
This set is easily constructed using Lemma 2.4. If we set G = GΛ and G = GΛjn_^
then by (2.8) with Γ = dA

G(x, y) = {G + εGΓG} (x, y) = {G + ε2GΓG + ε4GΓGΓG} (x,y) . (A.I)
_ r //-

Both x and y cannot belong to /n_ι since that would violate |x — y\ > ln , by
c). First consider the case where x,y e A, then G can be replaced by GA By
applying the induction hypothesis to GA and expressing (A.I) in terms of its
matrix elements we have

\G(x9y)\ < [exp-yn_!|x - y\] + SexpHv-^x - y\ -

<exp-yn\x-y\, (A.2)

where γn — yn-\ — 2/« //^/6. Since Σ/^Γ is summable, we get a uniform lower
bound on yn > \ yo = \ |/«ε| for ε small. In (A.2) we have used a), b), c) above

together with the bound ||ΓGΓ || < 2δ~l = 2exp j9/n/3. To obtain this bound we
use the fact that In is regular, hence ||Gn|| = ||G/M(£,0)|| < 2δ~l, and we express
G using an alternating resolvent series

G = Gn -f- ε2GnΓnG = Gn + ε2GnΓnG + ε4GnΓnGΓ Gn -f . . . . (A.3)
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Since \\ΓnGΓ\\ = \\ΓnGAΓ\\ < exp(—y n_\l n/2) holds by the induction hypothesis,
our desired bound on ||ΓGΓ || follows from that on ||Gn||. When x or y e ϊn we
use the first equality of (A.2) and the rest of the proof goes as above.

Note that the bound ||Gn(E*,0*)|| < δ~{ can be extended by using the

^ ^resolvent series ||Gn(£,0)|| < 3δ~l provided that ||ι?(0) -ι>(0*)|| + \E-E*\ < —-.

Hence the estimates of this appendix apply to those Θ and E specified in
Theorem 2.2.

The general case where A contains many n-regular interval I'n is treated as
in [10, 12]. We use the fact that the intervals In are separated by a distance 3/n

and then express GΛ as a sum of products of Green's functions GΛ> where A'
contains a single n regular interval. This is called the block resolvent expansion
in [12]. Condition ^n-\ is only needed to ensure the separation of the intervals
Γm9m<n-l.

For our analysis of Hc we apply (2.8) instead of (2.7) to obtain the identities
corresponding to (A.I) and (A.3). Bounds on the derivatives of the Green's
function follow by expressing G(E) = GQ(E)-K2GQ(E)υG(E), where G°(£) is the
Green's function with v set equal to zero. Since we consider E = —2K2 + σ(K),
G° and its derivatives decay like exp(—|K| |x — y\).

Appendix B. Eigenvalue Splitting

Proof of Lemma 4.1. We first consider the finite difference case. Let \p\ (x) = —ψ(x)
for x < a and tpι(x) = ιp\ (x) for x > a. Then

(ψι,Hψ2) = E2(ψι,ιp2)

= Eι(φι,V?2> + 2ε2[φ2(α)v>ι(α + 1) - φι(α)t/>2(α+ 1)] .
(B.I)

Let us normalize ψ\, and ψ2 so that for i = 1,2, ι/j, (α) = cos(0z)> ψi(a+ 1) = sin0/.
Since the transfer matrix has norm less than [ε~2 + 4] we have

Therefore for small ε, (B.I) and the above inequality imply that

1 Γε2l~ ( / + 1 )

|sin(0ι-02)| < |£ι - E2\ | | {Φι,v>2>l l < - |£2 - £ι|| |φι||1 / 2 ||φ2||
1/2 -

4 12\
(B.2)

If \E\ — E2\ is very small, then \p\ and ψ2 satisfy nearly the same initial data and
nearly the same equation. Thus \p\ and ψ2 are nearly equal on the support of χ,
which contradicts the orthogonality of \p\ and ψ2. In fact it is straightforward to
see that

||χ(V>ι - V > 2 ) l l < [\E{ - E2\l + I sin(θι - 02)|] [ε~2 + 4]/

ΓείεΊ[2]2 , (B-3)
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On the other hand ||v?ι ||2 + \\ψ2\\2 < 2 \\χ(ψ\ — φ2)||2 because

l l v i l l 2 + tell2 = llvi - Ψ2 | |
2 = ||χ(vι - Ψ2)||2 + 11(1 - χ) (vi - Ψa)l l 2

In the last inequality we used (4.1). The lemma now follows by combining the
above inequality and (B.3).

In the continuum we use the identity

fo>i (x)φ2(x) - vi (x)tp2(x)] = (£2 - £i)Vi (x)ψ2(x) (B.4)

to estimate \E2 — E\\. Integrating both sides of (B.4) from a to the endpoint of Λ
we obtain the analogue of (B.I),

\ιp((a)ψ2(a)-Ψl(a)ψ2(a)\ < \E2-E{\ \\ψi\\ \\ψ2\\. (B.5)

We normalize ψi(a) = cos ft, ψl(a) = sin ft. Since \E* — F|1/2 < 2K, solutions
grow at most like exp2K|x| and we obtain the analogue of (B.3), as above.

Remarks. This theorem uses the Dirichlet boundary condition at the boundary
of Λ in the derivation of B.I and B.5. The theorem gives eigenvalue splittings
for any bounded potential on the line in terms of the growth of the respective
eigenfunctions.

Appendix C. Estimates on £ξ (Continuum)

In this appendix we shall establish (1.6) for the case n = 0, and obtain bounds on
EQ (θ), where EQ is the lowest eigenstate of H(/o) and /o € SQ. Let v(x) be given
by (1.2) and let v(x(θ), θ) be the minimum of v(x, θ) restricted to /Q. By definition
of So,

(1 - cos 2πx(θ)) + (1 - cos 2π(x(0)α + θ)) < ̂  . (C.I)
A.

This implies x(θ) must be nearly integer valued. In fact |x(0)h < K~1/2 and
|x(θ)α + 0*|ι < K~1/2, hence 2|c0α + 0*|ι < 2K~l/2^+(x\ This yields (1.6) for n = 0
with <5o = K~{ provided |α| < 1. Note that this also implies that the centers of So
are separated by at least CιKl/'4/4.

It is well-known that E$(θ) has a standard asymptotic expansion

£0 = K2v(x(θ), θ) + K(v"/2)i/2 + 0(1)

= K2v(x(θ), θ) + Kπ(2 -f 2α2)1/2 + 0(1), (C.2)

where

v"(x(θ), θ) = 4~2 v(χ(θ)>θ) - 4π2(! + α2) -

Note that the next eigenvalue of H(!Q) is larger than

-2K2 + 3π(2 -f 2α2)1/2 > -2K2 + 10K.

This explains our constraint on E* in Theorem 2.3 and allows us to establish
(5.13) for E^
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Next we consider derivatives of E(Θ). It is easy to check that dx(Θ)/dθ =
—α/(l -h α2). If we formally differentiate both sides of (C.2) we see that

^ E0(0) = (2πK)2/(l + α2) + 0(K), (C.3)

which is the desired lower bound. This identity may be justified using (2.11) and
the asymptotics for ψ. This bound is used to establish (5.4) for the n = 0 case.
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