(C) Springer-Verlag 1990

The Weak Coupling Limit as a Quantum Functional Central Limit

L. Accardi ${ }^{1}$, A. Frigerio ${ }^{2}$ and Y. G. Lu ${ }^{1 \star}$
${ }^{1}$ Centro Matematico V. Volterra, Dipartimento di Matematica, Universita‘ di Roma II, Roma, Italy
${ }^{2}$ Dipartimento di Matematica e Informatica, Universita‘di Udine, Udine, Italy

Abstract

We show that, in the weak coupling limit, the laser model process converges weakly in the sense of the matrix elements to a quantum diffusion whose equation is explicitly obtained. We prove convergence, in the same sense, of the Heisenberg evolution of an observable of the system to the solution of a quantum Langevin equation. As a corollary of this result, via the quantum Feynman-Kac technique, one can recover previous results on the quantum master equation for reduced evolutions of open systems. When applied to some particular model (e.g. the free Boson gas) our results allow to interpret the Lamb shift as an Ito correction term and to express the pumping rates in terms of quantities related to the original Hamiltonian model.

1. Introduction

In the quantum theory of irreversible evolutions, the weak coupling limit was originally formulated as a device to extract the long time cumulative effect of a small perturbation of the global Hamiltonian of a composite system on the reduced evolution of a subsystem [9,29]. As far as we know, the consideration of the weak coupling limit dates back to Friedrichs [18] in the context of the well-known Friedrichs model. However, in the physical literature the weak coupling limit is known as the van Hove limit, since van Hove [31] was the first author to consider the limit $\lambda \rightarrow 0, t \rightarrow \infty$, with $\lambda^{2} t$ held constant, in the derivation of an irreversible evolution of semigroup type for the macroscopic observables of a large quantum system.

The original problem of van Hove has not been set into a fully rigorous form yet, although related rigorous results have been obtained by Martin and Emch [27] and Dell'Antonio [14]. On the other hand, theorems on the weak coupling limit for specific models of open quantum systems have been proved by Davies [9] and Pulé [28]. A general formulation in terms of the master equation approach

[^0]was given in a series of papers by Davies [9-11]. More precisely: we consider a spatially confined quantum system (the "system" S), coupled to another (infinitely extended) quantum system (the "reservoir" or "heat bath' R), initially in a given reference state φ_{R} (which is usually a quasi-free state on the Weyl or the CAR algebra over some Hilbert space), through an interaction of the form λV, where V is a given self-adjoint operator. Denote by \mathscr{A}_{S} and by \mathscr{A}_{R} the W^{*}-algebras of observables of the system and of the reservoir respectively. Typically, \mathscr{A}_{s} will be the algebra of all bounded linear operators on a separable Hilbert space \mathscr{H}_{s}, and \mathscr{A}_{R} will be the weak closure of the GNS representation of the C^{*}-algebra of the reservoir determined by the reference state φ_{R}. Let
\[

$$
\begin{equation*}
H_{\lambda}=H_{S} \otimes 1+1 \otimes H_{R}+\lambda V \tag{1.1}
\end{equation*}
$$

\]

be the total Hamiltonian of the composite system (in self-explanatory notations). For each x in \mathscr{A}_{S}, let $x^{\lambda}(t)$ be the element of $\mathscr{A}_{s} \otimes \mathscr{A}_{R}$ defined by

$$
\begin{aligned}
x^{\lambda}(t) & =\exp \left[i H_{\lambda} t / \lambda^{2}\right] \cdot \exp \left[-i H_{0} t / \lambda^{2}\right](x \otimes 1) \exp \left[i H_{0} t / \lambda^{2}\right] \cdot \exp \left[-i H_{\lambda} t / \lambda^{2}\right] \\
& =U_{t / \lambda^{2}}^{(\lambda)+}(x \otimes 1) U_{t / \lambda^{2}}^{(\lambda)},
\end{aligned}
$$

where

$$
\begin{equation*}
U_{t / \lambda^{2}}^{(\lambda)}=\exp \left[i H_{0} t / \lambda^{2}\right] \cdot \exp \left[-i H_{\lambda} t / \lambda^{2}\right], \tag{1.2}
\end{equation*}
$$

i.e. we consider the Heisenberg evolute, in the interaction representation, of an observable of the system S in a time scale of order $1 / \lambda^{2}$. Then [9,28] in the limit as $\lambda \rightarrow 0$ and under suitable assumptions, there exists a semigroup T_{t} of weakly-*-continuous completely positive normal linear maps of \mathscr{A}_{S} into itself (a quantum dynamical semigroup on \mathscr{A}_{S} in the sense of Gorini Kossakowski and Sudarshan [23], Lindblad [26], a quantum Markovian semigroup in the sense of Accardi [1]) such that, for all x in \mathscr{A}_{S} and for all normal states φ_{S} on \mathscr{A}_{S} and $t \geqq 0$ one has

$$
\lim _{\lambda \rightarrow 0}\left(\varphi_{S} \otimes \varphi_{R}\right)\left(x^{\lambda}(t)\right)=\varphi_{S}\left(T_{t}(x)\right) .
$$

We refer to the books of Davies [12,13] for a presentation of the physical ideas and of the mathematical structures relevant for this phase of development of the problem. Under some assumptions on the interaction, which amount to the rotating wave approximation, familiar in the laser models, one sees (cf. [20]), considering the perturbation expansion of $U_{t / \lambda^{2}}^{(\lambda)}$, that the first order term does not depend on the field operators of the reservoir but on some time averages of them of the form

$$
A_{t}^{(\lambda)}=\lambda \int_{0}^{t / \lambda^{2}} e^{-i \omega s} A\left(S_{s}^{0} g\right) d s
$$

(cf. Sects. 2 and 3 below for the notations). The normalization defining the "collective annihilation operator" $A_{t}^{(\lambda)}$ is strongly resemblant of the normalization of the classical invariance principles. This analogy suggests that, as already stated in Spohn [29], the weak coupling limit should be a manifestation of some kind of functional central limit effect. That is we expect that, in analogy with the quantum invariance principle proved in [2], the collective creation and annihilation processes
$A_{t}^{(\lambda) \pm}$ converge, in some sense to be specified, to some of the quantum analogues of the Wiener process, namely the quantum Brownian motions. A heuristic discussion of this approach to the weak coupling limit has been sketched in Frigerio [20], with some preliminary lemmas and some conjectures.

Moreover, if the quantum dynamical semigroup obtained in the weak coupling limit is norm continuous with infinitesimal generator G given by

$$
G(x)=K^{+} x+x K+\sum_{j=1}^{n} L_{j}^{+} x L_{j} ; \quad x \in \mathscr{A}_{S}
$$

with $L_{j}, K \in \mathscr{A}_{S}$ satisfying

$$
K^{+}+K+\sum_{j=1}^{n} L_{j}^{+} L_{j}=0
$$

then we have, for all x in \mathscr{A}_{S} and t in \mathbf{R}_{+},

$$
\begin{equation*}
T_{t}(x)=E_{0}\left[U^{+}(t)\left(x \otimes 1_{\mathbf{R}}\right) U(t)\right] \tag{1.3}
\end{equation*}
$$

where $U(t)$ is the solution of the quantum stochastic differential equation, in the sense of Hudson and Parthasarathy [25],

$$
\begin{equation*}
d U(t)=\left\{K d t+\sum_{j=1}^{n}\left[L_{j} d A_{j}^{+}(t)-L_{j}^{+} d A_{j}(t)\right]\right\} U(t), \quad U(0)=1, \tag{1.4}
\end{equation*}
$$

and where $A_{j}(t), A_{j}^{+}(t)$ are mutually independent Fock quantum Brownian motions and E_{0} is the vacuum conditional expectation. Then it is natural to conjecture that, under suitable assumptions and in a sense to be specified, one has, for all t in \mathbf{R}_{+},

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} U_{t / \lambda^{2}}^{(\lambda)}=U(t) \tag{1.5}
\end{equation*}
$$

and, for all x in \mathscr{A}_{S},

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} x^{\lambda}(t)=U^{+}(t)\left(x \otimes 1_{R}\right) U(t) . \tag{1.6}
\end{equation*}
$$

The fact that the weak coupling limit should lead to a unitary process, satisfying a quantum stochastic differential equation was first noted by von Waldenfels [35] in connection with the Wigner-Weisskopf model. The explicit form of the stochastic equation, for the Wigner-Weisskopf model was obtained independently by Maasen [27a] in the Fock case. A thorough study of this equation, in the finite temperature case, is due to Applebaum and Frigerio [7b]. In all these cases the stochastic differential equation is not deduced as a (weak coupling) limit of Hamiltonian systems, but postulated ab initio.

In the present paper, using the notion of convergence for quantum processes introduced in [2], we give a precise statement and proof of the above conjecture (here we use the terminology "weakly convergent in the sense of the matrix elements" since, as remarked by a referee, the convergence considered in [2], when restricted to the Abelian case, gives a convergence weaker than the convergence in low). We shall only give here the proof of the first two statements above in the
case when φ_{R} is the Fock state. The proof of (1.6) and the case of a thermal state at finite temperature is in [5]. The Fermion case introduces no additional difficulties (cf. [6]).

Among the motivations for the present work the following deserves to be mentioned. There are widespread misgivings concerning use of quantum Brownian motion as a (boson or fermion) reservoir in the description of open systems; in particular it is objected that:
(i) the one-particle energy is unbounded from below as well as from above;
(ii) the reference state satisfies the KMS condition not for the automorphism giving the time evolution of the reservoir, but for a much more trivial one, consisting of multiplying the creation operators by a phase factor $\exp \left[-i \omega_{0} t\right]$.

Our results show how these features arise precisely in the weak coupling limit starting from a perfectly "legal" dynamics. A detailed discussion of the KMS condition is given in [5].

A preliminary version of the present paper has appeared in [7a]. Here we have greatly improved the uniform estimate, due to our improvement of Pule's inequality. Moreover we have changed two important notations with respect to [7a]:

1. We have particularized our Definition (2.3) of quantum Brownian motion (in the commutative case our previous definition reduced to the usual one only up to a "random time change").
2. The notion of weak convergence in the sense of matrix elements (cf. Definition (2.2)) was called in [7a] "convergence in low." However, without further qualifications of the random variables, also this definition might lead to incongruence, in the abelian case, with the standard terminology.

These changes were motivated by some constructive critiques of the referee of this paper, to whom we express our gratitude.

2. Statement of the Problem, Notations, Results

By a Hilbert space we mean a complex separable Hilbert space and by a pre-Hilbert space we mean a complex vector space endowed with a (possibly degenerate) sesquilinear form whose induced topology is separable. The *-algebra of continuous linear operators on a pre-Hilbert space \mathscr{K} will be denoted $B(\mathscr{K})$.

If \mathscr{K} is a Hilbert space, with scalar product denoted by $\langle\cdot, \cdot\rangle$, we denote

$$
L^{2}(R, d t ; \mathscr{K}) \cong L^{2}(R, d t) \otimes \mathscr{K}
$$

then Hilbert space of the square integrable \mathscr{K}-valued functions-the integral being meant in Bochner's sense. If $\mathscr{K}=\mathbf{C}$, we simply write $L^{2}(R)$.

Throughout this paper, H_{1} will denote a fixed Hilbert space (the "second quantization" of H_{1} in a suitable sense may be interpreted as the "reservoir state space"). Q will denote a self-adjoint operator defined on a dense subspace $D(Q)$ of H_{1} and such that, on this domain,

$$
\begin{equation*}
Q \geqq 1 \tag{2.1}
\end{equation*}
$$

$S_{\mathrm{t}}^{0}: H_{1} \rightarrow H_{1}$ will denote a strongly continuous 1-parameter unitary group on H_{1} commuting with Q, in the sense that:

$$
\begin{gather*}
S_{t}^{0} D(Q) \subseteq D(Q) \tag{2.2}\\
S_{t}^{0} Q=Q S_{t}^{0} \quad \text { on } \quad D(Q) \tag{2.3}
\end{gather*}
$$

Our basic assumption on S_{t}^{0} and Q will be the following:
There exists a non-zero subspace $K \subseteq D(Q)$ (in all the examples it will be a dense subspace) such that:

$$
\begin{equation*}
\int_{\mathbf{R}}\left|\left\langle f_{1}, S_{t}^{0} f_{2}\right\rangle\right| d t<+\infty ; \quad \int_{\mathbf{R}}\left|\left\langle f_{1}, S_{t}^{0} Q f_{2}\right\rangle\right| d t<+\infty \quad \forall f_{1}, f_{2} \in K \tag{2.4}
\end{equation*}
$$

This condition implies (cf. Lemma (3.2)) that, for any real number ω, the sesquilinear form

$$
\begin{equation*}
f_{1}, f_{2} \in K \mapsto\left(f_{1} \mid f_{2}\right)_{Q}:=\int_{\mathbf{R}} e^{-i \omega t}\left\langle f_{1}, S_{t}^{0} Q f_{2}\right\rangle d t \tag{2.5}
\end{equation*}
$$

defines a pre-scalar product on K. We shall denote K_{Q} the associated Hilbert space, i.e. the completion of the quotient of K by the zero $(\cdot \cdot)_{Q}$-norm elements for the norm induced by the scalar product (2.5). In particular, for $Q=1$, we simply write $\left\{K_{1},(\cdot \mid \cdot)\right\}$.

Let $W(K)$ be the Weyl C^{*}-algebra over K and let φ_{Q} be the quasi-free state on $W(K)$ characterized by

$$
\begin{equation*}
\varphi_{Q}(W(f))=e^{-1 / 2\langle f, Q f\rangle} ; \quad f \in K . \tag{2.6}
\end{equation*}
$$

We denote

$$
\left\{\mathscr{H}_{Q}, \pi_{Q}, \Phi_{Q}\right\}
$$

the GNS triple associated to $\left\{W(K), \varphi_{Q}\right\}$. We shall write

$$
\begin{equation*}
W_{Q}(f)=\pi_{Q}(W(f)) ; \quad f \in K \tag{2.7}
\end{equation*}
$$

Because of (2.3), there exists a unique φ_{Q}-preserving 1-parameter group of *-automorphisms u_{t} of $W(K)$ characterized by

$$
\begin{equation*}
u_{t}(W(f))=W\left(S_{t}^{0} f\right) ; \quad f \in K \tag{2.8}
\end{equation*}
$$

and we denote $U_{t}^{Q}: \mathscr{H}_{Q} \rightarrow \mathscr{H}_{Q}$ the associated unitary operator:

$$
\begin{equation*}
U_{t}^{Q} \cdot W_{Q}(f) \cdot \Phi_{Q}=W_{Q}\left(S_{t}^{0} f\right) \cdot \Phi_{Q} ; \quad f \in K . \tag{2.9}
\end{equation*}
$$

The field, creation and annihilation operators of the representation (2.7) will be denoted

$$
\begin{equation*}
B_{Q}(f), \quad A_{Q}^{+}(f), \quad A_{Q}(f) ; \quad f \in K \tag{2.10}
\end{equation*}
$$

To simplify the notations in the following we shall often omit the index Q whenever we feel that this cannot create any confusion. Let \mathscr{A}_{R} denote the weak closure of $W_{Q}(K)$ in \mathscr{H}_{Q}; let u_{t}^{R} denote the restriction to \mathscr{A}_{R} of $\operatorname{Ad} U_{t}^{R}=U_{-t}^{R} \cdot(\cdot) \cdot U_{t}^{R}$, where U_{t}^{R} is the same as U_{t}^{Q}; and let φ_{R} be the restriction of the state $\left\langle\Phi_{Q},(\cdot) \Phi_{Q}\right\rangle$ to \mathscr{A}_{R}. The W^{*}-dynamical system $\left\{\mathscr{A}_{R}, u_{t}^{R}, \varphi_{R}\right\}$ will be called the reservoir, or the heat bath. Now let \mathscr{H}_{0} be another pre-Hilbert space (called the system state space
or the initial space); let $U_{t}^{S}: \mathscr{H}_{0} \rightarrow \mathscr{H}_{0}$ be a 1-parameter unitary group on \mathscr{H}_{0} and denote

$$
\begin{equation*}
u_{t}^{S}=\operatorname{Ad} U_{t}^{S}=U_{-t}^{S} \cdot(\cdot) \cdot U_{t}^{S}: \mathscr{A}_{S} \rightarrow \mathscr{A}_{S} \tag{2.11a}
\end{equation*}
$$

We denote

$$
\begin{equation*}
U_{t}^{0}=U_{t}^{S} \otimes U_{t}^{R} \in B\left(\mathscr{H}_{0} \otimes \mathscr{H}_{Q}\right) \tag{2.11b}
\end{equation*}
$$

The Heisenberg evolution, associated to U_{t}^{0}, i.e.

$$
\begin{equation*}
u_{t}^{0}=\operatorname{Ad} U_{t}^{0}=u_{t}^{S} \otimes u_{t}^{R}: \mathscr{A}_{S} \otimes \mathscr{A}_{R} \rightarrow \mathscr{A}_{S} \otimes \mathscr{A}_{R} \tag{2.11c}
\end{equation*}
$$

will be called the free evolution of the composite system.
We now introduce an interaction between the system and the reservoir of the form that is familiar in laser theory (cf. [32]), i.e.

$$
\begin{equation*}
\lambda V_{g}=-\frac{\lambda}{i}\left[D \otimes A^{+}(g)-D^{+} \otimes A(g)\right] \tag{2.12}
\end{equation*}
$$

where λ is a positive real number (the coupling constant), $g \in K$ and D is a bounded operator on H_{0} satisfying the condition

$$
\begin{equation*}
u_{t}^{S}(D)=e^{-i \omega_{0} t} D \tag{2.13}
\end{equation*}
$$

where ω_{0} is a fixed positive real number (interpreted as the proper frequency of the laser). This is the type of interaction which arises in the rotating wave approximation. Our techniques are applicable to a wider class of interactions, but this will be shown elsewhere. Denoting

$$
\begin{equation*}
V_{g}(t)=u_{t}^{0}\left(V_{g}\right) ; \quad t \in \mathbf{R} \tag{2.14}
\end{equation*}
$$

we see that, from (2.13) and the antilinearity of A, we have

$$
u_{t}^{0}\left(V_{g}\right)=-\frac{1}{i}\left[D \otimes A^{+}\left(S_{t} g\right)-D^{+} \otimes A\left(S_{t} g\right)\right]
$$

where we have introduced the notation

$$
S_{\mathrm{t}} g=e^{-i \omega_{0} t} S_{t}^{0} g
$$

Clearly the conditions (2.2), (2.3), (2.4) are satisfied by S_{t}^{0} if and only if they are satisfied by S_{t}. We will assume that the iterated series

$$
\begin{equation*}
1+\sum_{n=1}^{\infty}(-i)^{n} \lambda^{n} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n-1}} d t_{n} V_{g}\left(t_{1}\right) V_{g}\left(t_{2}\right) \cdots V_{g}\left(t_{n}\right) \tag{2.15}
\end{equation*}
$$

is uniformly convergent, for λ small enough and t bounded on the domain $H_{0} \otimes \mathscr{E}_{\mathscr{Q}}$, where \mathscr{E}_{Q} is the linear space algebraically spanned by the coherent vectors in \mathscr{H}_{Q} and the tensor product is algebraic. Moreover we assume that the series (2.15) defines a unitary operator $U_{t}^{(\lambda)}$ on $H_{0} \otimes \mathscr{H}_{Q}$ which, on $H_{0} \otimes \mathscr{E}_{Q}$ satisfies the Schrödinger equation in interaction representation:

$$
\begin{equation*}
\frac{\partial}{\partial t} U_{t}^{(\lambda)}=\frac{\lambda}{i} V_{g}(t) \cdot U_{t}^{(\lambda)} ; \quad U_{0}^{(\lambda)}=1 \tag{2.16}
\end{equation*}
$$

This is an assumption on D which is always fulfilled if, e.g., D is a bounded operator. In the following, to avoid unnecessary technicalities, we shall always assume that D is bounded. For each $\lambda>0$ the 1-parameter family $\left(U_{t}^{(\lambda)}\right)$ is a left u_{t}^{0}-cocycle, i.e.

$$
\begin{equation*}
U_{s+t}^{(\lambda)}=u_{t}^{0}\left(U_{t}^{(\lambda)}\right) \cdot U_{s}^{(\lambda)}, \tag{2.17}
\end{equation*}
$$

hence the 1-parameter family $\left(V_{t}^{\lambda}\right)$, defined by

$$
\begin{equation*}
V_{t}^{(\lambda)}=U_{-t}^{(\lambda)} \cdot U_{t}^{0} ; \quad t \in \mathbf{R} \tag{2.18}
\end{equation*}
$$

is a strongly continuous unitary group whose formal generator coincides with

$$
\begin{equation*}
H_{S} \otimes 1+1 \otimes H_{R}+\lambda V_{g}, \tag{2.19}
\end{equation*}
$$

where

$$
\begin{equation*}
U_{t}^{R}=e^{-i t H_{R}} ; \quad U_{t}^{S}=e^{-i t H_{S}} . \tag{2.20}
\end{equation*}
$$

(In the case of the Laplacian acting on $L^{2}(\mathbf{R})$, this is rigorously true on the domain $H_{0} \otimes \mathscr{E}^{\prime}$, where \mathscr{E}^{\prime} is the linear space generated by the coherent vectors corresponding to smooth test functions.) The Heisenberg dynamics, associated to $V_{t}^{(\lambda)}$, i.e.

$$
\begin{equation*}
u_{t}^{(\lambda)}=\operatorname{Ad} V_{t}^{(\lambda) *}=V_{t}^{(\lambda)} \cdot(\cdot) \cdot V_{t}^{(\lambda)+}=U_{t}^{(\lambda)+} \cdot u_{t}^{0}(\cdot) U_{t}^{(\lambda)} \tag{2.21}
\end{equation*}
$$

is called the interacting dynamics.
Our goal is to study the time evolution, under the interacting dynamics, of some physically interesting quantity in the van Hove limit, i.e.

$$
\begin{equation*}
\lambda \rightarrow 0 ; \quad t \rightarrow \infty ; \quad \lambda^{2} t=O(1)=\text { of order } 1 . \tag{2.22}
\end{equation*}
$$

Since this limit extracts the long time cumulative behaviour of the interacting dynamics, we expect its effects to be best revealed on those observables and those states which depend on this long time cumulative behaviour. To make this remark precise, in Sect. 3 we introduce, as a continuous time analogue of the construction in [2], the collective Weyl operators

$$
\begin{equation*}
W\left(\lambda \int_{S / \lambda^{2}}^{T / \lambda^{2}} S_{u} f d u\right), \tag{2.23}
\end{equation*}
$$

and the corresponding collective coherent vectors

$$
\begin{equation*}
\Phi_{Q}\left(\lambda \int_{S / \lambda^{2}}^{T / \lambda^{2}} S_{u} f d u\right)=W_{Q}\left(\lambda \int_{S / \lambda^{2}}^{T / \lambda^{2}} S_{u} f d u\right) \cdot \Phi_{Q} . \tag{2.24}
\end{equation*}
$$

The family of all these vectors, with $f \in K$ and $-\infty<S<T<+\infty$, will be denoted $\mathscr{D}_{Q}(\lambda)$.

Now let us recall, from [2] the definitions of stochastic process and of convergence in law of stochastic processes.

Definition (2.1). A quantum stochastic process indexed by a set T over an Hilbert space H is a triple

$$
X=\{H, \mathscr{D}, X(t)(t \in T)\},
$$

where
i) H is a Hilbert space.
ii) T is a set.
iii) \mathscr{D} is a total subset in H and $X(t)(t \in T)$ is a family of preclosed operators on H, called the random variables of the process, such that for any $t \in T$,

$$
\mathscr{D} \subseteq D(X(t)):=\text { domain of } X(t)
$$

and the set $\{X(t)\}$ is self-adjoint in the sense that for each $t \in T$ there exists an uniquely determined element $t^{+} \in T$ such that the identity

$$
X\left(t^{+}\right)=X^{+}(t):=X(t)^{+}
$$

holds on \mathscr{D}.
Definition (2.2). Let \mathscr{I} be an increasing net, partially ordered by a relation \prec. We say that a family

$$
X_{\alpha}=\left\{H_{\alpha}, \mathscr{D}_{\alpha}, X_{\alpha}(t)(t \in T)\right\}, \quad \alpha \in \mathscr{I}
$$

of quantum stochastic processes converges to the quantum stochastic process

$$
X=\{H, \mathscr{D}, X(t)(t \in T)\}
$$

weakly in the sense of the matrix elements, if the domains \mathscr{D}_{α} and \mathscr{D} are invariant for the random variables of the respective processes and if for any $\alpha \in \mathscr{I}$ there exists a map

$$
F_{\alpha}: \mathscr{D} \rightarrow \mathscr{D}_{\alpha} ; \quad t_{\alpha}: T \rightarrow T
$$

such that, for any fixed integer k, for all k-tuples $t_{1}, \ldots, t_{k} \in T$ satisfying $t_{\alpha}\left(t_{h}\right) \rightarrow t_{h}^{\prime} \in T$, $h=1, \ldots, k$, and for all $\Psi, \Phi \in \mathscr{D}$, one has:

$$
\lim _{\alpha}\left\langle F_{\alpha}(\Psi), X_{\alpha}\left(t_{\alpha}\left(t_{1}\right)\right) \cdot \ldots \cdot X_{\alpha}\left(t_{\alpha}\left(t_{k}\right)\right) F_{\alpha}(\Phi)\right\rangle=\left\langle\Psi, X\left(t_{1}^{\prime}\right) \cdots X\left(t_{k}^{\prime}\right) \Phi\right\rangle
$$

Notice that, if the X_{t} are bounded, then we can take $\mathscr{D}_{\alpha}=H_{\alpha}$ and $\mathscr{D}=H$, so that the invariance of the domains, required in Definition (2.2) is automatically satisfied.

As shown in [2] (Theorem (9.2)) the notion of stochastic process given in Definition (2.1) is equivalent, in several important cases, to the ones given by [3], however it is better suited to deal with unbounded processes and nonfaithful states. In [2], it is also shown how to modify Definition (2.1) so that, in the commutative case, it includes all the classical stochastic processes. For our purposes, Definition (2.1) will be sufficient.

Definition (2.3). Let \mathscr{K} be a Hilbert space, T an interval in $\mathbf{R}, Q \geqq 1$ be a self-adjoint operator on \mathscr{K} and let

$$
\begin{equation*}
\left\{\mathscr{H}_{Q}, \pi_{Q}, \Phi_{Q}\right\} \tag{2.25}
\end{equation*}
$$

denote the GNS representation of the CCR over $L^{2}(T, d t ; \mathscr{K})$ with respect to the quasi-free state φ_{Q} on $W\left(L^{2}(T, d t ; \mathscr{K})\right)$ characterized by

$$
\begin{equation*}
\varphi_{Q}(W(\xi))=e^{-1 / 2\langle\xi, 1 \otimes Q \xi\rangle} ; \quad \xi \in L^{2}(T, d t ; \mathscr{K}) . \tag{2.26}
\end{equation*}
$$

Denote \mathscr{D} the set of all vectors of the form $\pi(W(\xi)) \Phi_{Q}=W_{Q}(\xi) \cdot \Phi_{Q}$ with
$\xi \in L^{2}(T, d t ; \mathscr{K})$. The stochastic process

$$
\begin{equation*}
\left\{\mathscr{H}_{Q}, \mathscr{D}, W_{Q}\left(\chi_{(s, t]} \otimes f\right) ;(s, t] \subseteq T, f \in \mathscr{K}\right\} \tag{2.27}
\end{equation*}
$$

is called the Q-quantum Brownian motion on $L^{2}(T, d t, \mathscr{K})$.
If $Q=1$ we speak of the Fock Brownian Motion on $L^{2}(T, d t, \mathscr{K})$; if Q is the multiplication by a constant $(\beta \geqq 1)$, then we speak of the finite temperature quantum Brownian Motion, in the terminology of [34] or of the universal invariant quantum Brownian Motion in the terminology of [24].

Sometimes, when no confusion can arise, we call quantum Brownian motion also the process

$$
\begin{equation*}
\left\{\mathscr{H}_{Q}, \mathscr{D}, A\left(\chi_{(s, t]} \otimes f\right), A^{+}\left(\chi_{(s, t]} \otimes f\right) ; s, t \in T, f \in K\right\} \tag{2.28}
\end{equation*}
$$

where $A(\cdot), A^{+}(\cdot)$ denote respectively the annihilation and creation fields in the representation (2.25). For the normalized coherent vectors we use the notation:

$$
W_{Q}\left(\chi_{[s, t]} \otimes f\right) \cdot \Phi_{Q}=\Phi_{Q}\left(\chi_{[s, t]} \otimes f\right)
$$

With these notatons we can state our main results:
Theorem (I). Let H_{1} be an Hilbert space and let $Q,\left(S_{t}^{0}\right), K$ satisfy the conditions (2.1), (2.2), (2.3), (2.4). Then, as $\lambda \rightarrow 0$ the stochastic process

$$
\begin{equation*}
\left\{\mathscr{H}_{Q}, \mathscr{D}_{Q}(\lambda), W\left(\lambda \int_{s / \lambda^{2}}^{T / \lambda^{2}} S_{u} f d u\right), S, T \in \mathbf{R}, f \in K\right\} \tag{2.29}
\end{equation*}
$$

with \mathscr{H}_{Q} and Φ_{Q} defined after (2.6), converges weakly in the sense of the matrix elements to the Q-quantum Brownian Motion on $L^{2}\left(R, d t ; K_{1}\right)$.
Theorem (II). Let $Q=1$, then for each $u, v \in H_{0}, f_{1}, f_{2}, g \in K_{1}, S_{1}, S_{2}, T_{1}, T_{2} \in \mathbf{R}$ $\left(S_{j} \leqq T_{j}\right)$ the limit

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0}\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), U_{t / \lambda^{2}}^{(\lambda)} v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right)\right\rangle \tag{2.30}
\end{equation*}
$$

exists and is equal to

$$
\begin{equation*}
\left\langle u \otimes \Phi\left(\chi_{\left[S_{1}, T_{1}\right]} \otimes f_{1}\right), U_{t} v \otimes \Phi\left(\chi_{\left[S_{2}, T_{2}\right]} \otimes f_{2}\right)\right\rangle \tag{2.31}
\end{equation*}
$$

where the scalar product is meant in the space $H_{0} \otimes \Gamma\left(L^{2}\left(\mathbf{R}, d t ; K_{1}\right)\right)$ and U_{t} is the solution of the quantum stochastic differential equation

$$
\begin{equation*}
d U_{t}=\left[D \otimes d A_{g}^{+}(t)-D^{+} \otimes d A_{g}(t)-(g \mid g)_{-} D^{+} D \otimes 1 d t\right] \cdot U_{t} ; \quad U_{0}=1 \tag{2.32}
\end{equation*}
$$

in the sense of [25] and where

$$
\begin{equation*}
(g \mid g)_{-}=\int_{-\infty}^{0}\left\langle g, S_{u} g\right\rangle d u \tag{2.33}
\end{equation*}
$$

Theorem (III). In the notations and assumptions of Theorem (II), for any $X \in \mathscr{B}\left(H_{0}\right)$, the limit

$$
\lim _{\lambda \rightarrow 0}\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), U_{t / \lambda^{2}}^{(\lambda)} \cdot(X \otimes 1) \cdot U_{t / \lambda^{2}}^{(\lambda)^{*}} \cdot v \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right)\right\rangle
$$

exists and is equal to

$$
\left\langle u \otimes \Phi\left(\chi_{\left[S_{1}, T_{1}\right]} \otimes f_{1}\right), U_{t}(X \otimes 1) U_{t}^{*} \cdot v \otimes \Phi\left(\chi_{\left[S_{2}, T_{2}\right]} \otimes f_{2}\right)\right\rangle
$$

where, $U(t)$ is the same as in Theorem (II).
The first two of the above theorems are proved in the present paper and the third one in [7].

3. Convergence of the Collective Process to the Noise Process

Lemma (3.1). For any $g \in D(Q)$ and for any $-\infty<S \leqq T<\infty$, the integral

$$
\begin{equation*}
\int_{S}^{T} S_{t} g d t \tag{3.1}
\end{equation*}
$$

is well defined and belongs to $D(Q)$, moreover

$$
\begin{equation*}
Q \cdot \int_{S}^{T} S_{t} g d t=\int_{S}^{T} Q S_{t} g d t \tag{3.2}
\end{equation*}
$$

Proof. By the strong continuity of S_{t}, the function $t \mapsto S_{t} g$ is weakly measurable and with a separable range. Since $\left\|S_{t} g\right\|=\|g\|$, it follows that $t \mapsto S_{t} g$ is Bochner integrable. Moreover, for each $f \in D(Q)$ one has, using (2.2) and (2.3):

$$
\left|\left\langle Q f, \int_{S}^{T} S_{t} g d t\right\rangle\right| \leqq \int_{S}^{T}\left|\left\langle Q f, S_{t} g\right\rangle\right| d t=\int_{S}^{T}\left|\left\langle S_{-t} Q f, g\right\rangle\right| d t \leqq(T-S)\|Q f\| \cdot\|g\|,
$$

hence $\int_{S}^{T} S_{t} g d t \in D(Q)$ and (3.2) follows from the definition of Bochner integral.
Lemma (3.2). For any pair $f, g \in D(Q)$ satisfying (2.4), and for any $S_{1}, T_{1}, S_{2}, T_{2} \in \mathbf{R}$ $\left(S_{j} \leqq T_{j}\right)$ one has

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0}\left\langle\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f d u, Q \cdot \lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{v} g d v\right\rangle=\left\langle\chi_{\left[S_{1}, T_{1}\right]}, \chi_{\left[S_{2}, T_{2}\right]}\right\rangle \int_{\mathbf{R}}\left\langle f, S_{t} Q g\right\rangle d t, \tag{3.3}
\end{equation*}
$$

where the scalar product of the characteristic functions is meant in $L^{2}(\mathbf{R})$ and the limit is uniform for $S_{1}, T_{1}, S_{2}, T_{2}$ in a bounded set of \mathbf{R}.
Proof. From Lemma (3.1) it follows that

$$
\begin{align*}
& \left\langle\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u, Q \cdot \lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{v} f_{2} d v\right\rangle \\
& \quad=\lambda^{2} \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda 2} d u_{1} \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} d u_{2}\left\langle S_{u_{1}} f_{1}, S_{u_{2}} Q f_{2}\right\rangle \\
& =\lambda^{2} \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} d u_{1} \int_{S_{2} / \lambda^{2}-\lambda_{1}}^{T_{2}-u_{1}} d u\left\langle f_{1}, S_{u} Q f_{2}\right\rangle \\
& \quad=\int_{S_{1}}^{T_{1}} d u_{1} \int_{\left(S_{2}-u_{1}\right) / \lambda^{2}}^{\left(T_{2}-u_{1}\right) / \lambda^{2}} d u\left\langle f_{1}, S_{u} Q f_{2}\right\rangle . \tag{3.4}
\end{align*}
$$

Now notice that for each $u_{1} \in\left(S_{1}, T_{1}\right) \cap\left(S_{2}, T_{2}\right)=\left(S_{1} \vee S_{2}, T_{1} \wedge T_{2}\right)$, one has $S_{2}-u_{1}<0$ and $T_{2}-u_{1}>0$, hence

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \int_{\left(S_{2}-u_{1}\right) / \lambda^{2}}^{\left(T_{2}-u_{1}\right) / \lambda^{2}} d u\left\langle f_{1}, S_{u} Q f_{2}\right\rangle=\int_{\mathbf{R}}\left\langle f, S_{t} Q g\right\rangle d t . \tag{3.5}
\end{equation*}
$$

On the other hand, because of (2.4) for each $u_{1} \in\left[S_{1}, T_{1}\right]$, the limit on the left-hand side of (3.5) is non-zero only if $S_{2}-u_{1} \leqq 0$ and $T_{2}-u_{1} \geqq 0$, that is if $u_{1} \in\left[S_{2}, T_{2}\right]$. Therefore, by dominated convergence, we obtain:

$$
\begin{align*}
\lim _{\lambda \rightarrow \infty} \int_{S_{1}}^{T_{1}} d u_{1} \int_{\left(S_{2}-u_{1}\right) / \lambda^{2}}^{\left(T_{2}-u_{1}\right) / \lambda^{2}} d u\left\langle f_{1}, S_{u} Q f_{2}\right\rangle & =\int_{S_{1}}^{T_{1}} \chi_{\left[S_{2}, T_{2}\right]} d u_{1} \lim _{\lambda \rightarrow 0} \int_{\left(S_{2}-u_{1}\right) / \lambda^{2}}^{\left(T_{2}-u_{1}\right) / \lambda^{2}} d u\left\langle f_{1}, S_{u} Q f_{2}\right\rangle \\
& =\left\langle\chi_{\left[S_{1}, T_{1}\right]}, \chi_{\left[S_{2}, T_{2}\right]}\right\rangle \cdot \int_{\mathbf{R}}\left\langle f, S_{1} Q g\right\rangle d t \tag{3.6}
\end{align*}
$$

To prove the uniformity of the convergence it will be sufficient to consider separately the two cases: (i) $\left[S_{1}, T_{1}\right]=\left[S_{2}, T_{2}\right]$; (ii) $\left[S_{1}, T_{1}\right] \cap\left[S_{2}, T_{2}\right]=\varnothing$. In case (i) we have:

$$
\begin{aligned}
& \left|\lambda^{2} \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} d u_{1} \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} d u_{2}\left\langle S_{u_{1}} f_{1}, S_{u_{2}} Q f_{2}\right\rangle-\left\langle\chi_{\left[S_{1}, T_{1}\right]}, \chi_{\left[S_{1}, T_{1}\right]}\right\rangle \cdot \int_{\mathbf{R}}\left\langle f, S_{t} Q g\right\rangle d t\right| \\
& \quad \leqq\left.\int_{S_{1}}^{T_{1}} d u_{1}\right|_{\left(S_{1}-u_{1}\right) / \lambda^{2}} ^{\left(T_{1}-u_{1}\right) / \lambda 2} d u\left\langle f_{1}, S_{u} Q f_{2}\right\rangle-\int_{\mathbf{R}}\left\langle f, S_{t} Q g\right\rangle d t \mid \\
& \quad \leqq \int_{S_{1}}^{T_{1}} d u_{1}\left(\int_{\left(T_{1}-u_{1}\right) / \lambda^{2}}^{\infty} d u\left|\left\langle f_{1}, S_{u} Q f_{2}\right\rangle\right|+\int_{-\infty}^{\left(S_{1}-u_{1}\right) / \lambda^{2}} d u\left|\left\langle f_{1}, S_{u} Q f_{2}\right\rangle\right|\right)
\end{aligned}
$$

whence the uniform convergence in case (i) follows. In case (ii) one has

$$
\begin{equation*}
\left|\lambda^{2} \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} d u_{1} \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} d u_{2}\left\langle S_{u_{1}} f_{1}, S_{u_{2}} Q f_{2}\right\rangle\right| \leqq \int_{S_{1}}^{T_{1}} d u_{1} \int_{\left(S_{2}-u_{1}\right) / \lambda^{2}}^{\left(T_{2}-u_{1}\right) / \lambda^{2}} d u\left|\left\langle f_{1}, S_{u} Q f_{2}\right\rangle\right| \tag{3.7}
\end{equation*}
$$

Assuming, without loss of generality, that $0 \leqq S_{1} \leqq T_{1} \leqq S_{2} \leqq T_{2}$ and choosing $\varepsilon>0$, arbitrarily small, the right-hand side of (3.7) is majorized by:

$$
\begin{equation*}
\varepsilon \cdot\left|\left(f_{1} \mid Q f_{2}\right)\right|+\left(T_{1}-S_{1}\right) \cdot \int_{\left(S_{2}-T_{1}+\varepsilon\right) / \lambda^{2}}^{\left(T_{2}-S_{1}+\varepsilon\right) / \lambda^{2}}\left|\left\langle f_{1}, S_{u} Q f_{2}\right\rangle\right| d u \tag{3.8}
\end{equation*}
$$

which again implies the uniform convergence.
Remark. In the following we shall use the notation

$$
(f \mid g)_{Q}:=\int_{\mathbf{R}}\left\langle f, S_{t} Q g\right\rangle d t
$$

From (3.3) it is clear that the sesquilinear form $(\cdot \psi \cdot)_{Q}$ is of positive type. In particular, it defines a scalar product on K, as anticipated in Sect. 2.
Corollary (3.3). On the space $L^{2}(\mathbf{R}) \otimes K_{Q} \cong L^{2}\left(\mathbf{R}, d t ; K_{Q}\right)$, the operator $1 \otimes Q \geqq 1$ on the domain given by the linear combinations of vectors of the form $\psi \otimes f$, where ψ is a step function in $L^{2}(\mathbf{R})$ and $f \in D(Q)$.

Proof. That $1 \otimes Q \geqq 1$ on the domain specified above, follows easily from (3.3) and the fact that $Q \geqq 1$.

The following theorem includes the poof of Theorem (I) of Sect. 2.
Theorem (3.4). As $\lambda \rightarrow 0$, the quantum stochastic process

$$
\begin{equation*}
\left\{\mathscr{H}, \Phi\left(\lambda \int_{S / \lambda^{2}}^{T / \lambda^{2}} S_{u} f d u\right), W\left(\lambda \int_{S / \lambda^{2}}^{T / \lambda^{2}} S_{u} g d u\right)\right\} \tag{3.9}
\end{equation*}
$$

($S<T \in \mathbf{R}, f, g \in K$) converges weakly in the sense of the matrix elements, to the Q-quantum Brownian Motion on $L^{2}\left(\mathbf{R}, d t ; K_{Q}\right)$ in the sense of Definition (2.3). Moreover, denoting

$$
\left\{\mathscr{H}_{Q}, \pi_{Q}, \Psi_{Q}\right\}
$$

the cyclic quasi-free representation of the CCR over $L^{2}\left(\mathbf{R}, d t ; K_{Q}\right)$ characterized by:

$$
\begin{equation*}
\left\langle\Psi_{Q}, W_{Q}(\chi \otimes f) \Psi_{Q}\right\rangle=e^{-1 / 2\|x\|^{2} \cdot\langle f, Q f\rangle} ; \quad \chi \in L^{2}(\mathbf{R}), \quad f \in K_{1} \tag{3.10}
\end{equation*}
$$

one has that for each $f_{1}, \ldots, f_{n} \in K, S_{1}, T_{1}, \ldots, S_{n}, T_{n}, x_{1}, \ldots, x_{n} \in \mathbf{R}$, the limit

$$
\begin{align*}
& \lim _{\lambda \rightarrow 0}\left\langle\Phi_{Q}, W\left(x_{1} \lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \cdots W\left(x_{n} \lambda \int_{S_{n} / \lambda^{2}}^{T_{n} / \lambda^{2}} S_{u} f_{n} d u\right) \Phi_{Q}\right\rangle \\
& =\left\langle\Psi_{Q}, W_{Q}\left(x_{1} \chi_{\left[S_{1}, T_{1}\right]} \otimes f_{1}\right) \cdots W_{Q}\left(x_{n} \chi_{\left[S_{n}, T_{n}\right]} \otimes f_{n}\right) \Psi_{Q}\right\rangle \tag{3.11}
\end{align*}
$$

exists uniformly for $x_{1}, \ldots, x_{n}, S_{1}, \ldots, S_{n}, T_{1}, \ldots, T_{n}$ in a bounded set of \mathbf{R}.
Proof. By the CCR and (2.6) it follows that

$$
\begin{align*}
& \left\langle\Phi_{Q}, W\left(x_{1} \lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \cdots W\left(x_{n} \lambda \int_{S_{n}}^{T_{n} / \lambda^{2}} S_{u} f_{n} d u\right) \Phi_{Q}\right\rangle \\
& \quad=\exp \left(-i \operatorname{Im} \sum_{1 \leqq j<k \leqq n} x_{j} x_{k} \lambda^{2} \int_{S_{j} / \lambda^{2}}^{T_{j} / \lambda^{2}} \int_{S_{k} / \lambda^{2}}^{T_{k} / \lambda^{2}}\left\langle S_{u_{1}} f_{j}, S_{u_{2}} f_{k}\right\rangle d u_{1} d u_{2}\right) . \\
& \quad \cdot \exp \left(-\frac{1}{2} \sum_{j, k=1}^{n} \lambda^{2} x_{j} x_{k} \int_{S_{j} / \lambda^{2}}^{T_{J} / \lambda^{2}} \int_{S_{k} / \lambda^{2}}^{T_{k} / \lambda^{2}}\left\langle S_{u_{1}} f_{j}, Q S_{u_{2}} f_{k}\right\rangle d u_{1} d u_{2}\right) \tag{3.12}
\end{align*}
$$

and by Lemma (3.2), as $\lambda \rightarrow 0$, this tends to

$$
\begin{align*}
& \exp \left(-i \operatorname{Im} \sum_{1 \leqq j<k \leqq n} x_{j} x_{k}\left\langle\chi_{\left[S_{j} T_{j}\right]}, \chi_{\left[S_{k} T_{k}\right]}\right\rangle \cdot\left(f_{j} \mid f_{k}\right)\right) \\
& \quad \cdot \exp \left(-\frac{1}{2} \sum_{j, k=1}^{n} x_{j} x_{k}\left\langle\chi_{\left[S_{j} T_{j}\right]}, \chi_{\left[S_{k} T_{k}\right]}\right\rangle \cdot\left(f_{j} \mid f_{k}\right)_{Q}\right) \\
& =\left\langle\Psi_{Q}, W_{Q}\left(x_{1} \chi_{\left[S_{1}, T_{1}\right]} \otimes f_{1}\right) \cdots W_{Q}\left(x_{n} \chi_{\left[S_{n}, T_{n}\right]} \otimes f_{n}\right) \Psi_{Q}\right\rangle \tag{3.13}
\end{align*}
$$

uniformly for $x_{1}, \ldots, x_{n}, S_{1}, \ldots, S_{n}, T_{1}, \ldots, T_{n}$ in a bounded set of \mathbf{R}.
Corollary (3.5). In the notation of Theorem (3.4) and (2.10), for each $n \in N$ and for
each $f_{1}, f_{2}, g_{1} \cdots g_{n} \in K$, the expression:

$$
\begin{align*}
& \left\langle W\left(\lambda \int_{a_{1} / \lambda^{2}}^{b_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \cdot \Phi_{Q}, B\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} g_{1} d u\right) \cdots B\left(\lambda \int_{S_{n} / \lambda^{2}}^{T_{n} / \lambda^{2}} S_{u} g_{n} d u\right)\right. \\
& \quad \cdot W\left(\lambda\left(\lambda \int_{a_{2} / \lambda^{2}}^{b_{2} / \lambda^{2}} S_{u} f_{2} d u\right) \cdot \Phi_{Q}\right\rangle \tag{3.14}
\end{align*}
$$

converges as $\lambda \rightarrow 0$ to

$$
\begin{equation*}
\left\langle W_{Q}\left(\chi_{\left[a_{1}, b_{1}\right]} \otimes f_{1}\right) \cdot \Psi_{Q}, B\left(\chi_{\left[S_{1}, T_{1}\right]} \otimes g_{1}\right) \cdots B\left(\chi_{\left[S_{n}, T_{n}\right]} \otimes g_{n}\right) \cdot W_{Q}\left(\chi_{\left[a_{2}, b_{2}\right]} \otimes f_{2}\right) \cdot \Psi_{Q}\right\rangle \tag{3.15}
\end{equation*}
$$

uniformly for $a_{1}, b_{1}, a_{2}, b_{2}, S_{1}, T_{1}, \ldots, S_{n}, T_{n}$ in a bounded subset of \mathbf{R}.
Proof. We know from [4] (Lemma (3.2)) that the expression (3.14) is equal to

$$
\begin{equation*}
\left\langle W\left(\lambda \int_{a_{1} / \lambda^{2}}^{b_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \Phi_{Q}, W\left(\lambda \int_{a_{2} / \lambda^{2}}^{b_{2} / \lambda^{2}} S_{u} f_{2} d u\right) \Phi_{Q}\right\rangle \cdot P_{n}\left(s_{1}^{(\lambda)}, \ldots, s_{n}^{(\lambda)}, t_{1,2}^{(\lambda)}, \ldots, t_{n-1, n}^{(\lambda)}\right), \tag{3.16}
\end{equation*}
$$

where P_{n} is a polynomial in the variables:

$$
\begin{align*}
s_{j}^{(\lambda)}= & i \operatorname{Re}\left[\lambda^{\lambda^{2}} \int_{a_{2} / \lambda^{2}}^{b_{2} / \lambda^{2}} d s \int_{S_{j} / \lambda^{2}}^{T_{j} / \lambda^{2}} d t\left\langle S_{s} f_{2}, Q S_{t} g_{j}\right\rangle-\lambda^{2} \int_{a_{1} / \lambda^{2}}^{b_{1} / \lambda^{2}} d s \int_{S_{j} / \lambda^{2}}^{T_{j} / \lambda^{2}} d t\left\langle S_{s} f_{1}, Q S_{t} g_{j}\right\rangle\right] \\
& +i \operatorname{Im}\left[\lambda^{2} \int_{a_{2} / \lambda^{2}}^{b_{2} / \lambda^{2}} d s \int_{S_{j} / \lambda^{2}}^{T_{j} / \lambda^{2}} d t\left\langle S_{s} f_{2}, S_{t} g_{j}\right\rangle+\lambda^{2} \int_{a_{1} / \lambda^{2}}^{b_{1} / \lambda^{2}} d s \int_{S_{j} / \lambda^{2}}^{T_{j} / \lambda^{2}} d t\left\langle S_{s} f_{1}, S_{t} g_{j}\right\rangle\right] ; \tag{3.17}\\
t_{h, j}^{(\lambda)}= & \operatorname{Re} \lambda^{2} \int_{S_{h} / \lambda^{2}}^{T_{h} / \lambda^{2}} d s \int_{S_{j} / \lambda^{2}}^{T_{j} / \lambda^{2}} d t\left\langle S_{s} g_{h}, Q S_{t} g_{j}\right\rangle+i \operatorname{Im} \lambda^{\lambda^{2}} \int_{S_{h} / \lambda^{2}}^{T_{h}} d s \int_{S_{j} / \lambda^{2}}^{T_{j} / \lambda^{2}} d t\left\langle S_{s} g_{h}, S_{t} g_{j}\right\rangle . \tag{3.18}
\end{align*}
$$

The polynomial P_{n} is of degree n if the variables $s_{i}^{(\lambda)}$ are considered to be of degree 1 and the variables $t_{i j}^{(\lambda)}$ of degree 2 and universal in the class of quasi-free representations. By Lemma (3.2)

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} P_{n}\left(\left\{s_{i}^{(\lambda)}\right\},\left\{t_{i j}^{(\lambda)}\right\}\right)=P_{n}\left(\left\{s_{i}\right\},\left\{t_{i j}\right\}\right) . \tag{3.19}
\end{equation*}
$$

Therefore, using the result of Theorem (3.3) to control the scalar product in (3.16) and Lemma (3.2) to control the limit of the variables (3.17), (3.18), we obtain, using again Lemma (3.2) of [4], that the limit of (3.16) for $\lambda \rightarrow 0$ is equal to (3.15). In the rest of this paper we shall always consider the case $Q=1$ and we shall simply write Φ for Φ_{Q}.

4. Estimate of the Negligible Terms: The Fock Case

The next step in our program is to estimate the asymptotic behaviour, as $\lambda \rightarrow 0$, of expressions of the form

$$
\begin{equation*}
\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u_{1}} f_{1} d u_{1}\right), U_{t / \lambda^{2}}^{(\lambda)} \cdot v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u_{2}} f_{2} d u_{2}\right)\right\rangle \tag{4.1}
\end{equation*}
$$

with $u, v \in \mathscr{H}_{0}, S_{1}, T_{1}, S_{2}, T_{2} \in \mathbf{R}, S_{j} \leqq T_{j}, f_{1}, f_{2} \in K$, i.e. of matrix elements of the time-rescaled intersection cocycle $U_{t / \lambda^{2}}^{(\lambda)}$ with respect to pairs of collective coherent vectors times some vectors u, v in the system space. Using the iteration series (2.15), this leads to estimate terms of the form:

$$
\begin{align*}
\lambda^{n} & \cdot \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n}-1} d t_{n} \\
& \cdot\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u_{1}} f_{1} d u_{1}\right), V_{g}\left(t_{1}\right) \cdots V_{g}\left(t_{n}\right) v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u_{2}} f_{2} d u_{2}\right)\right\rangle \tag{4.2}
\end{align*}
$$

with $t \geqq t_{1} \geqq t_{2} \geqq \cdots \geqq t_{n}$ and

$$
\begin{equation*}
V_{g}(t)=i\left(D \otimes A^{+}\left(S_{t} g\right)-D^{+} \otimes A\left(S_{t} g\right)\right) . \tag{4.3}
\end{equation*}
$$

With the notations

$$
\begin{gather*}
D_{0}=-D^{+} ; \quad D_{1}=D \tag{4.4}\\
A^{0}=A ; \quad A^{1}=A^{+} \tag{4.5}
\end{gather*}
$$

one obtains:

$$
\begin{equation*}
V_{g}\left(t_{1}\right) \cdot V_{g}\left(t_{2}\right) \cdots V_{g}\left(t_{n}\right)=\sum_{\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1\}^{n}} i^{n} D_{\varepsilon_{1}} \cdots D_{\varepsilon_{n}} \otimes A^{\varepsilon_{1}}\left(S_{t_{1}} g\right) \cdots A^{\varepsilon_{n}}\left(S_{t_{n}} g\right) \tag{4.6}
\end{equation*}
$$

and this leads to the problem of estimating matrix elements of products of the form

$$
\begin{equation*}
A^{\varepsilon_{1}}\left(S_{t_{1}} g\right) \cdots A^{\varepsilon_{n}}\left(S_{t_{n}} g\right) \tag{4.7}
\end{equation*}
$$

with respect to pairs of collective coherent vectors. To this goal, we introduce now some notations which shall be used throughout the paper in the following.

For given $n \in \mathbf{N}$ and $\varepsilon \in\{0,1\}^{n}$, let $k=k(\varepsilon)$ denote the number of ones in the n-tuple $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, i.e. the number of creation operators in (4.7), and let $\left(j_{1}, \ldots, j_{k}\right) \subseteq(1, \ldots, n)$ be the ordered set of the indices of time in (4.7), corresponding to the creation operators.

Lemma (4.1). Any product of the form (4.7) can be written as a sum of two terms:

$$
\begin{equation*}
A^{\varepsilon_{1}}\left(S_{t_{1}} g\right) \cdots A^{\varepsilon_{n}}\left(S_{t_{n}} g\right)=I_{g}^{\varepsilon}+I I_{g}^{\varepsilon} \tag{4.8}
\end{equation*}
$$

with

$$
\begin{align*}
& I_{g}^{\varepsilon}=\sum_{m=0}^{k \wedge(n-k)} \sum_{\substack{1 \leqq r_{1}<\cdots<r_{m} \leq k \\
\left\{0, j_{1}, \ldots, j_{k}\right\} \cap\left\{r_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}}} \prod_{\alpha=1}^{m}\left\langle S_{t_{J_{r_{-}-1}}} g, S_{t_{j_{r_{2}}}} g\right\rangle \\
& \cdot \prod_{j \in\left\{j_{1}, \ldots, j_{k}\right\}-\left\{j_{r_{1}}, \ldots, j_{r_{m}}\right\}} A^{+}\left(S_{t j} g\right) \cdot \prod_{j \in\{1, \ldots, n\}-\left[\left\{j_{1}, \ldots, j_{k}\right\} \cup\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}\right]} A\left(S_{t_{j}} g\right) \tag{4.9a}\\
& I I_{g}^{\varepsilon}=\sum_{m=0}^{k \wedge(n-k)} \sum_{\left(q_{1}, p_{1}, \ldots q_{m}, p_{m}\right)}^{\prime} \prod_{\alpha=1}^{m}\left\langle S_{t_{p_{z}}} g, S_{t_{q_{z}}} g\right\rangle \\
& \cdot \prod_{j \in\left\{j_{1}, \ldots, j_{k}\right\}-\left\{q_{1}, \ldots, q_{m}\right\}} A^{+}\left(S_{t j} g\right) . \prod_{j \in\{1, \ldots, n\}-\left\{\left\{j_{1}, \ldots, j_{k}\right\} \cup\left\{p_{1}, \ldots, p_{m}\right\}\right]} A\left(S_{t j} g\right) \tag{4.9b}
\end{align*}
$$

where, by definition, $\prod_{\alpha=1}^{0}=1$ and, where the symbol $\sum_{\left(q_{1}, p_{1}, \ldots, q_{m}, p_{m}\right)}^{\prime}$ denotes summation
over all the $2 m$-tuples $\left(q_{1}, p_{1}, \ldots, q_{m}, p_{m}\right)$ such that for all $\alpha, \beta=1, \ldots, m$

$$
\begin{equation*}
p_{\alpha} \neq p_{\beta}, q_{\beta} ; \quad q_{\alpha} \neq q_{\beta}(\alpha \neq \beta) ; \quad p_{\alpha}<q_{\alpha} \tag{4.10}
\end{equation*}
$$

and for some α

$$
\begin{equation*}
q_{\alpha}-p_{\alpha} \geqq 2 \tag{4.11}
\end{equation*}
$$

Notice that possibly by renumbering the pairs $\left(p_{\alpha}, q_{\alpha}\right)$, one can always assume that

$$
\begin{equation*}
q_{1}<q_{2}<\cdots<q_{m} \tag{4.12}
\end{equation*}
$$

Remark that $\left\{q_{1}, \ldots, q_{m}\right\}$ respects, as a set, with $\left\{j_{r_{1}}, \ldots, j_{r_{m}}\right\}$ and $\left\{p_{1}, \ldots, p_{m}\right\}$ with $\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}$. They differ only in the order. However, from (4.9b) it is clear that the indices p_{α}, q_{β} enter only in the product of scalar terms, so that the order is not relevant.

Proof. In the above notations one has:

$$
\begin{align*}
A^{\varepsilon_{1}}\left(g_{1}\right) \cdots A^{\varepsilon_{n}}\left(g_{n}\right)= & \cdots A\left(g_{j_{r_{1}}-1}\right) \cdot A^{+}\left(g_{j_{r_{1}}}\right) \cdots A\left(g_{j_{r_{m}}-1}\right) \cdot A^{+}\left(g_{j_{r_{m}}}\right) \cdots \\
= & \cdots\left(A^{+}\left(g_{j_{r_{1}}}\right) \cdot A\left(g_{j_{r_{1}}-1}\right)+\left\langle g_{j_{r_{1}}-1}, g_{j_{r_{1}}}\right\rangle\right) \cdots \\
& \cdot\left(A^{+}\left(g_{j_{r_{m}}}\right) \cdot A\left(g_{j_{r_{m}}-1}\right)+\left\langle g_{j_{r_{m}}-1}, g_{j_{r_{m}}}\right\rangle\right) \cdots, \tag{4.13}
\end{align*}
$$

where the dots stand for products of creators or of annihilators not containing terms of the form $A\left(g_{j_{r_{r}}-1}\right) \cdot A^{+}\left(g_{j_{r_{j}}}\right)$. Expanding the products in the right-hand side of (4.13), we find an expression of the form

$$
\begin{equation*}
\sum_{F \cong\left\{1, \ldots, m_{k}\right\}}\left(\prod_{\alpha \in F}\left\langle g_{j_{r_{x}}-1}, g_{j_{r_{x}}}\right\rangle\right)\left(\prod_{\alpha \in\left\{1, \ldots, m_{k}\right\}-\boldsymbol{F}}\left(\cdots A\left(g_{j_{r_{x}}-1}\right) \cdot A^{+}\left(g_{j_{r_{x}}}\right) \cdots\right)\right), \tag{4.14}
\end{equation*}
$$

where the sum runs over all the subsets F of $\left\{1, \ldots, m_{\varepsilon}\right\}$ and the product of operators is meant of increasing order from left to right. The products of creators and annihilators appearing in the sum (4.14) have the following property: either they are in Wick ordered form, or they are not Wick ordered, but in this case they contain a term of the form $A\left(g_{p}\right) A^{+}\left(g_{q}\right)$, such that $q-p \geqq 2$. For this reason in bringing to normal order the products in (4.8), only two kinds of terms will appear
(i) The sum over all the terms in (4.14) which are already in normally ordered form.
(ii) The sum collecting all the terms which contain at least one commutator of the form

$$
\begin{equation*}
\left[A\left(g_{p}\right), A^{+}\left(g_{q}\right)\right]=\left\langle g_{p}, g_{q}\right\rangle \quad \text { with } \quad q-p \geqq 2 . \tag{4.15}
\end{equation*}
$$

The terms of type (i) are those we denoted by I_{g}^{ε} and the terms of type (ii) are those we denoted by $I I_{g}^{\varepsilon}$. To complete the proof of the identity (4.9), we note that since the indices $j_{r_{1}}, \ldots, j_{r_{m}}$ label pairs of annihilation-creation operators, the number of these pairs is less than or equal to the total number of creators or annihilators, i.e.

$$
m_{\varepsilon} \leqq k \wedge(n-k) \leqq n / 2
$$

moreover, due to the meaning of the indices r_{α}, it follows that for all indices m, in
both sums (4.49a), (4.9b) such that $m>m_{\varepsilon}$, one has necessarily

$$
\left\{j_{1}, \ldots, j_{k}\right\} \cap\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\} \neq \varnothing
$$

hence in the first sum of (4.9a) the terms with $m>m_{\varepsilon}$ give zero contribution.
Finally, also in the second sum the index m is $\leqq k \wedge(n-k)$ since the appearance of a scalar product implies that one creation and one annihilation operator have been eliminated.

Now, we begin to estimate the terms of type II.
Lemma (4.2). Denote

$$
\begin{align*}
\Delta_{m, n}^{(\lambda)}= & \lambda^{n} \cdot \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n-1}} d t_{n} \cdot \prod_{j=1}^{m}\left|\left\langle S_{t_{p_{j}}} g, S_{t_{q}} g\right\rangle\right| \\
& \cdot \prod_{k \in\{1, \ldots, n\}-\left\{p_{1}, q_{1}, \ldots, p_{m}, q_{m}\right\}} \lambda \cdot \int_{S_{k} / \lambda^{2}}^{T_{k} / \lambda^{2}}\left|\left\langle S_{u_{k}} f_{k}, S_{t_{k}} g\right\rangle\right| d u_{k} \tag{4.16}
\end{align*}
$$

with $n, k \in \mathbf{N}, m=0, \ldots, n / 2, S_{1}, \ldots, S_{k}, T_{1}, \ldots, T_{k}, t, \lambda \in \mathbf{R}, f_{1}, \ldots, f_{k}, g \in K$, and for any choice of $p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{m} \in\{1, \ldots, n\}$ such that the conditions (4.10), (4.11), (4.12) are fulfilled, then

$$
\begin{equation*}
\Delta_{m, n}^{(\lambda)} \leqq \frac{t^{n-m} c_{1}^{m} c_{2}^{n-m}}{(n-m)!} \tag{4.17}
\end{equation*}
$$

with

$$
\begin{gather*}
c_{1}=\int_{\mathbf{R}}\left|\left\langle g, S_{u} g\right\rangle\right| d u, \tag{4.18}\\
c_{2}=\max _{h=1, \ldots, k} \int_{\mathbf{R}}\left|\left\langle f_{h}, S_{u} g\right\rangle\right| d u \tag{4.19}
\end{gather*}
$$

uniformly in $\lambda \in(0,+\infty)$. Moreover

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \Delta_{m, n}^{(\lambda)}=0 \tag{4.20}
\end{equation*}
$$

Proof. With the change of variables $v_{k}=u_{k}-t_{k}$, the quantity $\Delta_{m, n}^{(\lambda)}$ becomes

$$
\begin{array}{r}
\lambda^{2 n-2 m} \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n-1}} d t_{n} \prod_{j=1}^{m}\left|\left\langle S_{t_{p_{j}}} g, S_{t_{q_{j}}} g\right\rangle\right| \\
\cdot \prod_{k \in\{1, \ldots, n\}-\left\{p_{1}, q_{1}, \ldots, p_{m}, q_{m}\right\}}^{T_{k} / \lambda^{2}-t_{k}} \int_{S_{k} / \lambda^{2}-t_{k}}\left|\left\langle f_{k}, S_{v_{k}} g\right\rangle\right| d v_{k}, \tag{4.21}
\end{array}
$$

hence, with the further change of variable $s_{k}=\lambda^{2} t_{k}(k=1, \ldots, n)$, one finds:

$$
\begin{align*}
\Delta_{m, n}^{(\lambda)}= & \frac{1}{\lambda^{2 m}} \cdot \int_{0}^{t} d s_{1} \int_{0}^{s_{1}} d s_{2} \cdots \int_{0}^{s_{n}-1} d s_{n} \prod_{j=1}^{m}\left|\left\langle g, S_{\left(s_{q_{j}}-s_{\left.p_{j}\right)} / \lambda^{2}\right.} g\right\rangle\right| \\
& \cdot \prod_{k \in\{1, \ldots, n\}-\left\{p_{1}, q_{1}, \ldots, p_{m}, q_{m}\right\}}^{\left(T_{k}-s_{k}\right) / \lambda^{2}}\left|\left\langle f_{k}, S_{v_{k}} g\right\rangle\right| d v_{k} \\
\leqq & c_{2}^{n-2 m} \cdot \frac{1}{\lambda^{2 m}} \cdot \int_{0}^{t} d t_{1} \int_{0}^{s_{1}} d s_{2} \cdots \int_{0}^{s_{n}-1} d s_{n} \prod_{j=1}^{m}\left|\left\langle g, S_{\left(s_{q_{j}}-s_{p_{j}}\right) / \lambda^{2}} g\right\rangle\right| . \tag{4.22}
\end{align*}
$$

Now we do the change of variables

$$
\begin{gather*}
s_{q_{j}}-s_{p_{j}}=t_{q_{j}} ; \quad j=1, \ldots, m \tag{4.23}\\
s_{\alpha}=t_{\alpha}, \quad \alpha \neq q_{j}, \quad j=2, \ldots, m . \tag{4.24}
\end{gather*}
$$

The right-hand side of (4.22) then becomes:

$$
\begin{align*}
& c_{2}^{n-2 m} \cdot \frac{1}{\lambda^{2 m}} \cdot \int_{0}^{t} d t_{1} \cdots \int_{0}^{t_{q_{1}-2}-2} d t_{q_{1}-1} \int_{-t_{p_{1}}}^{t_{q_{1}-1}^{1-t_{p_{1}}}} d t_{q_{1}}^{t_{q_{1}}} \int_{0}^{+t_{p_{1}}} d t_{q_{1}+1} \cdots \int_{0}^{t_{q_{m}-2}} d t_{q_{m}-1} \int_{-t_{p_{m}}}^{t_{q_{m}}+t_{q_{m}-1}-t_{p_{m}}} d t_{q_{m}} \\
& \int_{0}^{t_{q_{m}}+1} d t_{q_{m}+1} \int_{0} d t_{q_{m}+2} \cdots \int_{0}^{t_{n-1}} d t_{n} \prod_{j=1}^{m}\left|\left\langle g, S_{t_{q_{j}} / \lambda 2} g\right\rangle\right|, \tag{4.25}
\end{align*}
$$

where

$$
t_{q_{j}-1}^{\prime}=\left\{\begin{array}{lll}
t_{q_{j}-1}, & \text { if } & q_{j}-1 \neq q_{j-1} \tag{4.26}\\
t_{q_{j-1}}+t_{p_{j-1}}, & \text { if } & q_{j}-1=q_{j-1}
\end{array} .\right.
$$

The further change of variable

$$
\begin{equation*}
t_{q_{j}} / \lambda^{2}=R_{q_{j}} \tag{4.27}
\end{equation*}
$$

brings the expression (4.25) to the form:

$$
\begin{align*}
& c_{2}^{n-2 m} \cdot \int_{0}^{t} d t_{1} \cdots \int_{0}^{t_{q_{1}-2}} d t_{q_{1}-1} \int_{-t_{p_{1} / \lambda^{2}}}^{\left(t_{q_{1}-1}-t_{\left.p_{1}\right)}\right) / \lambda^{2}} d R_{q_{1}} \int_{0}^{\lambda^{2} R_{q_{1}}+t_{p_{1}}} d t_{q_{1}+1} \cdots \int_{0}^{t_{q_{m}-2}} d t_{q_{m}-1} \int_{-t_{p_{m} / \lambda^{2}}}^{\left(t_{q_{m}-1}-t_{p_{m}}\right) / \lambda^{2}} \\
& \quad \cdot d R_{q_{m}} \int_{0}^{\lambda^{2} R_{q_{m}}+t_{p_{m}}} d t_{q_{m}+1} \int_{0}^{t_{q_{m}}+1} d t_{q_{m}+2} \cdots \int_{0}^{t_{n-1}} d t_{n} \prod_{j=1}^{m}\left|\left\langle g, S_{R_{q}} q\right\rangle\right| . \tag{4.28}
\end{align*}
$$

The crucial remark is that $t_{q_{j}-1}^{\prime}-t_{p_{j}} \leqq 0$. In fact, if $t_{q_{J}-1}^{\prime}=t_{q_{J}-1}$, i.e. $q_{j}-1>q_{j-1}$ then this is clear, while if $t_{q_{j}-1}^{\prime}=t_{q_{j-1}}+t_{p_{j-1}}$, i.e. $q_{j}-1=q_{j-1}$ then, $p_{j} \leqq q_{j-1}-1$ and

$$
\begin{equation*}
t_{q_{j}-1}^{\prime}-t_{p_{j}}=t_{q_{j-1}}+t_{p_{j-1}}-t_{p_{j}} \leqq t_{q_{j-1}-1}-t_{p_{j}} \leqq 0 \tag{4.29}
\end{equation*}
$$

Since $R_{q_{J}} \leqq\left(t_{q_{j}-1}^{\prime}-t_{p_{j}}\right) / \lambda^{2} \leqq 0$ it follows that $0 \leqq \lambda^{2} R_{q_{j}}+t_{p_{j}} \leqq t_{q_{j}-1}^{\prime}$. Hence the expression (4.23) is majorized by:

$$
\begin{align*}
& c_{2}^{n-2 m \cdot} \int_{0}^{t} d t_{1} \cdots \int_{0}^{t_{q_{1}-2}} d t_{q_{1}-1} \int_{-t_{p_{1} / \lambda}}^{\left(t_{q_{1}-1}^{\prime-} t_{\left.p_{1}\right)}\right) / \lambda^{2}} d R_{q_{1}} \int_{0}^{t_{q_{1}}-1} d t_{q_{1}+1} \cdots \int_{0}^{t_{q_{m}-2}} d t_{q_{m}-1} \int_{-t_{p_{m}} / \lambda^{2}}^{\left(t_{q_{m}-1}^{\left.-t_{p_{m}}\right) / \lambda^{2}} d R_{q_{m}}\right.} \\
& \quad \cdot \int_{0}^{t_{q_{m}-1}} d t_{q_{m}+1} \int_{0}^{t_{q_{m}}+1} d t_{q_{m}+2} \cdots \int_{0}^{t_{n}-1} d t_{n} \prod_{j=1}^{m}\left|\left\langle g, S_{R_{q_{j}}} g\right\rangle\right| \\
& \leqq c_{2}^{n-2 m} \cdot c_{1}^{m} \cdot \int_{0}^{t} d t_{1} \cdots \int_{0}^{t_{q_{1}-2}-2} d t_{q_{1}-1} \int_{0}^{t_{q_{1}-1}} d t_{q_{1}+1} \cdots \\
& \quad \cdot \int_{0}^{t_{q_{m}-2}} d t_{q_{m}-1} \int_{0}^{t_{q_{m}-1}} d t_{q_{m}+1} \int_{0}^{t_{q_{m}}+1} d t_{q_{m}+2} \cdots \int_{0}^{t_{n-1}} d t_{n}=c_{2}^{n-2 m} \cdot c_{1}^{m} \cdot \frac{t^{n-m}}{(n-m)!}, \tag{4.30}
\end{align*}
$$

and this proves (4.17). Finally, denote

$$
j:=\min \left\{\alpha ; p_{\alpha}<q_{\alpha}-1\right\}
$$

if $q_{j}-1>q_{j-1}$, then $t_{q_{j}-1}^{\prime}-t_{p_{j}}=t_{q_{j}-1}-t_{p_{j}}<0$ almost everywhere; if $q_{j}-1=q_{j-1}$, then by the definition of j one has $p_{j-1}=q_{j-1}-1$, so $p_{j}<q_{j-1}-1$ and $t_{q_{j}-1}^{\prime}-t_{p_{j}} \leqq t_{q_{J-1}-1}-t_{p_{j}}<0$ almost everywhere. Moreover since $t \mapsto\left\langle g, S_{t} g\right\rangle$ is bounded, the expression

$$
\begin{equation*}
\prod_{j=1}^{m} \int_{-t_{p_{j}} / \lambda^{2}}^{\left(t_{q_{j}}^{\prime}-1\right.} \int_{\left.p_{j}\right) / \lambda^{2}}\left|\left\langle g, S_{R_{q_{j}}} g\right\rangle\right| d R_{q_{j}} \tag{4.31}
\end{equation*}
$$

tends to zero, as $\lambda \rightarrow 0$, almost everywhere in the variables $t_{p_{j}}, t_{q_{J}-1}$, hence by dominated convergence the left-hand side of (4.22) tends to zero as $\lambda \rightarrow 0$ and this implies (4.20).

5. Uniform Estimates: The Fock Case

Throughout this section, we shall use the notations introduced at the beginning of Sect. 4 and in Lemmas (4.1) and (4.2). In particular, expanding the product $V_{g}\left(t_{1}\right) \cdots V_{g}\left(t_{n}\right)$ using the notations (4.3), (4.4), (4.5), we obtain

$$
\begin{align*}
& \sum_{\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{0,1\}^{n}} i^{n} D_{\varepsilon_{1}} \cdots D_{\varepsilon_{n}} \cdot A^{\varepsilon_{1}}\left(S_{t_{1}} g\right) \cdots A^{\varepsilon_{n}}\left(S_{t_{n}} g\right) \\
= & \sum_{k=0}^{n} \sum_{1 \leqq j_{1}<\cdots<j_{k} \leqq n} i^{n} D_{\varepsilon_{1}} \cdots D_{\varepsilon_{n}} \cdot A^{\varepsilon_{1}}\left(S_{t_{1}} g\right) \cdots A^{\varepsilon_{n}}\left(S_{t_{n}} g\right), \tag{5.1}
\end{align*}
$$

where $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ is uniquely determined by $\left(j_{1}, \ldots, j_{k}\right)$ and the sum over $\left(j_{1}, \ldots, j_{k}\right) \subseteq(1, \ldots, n)$ is extended to all the ordered subsets of $\{1, \ldots, n\}$ of cardinality k (remember that the indices $\left(j_{1}, \ldots, j_{k}\right)$ label the creation operators). Now, for each $\varepsilon \in\{0,1\}^{n}$, let $\left(j_{r_{1}}, \ldots, j_{r_{m}}\right) \subseteq\left(j_{1}, \ldots, j_{k}\right) \subseteq(1, \ldots, n)$ be as in (4.9a). Since the correspondence between the ε and the $\left(j_{1}, \ldots, j_{k}\right)$ is one-to-one, we can use the notation

$$
\begin{equation*}
D_{\varepsilon_{1}} \cdots D_{\varepsilon_{n}}=D_{\left(j_{1}, \ldots, j_{k}\right)} \tag{5.2}
\end{equation*}
$$

where $\left(j_{1}, \ldots, j_{k}\right)$ corresponds to $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ in the way indicated above.
Theorem (5.1). For each $n \in N, u, v \in H, f_{1}, f_{2}, g \in K$ and $T_{1}, T_{2}, S_{1}, S_{2} \in \mathbf{R}\left(S_{j} \leqq T_{j}\right)$, the limit, for $\lambda \rightarrow 0$, of the quantity

$$
\begin{align*}
& \left\langle u \otimes W\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \cdot \Phi, \lambda^{n} \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n}-1} d t_{n} V_{g}\left(t_{1}\right) V_{g}\left(t_{2}\right) \cdots V_{g}\left(t_{n}\right)\right. \\
& \left.\quad \cdot v \otimes W\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right) \cdot \Phi\right\rangle \tag{5.3}
\end{align*}
$$

exists and is equal to

$$
\begin{aligned}
& \sum_{k=0}^{n} \sum_{1 \leqq j_{1}<\cdots<j_{k} \leqq n} \sum_{m=0}^{k \wedge(n-k)} \sum_{\substack{1 \leqq r_{1}<\cdots<r_{m} \leqq k}} i^{n}\left\langle u, D_{\left(j_{1}, \ldots, j_{k}\right)} v\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& \cdot d t_{1} \cdots d t_{j_{r_{1}}-1} d \hat{t}_{j_{r_{1}}} d t_{j_{r_{1}}+1} \cdots d t_{j_{r_{m}}-1} d \hat{t}_{j_{r_{m}}} d t_{j_{r_{m}}+1} \cdots d t_{n} \\
& \cdot \prod_{j \in\left\{j_{1}, \ldots, j_{k}\right\}-\left\{j_{r_{1}}, \ldots, j_{r_{m}}\right\}} \chi_{\left[\mathbf{S}_{1}, T_{1}\right]}\left(t_{j}\right) \cdot\left(f_{1} \mid g\right)^{k-m} \\
& \cdot{ }_{j \in\{1, \ldots, n\}-\left[\left\{j_{1}, \ldots, j_{k}\right\} \cup\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}\right]} \chi_{\left[S_{2}, T_{2}\right]}\left(t_{j}\right) \cdot\left(g \mid f_{2}\right)^{n-k-m} \cdot(g \mid g)_{-}^{m} \\
& \cdot\left\langle W\left(\chi_{\left[S_{1}, T_{1}\right]} \otimes f_{1}\right) \cdot \Psi, W\left(\chi_{\left[S_{2}, T_{2}\right]} \otimes f_{2}\right) \cdot \Psi\right\rangle \tag{5.4}
\end{align*}
$$

where, by definition

$$
\begin{equation*}
(g \mid h)_{-}=\int_{-\infty}^{0}\left\langle g, S_{u} h\right\rangle d u, \tag{5.5}
\end{equation*}
$$

the symbol \hat{t}_{j} means that the variable t_{j} is absent and Ψ is the vacuum vector of $\Gamma\left(L^{2}\left(\mathbf{R}, d t ; K_{1}\right)\right)$.

Proof. Expanding the product $V_{g}\left(t_{1}\right) \cdots V_{g}\left(t_{n}\right)$ and using (5.1), (5.2), the scalar product (5.3) becomes

$$
\begin{align*}
\sum_{k=0}^{n} & \sum_{1 \leqq j_{1}<\cdots<j_{k} \leqq n} i^{n}\left\langle u, D_{\left(j_{1}, \ldots, j_{k}\right)} v\right\rangle \cdot \lambda^{n} \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n}-1} d t_{n} \\
& \cdot\left\langle W\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \cdot \Phi, A^{\varepsilon_{1}}\left(S_{t_{1}} g\right) \cdots A^{\varepsilon_{n}}\left(S_{t_{n}} g\right) W\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right) \cdot \Phi\right\rangle . \tag{5.6}
\end{align*}
$$

Now, according to Lemma (4.1), the expression (5.6) can be split into two pieces

$$
\begin{equation*}
I_{g}(n, \lambda)+I I_{g}(n, \lambda) \tag{5.7}
\end{equation*}
$$

with

$$
\begin{align*}
& I I_{g}(n, \lambda)=\sum_{k=0}^{n} \sum_{1 \leqq j_{1}<\ldots<j_{k} \leqq n} i^{n}\left\langle u, D_{\left(j_{1}, \ldots, j_{k}\right)} v\right\rangle \sum_{m=0}^{k \wedge(n-k)} \sum_{\left(q_{1}, p_{1}, \ldots, q_{m}, p_{m}\right)}^{\prime} \\
& \lambda^{n} \int_{0}^{t / \lambda \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \ldots \int_{0}^{t_{n}-1} d t_{n} \prod_{\alpha=1}^{m}\left\langle S_{t_{p_{x}}} g, S_{t_{q_{z}}} g\right\rangle \\
& \quad \cdot \prod_{j \in\left\{j_{1} \ldots, j_{k}\right\}-\left\{q_{1}, \ldots, q_{m}\right\}} \lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}}\left\langle S_{u_{j}} f_{1}, S_{t,} g\right\rangle d u_{j} \\
& \quad \cdot \prod_{j \in\{1, \ldots, n\}-\left\{\left\{j_{1}, \ldots, j_{k}\right\} \cup\left\{p_{1}, \ldots, p_{m}\right\}\right]} \lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}}\left\langle S_{t_{J}} g, S_{u} f_{2}\right\rangle d u_{j} \\
& \quad \cdot\left\langle W\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \Phi, W\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right) \Phi\right\rangle \tag{5.8a}
\end{align*}
$$

and

$$
\begin{align*}
& I_{g}(n, \lambda)=\sum_{k=0}^{n} \sum_{1 \leqq j_{1}<\cdots<j_{k} \leqq n}\left\langle u, D_{\left(j_{1}, \ldots, j_{k}\right)} v\right\rangle \\
& \cdot\left\langle W\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \Phi, W\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right) \Phi\right\rangle \\
& \cdot \lambda^{n} \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n-1}} d t_{n} \sum_{m=0}^{k \wedge(n-k)} \sum_{\substack{1 \leqq r_{1}<\ldots<r_{m} \leqq k \\
\left\{0, j_{1} \ldots, j_{k}\right\} \cap\left\{r_{1}-1, \ldots, j_{r_{m}}-1\right\}}} \\
& \cdot \prod_{\alpha=1}^{m}\left\langle S_{t_{J_{r_{2}}-1}} g, S_{t_{J_{r_{2}}}} g\right\rangle \prod_{j \in\left\{j_{1} \ldots, j_{k}\right\}-\left\{j_{r_{1}}, \ldots, j_{r_{m}}\right\}} \lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}}\left\langle S_{u_{j}} f_{1}, S_{t,} g\right\rangle d u_{j} . \\
& \prod_{j \in\{1, \ldots, n\}-\left[\left\{j_{1} \ldots, j_{k}\right\} \cup\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}\right]} \lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}}\left\langle S_{t_{j}} g, S_{u_{j}} f_{2}\right\rangle d u_{j} . \tag{5.8b}
\end{align*}
$$

Using the notation (4.16), we obtain, for this piece, the estimate:

$$
\begin{align*}
\left|I I_{g}(n, \lambda)\right| \leqq & \sum_{k=0}^{n} \sum_{1 \leqq j_{1}<\cdots<j_{k} \leqq n} \sum_{m=0}^{k \wedge(n-k)} \sum_{\left(q_{1}, p_{1}, \ldots, q_{m}, p_{m}\right)}^{\prime}\left|\left\langle u, D_{\left(j_{1}, \ldots, j_{k}\right)} v\right\rangle\right| \\
& \cdot\left|\left\langle W\left(\lambda \int_{s_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \Phi, W\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right) \Phi\right\rangle\right| \Delta_{n, m}^{(\lambda)}, \tag{5.9}
\end{align*}
$$

and the right-hand side of (5.9) tends to zero, as $\lambda \rightarrow 0$, by (4.20). Hence the limit of the expression (5.6) (if it exists) is equal to

$$
\lim _{\lambda \rightarrow 0} I_{g}(n, \lambda) .
$$

And since, by Theorem (3.4), and in the notation (2.24), the scalar product of the collective coherent vectors converges to

$$
\left\langle W\left(\chi_{\left[S_{1} T_{1}\right]} \otimes f_{1}\right) \Psi, W\left(\chi_{\left[S_{2} T_{2}\right]} \otimes f_{2}\right) \Psi\right\rangle
$$

the problem is reduced to proving that, for each $k=0, \ldots, m$ and $1 \leqq j_{1}<\cdots<j_{k} \leqq n$, the limit of the quantity

$$
\begin{align*}
& \lambda^{n} \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n}-1} d t_{n} \sum_{m=0}^{k \wedge(n-k)} \sum_{1 \leqq r_{1}<\ldots<r_{m} \leqq k} \\
& \cdot \prod_{\alpha=1}^{m}\left\langle S_{t_{r_{r_{-}}-1}} g, S_{t_{j_{r_{2}}}} g\right\rangle \prod_{j \in\left\{j_{1} \ldots, j_{k}\right\}-\left\{j_{r_{1}}, \ldots, j_{r_{m}}\right\}} \lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}}\left\langle S_{u_{j}} f_{1}, S_{t} g\right\rangle d u_{j} \\
& \cdot{ }_{j \in\{1, \ldots, n\}-\left[\left\{j_{1}, \ldots, j_{k}\right\} \cup\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}\right]} \lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}}\left\langle S_{t} g, S_{u_{j}} f_{2}\right\rangle d u_{j} \tag{5.10}
\end{align*}
$$

as $\lambda \rightarrow 0$ exists and has the expression that one deduces from (5.4), (5.5). To this goal notice that, with the change of variables $u_{j}-t_{j}=v_{j}$, this expression
becomes

$$
\begin{align*}
& \sum_{m=0}^{k \wedge(n-k)} \sum_{1 \leqq r_{1}<\cdots<r_{m} \leqq k} \lambda^{2 n-2 m} \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n}-1} d t_{n} \\
& \left\{0, j_{1} \ldots, j_{k}\right\} \cap\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}=\varnothing \\
& \prod_{\alpha=1}^{m}\left\langle S_{t_{j_{r_{\mu}-1}}} g, S_{t_{j_{r_{-}-1}}} g\right\rangle \prod_{j \in\left\{j_{1} \ldots, j_{k}\right\}-\left\{j_{r_{1}}, \ldots, j_{r_{m}}\right\}} \int_{S_{1} / \lambda^{2}-t_{j}}^{T_{1} / \lambda^{2}-t_{j}}\left\langle S_{v_{j}} f_{1}, g\right\rangle d v_{j} \text {. } \\
& \prod_{j \in\{1, \ldots, n\}-\left[\left\{j_{1} \ldots, j_{k}\right\}\right.} \prod_{\left.\cup\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}\right]} \int_{S_{2} / \lambda^{2}-t_{j}}^{T_{2} / \lambda^{2}-t_{j}}\left\langle g, S_{v_{j}} f_{2}\right\rangle d v_{j} ; \tag{5.11}
\end{align*}
$$

with the further change of variables $\lambda^{2} t_{j}=s_{j}$, we obtain

$$
\begin{align*}
& \sum_{m=0}^{k \wedge(n-k)} \sum_{1 \leqq r_{1}<\cdots<r_{m} \leqq k} \quad \lambda^{-2 m} \int_{0}^{t} d s_{1} \int_{0}^{s_{1}} d s_{2} \cdots \int_{0}^{s_{n}-1} d s_{n} \prod_{\alpha=1}^{m}\left\langle g, S_{\left(s_{j_{r_{x}}}-s_{\left.j_{r_{\alpha}}-1\right) / \lambda^{2}} g\right\rangle .}\right. \\
& \left\{0, j_{1} \ldots, j_{k}\right\} \cap\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}=\varnothing \tag{5.12}\\
& \prod_{j \in\left\{j_{1} \ldots, j_{k}\right\}-\left\{j_{r_{1}}, \ldots, j_{r_{m}}\right\}}^{\left(T_{1}-s_{j}\right) / \lambda^{2}} \int_{\left(S_{1}-s_{j}\right) / \lambda^{2}}\left\langle S_{v_{j}} f_{1}, g\right\rangle d v_{j} \prod_{j \in\{1, \ldots, n\}-\left[\left\{j_{1} \ldots, j_{k}\right\} \cup\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}\right]} \\
& \cdot \int_{\left(S_{2}-s_{j}\right) / \lambda^{2}}^{\left(T_{2}-s_{j}\right) / \lambda^{2}}\left\langle g, S_{v_{j}} f_{2}\right\rangle d v_{j} . \tag{5.13}
\end{align*}
$$

Now, putting

$$
\begin{align*}
t_{j_{r_{x}}} & =\left(s_{j_{r_{x}}}-s_{j_{r_{\alpha}}-1}\right) / \lambda^{2} ; \quad \alpha=1, \ldots, m \tag{5.14}\\
t_{j} & =s_{j} ; \quad j \in\{1, \ldots, n\}-\left\{j_{r_{1}}, \ldots, j_{r_{m}}\right\} \tag{5.15}
\end{align*}
$$

we obtain:

$$
\begin{align*}
& \sum_{m=0}^{k \wedge(n-k)} \sum_{\substack{1 \\
\left\{0, j_{1} \ldots, j_{k}\right\}}} \sum_{\substack{r_{1}<\ldots<r_{m} \leqq k \\
\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{-t_{j_{r_{1}}-1 / \lambda^{2}}^{0}}^{0} d t_{j_{r_{1}}}\left\langle g, S_{t_{j_{1}}} g\right\rangle \\
& \cdot \int_{0}^{\lambda^{2} t_{j_{r_{1}}}+t_{j_{r_{1}}-1}} d t_{j_{r_{1}}+1} \cdots \int_{0}^{t_{j_{r_{m}}}-2} d t_{j_{r_{m}}-1} \int_{-t_{j_{r_{m}}-1 / \lambda^{2}}}^{0} d t_{j_{r_{m}}}\left\langle g, S_{t_{j_{r_{m}}}} g\right\rangle \\
& \cdot \int_{0}^{\lambda^{2} t_{j_{r_{m}}}+t_{j_{r_{m}}-1}} d t_{j_{r_{m}}+1} \cdots \int_{0}^{t_{n}-1} d t_{n} \cdot \prod_{j \in\left\{j_{1} \ldots, j_{k}\right\}-\left\{j_{r_{1}}, \ldots, j_{r_{m}}\right\}} \int_{\left(S_{1}-t_{j}\right) / \lambda^{2}}^{\left(T_{1}-t_{j}\right) / \lambda^{2}}\left\langle S_{v_{j}} f_{1}, g\right\rangle d v_{j} \\
& \prod_{j \in\{1, \ldots, n\}-\left[\left\{j_{1} \ldots, j_{k}\right\} \cup\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}\right]} \int_{\left(S_{2}-t_{j}\right) / \lambda^{2}}^{\left(T_{2}-t_{j}\right) / \lambda^{2}}\left\langle g, S_{v_{j}} f_{2}\right\rangle d v_{j} \text {. } \tag{5.16}
\end{align*}
$$

Now, as $\lambda \rightarrow 0$,

$$
\begin{align*}
& \begin{array}{l}
\int_{-t_{r_{r_{x}}-1 / \lambda{ }^{2}}^{0}}^{0} d t_{j_{r_{x}}}\left\langle g, S_{t_{J_{r_{x}}}} g\right\rangle \rightarrow(g \mid g)_{-} \\
\lambda^{2} t_{j_{r_{x}}}+t_{j_{r_{x}-1}} \\
\int_{0} d t_{j_{r_{x}}+1} \rightarrow \int_{0}^{t_{j_{r_{x}}-1}} d t_{j_{r_{x}}+1}
\end{array} \tag{5.17}\\
& \int_{\left(S_{\alpha}-t_{\alpha}\right) / \lambda^{2}}^{\left(T_{\alpha}-t_{\alpha}\right) / \lambda \lambda^{2}}\left\langle S_{v_{\alpha}} f_{\alpha}, g\right\rangle d v_{\alpha} \rightarrow \chi_{\left[S_{\alpha} T_{\alpha}\right]}\left(t_{j}\right)\left(f_{\alpha} \mid g\right) ; \quad \alpha=1,2
\end{align*}
$$

with $(g \mid g)_{\text {_ }}$ given by (5.5). Since in all cases the convergence is dominated (due to $t<\infty$ and (2.4)), it follows that, as $\lambda \rightarrow 0$, the expression (5.14) converges to (5.4) and this ends the proof.

Lemma (5.2). Let f_{1}, f_{2}, g, t, and $D_{ \pm}$be a fixed as in Theorem (5.1) and let $I_{g}(n, 1)$, be defined by (5.8a) respectively, then

$$
\begin{equation*}
\left|I_{g}(n, \lambda)\right| \leqq\|u\| \cdot\|v\| c^{n} \frac{(t \vee 1)^{n}}{(n / 2)!} \tag{5.18}
\end{equation*}
$$

uniformly in $\lambda>0$, where, c is a constant.
Proof. The terms of type $I_{n}(\lambda)$ have the form (5.8a) and therefore they are estimated using (5.16) which yields the majorization:

$$
\begin{align*}
& \left|I_{g}(n, \lambda)\right| \leqq \sum_{k=0}^{n} \sum_{j_{1}<\cdots<j_{k} \leqq n}^{k \wedge(n-k)} \sum_{m=0} \sum_{1 \leqq r_{1}<\cdots<r_{m} \leqq k} \tag{5.19}\\
& \left|\left\langle W\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right) \Phi, W\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right) \Phi\right\rangle\right| \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{-t_{j_{1}} / \lambda^{2}}^{0} d t_{j_{r_{1}}} \\
& \cdot\left|\left\langle g, S_{t_{r_{1}}} g\right\rangle\right| \int_{0}^{\lambda^{2} t_{r_{r}}+t_{r_{r_{1}}}-1} d t_{j_{r_{1}}+1} \cdots \int_{0}^{t_{r_{m}}-2} d t_{j_{r_{m}}-1} \int_{-t_{J_{r_{m}}}-1 / \lambda^{2}}^{0} d t_{j_{r_{m}}}\left|\left\langle g, S_{t_{r_{m}}} g\right\rangle\right| \\
& \int_{0}^{\lambda^{2} t_{j_{r_{m}}}+t_{j_{r_{m}}-1}} d t_{j_{r_{m}}+1} \cdots \int_{0}^{t_{n-1}} d t_{n} \prod_{j \in\left(j_{1}, \ldots, j_{k}\right\}-\left(j_{r_{1}}, \ldots j_{\left.r_{m}\right\}}\right\}} \int_{\left(S_{1}-t_{j}\right) / \lambda^{2}}^{\left(T_{1}-t_{j}\right) / \lambda^{2}}\left|\left\langle S_{v_{f}} f_{1}, g\right\rangle\right| d v_{j} \\
& \cdot \prod_{j \in\{1, \ldots n\}-\left[\left\{j_{1}, \ldots, j_{k}\right\} \cup\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}\right]} \int_{\left(S_{2}-t_{j}\right) / \lambda^{2}}^{\left(T_{2}-t_{j}\right) / \lambda^{2}}\left|\left\langle g, S_{v_{j}} f_{2}\right\rangle\right| d v_{j} .
\end{align*}
$$

Now, since $t_{j_{r \alpha}} \in\left(-\left(1 / \lambda^{2}\right) t_{j_{r_{\alpha}}-1}, 0\right)$, it follows that $\lambda^{2} t_{j_{r_{\alpha}}}+t_{j_{r_{\alpha}-1}} \leqq t_{j_{r_{\alpha}-1}}$ and therefore, since $n-m \geqq n / 2$, the expression (5.19) is dominated by

$$
\begin{align*}
& \|u\| \cdot\|v\| \cdot\|D\|^{n} n^{2} 2^{n}\left|(g \mid g)_{-}\right|^{m} \cdot\left|\left(f_{1} \mid g\right)\right|^{k-m} \cdot\left|\left(g \mid f_{2}\right)\right|^{n-k-m} \\
& \cdot \underset{0 \leqq t_{n-1} \leqq \cdots \leqq \hat{t}_{r_{m} m} \leqq \cdots \hat{i}_{j_{r_{1}} \leqq \cdots \leqq t_{1} \leqq t} d t_{1} \cdots d \hat{t}_{j_{r_{1}}} \cdots d \hat{t}_{j_{r_{m}}} \cdots d t_{n}}{\leqq\|u\| \cdot\|v\| c^{n} \max _{0 \leqq m \leqq n / 2} \frac{(t \vee 1)^{n}}{(n-m)!} \leqq\|u\| \cdot\|v\| c^{n} \frac{(t \vee 1)^{n}}{(n / 2)!},}
\end{align*}
$$

and this proves the lemma.
Lemma (5.3). There exists a constant C, such that for each $n \in N$,

$$
\begin{equation*}
\left|I I_{g}(n, \lambda)\right| \leqq C^{n} \frac{(t \vee 1)^{n}}{\left(\left[\frac{1}{3} n\right]\right)!} \tag{5.21}
\end{equation*}
$$

Proof. From (5.9) we have that for each $n \in N$,

$$
\begin{equation*}
\left|I I_{g}(n, \lambda)\right| \leqq \sum_{k=o}^{n} \sum_{1 \leqq j_{1}<\cdots j_{k} \leqq n} \sum_{m=0}^{k \wedge(n-k)} \sum_{\left(p_{1}, q_{1}, \ldots, p_{m}, q_{m}\right)}^{\prime} c_{3}^{n} \Delta_{n, m}^{(\lambda)}, \tag{5.22}
\end{equation*}
$$

where c_{3} is a constant satisfying:

$$
\|D\| \cdot(1 \vee\|u\| \cdot\|v\|) \leqq c_{3}
$$

and where $\sum_{\left(p_{1}, q_{1}, \ldots, p_{m}, q_{m}\right)}^{\prime}$ has been defined by (4.10), (4.11), (4.12). From this definition, one easily verifies that the following identity holds:

$$
\begin{equation*}
\sum_{\substack{\left(p_{1}, q_{1}, \ldots, p_{m}, q_{m}\right)}}^{\prime}=\sum_{\substack{q_{1}<\ldots<q_{m} \\\left\{q_{n}\right\}_{h=1}^{m} \subset\left\{j_{h}\right\}_{h=1}^{\prime}}} \sum_{\substack{\left\{p_{h}\right\}_{h=1}^{m} \subset\{1, \ldots, n\}-\left\{j_{n}\right\}_{n=1}^{k}}} \sum_{\left.\sigma \in \mathcal{S}_{h}^{\prime}\right\}_{h=1}^{\prime} \mid=m} \tag{5.23}
\end{equation*}
$$

where, denoting \mathscr{S}_{m} the permutation group on $\{1, \ldots, m\}$ and

$$
\mathscr{S}_{m}^{\prime}=\left\{\sigma \in \mathscr{S}_{m}, p_{\sigma(h)}<q_{h}, h=1, \ldots, m\right\} .
$$

Now, fix $k=0,1, \ldots, n, 1 \leqq j_{1}<\cdots<j_{k} \leqq n$, and let $m \leqq \frac{1}{3} n$, then, from (4.17) it follows that with c_{1}, c_{2} given by (4.18), (4.19), one has:

$$
\begin{align*}
\left|I I_{g}(n, \lambda)\right| & \leqq n^{2} \cdot\left\{\max _{k=0 \ldots, n}\binom{n}{k} c_{3}^{n} \cdot \max _{m=0, \ldots, n / 3}\left[\binom{k}{m}\binom{n-k}{m} m!t^{n-m} \frac{c_{1}^{m} c_{2}^{n-m}}{(n-m)!}\right]\right\} \\
& \leqq c_{4}^{n}(t \vee 1)^{n} 2^{n} \cdot n^{2} 4^{n} \max _{m \leqq n / 3} \frac{m!}{(n-m)!} \leqq c_{5}^{n}\left(\left[\frac{n}{3}\right]\right)!\frac{(t \vee 1)^{n}}{\left(\left[\frac{2}{3} n\right]\right)!} \tag{5.24}
\end{align*}
$$

If $m \geqq \frac{1}{3} n$, then, for each fixed $q_{1}<\cdots<q_{m}$ and p_{1}, \ldots, p_{m} as in (5.23), after the change of variables $\lambda^{2} t_{j}=s_{j}$ in the expression (4.16) for $\Delta_{n, m}^{(\lambda)}$ we are led to estimate the quantity:

$$
\begin{equation*}
\lambda^{-2 m} \sum_{\sigma \in \mathscr{Y}_{m}^{\prime}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n}-1} d t_{n} \prod_{h=1}^{m} \mid\left\langle g, S_{\left(t_{q_{h}}-t_{\left.p_{\sigma(h)}\right) / \lambda 2} g\right\rangle \mid .}\right. \tag{5.25}
\end{equation*}
$$

For this goal, notice that, for each $p \in\{1, \ldots, n\}-\left\{p_{h}, q_{h}\right\}_{h=1}^{m}$, the expression (5.25) is equal to:

$$
\begin{align*}
& \lambda^{-2 m} \sum_{\sigma \in \mathscr{S}_{m}^{\prime}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{p-2}} d t_{p-1} \int_{0}^{t_{p-1}} d t_{p} \int_{0}^{t_{p}} d t_{p+1} \cdots \int_{0}^{t_{n-1}} d t_{n} \\
& \cdot \prod_{h=1}^{m} \mid\left\langle g, S_{\left(t_{q_{h}}-t_{\left.p_{\sigma(h)}\right) / 2} g\right\rangle \mid}\right. \tag{5.25a}
\end{align*}
$$

where, the variable t_{p} does not appear in the interand. Since, for any such p, $t_{p} \leqq t_{p-1} \leqq t$, it follows that (5.25) is majorized by:

$$
\begin{align*}
& \lambda^{-2 m} t \sum_{\sigma \in \mathscr{S}_{m}^{\prime}} \int_{0}^{t} d t \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{p}-2} d t_{p-1} \int_{0}^{t_{p}-1} d t_{p+1} \cdots \int_{0}^{t_{n-1}} d t_{n} \\
& \cdot \prod_{h=1}^{m}\left|\left\langle g, S_{\left(t_{q_{h}}-t_{\left.t_{\sigma(h)}\right)}\right) / \lambda^{2}} g\right\rangle\right| . \tag{5.26}
\end{align*}
$$

Repeating this estimate for each $p \in\{1, \ldots, n\}-\left\{p_{h}, q_{h}\right\}_{h=1}^{m}$, we obtain that the expression (5.25) is majorized by:

$$
\begin{equation*}
\lambda^{-2 m} t^{n-2 m} \sum_{\sigma \in \mathscr{S}_{m}^{\prime}} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{2 m}-1} d t_{2 m} \prod_{h=1}^{m}\left|\left\langle g, S_{\left(t_{q_{h}}-t_{\left.p_{\sigma(h)}\right)}\right) / \lambda} g\right\rangle\right| . \tag{5.27}
\end{equation*}
$$

Here, $1 \leqq q_{1}<\cdots<q_{m}=2 m$, and $p_{\sigma(h)}<q_{h}$, for each $h=1, \ldots, m$. Now, for each $\sigma \in \mathscr{S}_{m}^{\prime}$, put

$$
\varepsilon_{\sigma}(j)=\left\{\begin{array}{ll}
q_{h}, & \text { if } j=2 h, h=1, \ldots, m \tag{5.28}\\
p_{\sigma(h)}, & \text { if } j=2 h-1, h=1, \ldots, m
\end{array} .\right.
$$

Then, ε_{σ} is a map from $\{1, \ldots, 2 m\}$ onto the set $\left\{q_{1}, \ldots, q_{m}, p_{1}, \ldots, p_{m}\right\}$ and $\varepsilon_{\sigma}(2)<\cdots<\varepsilon_{\sigma}(2 m) ; \varepsilon_{\sigma}(2 h-1)<\varepsilon_{\sigma}(2 h) ; h=1, \ldots, m$. Moreover, it is clear that if $\sigma \neq \sigma^{\prime}$, then, $\varepsilon_{\sigma} \neq \varepsilon_{\sigma^{\prime}}$. Identifying the set $\left\{q_{1}, \ldots, q_{m}, q_{1}, \ldots, p_{m}\right\}$ with $\{1, \ldots, 2 m\}, \varepsilon$ can be seen as a permutation on $\{1, \ldots, 2 m\}$ and the expression (5.27) can be written as:

$$
\begin{equation*}
t^{n-2 m} \sum_{\substack{\varepsilon \in \mathscr{S} \mathscr{L}_{2 m, \varepsilon(2)<}^{\varepsilon \in(2 h)<\varepsilon(2 m)} \\ \varepsilon(2 h-1)<\varepsilon(2 h), h=1, \ldots, m,}} \lambda^{-2 m} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{2}-1} d t_{2 m} \prod_{h=1}^{m}\left|\left\langle g, S_{\left(t_{(2 h)}-t_{(2 h-1)}\right) / \lambda^{2}} g\right\rangle\right| . \tag{5.29}
\end{equation*}
$$

To estimate the expression (5.29), we adapt to our needs an argument due to Pulé ([28], Lemma (3)). Denote $\mathscr{P}_{2 m}^{0}$ the set of all permutations σ of $\{1, \ldots, 2 m\}$ satisfying

$$
\sigma(2)<\sigma(4)<\cdots<\sigma(2 m) ; \quad \sigma(2 h-1)<\sigma(2 h), \quad h=1, \ldots, m
$$

for $t>0$ and natural integer k, let

$$
S_{t}^{(k)}=\left\{x=\left(x_{1}, \ldots, x_{k}\right) \in \mathbf{R}^{k}: t \geqq x_{1} \geqq \cdots \geqq x_{k} \geqq 0\right\}
$$

finally, let $\mathscr{P}_{2 m}^{0}$ act on $\mathbf{R}^{2 m}$ by

$$
\sigma\left(t_{1}, \ldots, t_{2 m}\right)=\left(t_{\sigma(1)}, \ldots, t_{\sigma(2 m)}\right)
$$

With these notations, if $f: \mathbf{R}^{m} \rightarrow \mathbf{R}_{+}$is a symmetric function, then

$$
\begin{align*}
& \sum_{\sigma \in \mathscr{P Q}_{2 m}^{0}} \lambda^{-2 m} \int_{S_{t}^{(2 m)}} f\left(\frac{\tau_{\sigma(2 h)}-\tau_{\sigma(2 h-1)}}{\lambda^{2}}\right) d \tau \\
& =\sum_{\sigma \in \sum_{P 2 m}^{0}} \lambda^{-2 m} \int_{\sigma\left(S_{t}^{(2 m))}\right.} f\left(\frac{s_{2 h}-s_{2 h-1}}{\lambda^{2}}\right) d s \\
& =\lambda^{-2 m} \int_{\cup_{\sigma \in \mathscr{P}_{2 m}^{0}}} \int_{\sigma\left(S_{t}^{(2 m))}\right.} f\left(\frac{s_{2 h}-s_{2 h-1}}{\lambda^{2}}\right) d s \tag{5.30}
\end{align*}
$$

because the $\sigma\left(S_{t}^{(2 m)}\right)$ are disjoint for different σ. Now notice that, if $\sigma \in \mathscr{P}_{2 m}^{0}$ and $\tau \in S_{t}^{(2 m)}$, then

$$
\begin{gather*}
\frac{\tau_{\sigma(2 h-1)}-\tau_{\sigma(2 h)}}{\lambda^{2}}=\frac{s_{2 h-1}-s_{2 h}}{\lambda^{2}}=: x_{h} \in \mathbf{R}_{+}, \quad h=1, \ldots, m \tag{5.31}\\
\left(\tau_{\sigma(2)}, \tau_{\sigma(4)}, \ldots, \tau_{\sigma(2 m)}\right)=\left(s_{2}, s_{4}, \ldots, s_{2 m}\right)=:\left(y_{1}, \ldots, y_{m}\right) \in S_{t}^{(m)}, \tag{5.32}
\end{gather*}
$$

and therefore, under the change of variables (5.31), (5.32), the set $\bigcup_{\sigma \in \mathscr{P _ { 2 m } ^ { 0 }}} \sigma\left(S_{t}^{(2 m)}\right)$ is transformed into a subset of $S_{t}^{(m)} \times \mathbf{R}_{+}^{m}$ so that the right-hand side of (5.30) is less
than or equal to:

$$
\int_{S_{t}^{(m)}} d y \int_{\mathbf{R}_{+}^{m}} f(x) d x=\frac{t^{m}}{m!} \int_{\mathbf{R}_{+}^{m}} f(x) d x .
$$

Applying this argument to the function

$$
f(x)=\prod_{j=1}^{m}\left|\left\langle g, S_{x,} g\right\rangle\right|
$$

we obtain that the expression (5.29) is majorized by:

$$
\begin{equation*}
\frac{t^{n-m}}{m!} c_{6}^{n} \tag{5.33}
\end{equation*}
$$

Putting together (5.29) and (5.33), we get eventually:

$$
\begin{align*}
\left|I I_{g}(n, \lambda)\right| \leqq & \sum_{k=0}^{n} \sum_{1 \leqq j_{1}<\cdots j_{k} \leqq n}\left(\sum_{m=0}^{k \wedge(n-k) \wedge 1 / 3 n}+\sum_{m=k \wedge(n-k) \wedge 1 / 3 n}^{k \wedge(n-k)}\right) \sum_{\left(p_{1}, q_{1}, \ldots, p_{m}, q_{m}\right)}^{\prime} \\
& \cdot c_{3}^{n-2 m} \lambda^{-2 m} \int_{0}^{t} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n}-1} d t_{n} \prod_{n=1}^{m}\left|\left\langle g, S_{\left(t_{q_{n}-}-t_{p h}\right) / \lambda^{2}} g\right\rangle\right| \\
\leqq & c_{5}^{n}(t \vee 1)^{n} \frac{\left(\left[\frac{1}{3} n\right]\right)!}{\left(\left[\frac{2}{3} n\right]\right)!}+c_{6}^{n}(t \vee 1)^{n} \frac{1}{\left(\left[\frac{1}{3} n\right]\right)!} \\
& \leqq C^{n} \frac{1}{\left(\left[\frac{1}{3} n\right]\right)!}, \tag{4.34}
\end{align*}
$$

where, C is an easily estimated constant.
We sum up our conclusions in the following:
Theorem (5.4). For every $u, v \in H_{0}, S_{1}, T_{1}, S_{2}, T_{2} \in \mathbf{R}\left(S_{j} \leqq T_{j}\right), f_{1}, f_{2} \in K$ and for every $T \in \mathbf{R}_{+}$the limit

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0}\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), U_{t / \lambda^{2}}^{(\lambda)} v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right)\right\rangle \tag{5.35}
\end{equation*}
$$

exists and is equal to

$$
\begin{align*}
& \sum_{n=0}^{\infty} \sum_{1 \leqq j_{1}<\ldots<j_{k} \leqq n} \sum_{m=0}^{k \wedge(n-k)} \sum_{\substack{1 \leq r_{1}<\ldots<r_{m} \leqq k \\
\left\{0, j_{1}, \ldots, j_{k}\right\}\left\{\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}\right.}}\left\langle u, D_{\left(j_{1}, \ldots, j_{k}\right)} v\right\rangle \\
& 0 \leqq t_{n} \leqq \leqq t_{r_{r_{m}}+1} \subseteq i_{t_{r_{m}} \leqq t_{r_{m}}-1 \leqq \cdots} \cdots \int_{j_{r_{1}}+1} \leqq \hat{t}_{r_{r_{1}}} \leqq t_{r_{r_{1}}-1} \leqq t \\
& \cdot d t_{1} \cdots d t_{j_{r_{1}}-1} \widehat{d t}_{j_{r_{1}}} d t_{j_{r_{1}+1}} \cdots d t_{j_{r_{m}-1}}{\widehat{d t_{r_{m}}}} d t_{j_{r_{m}}+1} \cdots d t_{n} \\
& \cdot \prod_{\alpha \in\left\{j_{1}, \ldots, j_{k}\right\}-\left\{j_{r_{1}}, \ldots, j_{\left.r_{m}\right\}}\right.} \chi_{\left[S_{1}, T_{1}\right]}\left(t_{\alpha}\right) \cdot\left(f_{1} \mid g\right)^{k-m} \prod_{\alpha \in\{1, \ldots, n\}-\left(j_{1}, \ldots, j_{k}\right\} \cup\left\{j_{r_{1}}-1, \ldots, j_{r_{m}}-1\right\}} \\
& \cdot \chi_{\left[S_{2}, T_{2}\right]}\left(t_{\alpha}\right) \cdot\left(g \mid f_{2}\right)^{n-k-m}\left\langle\Psi\left(\chi_{\left[S_{1}, T_{1}\right]} \otimes f_{1}\right), \Psi\left(\chi_{\left[S_{1}, T_{1}\right]} \otimes f_{1}\right)\right\rangle \cdot(g \mid g)_{-}^{m} \tag{5.36}
\end{align*}
$$

where, $(g \mid h)_{-}$is defined by (5.5).

Proof. Expanding $U_{t / \lambda^{2}}^{(\lambda)}$ with the iterative series one obtains a series which is absolutely and uniformly covergent in the pair $(\lambda, t) \in \mathbf{R}_{+} \times[0, T]$ for any $T<+\infty$,

$$
\begin{align*}
\langle u & \left.\otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), U_{t / \lambda^{2}}^{(\lambda)} v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right)\right\rangle \\
= & \langle u, u\rangle \cdot\left\langle\Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), \Phi\left(\lambda\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right)\right\rangle\right. \\
& +\sum_{n=1}^{\infty}(-i)^{n} \lambda^{n} \cdot \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n}-1} d t_{n} \\
& \cdot\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u_{1}} f_{1} d u_{1}\right), V_{g}\left(t_{1}\right) \cdots V_{g}\left(t_{n}\right) v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u_{2}} f_{2} d u_{2}\right)\right\rangle \tag{5.37}
\end{align*}
$$

expanding the product $V_{g}\left(t_{1}\right) \cdots V_{g}\left(t_{n}\right)$ as in (4.6) and using Lemma (4.1), the series (5.37) becomes

$$
\begin{equation*}
\sum_{n=0}^{\infty}(-i)^{n} I_{g}(n, \lambda)+\sum_{n=0}^{\infty}(-i)^{n} I I_{g}(n, \lambda) \tag{5.38}
\end{equation*}
$$

with $I_{g}(n, \lambda), I I_{g}(n, \lambda)$ defined respectively by (5.8b) and (5.8a). By Lemma (4.2) each term $I I_{g}(n, \lambda)$ tends to zero as $\lambda \rightarrow 0$ and by Lemma (5.3), the series $\sum_{n=0}^{\infty}(-i)^{n} I I_{g}(n, \lambda)$ is absolutely convergent, uniformly in λ and uniformly for $t, S_{1}, S_{2}, T_{1}, T_{2}$ in a bounded set. Hence

$$
\lim _{\lambda \rightarrow 0} \sum_{n=0}^{\infty}(-i)^{n} I I_{g}(n, \lambda)=0
$$

The estimate of Lemma (5.2) shows that the series (5.37) is absolutely and uniformly convergent for $\lambda, t, S_{1}, S_{2}, T_{1}, T_{2}$ as above. Therefore the statement immediately follows from Theorem (5.1).

6. The Stochastic Differential Equation in the Fock Case

Our goal in this section is to prove Theorem (II) of Sect. 2, that is: $Q=1$, then for each $u, v \in H_{0}, f_{1}, f_{2}, g \in K_{1}, S_{1}, S_{2}, T_{1}, T_{2} \in \mathbf{R}\left(S_{j} \leqq T_{j}\right)$, the limit

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0}\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), U_{t / \lambda^{2}}^{(\lambda)} v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right)\right\rangle \tag{6.1}
\end{equation*}
$$

exists and is equal to

$$
\begin{equation*}
\left\langle u \otimes \Psi\left(\chi_{\left[S_{1}, T_{1}\right]} \otimes f_{1}\right), U_{t} v \otimes \Psi\left(\chi_{\left[S_{2}, T_{2}\right]} \otimes f_{2}\right)\right\rangle \tag{6.2}
\end{equation*}
$$

where the scalar product is meant in the space $H_{0} \otimes \Gamma\left(L^{2}\left(\mathbf{R}, d t ; K_{1}\right)\right)$ and U_{t} is the solution of the quantum stochastic differential equation

$$
\begin{equation*}
d U_{t}=\left[D \otimes d A_{g}^{+}(t)-D^{+} \otimes d A_{g}(t)-(g \mid g)_{-} D^{+} D \otimes 1 d t\right] \cdot U_{t} ; \quad U_{0}=1 \tag{6.3}
\end{equation*}
$$

in the sense of [39].

Notice that, by Theorem (5.4), the limit (6.1) exists.
We shall first prove that the limit (6.1) has the form

$$
\begin{equation*}
\langle u, G(t)\rangle, \tag{6.4}
\end{equation*}
$$

where $t \mapsto G(t) \in H_{0}$ is a a.e.-weakly differentiable function. We then write the expression (6.2) in the form

$$
\begin{equation*}
\langle u, F(t)\rangle, \tag{6.5}
\end{equation*}
$$

and we show that the functions $t \mapsto F(t), G(t) \in H_{0}$ satisfy the same integral equation in H_{0}. The equality $F(t)=G(t)$ will then follow from the existence and uniqueness theorem for this integral equation in H_{0}.

Lemma (6.1). There exists a a.e.-weakly differentiable map

$$
t \mapsto G(t) \in K
$$

such that for all $u, v, f_{1}, f_{2} \in K_{0}$ and for all $S_{1}, T_{1}, S_{2}, T_{2}$ one has

$$
\begin{align*}
& \lim _{\lambda \rightarrow 0}\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), U_{t / \lambda^{2}}^{(\lambda)} v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle \\
& \quad=\langle u, G(t)\rangle . \tag{6.6}
\end{align*}
$$

Proof. The limit in the expression (6.1) exists, is sesquilinear in u, v and is dominated by $\|u\| \cdot\|v\|$. Hence there exists a contraction $V_{t}=V_{t}\left(f_{1}, f_{2}, S_{1}, S_{2}, T_{1}, T_{2}\right): H_{0} \rightarrow H_{0}$ such that the limit of the left hand side of (6.6) is equal to

$$
\left\langle u, V_{t} v\right\rangle .
$$

Denoting $G(t)=V_{t} v$, one obtains (6.4). The weak differentiability of $t \rightarrow G(t)$ for $t \in \mathbf{R} \backslash\left\{S_{1}, T_{1}, S_{2}, T_{2}\right\}$ follows from Lemma (5.2), Lemma (5.3) and Theorem (5.4).

In order to obtain a differential equation for $G(t)$, first notice that, for fixed λ, one has:

$$
\begin{align*}
\frac{d}{d t} & \left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), U_{t / \lambda^{2}}^{(\lambda)} v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle \\
= & \left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right),-\frac{1}{\lambda} \cdot\left[-D \otimes A\left(S_{t / \lambda^{2}} g\right)^{+}+D^{+} \otimes A\left(S_{t / \lambda^{2}} g\right)\right]\right. \\
& \left.\cdot U_{t / \lambda^{2}}^{(\lambda)} v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle . \tag{6.7}
\end{align*}
$$

Now we introduce the notations:

$$
\begin{align*}
I_{\lambda}= & \frac{1}{\lambda} \cdot\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right),\left(D \otimes A\left(S_{t / \lambda^{2}} g\right)^{+}\right)\right. \\
& \left.\cdot U_{t / \lambda^{2}}^{(\lambda)} v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle \tag{6.8}
\end{align*}
$$

$$
\begin{align*}
I I_{\lambda}= & -\frac{1}{\lambda} \cdot\left\langle u \otimes \Phi\left(\lambda \int_{s_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right),\left(D^{+} \otimes A\left(S_{t / \lambda^{2}} g\right)\right)\right. \\
& \left.\cdot U_{t / \lambda^{2}}^{(\lambda)} v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle \tag{6.9}
\end{align*}
$$

and we study separately the limits of the quantities $I_{\lambda}, I I_{\lambda}$ as $\lambda \rightarrow 0$.
Lemma (6.2).

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} I_{\lambda}=\chi_{\left[S_{1}, T_{1}\right]}(t)\left(f_{1} \mid g\right)\left\langle D^{+} u, G(t)\right\rangle \quad \text { a.e. } \tag{6.10}
\end{equation*}
$$

Proof. Using (6.8) we can define $G_{\lambda}(t)$ by

$$
\begin{equation*}
I_{\lambda}=\frac{1}{\lambda} \cdot \lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}}\left\langle S_{u} f_{1}, S_{t / \lambda^{2}} g\right\rangle d u \cdot\left\langle D^{+} u, G_{\lambda}(t)\right\rangle \tag{6.11}
\end{equation*}
$$

and, with the substitution $u-t / \lambda^{2}=v$, the right-hand side of (6.11) becomes

$$
\begin{equation*}
\left\langle D^{+} u, G_{\lambda}(t)\right\rangle \cdot \int_{\left(S_{1}-t\right) / \lambda^{2}}^{\left(T_{1}-t\right) / \lambda^{2}}\left\langle S_{v} f_{1} d v, g\right\rangle \tag{6.12}
\end{equation*}
$$

which converges a.e., as $\lambda \rightarrow 0$, to

$$
\begin{equation*}
\left\langle D^{+} u, G(t)\right\rangle \chi_{\left[s_{1}, T_{1}\right]}(t)\left(f_{1} \mid g\right)=\langle u, D G(t)\rangle \chi_{\left[s_{1}, T_{1}\right]}(t)\left(f_{1} \mid g\right) \tag{6.13}
\end{equation*}
$$

since D is a bounded operator.
Now we write the term $I I_{\lambda}$ as follows:

$$
\begin{align*}
I_{\lambda}= & \left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{1} d u\right),\left(-\frac{1}{\lambda}\right) \cdot\left(D^{+} \otimes 1\right) \cdot U_{t / \lambda^{2}}^{(\lambda)} \cdot\left(1 \otimes A\left(S_{t / \lambda^{2}} g\right)\right)\right. \\
& \left.\cdot v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle+\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right),\left(-\frac{1}{\lambda}\right) \cdot\left(D^{+} \otimes 1\right)\right. \\
& \left.\cdot\left[\left(1 \otimes A\left(S_{t / \lambda^{2}} g\right)\right), U_{t / \lambda^{2}}^{(\lambda)}\right] \cdot v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle=I I_{\lambda}(a)+I I_{\lambda}(b) . \tag{6.14}
\end{align*}
$$

One easily sees, exactly as in the proof of Lemma (6.2), that

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} I I_{\lambda}(a)=-\chi_{\left[S_{2}, T_{2}\right]}(t)\left(g \mid f_{2}\right)\left\langle u, D^{+} G(t)\right\rangle \quad \text { a.e. } \tag{6.15}
\end{equation*}
$$

In order to evaluate the limit of $I I_{\lambda}(b)$, we need the following remark:
Lemma (6.3). Let $F \in L^{1}(\mathbf{R})$ and let for each $\lambda \in \mathbf{R}_{+}, G_{\lambda}: \mathbf{R} \rightarrow \mathbf{C}$ be a continuous function such that

$$
\begin{equation*}
\sup _{(\lambda, t) \in \mathbf{R}_{+} \times \mathbf{R}}\left|G_{\lambda}(t)\right| \leqq C \tag{6.16}
\end{equation*}
$$

for some constant $C<+\infty$ and

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} G_{\lambda}\left(t+\lambda^{2} r\right)=G_{0}(t) \tag{6.17}
\end{equation*}
$$

uniformly for r in each bounded subset of \mathbf{R}. Then

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \frac{1}{\lambda^{2}} \int_{0}^{t} d s F\left(\frac{s-t}{\lambda^{2}}\right) G_{\lambda}(s)=G_{0}(t) \int_{-\infty}^{0} F(s) d s \tag{6.18}
\end{equation*}
$$

Proof. The left-hand side of (6.18) is equal to:

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} \int_{-t / \lambda^{2}}^{0} F(r) G_{\lambda}\left(\lambda^{2} r+t\right) d r \tag{6.19}
\end{equation*}
$$

and the statement follows by dominated convergence.
Lemma (6.4). In the above notations, one has:

$$
\begin{equation*}
\lim _{\lambda \rightarrow 0} I I_{\lambda}(b)=-(g \mid g)_{-} \cdot\left\langle u, D^{+} D G(t)\right\rangle . \tag{6.20}
\end{equation*}
$$

Proof. We consider the expression

$$
\begin{align*}
I I_{\lambda}(b)= & \left(-\frac{1}{\lambda}\right) \cdot\left\langle D u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right),\left[\left(1 \otimes A\left(S_{t / \lambda^{2}} g\right)\right), U_{t / \lambda^{2}}^{(\lambda)}\right]\right. \\
& \left.\cdot v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle, \tag{6.21}
\end{align*}
$$

and we split the proof in two steps: first we show that

$$
\begin{align*}
\lim _{\lambda \rightarrow 0} I I_{\lambda}(b)= & -\lim _{\lambda \rightarrow 0} \sum_{n=1}^{\infty} \lambda^{n-1}(-i)^{n-1} \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n-1}} d t_{n} . \\
& \cdot\left\langle S_{t / \lambda^{2}} g, S_{t_{1}} g\right\rangle \cdot\left\langle u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right),\left(D^{+} D \otimes 1\right) \cdot V_{g}\left(t_{2}\right) \cdots V_{g}\left(t_{n}\right)\right. \\
& \left.\cdot v \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle, \tag{6.22}
\end{align*}
$$

and then, noticing that the right-hand side of (6.22) has the form

$$
\begin{align*}
& \frac{1}{\lambda^{2}} \cdot \int_{0}^{t} d s\left\langle S_{t / \lambda^{2}} g, S_{s / \lambda^{2}} g\right\rangle \\
& \quad \cdot\left\langle D^{+} D u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), U_{s / \lambda^{2}}^{(\lambda)} \cdot v \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle, \tag{6.23}
\end{align*}
$$

and applying Lemma (6.3) with

$$
\begin{gather*}
G_{\lambda}(s)=\left\langle D^{+} D u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), U_{s / \lambda^{2}}^{(\lambda)} \cdot v \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right)\right\rangle \tag{6.24}\\
G_{0}(s)=\left\langle D^{+} D u, G(t)\right\rangle, \tag{6.25}\\
F(s)=\left\langle g, S_{s} g\right\rangle, \tag{6.26}
\end{gather*}
$$

we find that the limit (6.23) is equal to

$$
\begin{equation*}
-\left\langle D^{+} D u, G(t)\right\rangle \cdot \int_{-\infty}^{0}\left\langle g, S_{s} g\right\rangle d s \tag{6.27}
\end{equation*}
$$

which is the right-hand side of (6.20). To prove (6.22) we expand $U_{t / \lambda^{2}}$ in series. Then, using the identity

$$
\left[1 \otimes A\left(S_{t} g\right), V_{g}\left(t_{j}\right)\right]=\left\langle S_{t} g, S_{t_{j}} g\right\rangle D \otimes 1
$$

we obtain

$$
\begin{align*}
& I I_{\lambda}(b)=-\sum_{n=1}^{\infty} \lambda^{n-1}(-i)^{n} \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{2}} d t_{2} \cdots \int_{0}^{t_{n-1}} d t_{n} \\
& \sum_{j=1}^{n}\left\langle S_{t / \lambda^{2}} g, S_{t_{j}} g\right\rangle \cdot\left\langle D u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), V_{g}\left(t_{1}\right) \cdots V_{g}\left(t_{j-1}\right)\right. \\
&\left.\cdot(D \otimes 1) \cdot V_{g}\left(t_{j+1}\right) \cdots V_{g}\left(t_{n}\right) \cdot v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right)\right\rangle . \tag{6.28}
\end{align*}
$$

As $\lambda \rightarrow 0$, the term with $j=1$ in the right-hand side of (6.28) is simply the right-hand side of (6.22). Therefore our thesis is equivalent to show that

$$
\begin{align*}
& \lim _{\lambda \rightarrow 0} \sum_{n=1}^{\infty} \lambda^{n-1}(-i)^{n} \int_{0}^{t / \lambda^{2}} d t_{1} \int_{0}^{t_{1}} d t_{2} \cdots \int_{0}^{t_{n}-1} d t_{n} \cdot \\
& \sum_{j=2}^{n}\left\langle S_{t / \lambda^{2}} g, S_{t_{j}} g\right\rangle \cdot\left\langle D u \otimes \Phi\left(\lambda \int_{S_{1} / \lambda^{2}}^{T_{1} / \lambda^{2}} S_{u} f_{1} d u\right), V_{g}\left(t_{1}\right) \cdots V_{g}\left(t_{j-1}\right)\right. \\
&\left.\cdot(D \otimes 1) \cdot V_{g}\left(t_{j+1}\right) \cdots V_{g}\left(t_{n}\right) \cdot v \otimes \Phi\left(\lambda \int_{S_{2} / \lambda^{2}}^{T_{2} / \lambda^{2}} S_{u} f_{2} d u\right)\right\rangle=0, \tag{6.29}
\end{align*}
$$

and the proof of this relation is exactly the same as the proof of the relation (4.20) in Lemma (4.2).

Summing up, we have shown that the limit (6.6) is a.e. differentiable and that

$$
\begin{align*}
\langle u, G(t)\rangle & =\lim _{\lambda \rightarrow 0}\left\langle u, G_{\lambda}(t)\right\rangle=\langle u, G(0)\rangle+\lim _{\lambda \rightarrow 0} \int_{0}^{t} \frac{d}{d s}\left\langle u, G_{\lambda}(s)\right\rangle d s \\
& =\langle u, G(0)\rangle+\lim _{\lambda \rightarrow 0} \int_{0}^{t}\left(I_{\lambda}+I I_{\lambda}\right) d s, \tag{6.30}
\end{align*}
$$

where I_{λ} and $I I_{\lambda}$ are bounded for $(\lambda, s) \in \mathbf{R}_{+} \times \mathbf{R}_{+}$. So, by (6.10), (6.15), (6.20) and dominated convergence, one obtains

$$
\begin{align*}
\langle u, G(t)\rangle= & \langle u, G(0)\rangle+\int_{0}^{t}\left(\chi_{\left[S_{1}, T_{1}\right]}(s)\left(f_{1} \mid g\right)\left\langle D^{+} u, G(s)\right\rangle\right. \\
& \left.-\chi_{\left[S_{2}, T_{2}\right]}(s)\left(g \mid f_{2}\right)\left\langle u, D^{+} G(s)\right\rangle-(g \mid g)_{-} \cdot\left\langle u, D^{+} D G(s)\right\rangle\right) d s . \tag{6.31}
\end{align*}
$$

But, it is clear that, if U_{t} is the unique solution of (6.3) and we define $F(t)$ by (6.5), then the function $t \rightarrow\langle u, F(t)\rangle$ satisfies Eqs. (6.31) with F substituted everywhere
for G and $F(0)=G(0)$. From this we conclude that, for each t,

$$
\langle u, F(t)\rangle=\langle u, G(t)\rangle
$$

and this proves the identity of (6.1) and (6.2).

7. Examples and Applications

It is instructive to calculate how the scalar product (2.5) looks like under some particular assumptions on the "one-particle free evolution" S_{t}^{0} and on the covariance operator Q. We assume that this evolution has positive energy with absolutely continuous spectral measure, i.e.

$$
\begin{gather*}
S_{t}^{0}=\int_{0}^{\infty} e^{i t \omega} d E(\omega) \tag{7.1}\\
\langle f, d E(\omega) g\rangle=J_{f, g}(\omega) d \omega \tag{7.2}
\end{gather*}
$$

Furthermore we assume that Q has the form

$$
\begin{equation*}
Q=\int_{0}^{\infty} q(\omega) d E(\omega) \tag{7.3}
\end{equation*}
$$

with $q:[0,+\infty) \rightarrow[1,+\infty)$ a continuous function. For example if, in the notations of Sect. 2, we choose $H_{1}=L^{2}\left(\mathbf{R}^{d}\right)$ with $d \geqq 3$ and

$$
\begin{gather*}
S_{t}^{0}=e^{-i t \Delta} ; \quad \Delta-\text { the Laplacian } \tag{7.4}\\
q(\omega)=\operatorname{coth}(\beta \omega / 2) \tag{7.5}
\end{gather*}
$$

then the sub-space K in (2.4) can be taken to consist of those functions f in $D(Q)$ such that f and $Q f$ are $L^{2}\left(\mathbf{R}^{d}\right) \cap L^{1}\left(\mathbf{R}^{d}\right)$. Defining, as in Sect. 2, for some fixed $\omega_{0} \in \mathbf{R}$,

$$
\begin{equation*}
S_{t}=e^{-i \omega_{0} t} S_{t}^{0} \tag{7.6}
\end{equation*}
$$

we obtain
Lemma (7.1). For all $f, g \in K$, the Radon-Nikodym derivative $J_{f, g}(\cdot)$ is a continuous function, vanishing at 0 and at $+\infty$. Moreover the expression

$$
\begin{equation*}
(f \mid g)_{Q}:=\int_{\mathbf{R}}\left\langle f, S_{t} Q g\right\rangle d t=2 \pi q\left(\omega_{0}\right) J_{f, g}\left(\omega_{0}\right) \tag{7.7}
\end{equation*}
$$

defines a (usually degenerate) positive sesquilinear form on K.
Proof. For $f, g \in K$ the integral

$$
(f \mid g)_{Q}\left(\omega_{0}\right)=\int_{\mathbf{R}}\left\langle f, S_{t} Q g\right\rangle d t=\int_{\mathbf{R}} e^{-i t \omega_{0}}\left\langle f, S_{t}^{0} Q g\right\rangle d t
$$

is a continuous function of ω_{0} vanishing at infinity by the Riemann-Lebesgue Lemma. Moreover

$$
\begin{equation*}
(f \mid g)_{Q}\left(\omega_{0}\right)=\int_{\mathbf{R}} d t \int_{0}^{+\infty} e^{i t\left(\lambda-\omega_{0}\right)} q(\lambda) J_{f, g}(\lambda) d \lambda=2 \pi q\left(\omega_{0}\right) J_{f, g}\left(\omega_{0}\right) . \tag{7.8}
\end{equation*}
$$

Hence $J_{f, g}(\cdot)$ is a continuous function. Since it vanishes on the negative half line, by continuity it will vanish at $\omega_{0}=0$.

If S_{t}^{0} and Q are as (7.4), (7.5), then $J_{f, g}$ can be computed explicitly and one finds

$$
\begin{equation*}
J_{f, g}\left(\omega_{0}\right)=\omega_{0}^{d-2 / 2} \int_{S^{(d-1)}} \hat{f}\left(\sqrt{\omega_{0}}, \sigma\right)^{*} \hat{g}\left(\sqrt{\omega_{0}}, \sigma\right) d \sigma_{d-1} \tag{7.9}
\end{equation*}
$$

where $S^{(d-1)} \subseteq \mathbf{R}^{d}$ is the unit sphere and $d \sigma_{d-1}$ the normalized measure on it and, where \hat{f} is the normalized Fourier transform of f expressed in polar coordinates in momentum space. Denoting $L^{2}\left(S^{(d-1)}\right)$ the space of square integrable complex valued functions on $S^{(d-1)}$ with the natural scalar product and considering the map

$$
f \in L^{2} \cap L^{1}\left(\mathbf{R}^{d}\right) \rightarrow \hat{f} \omega_{0}=\hat{f}\left(\sqrt{\omega_{0}}, \cdot\right) \in L^{2}\left(S^{(d-1)}\right)
$$

from (7.8) and (7.9) we obtain

$$
(f \mid g)_{Q}=(f \mid g)_{Q}\left(\omega_{0}\right)=2 \pi q\left(\omega_{0}\right) \omega^{d-2 / 2}\left\langle\hat{f}_{\omega_{0}}, \hat{g}_{\omega_{0}}\right\rangle_{L^{2}\left(S^{(d-1)}\right)}
$$

Now we use this result to make more explicit the meaning of the scalar coefficient $(g \mid g)$ entering in the stochastic differential equation (2.32). Even though Theorem (II) is formulated only in the Fock case $(Q=1)$, we deal here with a general Q. In this case the stochastic differential equation, (2.32) becomes (cf. [5])

$$
\begin{equation*}
d U_{t}=\left\{D \otimes d A_{g}^{+}(t)-D^{+} \otimes d A_{g}(t)-(g \mid g)_{Q_{+}}^{-} D^{+} D \otimes 1 d t+(g \mid g)_{Q_{-}}^{-} D D^{+} \otimes d t\right\} U_{t} \tag{7.10}
\end{equation*}
$$

with

$$
\begin{equation*}
(g \mid g)_{Q_{ \pm}}^{-}=\int_{-\infty}^{0}\left\langle f, S_{t}\left(\frac{Q \pm 1}{2}\right) g\right\rangle d t \tag{7.11}
\end{equation*}
$$

In this case the Ito table for $d A_{g}^{ \pm}(t)$ is

$$
\begin{aligned}
d A_{g}(t) \cdot d A_{g}^{+}(t) & =2 \mathfrak{R}(g \mid g)_{Q_{+}}^{-} d t \\
d A_{g}^{+}(t) \cdot d A_{g}(t) & =2 \mathfrak{R}(g \mid g)_{Q_{-}}^{-} d t
\end{aligned}
$$

therefore, separating the real and the imaginary part in the scalar factors $(g \mid g)_{\overline{\mathcal{Q}}_{ \pm}}^{-}$ amounts to separating the Ito correction term from a purely Hamiltonian term of the form

$$
\left(\mathfrak{I}(g \mid g)_{Q_{+}}^{-} D^{+} D \otimes 1+\mathfrak{I}(g \mid g)_{Q_{-}}^{-} D D^{+} \otimes 1\right) d t
$$

This is an operator generalization of the scalar Lamb shift. In order to see what the scalar terms (7.11) look like under the assumptions (7.4) and (7.5), we use the identity:

$$
\int_{-\infty}^{0} e^{i t \omega} d t=\pi \delta(\omega)-i \mathscr{P} \frac{1}{\omega},
$$

where \mathscr{P}_{ω}^{1} denotes the principal part distribution, to obtain

$$
\begin{aligned}
(g \mid g)_{Q \pm}^{-}= & \int_{-\infty}^{0} d t \int_{\mathbf{R}} d \omega e^{i t\left(\omega-\omega_{0}\right)}\left(\frac{q(\omega) \pm 1}{2}\right) J_{g, g}(\omega)=\frac{\pi}{2}\left(q\left(\omega_{0}\right) \pm 1\right) J_{g, g}\left(\omega_{0}\right) \\
& -i \mathscr{P} \int_{\mathbf{R}} \frac{q(\omega) \pm 1}{2\left(\omega-\omega_{0}\right)} J_{g, g}(\omega) d \omega
\end{aligned}
$$

This gives the expression of the pumping rates and intensity of the energy shift in terms of the original Hamiltonian model.

Acknowledgements. L. Accardi acknowledges support from Grant AFOSR 870249 and ONR N00014-86-K-0538 through the Center for Mathematical System Theory, University of Florida.

References

1. Accardi, L.: Quantum Markov chains. Proceedings, School of Mathematical Physics, University of Camerino 1974
1a. Accardi, L.: Quantum Stochastic Processes. Statistical Physics and Dynamical Systems. Progress in Physics, vol. 10, pp. 285-302
2. Accardi, L., Bach, A.: The harmonic oscillator as quantum central limit theorem of Bernoulli processes. Prob. Th. Rel. Fields (to appear)
3. Accardi, L., Frigerio, A., Lewis, J. T.: Quantum stochastic processes. Publ. RIMS Kyoto University 18, 97-133 (1982)
4. Accardi, L., Quaegebeur J.: The Ito algebra of quantum Gaussian fields. J. Funct. Anal. (to appear)
5. Accardi, L., Frigerio, A., Lu, Y. G.: The weak coupling limit in the finite temperature case. Proceedings 2-d Ascona Conference on Stochastic Processes and Mathematical Physics, (to appear)
6. Accardi, L., Frigerio, A., Lu, Y. G.: The weak coupling limit for Fermion case. Submitted to J. Math. Phys.
7. Accardi, L., Frigerio, A., Lu, Y. G.: The weak coupling limit (II). Submitted to RIMS

7a. Accardi, L., Frigerio, A., Lu, Y. G.: On the weak coupling limit problem. Lecture Notes in Mathematics, vol. 1396, pp 20-58. Berlin, Heidelberg, New York: Springer 1989
7b. Applebaum, D., Frigerio, A.: Stationary dilations of W^{*}-dynamical Systems constructed via quantum stochastic differential equations. Pitman Research Notes In Math. Series 150
8. Bratteli, O., Robinson, D. W.: Operator Algebra and Quantum Statistical Mechanics. Berlin, Heidelberg, New York: Springer 1979/81
9. Davies, E. B.: Markovian master equation. Commun. Math. Phys. 39, 91-110 (1974)
10. Davies, E. B.: Markovian master equations, III. Ann. Inst. H. Poincare B11, 265-273 (1975)
11. Davies, E. B.: Markovian master equations, II. Math. Ann. 219, 147-158 (1976)
12. Davies, E. B.: Quantum Theory of Open Systems. London New York: Academic Press 1976
13. Davies, E. B.: One-Parameter Semigroups. London and New York: Academic Press 1982
14. Dell' Antonio, G. F. (1983): Large time, small coupling behaviour of a quantum particle in a random field. Ann. Inst. Henri Poincaré XXXIX 339-384 (1983)
15. de Semedt, P., Durr, D., Lebowitz, J. L., Liverani, C.: Quantum system in contact with a thermal environment: Rigorous treatment of a simple modol. Commun. Math. Phys. 120, 195-231 (1988)
16. Dümcke, R.: Convergence of multi-time correlation functions in the weak and singular coupling limit. J. Math. Phys. 24, 311-315 (1983)
17. Dümcke, R.: Markovian limits of multi-time correlation functions for open quantum systems. Lecture Notes in Mathematics, vol. 1055, pp. 113-118. Berlin, Heidelberg, New York: Springer 1984
18. Friedrichs, K. O.: On the perturbation of continuous spectra. Commun. Pure Appl. Math. 1, 361-406 (1948)
19. Frigerio, A. : Construction of stationary quantum Markov processes through quantum stochastic calculus. Lecture Notes in Mathematics, vol. 1136, pp. 207-222. Berlin, Heidelberg, New York: Springer 1988
20. Frigerio, A.: Quantum Poisson processes: Physical motivations and applications. Lecture Notes in Mathematics, vol. 1305, pp. 107-127. Berlin, Heidelberg, New York: Springer 1988
21. Frigerio, A., Gorini, V.: N-level systems in contact with a singular reservoir, II. J. Math. Phys. 17, 2123-2127 (1976)
22. Frigerio, A., Gorini, V.: On stationary Markov dilations of quantum dynamical semigroups. Lecture Notes in Mathematics, vol. 1055, pp. 119-125. Berlin, Heidelberg, New York: Springer 1984
23. Gorini, V., Kossakowski, A., Sudarshan, E. C. G.: Completely positive dynamical semigroups on N-level systems. J. Math. Phys. 17, 821-825 (1976)
24. Hudson, R. L., Lindsay, J. M.: Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem. Lecture Notes in Mathematics, vol. 1136, pp. 276-305. Berlin, Heidelberg, New York: Springer 1985
25. Hudson, R. L., Parthasarathy, K. R.: Quantum Ito's formula and stochastic evolutions. Commun. Math. Phys. 91, 301-323 (1984)
26. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119-130 (1976)
27. Martin, Ph., Emch, G. G.: A rigorous model sustaining van Hove's phenomenon. Helv. Phys. Acta 48, 59-78 (1975)
27a. H. Maassen: The construction of continuous dilations by solving quantum stochastic differential equations. Preprint
28. Palmer, P. F.: The singular coupling and weak coupling limits. J. Math. Phys. 18, 527-529 (1977)
29. Pulé, J. V.: The Bloch equations. Commun. Math. Phys. 38, 241-256 (1974)
30. Schurmann, M., von Waldenfels, W.: A central limit theorem on the free Lie group. Lecture Notes in Mathematics, vol. 1303, pp. 300-318. Berlin, Heidelberg, New York: Springer 1988
31. Spohn, H.: Kinetic equations from Hamiltonian dynamics: Markovian limits. Rev. Mod. Phys. 53, 569-615 (1980)
32. Spohn, H., Lebowitz, J. L.: Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109-142 (1978)
33. van Hove, L.: Quantum mechanical perturbations giving rise to a statistical transport equation. Physica 21, 617-640 (1955)
34. Haken, H.: Laser theory. Berlin, Heidelberg, New York: Springer 1984
35. von Waldenfels, W.: Ito solution of a quantum stochastic differential equation describing light emission and absorption. Lecture Notes in Mathematics, vol. 1055. Berlin, Heidelberg, New York: Springer

Communicated by J. L. Lebowitz
Received March 6, 1989; in revised form December 13, 1989

[^0]: * On leave of absence from Beijing Normal University

