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Abstract. The germ of an analytic variety X at a point xeX is said to be
quadratic if it is bi-analytically isomorphic to the germ of a cone defined by a
system of homogeneous quadratic equations at the origin. Arms, Marsden
and Moncrief show in [2] that under certain conditions the analytic germ of
a level set of a momentum mapping is quadratic. We discuss related ideas in
a more algebraic context by associating to an affine Hamiltonian action a
differential graded Lie algebra, which in the presence of an invariant
positive complex structure, is formal in the sense of [5].

Introduction

Let V be a symplectic manifold and let α denote a Lie algebra. A Hamiltonian
action of α on V consists of a Lie algebra homomorphism φ:α->C°°(K), where
C°°(K) is the Lie algebra of smooth functions on V under Poisson bracket.
Associated with a Hamiltonian action is a momentum map Φ: V -» α* defined by
Φ(x):ξ-*φ(ξ)(x\ where α* is the vector space dual to α. The momentum map Φ
is equivariant with respect to the action of α on V and the coadjoint action of α
on α*. In [2], Arms, Marsden and Moncrief prove that under certain conditions,
the analytic germ of the level set Φ " *(()) at a fixed point x0eΦ ~ x(0) is isomorphic
to the analytic germ of a quadratic cone at the origin. In this paper we derive a
related result by algebraic considerations in deformation theory, using a point of
view we learned from P. Deligne [5] and elaborated in our papers [7,8]. Our
main results are the following:

Theorem A. Let A be a Lie group with Lie algebra α and (£, ω) be a finite dimensional
symplectic affine space. Suppose α:,4-*Aff(£) is an affine Hamiltonian action with
an equivariant momentum mapping Φ:E—>α*. Suppose that α preserves a parallel
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positive definite complex structure J on E. / / x e Φ ~ *(()), then the analytic germ of
Φ ~ί(0) at x is isomorphic to a quadratic cone.

The quadratic nature of Φ ~ *(()) in the presence of an invariant positive definite
complex structure remains true in certain infinite dimensional situations as well.
In this case one wants the result that the singularities of Φ'^O) look like the
product of a finite dimensional quadratic cone with a closed afϊine subspace.
Unfortunately it seems difficult to formulate an infinite dimensional version of
Theorem A that will cover a reasonable number of interesting cases. We restrict
ourselves to a statement including the gauge theory example following the
statement of the theorem. In what follows the symbol ί/1 for U c TX(E) denotes
the orthogonal complement of U for the symmetric form ( , ) defined by

A weak symplectic form on a Banach manifold V is a closed 2-form ω such that
for each xeV the associated map TX(V)-*TX(V)* is injective (but possibly not
surjective). An almost complex structure J is positive definite if the symmetric form
( , ) defined above is positive definite.

If α: A -> Aff(£) is an affine representation of a Lie group A on an affine space
E and A has Lie algebra α, we denote the associated representation of Lie algebras
by α:α->αff(E).

Theorem B. Let Abe a Banach Lie group with Lie algebra α and (E, ώ) be a weak
symplectic affine space whose underlying vector space V of translations is a Banach
space. Suppose α:/4-»Aff(E) is an affine Hamiltonian action with an equivariant
momentum mapping Φ:£— >α*. Suppose that α preserves a parallel positive definite
complex structure J on E. Assume that xeΦ~1(0)^E satisfies the following
conditions:

1. The evaluation map

ex:a-+TxE

is continuous and its kernel has finite dimension',
2. The image B1 = Image (ex:a^>TxE) has finite codimension in Z1 = Keτ(dΦ:TxE-+

τ>*);
3. The differential o/Φ:E->α* is continuous and its image has finite codimension',
4. TX(E) = B1 -f (B1)1, where (B1)1 is the orthogonal complement with respect to the
weak metric ( , ) defined above.

Then the germ of Φ ~ 1(0) at x is Banach analytically isomorphic to the product germ
(#*,()) x C$,0), where Ά is a finite dimensional quadratic cone.

The "Hodge decomposition"

implies (via the inverse function theorem in Banach spaces) that there exists a
submanifold ϋlίe of A containing the identity e and a submanifold Sx =
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of E such that the map μ:%, x SX-*E given by μ(w,s) = α(w)s is a diffeomorphism
near (e, x).

Since dΦ:Tx-^T0a is a continuous linear map of Banach spaces with image
of finite codimension, its image is closed. (For convenience of the reader we supply
the proof: We may assume that dΦ is injective. Let F be a finite dimensional
subspace such that F + Image (dΦ) — T0a and F n Image (dΦ) = 0. Then the natural
map F © TXE -> T0α given by (/, w)ι— >/ + dΦ(u) is continuous and bijective; hence,
by the open mapping theorem, it is a Banach isomorphism. Then Image (dΦ) is
the image of the closed subspace TXE c F® TXE under this isomorphism.)

We observe that if E is finite dimensional then (*) holds because ( , ) is positive
definite. However if E is infinite dimensional it appears to be necessary to assume
(*) holds since ( , ) is only weakly non-degenerate. It is important to note that
Theorems A and B remain true given only the germ of an action A x E -> E at (e, x).

The starting point for this investigation was the observation [6] that for any
compact Lie group G, the space of flat principal G-bundles over a compact Riemann
surface has quadratic singularities in the above sense. This is related to the work
of Arms-Marsden-Moncrief [2] and this relation is expounded in the appendix
to [6]. In this case the symplectic affine space is the space jtf(P) of all smooth
connections on a fixed principal G-bundle P and the Lie algebra is the vector
space ί2°(M;adP) of sections of the vector bundle adP associated to P by the
adjoint representation of G. An Ad(G)-invariant nondegenerate inner product B
on the Lie algebra of G determines a pairing on the smooth ad P- valued differential
forms

by

B,(n[M])(α,jS) =
M

Since J/(P) is an affine space with associated group of translations the vector space
ί2x(M;adP), the above pairing defines a parallel symplectic structure on j/(P).
The gauge group $(P) consisting of bundle automorphisms P -> P covering the
identity map of M acts affmely on ^(P) and its Lie algebra is ί2°(M;adP).
Furthermore this pairing gives an identification of a suitable Sobolev completion
of Ω 2(M; ad P) with the coadjoint module of a suitable Sobolev completion of
β°(M;adP) and, as first noted by Atiyah-Bott [3, p. 587], the function

Φ : j/(P) -> Ω 2(M; ad P) cι> Ω °(M; ad P)*

assigning to a connection its curvature is the momentum map for the action of
•̂ (P). The level set Φ-1(0) in this case consists of the flat connections on P and
by [2] this space has quadratic singularities. In fact to apply Theorem B one must
take a suitable Sobolev completion, see [3]. On the completion the form B^ is
only weakly non-degenerate. The decomposition (*) is the usual Hodge
decomposition.

Since the material in [8] is basic to what follows we briefly summarize its
contents. In [8] we construct a function L\-+RL from the category of differential
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graded Lie algebras L over R with Hl(L) finite-dimensional to the category Φ of
complete local Noetherian R-algebras as follows.

Choose a complement C1 to the 1-boundaries B1 cL1. Let yL:2ϊ->9Ϊ be the
functor defined on the category 21 of Artin local R-algebras given by:

YL(A) = {ωeC1 ® m:dω + Kω» ω] = °} 0)

Here A is an object of 21 and m is its maximal ideal. It is easily verified that YL

satisfies the axioms of Schlessinger [9] and consequently there exists a complete
local R-algebra RL which pro-represents YL; that is, there is a natural isomorphism
of functors on 9ί,

Developing ideas of Deligne [4], we prove in [8, Theorem 4.1] that a differential
graded Lie algebra homomorphism f:Lί-^L2 inducing an isomorphism of
cohomology induces an isomorphism from RLl to RLr Using a generalization of
Kuranishi's construction of the versal deformation space of a compact complex
manifold a differential graded Lie algebra (satisfying certain topological hypotheses)
determines an analytic germ jf L (the "Kuranishi space") for which the completion
of its local ring is RL. We call such a differential graded Lie algebra an analytic
differential graded Lie algebra. In the case considered above the Kuranishi space
is identified with the space of solutions of the deformation equation lying in a slice
for the action of group of gauge transformations on <stf(P). The main point of [8]
(see also [9]) is that an algebraic (i.e. not necessarily continuous) homomorphism
of analytic differential graded Lie algebras inducing an isomorphism of cohomology
induces an analytic equivalence of Kuranishi spaces.

Quadratic singularities arise as follows. Suppose that the differential in a
differential graded Lie algebra is identically zero. Then the defining equations (1)
for YL(Λ) reduce to the homogeneous quadratic equation

[ω,ω] = 0 (2)

and YL(Λ) is the set of A-points over the origin of the quadratic cone &L in L1

defined by (2). A differential graded Lie algebra L is said to be formal if there exists
a sequence of differential graded Lie algebra homomorphisms

where Lm has zero differential and each homomorphism induces an isomorphism
H(Li)^H(Li + l). Necessarily Lm^H(L). The invariance of the Kuranishi space
Jf L under such homomorphisms of L then leads to the following theorem [8,
Theorem 5.3]:

0.1 Theorem. Suppose (L, d) is a formal analytic differential graded Lie algebra.
Then the Kuranishi space JfL of L is isomorphic to the quadratic cone & c Hl(L)
given by

In [7] these ideas are used to show that under certain hypotheses (e.g. G
compact) that the space of flat connections on a principal G-bundle P over a
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compact Kahler manifold has quadratic singularities. The main technique is to
decompose the complexified de Rham algebra β*(M;adP)®C by Hodge type
and its differential as

where

and

d : Ω iJ(Mι ad P) ® C -> Ω ij + *(M; ad P) ® <C.

As in [5], the Kahler identities then imply that the natural maps

Ω *(M; ad P <χ) C) <-̂ > Ker d -> #*(M; ad P) ® C

are homomorphisms which induce isomorphisms of homology.
Thus in the case of flat principal G-bundles over a compact Riemann surface,

we have two proofs of quadraticity: one proof inspired by the ideas of
Arms-Marsden-Moncrief [2], and another proof which used formality of the
de Rham algebra as suggested by Deligne [4]. As the latter techniques seem more
fundamental it was natural to try to cast the ideas of Arms-Marsden-Moncrief
in Deligne's framework. This is the purpose of the present paper.

This paper is organized as follows. In Sect. 1, we introduce a "universal" graded
Lie algebra © associated to a point x0 on a symplectic affine space E. Furthermore
© admits a natural derivation d of degree 1. (However ί/°d:©°->©2 is nonzero;
indeed it is an isomorphism.) The elements of degree 0 are quadratic functions
£->R (modulo constants), or equivalently affine vector fields preserving the
symplectic structure: an infinitesimally symplectic affine vector field is the
Hamiltonian vector field of a quadratic function which is unique up to constants
and thus there is a natural action of ©° on V by affine Hamiltonian vector fields.
We take ©* = V (where V is the vector space associated to E) and ©2 to be the
vector space dual to ©°.

In Sect. 2, we consider subalgebras α of ©° having the property that d(a) is an
isotropic subspace of V\ taking L° = α, L1 = V and L2 = (L°)* we construct (from
© a differential graded Lie algebra (L, d). (Indeed that d(a) be isotropic is equivalent
to having d°d = 0.) We call such differential graded Lie algebras surface-like since
we characterize them abstractly by the existence of a duality pairing analogous
to Poincare duality in dimension two. (In the gauge-theoretic application this
pairing is precisely Poincare duality.) In Sect. 2.2 it is shown that the operator
Φ .L1-*/2 defined by

is an equivariant momentum map for the affine action ά:L°-»αff (L1) defined by

In 2.3 it is shown that there is an isomorphism between the categories of affine
Hamiltonian actions together with a zero of an equivariant momentum mapping
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and surface-like differential graded Lie algebras. The cohomology of a surface-like
differential graded Lie algebra is interpreted in terms of the symplectic geometry
in 2.4.

In Sect. 3, we consider surface-like diferential graded Lie algebras such that
the associated affine action preserves a positive definite complex structure
compatible with the symplectic structure. The main result (Theorem 3.2) is that
such a differential graded Lie algebra is formal in the sense of [7]. The proof
mimics the Hodge theory of Kahler manifolds used in [5, 7] by decomposing the
complexification L(χ)C by "Hodge bidegree." Formality is proved by the same
arguments used in [5,7].

In Sect. 4 we apply the results of [8] to deduce Theorems A and B.

1. The Graded Lie Algebra Associated to a Symplectic Vector Space

1.1. An graded Lie algebra is a graded vector space

i^O
with a bilinear operation

[ , ]:©''x©;-»©''+;

which is graded skew-commutative:

[χ,y] + (-i)v[y,χ] = o (i-i)
and satisfies the graded Jacobi identity:

(- ιn>,[}>,2]] +(- i)"i>, ι>, *]] +(- lyixix j>]] =o (i-2)
for xe©1, ye©-7, ze©*. A derivation of degree I is a family d:©->© of maps

dl:&-+&+l

satisfying

di+J(lx, y]) = [Λc, y] + (- If&M (1-3)

for xe©', ye©j. The graded Jacobi identity is easily seen to be equivalent (assuming
graded skew-commutativity) to the condition that for each xe©1 the adjoint
transformation

ad(x):©j-»©ί+j

is a derivation of degree i. A differential graded Lie algebra is a graded Lie algebra
with a derivation d of degree 1 such that d°d = Q.

1.2. Let V be a real vector space with a symplectic structure < , > and let K*
denote its dual vector space. The symplectic structure defines an isomorphism
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by

In infinite dimensions we only require that V have a weak symplectic structure,
in which case we replace F* by the subspace K b c V*9 where # is defined.

1.3. A function /*: F->R is homogeneous quadratic if there is a symmetric bilinear
form / z : K x K - > R such that /z(z ) = \h(v, v)\ in this way we shall identify
homogeneous quadratic functions with symmetric bilinear forms. (In infinite
dimensions, we require that a symmetric bilinear form satisfy the condition that
for each veV9 the linear functional

iv(h):u\-+h(u,v)

lies in Kb.) We say that a function /: F->R is quadratic if / =/2 +/ι +/o> where
/2 is homogenous quadratic, /ΊeK b is a linear functional and /0eR is a constant
function. Let 2! denote the vector space of all quadratic functions K->R and let
IR CL* Άr denote the inclusion of constant functions. Then 2! is a Lie algebra under
Poisson bracket and the subspace of constants is its center. Let 2, = J'/R denote
the quotient Lie algebra of quadratic functions modulo constants. As a vector
space Ά may be identified with quadratic functions /:K-»R satisfying /(0) = 0.
For any fεΆ there is a decomposition.

where /2 is homogeneous quadratic and /ιeFb is linear. For any veV9 let
πυ:V-+TvV be the linear isomorphism determined by parallel translation by υ\
then Λ(ι?) = ί//(0)(π0(v)), where d/(0) : Γ0 K -> R is the differential of / at OeK By
polarization /2 determines a symmetric bilinear form (also denoted /2) which is
defined by

/2(κ, t;) - /(ιι + i;) - f(u) - f(v) + /(O)

and for any vector ueV, the linear functional

will be denoted /u(/2)eKb. Clearly ιu(f2) is related to the Hessian of /2 at 0 by

(d2f2)(o}Mu\πo(v)) = ιu(f2)M

for u, veV and to the differential of/2:K-»R at ueVby

Let xeK be an arbitrary point and let τx:w— >u -f x denote translation by x. If
' is a quadratic function, then the composition /°τx:F->R is also quadratic

and translation τx changes the decomposition of fe£' as follows:

(/°τJ2 =/2, (/°τjc)1(ιι)=/1(tι)+/2(x,ιι).

Let αff(K) denote the space of all affine maps K->K Regarding affine maps
K-> Kas affine vector fields on K, there is a natural Lie algebra structure on αff (V)
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as the Lie algebra of infinitesimal affme transformations of V. It is well-known
that the map α:J->αff(F) defined by

is a Lie algebra homomorphism taking 9, isomorphically onto the algebra of all
affine vector fields preserving the symplectic structure on K The condition that α
is a Lie algebra homomorphism decomposes into two conditions: first, its linear
part

is a Lie algebra homomorphism £-+§\(V)\ second, its translational part

is a derivation d\Q-*V of the module defined by Lα:<2->gl(K). Furthermore if
xeK, then the corresponding translation τx leaves invariant the linear part of α(/)
and changes the translational part α(/)(0) = /f to

(τ,)X/))(0) = /f + (ί;c/2)
#. (1-4)

1.4. We construct a graded Lie algebra © associated to the symplectic vector
space V as follows. Let ©° = & with the Lie algebra structure described above.
Consider a family of ©°-modules ©', for ΐ>0. Let /lί:(5°->gl(@ί) denote the
corresponding Lie algebra representations. We define bracket operations [ , ]0

on the direct sum

i^O

extending the Lie algebra structure on ©° by

[/,i]o = ̂ /K and K,/]o = (-l)<

(where /e©°, ξe& for i > 0) such that

is identically zero for i > 0 and j > 0. Clearly with this operation (5 is a graded
Lie algebra.

In our application we take S1 = V with the (δ°-module structure
A1 = L°α:©°->gI(K) defined above and ©2 to equal the vector space 2* dual to
Ά = ©° with the coadjoint representation λ2 = ad*:^->gl(J*) defined by

for /, ^6©° and £e©2 = J*. We take & = 0 for / > 2.
Define a new graded Lie algebra structure on © by introducing a twisting

cocycle c:©1 x ©1 -> ©2 as follows. Let w, i^e©1 = V and/e©° = J. Let φ, v)
be the linear functional on J:

This defines c:©1 x β1-*©2 and decree c:©1 x ©'->©''+' to be identically zero
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unless i = j = 1. Define the bracket [ , ]:ffi x © -> (5 by

[x, y] = [x, y]0 + c(x9 y).

(Note that for homogeneous x and y, at most one of the summands is nonzero.)
Clearly φc, y) = c(y,x) and it follows [ , ] is graded skew-commutative. All

that remains to be proved is the graded Jacobi identity (1-3). Since φc, y) = 0
except if x, ye (5 1, the graded Jacobi identity for [ , ]0 implies that for [ , ] except
in the case that one of i,j9 k equals 0 and the other two equal 1. We may assume
i = 0 and j = k — 1 and it suffices to prove

for /e©° = J, y, ze©1 = V. This being an equation in ©2, we must show that

[/, c(y9 z)]fo) = c([/, yl z)(g) + c(y, [/, z])(g) (1-5)

for every ge£. Now

equals the second directional derivative

Xz([02, /2]))

(where y, z are regarded as tangent vectors) and

Thus (1-5) is reduced to following assertion concerning second derivatives:

1.5. Lemma. Let α, b : V -> JR. be homogeneous quadratic functions and y,zeV. Then

z(X[α,b])) = b((ιya)*,z) + b((ιzaf, y).

Proof. If feC^V), denote by H/its Hamiltonian vector field, defined by

where we identify the vector yeV with the corresponding parallel vector field on
V. Let V denote the covariant derivative; for any homogeneous quadratic function
α:K->R we have:

VyHα = H(Vyα) = H(ya) = (ιya)« (1-6)

(since the symplectic form is parallel the operation H assigning to a smooth function
its Hamiltonian vector field commutes with covariant differentiation).

The Poisson bracket is defined by [α, fe] = <Hα, Hb > and its directional
derivative with respect to the (tangent) vector y is given by the formula

y[α, b] = XHα, Hf>> = < Vy(H0), Hfo> 4- <Hα, V,(Hfc)> = <( y*)*, Hfc> + <Hα, (iybf >,

where (ιydf, (ιyb)* denote the corresponding parallel vector fields. Since
Vz((ί«β)#) = Vz((/yfe)^) = 0, taking a second covariant derivative we obtain
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as desired.

It follows that © is a graded Lie algebra.
L6. Next we define a derivation d:© -> (5 of degree 1. In a sense later to be made
precise, this derivation is "associated" to the origin Oe V. If/e©° = J, then define

and if ue©1 = K, its image d1ι;e©2 = J* is defined by

d'M/WiW.
To see that d is a derivation, we first check that

Now

as desired. It remains to show that if /,g,e©°, re©1, then

^[/.^te) = [<*°/,!>](0) + [/.^^(ff). (1-7)

To this end we prove the following elementary fact:

1.7. Lemma. If al9 b2'.V—>JSί are a linear and homogeneous quadratic function,
respectively, and veV, then the Poisson bracket [aί,b2'] satisfies

Proof. As usual we confuse vectors with the corresponding parallel vector fields.
Now the Poisson bracket [fl l 9fe2] i

§ a linear function so its value [a^b2~\(v) at veV
equals the directional derivative

by (1-6).

Now

dlU,V](g) = gάLftoV-]) = g,((ιJ2f) = <g*l9(ιvf2)*> = bi.

(by Lemma 1.7) and

[d0/, *) = - [/?, w]te) = - ff2(/f , ») = - (»^X/f) = - <M2)*, (/f )> =
(again using Lemma 1.7). But

from which (1-7) follows.
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1.8. Thus (S is a graded Lie algebra and d:©->© is a derivation of degree 1.
However, the composition d°d is nonzero: indeed, if/, 0eJ, then we have

dld°f:g^f«,g«y. (1-8)

Furthermore we have the following relation between the derivation and the
symplectic structure. Let/e©°, t effi 1; then

(d°f,vy=-dlv(f). (1-9)

Both of these facts follow immediately from the definitions and so their proofs are
omitted.

1.9. Now suppose that £ is a symplectic affine space, a symplectic manifold upon
which a vector space V acts simply transitively preserving the symplectic structure.
We call V = V(E) the vector space of translations of E or the underlying vector
space of E. The simply transitive action then identifies each tangent space TUE
with V and hence V is a symplectic vector space. Furthermore translating u defines
an identification of V with E and it follows that there is an isomorphism of
categories between symplectic vector spaces V and pairs (E,u) where £ is a
symplectic affine space and we£.

Let ©(£, u) denote the graded Lie algebra associated to the symplectic vector
space corresponding to (E, u). Since translation by xe Fdoes not affect the quadratic
term/2 of an inhomogeneous quadratic function (by (1-4)) and only the quadratic
terms of elements of Ά enter into the definition of the bracket operation in ©,
translation τx defines canonical isomorphisms ©(£, u) -> ©(£, τx(u)). We shall
henceforth identify these isomorphic graded Lie algebras. Let d(u): ©(£, u) -» ©(£, u)
denote the corresponding derivations constructed in 1.6. If xeF(£), then it follows
from (1-4) and the definitions of the bracket operations and d1 that

where ad(x) is the derivation of ©(E,w) given by yι— >[X,M].
The constructions of this section can be discussed intrinsically from this point

of view. Let (51 be the tangent space TXE and ©° be the Lie algebra of affine
Hamiltonian vector fields. The bracket ©° x ©° -> ©° is just the operation in this
Lie algebra and the differential d0:©0-*©1 is just the evaluation map (at xe£)
which associates to a vector field in ©° its value at x (a vector in TXE). The bracket
operation ©° x ©x ->©1 is equivalent to a linear representation ©° -> End (TXE\
which corresponds to taking the linear part of the affine vector field. If £e©° is
an affine Hamiltonian vector field and veTxE, then the bracket [ξ, ι;] represents the
co variant derivative VvξeTxE: For x, yeE let πXty:TxE->TyE denote parallel
translation; then [£, v] represents the directional derivative at x of the function

E-+TXE

with respect to the tangent vector veTxE.
We take ©2 to be the vector space dual to ©° and the action of ©° on ©2 to

be the coadjoint action. It remains to define the differential d1:©1 ->©2 and the
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bracket [ , ]:©* x ©* ->©2. Since ©2 is dual to ©° it suffices to define, for any
ξe®°, the value dl(v)(ξ) for ve®1 = TXE. To this end let dl(v)(ξ) = ω>, £(x)), where
ωλ€Λ2T*£ is the symplectic structure on TXE. The bracket of two tangent vectors
w, veTxE = (S1 is the element of ©2 (a linear functional on G° = Ά) which assigns
to ξe 2, the derivative of the function

with respect to ueTxE. If ξ is the Hamiltonian vector field with potential function
<£:£-> R, then dl(v)(ξ) equals the differential dφ:TxE->Tφ(x)R^R and [u,ι?](£>
equals the value d2φ(u9v) where

is the Hessian of φ at x. (Notice that although the (quadratic) function φ is only
determined to an additive constant, both dφ and d2φ are unambiguously defined.)

2. Surface-Like Differential Graded Lie Algebras

2.1. Let £ be a symplectic affine space and ueE a point. Let © = ©(£,w) and
d-(d°,d1 ):©-»© be the corresponding graded Lie algebra with derivation
constructed in Sect. 1. Let α c ©° be a Lie subalgebra. We say that α is isotropic
if the image d°(a) c Kis an isotropic subspace of F(i.e. the symplectic form restricts
to zero on d°(a)). Let L° = α, let L1 = V as before and let L2 = (α)* be the coadjoint
module for α. We define the structure of a differential graded Lie algebra on

as follows. The bracket operations LlxLj-+Li+j for ΐ+;'<2 are just the
restrictions of the bracket operations on (5. The bracket operation L° x L2-»L2

is the coadjoint action

[/,*] = ad*/M (2.1)
and

DA,/]=-[/,Ά] (2.2)

for /eL°, ψeL2. Finally the bracket operation L1 x L1 ->L2 is the composition

L1 x L1 = S1 x S1 H ©2 Λ L2, (2.3)

where /I:©2 = (©°)*->(L°)* = L2 denotes the transpose of the inclusion
/:L° c->©°. Similarly the differentials ά?\L?~+L* and dl\Li-^L2 are defined to
be the compositions

and

ίί1:L1=©1^©2ΛL2 (2.4)

respectively. One checks easily that L so defined is a graded Lie algebra and
d\L-»L is a derivation of degree 1. Furthermore it follows from (1-8) that L° is
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isotropic if and only if the composition dl °d° = 0. Thus L is a differential graded
Lie algebra as claimed. We will sometimes denote the resulting algebra with
derivation by L(α, α, u).

2.2. Let L be a differential graded Lie algebra as above. Let α:L°->αff (V) be the
affiήe representation constructed in 1.3 restricted to L°. By construction the image
α(L°) lies in the subalgebra Ham(K) of vector fields on V preserving the symplectic
structure on V\ indeed any such vector field is the Hamiltonian vector field Hf
for a smooth function feC™(V\ Thus there is an exact sequence of Lie algebras

where R-»C°°(K) is the inclusion of constant functions. As defined in
[1, Sect. 4.2.1], a momentum mapping for α is a map Φ: F->(L°)* such that for each
/eL° the function Φf:V-+1H defined by xι->Φ(x)(/) satisfies HΦf = a(f). If Φ
is equivariant with respect to the L°-actions given by α on V and the coadjoint
action on (L0)*, then α lifts to a Hamiltonian action, i.e. a Lie algebra
homomorphism φ:LQ-+C™(V). We now construct an equivariant momentum
map ΦiL 1 -» L2 for the action of L° on L1 under the assumption that Lis isotropic.

Proposition. L(α,α,x0) is a differential graded Lie algebra (i.e. dlod° = 0)othe
action α of L° on L1 is Hamiltonian and there exists an equivariant momentum
mapping Φ for this action satisfying

Φ(x0) = 0.

In this case ΦrL 1 ->L2 is necessarily given by the formula

Proof. We obtain a linear cross-section σ to the extension of α induced from that
of 2.2 by defining

where hf is the inhomogeneous quadratic function on V satisfying

We let C(/, g) be the cocycle for the above central extension of α computed using
the previous cross-section. We have

C(f, g) = h[ftβ}(xo) - {hf, hg } (x0) = - {hf, hg } (x0)

This cocycle is identically zero if and only if α is isotropic. If α is isotopic, then C
vanishes and the function Φ L1 ->L2 given by

is an equivariant momentum mapping. But by definition of dl and [,] we have

hff(v) = Λ(ιO + f2(υ) = d\υ)(f) + ftv, »](/).
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Conversely assume that α is Hamiltonian and there exists an equivariant
momentum mapping Φ satisfying Φ(x0) = 0. Then there exists a cross-section σ
of the above extension of α. But since Φ(x0) = 0 we have σ(/)(x0) = 0 and
necessarily

σ(f) = hf

(since hf is already determined up to an additive constant). As a consequence the
cocycle C vanishes and Φ is given by the formula above.

2.3. In analogy with 2-dimensional Poincare duality we propose:

Definition. A differential graded Lie algebra is surface-like if and only if there exists
P' : U ® L2 - ' -> R satisfying:
1. For each integer i, Pl is a nondegenerate pairing',
2. P(α, b) = ( - l)ijP(b, a) for aeL\ beLj, where i +j = 2;
3. P([α,ft],c) = P(α,[b,c])/or αelΛ beLj, celΛ where i+j + k = 2;
4. P(ά?a9b) + P(a9d

lb)^0 for αeL°, frelλ
We define a pointed affine Hamiltonian action to be a collection ((α,£,α, Φ),x),

where α is a Lie algebra, £ is a symplectic affine space, α:α->αff(£) is an affine
Hamiltonian action with equivariant momentum mapping Φ:£->α*, and xeE
satisfies Φ(x) = 0. A morphism between pointed affine Hamiltonian actions
((α,£,α, Φ),x)->((α',F,α', Φ'),x') consists of an isomorphism F:α->α' of Lie
algebras and an isomorphism /:£-»£' of symplectic affine spaces such that

Theorem. The constructions above define isomorphisms between the category of
pointed affine Hamiltonian actions and the category of surf ace-like differential graded
Lie algebras with morphisms differential graded Lie algebra homomorphisms
preserving P.

Proof. Suppose that ^:L->L' is a homomorphism of surface-like differential
graded Lie algebras which preserves the duality pairings P, F:

for α, beL. Since P, F are nondegenerate, ψ is an isomorphism of differential graded
Lie algebras. It follows that ψ defines an isomorphism L°->L'° of Lie algebras
and an isomorphism (L1, P) -> (L 1, F) of symplectic vector spaces. Taking α = L°, E
the symplectic affine space corresponding to (L', P),

α(X)(fi) = [X, u] - d°(X\ Φ(u) = dl(u) 4- i[ιι, w],

and x the origin in L1, etc., we obtain pointed affine Hamiltonian actions with an
isomorphism between them. Conversely if

is an isomorphism of pointed affine Hamiltonian actions, then define L° = α,
L1 = TXE (the symplectic vector space underlying E\ L2 = α* with differentials
given by

d°(λ) = α(λ)(0), dl(u
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for ΛeL°, weL1. (Here Φλ defines the map £->R defined by Φλ(u)= Φ(ύ)(λ) and
DΦλ: TXE-+ΊR. its differential.) The bracket operations for L° are given by the
adjoint action, the linear part of α, and the coadjoint action (on L°, L1, and L2

respectively) and for u,veLl

where D2Φλ:TxE x TXE-+JEL is the Hessian of Φλ. The duality operator P is the
given duality between L° and L2 and the given symplectic structure on L1. Clearly
an isomorphism of pointed affine Hamiltonian actions defines an isomorphism of
surface-like differential graded Lie algebras.

2.4. The cohomology of L can be interpreted in terms of symplectic geometry as
follows. H0(L) = Kerd°:L0-^L1 is the isotropy Lie algebra of OeK and
H2(L) = Cokerd1 rL 1 ->L2 is dually paired to the isotropy algebra //°(L) (because
of (1-9)). The evaluation map/l-^L1 at the orbit of 0 has differential equal to
d°:L°-^L1 and thus the tangent space to the orbit A(0) equals Bl(L) = imaged0.
The differential of the momentum mapping Φ L1 ->L2 at x equals d1 L1 ->L2 and
thus the Zariski tangent space to Φ-1(0) at x equals Z*(L) = Kerd1. It follows
that Hl(L) represents the normal space to the orbit ,4(0) inside the level set Φ~ *(()),
i.e. the "Zariski tangent space" of the reduced space Φ~1(0)/A. Note that Hl(L)
inherits a symplectic structure from L1 since the null space to Z1(L) = Ker(d1)
equals Bl(L) = Image(d°) at 0.

The space Φ-1(0) is stratified by conjugacy classes of isotropy groups. In
particular the set Jf of all points with isotropy group conjugate to the isotropy
group at 0 is a smooth manifold (see [2, Sect. 4]). The normal space at 0 to the orbit
Λ(0)ofO,

is readily seen to be the set of all veHl(L) satisfying u v = 0 for all ueH°(L) under
the product H°(L) x Hl(L)-+Hl(L).

3. Hermitian Functions and Formality

3.1. A complex structure on a symplectic vector space (V, <,» is a linear
map J: V -* V satisfying
1. J 2 --/;
2. <Ju,Jϋ> = <M,t;> for u.veV.
It follows that i f ψ e V * then ^°J 6 K b and

A complex structure J:V-+V is positive definite if the symmetric bilinear form
defined by

is positive definite. We will frequently use the following elementary lemma.
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3.2. Lemma. Let U a V be a finite dimensional subspace and let Uλ be the
orthogonal complement of U with respect to (,). Then V is a direct sum

Proof. Let vεV. Since the restriction of (,) to U is positive definite and U is finite
dimensional there exists uεU such that the linear forms

x->(x,ι;) and x->(x,w)

agree on U. Hence w = v — ueU± and v = u -f w.

We say that /eJ is Hermitian (with respect to J) if for each veV9

or equivalently in polarized form

f2(Ju

If /e=2 is Hermitian and veV, then

One can check that the Hamiltonian vector field H/ preserves the complex
structure J if and only if / is Hermitian.

3.3. Suppose that L is a surface-like differential graded Lie algebra. We say that
L is Hermitian if there is a positive definite complex structure J on L1 such that
each /eL° is Hermitian with respect to J. Our main result is the following:

Theorem. A Hermitian isotropic differential graded Lie algebra is formal

3.4. Let L®C be the complexification of L with the bracket operation, the
differential and the complex structure extended C-linearly. Then L® C is a complex
differential graded Lie algebra. (Complex conjugation L®C->L®C is defined
and its fixed point set equals L = L® R CL+ L® (C.) Similarly extend the symplectic
structure <,> on L*®C C-bilinearly so the operator #:(L* ®<C)b->L1®(C
corresponding to <,> is C-linear. The complex structure J:L1-^L1 extends to a
(C-linear mapL1 ® (C-+L1 ®C (so J commutes with complex conjugation). On
the other hand we extend the bilinear form (,) on L1 to a Hermitian form on

This Hermitian form on L1 ® C induces a positive definite Hermitian form on the
vector space J®C = 52(L1® (C)* © (L1 ® (C)* of quadratic functions modulo
constants, and hence L° c J ® C inherits a positive definite Hermitian form, which
is invariant under Ad(H°).

We define

L1'0 = {weL1 ® C| Jw = iιι}, L0'1 = {weL1 ® <C| Jw = - iu}.

Lemma. L®C ΐs a bίgraded Lie algebra, i.e. [Li'J',Li/>J"] c: Li+i'J+j'.
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Proof. It suffices to show that ad(L°'°) preserves the decomposition

L1<gXC = L1 °eL° 1

and that
[L0 1,L° 1] = [L1 0,L1 °]=0.

Suppose that /eL°'° and veL1*. Then [/, t?] = (ιυf2)* and

*U^ = J(ιJ2)«=-(ιJ2°J)«=-(-ι(Λv)f2f

whence [/^eL1'0. Similarly [L0'0,^0'1] cL0-1. Thus ad(L°'°) preserves the
decomposition L1 ® C = L1'0 0 L0'1.

To prove [L0-1,!,1'0] =0, consider i^ueL1'0 and /eJ. Then

IX »](/) = /2(w, t;) = /2( Jw, Jι;) = /2(«ι, it;) = - /2(u, t;) = - [n, r](/),

proving [u, i?] = - [w, i;]; therefore [M, f] = 0 as claimed. Similarly [L0f l,L0f l] =0.

•
3.5. Next we decompose the differential d = d + 3. Let

denote the projections. Define

and define d.d'.L1 ΘC-^L1'1 by

Let

and let C1 = (B1)1 be its orthogonal complement in L1 ®C with respect to (,).

Lemma. Let /eL°'° and suppose that either df = 0 or df = 0. ΓΛen df = 0.

Proof. Let #eL°. Then <d#,Jd/>= ±i(dg,dfy = Q (since B1 is isotropic with
respect to < , ». Thus Jrf/e C 1 and consequently JdfεJB 1 nC 1 = β 1 nC 1 =0.

3.6. Let H° 0 = Ker(έ/0:L0 °-*L1(g)C) and Z1 = Ker^^.L1 ® C-^L2®C). Let
°'° = (H° °)\ whence L°'° = H°'° + β°'° by Lemma 3.2 and let

We define H1'0 = jf^L1'0 and /ί0'1 = jf ^L0'1 and obtain

It is immediate that
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and we define

(Note that B1'0 and BQΛ are not contained in B1.)

Proposition. There are orthogonal direct sum decompositions

In the following lemma, 1 denotes orthogonal complement with respect to the
Hermitian form (,) on L1 ®C.

3.7. Lemma.
(i) (B0 1)1nL1 ° = Jϊ1 0,

(ίi) (B0 l)λnL0 l = H0 l.

Proof. We prove (i). Suppose weL1'0. Then

for all /eL°'°

(ii) is proved similarly.

In finite dimensions

(*) L^^ + C1,

and in infinite dimensions we assume (*).
We define dc:Ll ® C-^L1 ®C by dc = 3~ldJ = - i(d - d).

3.8. Lemma.

Proof. Let αeL^&eL1. Then

(da, b) = P(da, ib) = - P(α, d J6)

= - P(α, J " : d JZ?) = - (a, dcb\

Corrollary. (B1)1nZ1 = Kerd cnKerd = Jf J.

We prove Proposition 3.6. Since B1 c Z1 it follows from (*) that
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and Lemma 3.2 implies

L l,0 r / l , 0 . / r r l , 0 \ _ L . ^ r 1,0 J L j l . O i ol.O= n -f- (fi ) C\L, = ri - ( - £ > ,

L0,l JLΓO,1 i r t j O . l x l . - r O , l LrO,l _•_ oO,l •§= n H- (11 ) Γ\L, = ri H - £ > .

3.9. We use the above decompositions to split the differential graded Lie algebra
L(χ)C as follows. Decompose

and decompose L1'1 by defining (here 1 means the orthogonal complement for
the pairing P)

B1-1 - Imaged1) = Imaged = Imaged - (H0'0)1,

Thus L1'1 =H1 1 + B1'1. Observe that #°'° is dually paired with H1'1 and that
B°'° is dually paired with B1'1 and the mapsdiB0-1-^1'1 and d:B^°-^BlΛ are
dual to δ. B0'0-^1-0 and d:B°^-^B°^ respectively. Therefore L(χ)C is a direct
sum of the complexes

//(LHH0 '0®//1 '0®//0 '1©//1 '1,
and the square

^0,0 _>£θ,l

I 1 .
B1'* -+B1'1

The following lemma is a consequence of the preceding observations.

Lemma. The restrictions of d

δ B0'0-^1-0, d:BOΛ->BίΛ

and the restrictions of d

δrB^-^B0'1, 3:B1»°-*B1 1

are isomorphisms.

3.10. Corollary. H(L) is ίsomorphic to the cohomology algebra o/L®(C.

Proof of Theorem 3.2. We define a subalgebra K <z L by

X°-H0'0, X 1 = H0'1 + L1'0, X 2 = L1 1,

and X is a differential graded subalgebra of L. Furthermore the only nonzero
differential is δ:L1>0->L1'1 and the inclusion X cz_>L induces an isomorphism of
homology. Now B1>0 0 B1'1 clearly forms an ideal in K. Let H denote the quotient
algebra; explicitly
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and the quotient homomorphism K-+H is orthogonal projection. Furthermore
the quotient homomorphism induces isomorphism of cohomology. The proof of
Theorem 3.3 is now complete.

4. The Proofs of Theorems A and B

4.1. Let YL c L1 be the Banach analytic set defined by

Thus in terms of symplectic geometry

The following lemma is clear.

Lemma. The map μ:tfte x SX-+E (see the remarks following Theorem B) induces a
Banach analytic isomorphism of germs

4.2. We now show that (7L, 0) is isomorphic to a finite dimensional germ by using
the Kuranishi construction. To apply this construction it suffices to split the short
exact sequences

0 -» Zj(L) -> U ^Bj+1 (L) -» 0

and

0 -> Bj(L) -» Zj(L) -> Hj(L) -» 0

for; = 0, 1, 2 (see [8, Sect. 2] — since L is already complete the treatment there can be
simplified considerably).

We assumed (formula (*) of the introduction) that

L^Jί'+C1.

Let j/1 =(jT1)1nC1. By Lemma 3.2

C^jr^ + j/1

and
Ll=Bl+JTl+s/1.

Thus we obtain the required splittings in case 7 = 1. Now

and we have constructed the required splittings for the case 7 = 0. By duality we
obtain splittings for j = 2.

We can now apply the Kuranishi construction ([8, Sect. 2]). We obtain a finite-
dimensional analytic germ (JfL,0) embedded in tf l such that (1 ,̂0) and JfL,0)
are Banach analytically isomorphic. By Theorem 3.3, L is formal and by
Theorem 0.1 the finite dimensional germs (JfL,0) and (.2,0) are analytically
equivalent. Theorems A and B follow.
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