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Abstract. The Hamiltonian of the (anisotropic) quantum Heisenberg (anti-)
ferromagnet on an arbitrary finite lattice is lifted to a Hamiltonian acting on
sections of the bundle obtained by twisting a certain line bundle over the
classical spin configuration space (which is a Kahler manifold) with the
Dolbeault complex. This procedure is extended from SU(2) to arbitrary
compact semi-simple Lie groups and arbitrary irreducible representations. The
Bott-Borel-Weil theorem gives a heat kernel representation for the original
partition function in an external magnetic field. The ί/(l)-gauged local
Hamiltonian is the sum of the free, supersymmetric, twisted Dolbeault Laplace
operator (multiplied by the inverse of an arbitrary small mass parameter) plus
the lifted Hamiltonian.

The resulting (Euclidean) Lagrangian is nonlocal and describes bosons
which do and fermions which do not propagate through the lattice. All fields
couple to the external magnetic field. The Lagrangian contains Yukawa and
Luttinger type interactions.

1. Introduction: Motivation and Outline of the Approach

The isotropic 2D quantum Heisenberg antiferromagnet and the Hubbard model
have received renewed attention in attempts to understand high Tc supercon-
ductivity. In particular this has been pursued by Anderson and his collaborators
(see e. g. [A 1, A2, ZAj) and by members of the Landau school (see [DPW, Pol, Wi 1,
Wi2]). In these last articles the aim is to exhibit the appearance of what the authors
call Pomeranchuk fermions [Pom], which are supposed to be neutral spin 1/2
excitations describing the antlferromagnetic magnons of the theory. Similarly, the
fermion solitons appearing in the resonating-valence bond theory (see e.g. [KRS])
are called spinons in [ZA]. In [DPW] and [Wi 1, Wi2] (cf. also [FS]) the authors try
to relate the quantum Heisenberg model via a Feynman-Kac formula to a £/(!)-
gauged CP1-quantum field theory in 2D-h 1 dimensions. The motivation is that the
Pauli spin matrices are inappropriate operators when one tries to exhibit critical
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behaviour, since there are no "Paulions". Only fields appearing in the Lagrangian
for the Feynman-Kac formula have a chance of yielding an appropriate dynamical
description in the scaling limit.

In this article we rigorously provide such a Feynman-Kac formula for the
Heisenberg model on an arbitrary but finite lattice. Our result for the D-
dimensional Heisenberg model is that the underlying Euclidean field theory (on a D-
dimensional lattice and with continuous time) is indeed a t/(l)-gauged CPί -model.
Ab initio it contains in addition a neutral spin zero fermion. The free part of the
Lagrangian is supersymmetric and contains a small mass parameter which may be
chosen freely and which serves as an infrared regularization. The clue is provided by
the Bott-Borel-Weil theorem by which the partition function of the Heisenberg
model may be written as a supertrace of a heat kernel for a certain Hamiltonian
which is an elliptic differential operator. By standard techniques, this heat kernel in
turn has a Feynman-Kac type path integral representation.

Our approach has some similarities with heat kernel proofs of index theorems
based on the observation that the Hamiltonian involved is supersymmetric (see e. g.
[Wt, AG, FW]). In fact, the independence of the index of the Euclidean time there
corresponds to the indpendence of the infrared regulator mass here. In contrast,
since our total Hamiltonian is not supersymmetric, we obtain a representation for
the partition function and not just for an index. Only when the interaction is
switched off, an index does appear, namely the dimension of the Hubert space of the
underlying theory. From the probabilistic point of view our approach is related to
Bismut's proof of the Lefschetz fixed point formula of Atiyah and Singer [Bi2]. In
fact, as a by-product we shall also give a stochastic representation of the character of
any finite dimensional irreducible representation of an arbitrary compact con-
nected semisimple Lie group. Note that the Weyl character formula is a special case
of the Lefschetz fixed point formula.

We recall that techniques involving the introduction of fermions to the
Heisenberg model and its variants have a long history (see e.g. [LM2] for an
account of and references to the early history). Its first culmination was the work of
Lieb, Mattis, and Schultz [LSM] where the antiferromagnetic X— Y chain was
solved. The fundamental construction involved is the non-local Jordan- Wigner
transformation. Our approach, however, is completely different and can be
described as follows.

Let A be a finite lattice in ΊLD. The Hamiltonian of the isotropic quantum
Heisenberg (anti-)ferromagnet in an external magnetic field is given as

k,k'eΛN, N keA

and acts in the Hubert space 3?Λ — ®fceyίC
2. The choices J> 0 and J< 0 correspond

to ferromagnetic and antiferromagnetic interactions. Here σk = (σ\, σ\, σ\) are the
standard Pauli matrices σ acting on the fc-th component in #?A, and AN Nin (1.1)
indicates that the summation is carried out over nearest neighbour lattice points
only. Also h(&)eR3 denotes the magnetic field at the lattice side keA. Note that
heIR3 defines a Lie-algebra element ih -σ = i £ Λασα in su(2).

α = l,2,3
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Since (σfe)2 = 3 for all k e Λ, one may alternatively consider the Hamiltonian

"Λ=~ Σ (*k-°k'Y+Σ h(*) σ* 0-2)
^ k,k'eΛN,N keΛ

which differs from HΛ by an additive constant *\Λ\.
The aim is to obtain a Feynman-Kac formula for the matrix elements

<ψ\e-ta*\ψ'y, ψ,ψ'e^Λ (1.3)

which in particular would lead to a Feynman-Kac representation for the partition
function

Zx(/) = Trace^e-^. (1.4)

We propose to approach this aim using the theory of coherent states.
For quantum spin systems such states have been emphasized by various authors

(see e.g. [Kl, Pel, Pe2] and references therein). They have turned out to provide a
powerful tool in establishing classical limit theorems for the partition function of
quantum spin systems (spin-»oo) (see e.g. [FL, Gi, Lie, Si]) and in calculating the
corresponding quantum corrections (cf. [HPS, STl, ST2]). Coherent states were
also crucial in showing that the Wong equations are the classical limit (as ft-»0) of
the Schrodinger equation for a quantum mechanical particle carrying isospin and
moving in an external Yang-Mills potential [HPS]. In the present context their
usefulness has also been recognized in e.g. [DPW, Wil, Wi2, FS].

Our approach may already be explained in the particular case of one lattice
point, \A\ = 1 . There a coherent state is a complex vector with two components and
labelled by a point zeS2 (the unit sphere, which is the configuration space of a
classical spin) it may be chosen to be of the form

where z is parametrized by its polar angles (9, φ). Note that the parametrization is
well defined and smooth for 0 ̂  φ < 2π, 0 < 9 < π. Thus in this context, one would
like to have a Feynman-Kac formula for

-Λ σ}|z'> (1.6)

with h e 1R3 and t > 0, as an integral over the space of all continuous paths z(s) on S2

starting at z and ending at z' in time t. Of course these matrix elements may be
calculated explicitly, but we are interested in a formula that extends to the general
case, i.e. arbitrary A with \Λ\ < oo. Now, as it stands and contrary to attempts in the
literature, it is not possible to find such a Feynman-Kac formula for (1.6). The
reason is that the coherent states form an overcomplete set of states in <C2 such that
in particular <z|z'> 4=0 a.e. and there is no mechanism to force z(s) and z(s') to be
close when s and sf are close. This is reflected in the fact that the Λ^h(z, z') fail to form
kernels of a semigroup on L2(S2) since obviously

/ςh

=0(z,z') = <z|z'>. (1.7)
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On the other hand, due to the semigroup behaviour of exp { — th σ}, they almost
satisfy the semigroup property since

2 j K*(z9z")K*(z",z')dz" = K*+t.(z,z'), (1.8)
52

where dz" is the normalized canonical measure on S2.
As a preliminary ansatz for a remedy one may try to regularize (1.6) by

considering instead the quantity

z'}. (1.9)

Here ra>0 is a mass parameter and e~tΔ(z,ze) is the kernel of the contraction
semigroup of the Laplace-Beltrami Operator A ^0 on S2. Note that this kernel in
(1.9) is the transition probability for a Brownian motion on S2 whose diffusion
coefficient is (2m)"1. Now for />0,

\e-tΔ(z,z')-l\^e-ct (1.10)

for some constant c> 0. Hence as m->0 the kernel K^m(z, z') converges to K^(z, z')
uniformly on S2 x S2 and t away from zero, reflecting the fact that diffusion
increases with decreasing m.

On the other hand, for m > 0 fixed and ί->0 the kernel e 2m (z, z') approaches
the Dirac ^-function <5z(z') at z, thus forcing z and z' to be close for all small times t.

Hence the presence of e 2m (z, z') counteracts the overlap property of |z> and |z'>
mentioned above.

As it stands, the ansatz (1.9) has two drawbacks. First, the K^m(z, z') still do not
form the kernels of a semigroup. Secondly, the states (1.5) are not globally defined
and the choice eίφ(z)\zy for any real valued φ(z) are as well possible. In fact, only the
associated one-dimensional orthogonal projection operators

2 9

C°S - 7

1 . S ' (U1)

- e ^sinθ sin2 —

have a globally well defined invariant meaning. In a natural way they define a
complex hermitian line bundle & over S2, associated to the principal ί/(l)-bundle

Γ7Y1 Λ_^ C3 ~ CΓ7Y1ΛU{l) —»O =OC/^Zj

I (1.12)

S2

(the Hopf fibration) via the one-dimensional self-representation of £/(!).
Both of the obstructions above may now be overcome by working directly in the

Hubert space L2(<£} of square integrable sections in <£. First, the self-
representation of SU(2) on <C2 may be "lifted" to a unitary representation π0 of
SU(2) on L2 (<£). Secondly there is a Laplace operator Π ̂  0 (see below) commuting
with every π0(0) for gεSU(2) on L2(&} such that as a consequence of the Borel-
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Weil theorem

lim ΎτaceL2(^){e-t^πQ(g)} = TracQ^g9 geSU(2). (1.13)
ί-»oo

We may even go further. For this we observe that S2 is a compact Kahler manifold
and that 5£ is a holomorphic line bundle. Thus <£ may be twisted with the Dolbeault
complex. On the resulting hermitian vector bundle Λ(&) there is a Dolbeault
operator, also denoted by d. The Laplacian Π is now defined to be the twisted
Dolbeault-Laplace operator (δ-f(3*)2 which by construction is a supersymmetric
Hamiltonian. Furthermore, on L2(Λ(<£}) there is a unitary representation π of
517(2) extending π0 on L2(j^)c=L2(/L(V)), commuting with d and 3* and
preserving the degree. If ε is +1 on even forms and — 1 on odd forms, then as a
consequence of the Bott-Borel-Weil theorem,

_t__
TraceL2(ΛW){εέ? mDπ(0)} = TraceC20, (1.14)

valid for all ί>0 and m>0. By analytic continuation, relation (1.14) still remains
valid if g is replaced by exp {— th σ} and π(g) is replaced by the formal expression
exp{/fί/π(/h σ)}. More precisely, the Hamiltonian in L2(Λ(<£)) becomes

H=— D-zWπ(zh σ). (1.15)
m

This is an elliptic operator bounded below, and for the resulting left-hand side
of (1.14) it is now straightforward to write down a Feynman-Kac type integral
representation. Due to the Grassmann structure of Λ(3P), a scalar neutral fermi
field appears. For later purposes we therefore refer to the subspace L2(j£?) of
L2(Λ(5P)) (and to the corresponding situation for a general lattice A) as the purely
bosonic sector.

This approach now readily extends to arbitrary finite A. In fact, this is achieved
by "lifting" the Hamiltonian (1.1) or (1.2) to an operator acting on sections of the
bundle Λ(3PΛ) over the Kahler manifold S2

ί=xkeΛS
2 via the substitution

ϊσj->rfπ(ίσ£). Here the line bundle &A over S2

A is the product of the line bundles
obtained by pulling <£ over the component S%^S2 back to SA. This lifted
interaction Hamiltonian then becomes a second order differential operator. By
definition, the free supersymmetric Hamiltonian is just the sum of the lattice site
Hamiltonians (l/w)Π. The resulting free supersymmetric Lagrangian then contains
one fermionic degree of freedom for each lattice site. It is not related to the
Lagrangian considered by Zumino [Zu]. Actually, there is local fermion number
conservation preventing fermions from propagation across the lattice. The total
Lagrangian, however, describes bosonic propagation. Also it is nonlocal and
contains Yukawa and Luttinger type interactions. Its power series coefficients in /
are all local, and couple nearest neighbours, next nearest neighbours,..., etc. Due to
the t/(l)-gauge from (1.12) the Lagrangian also contains a Wess-Zumino term of
the form already considered e.g. in [FS].

Our approach allows the following four types of generalizations. First, the
coupling may be chosen to be anisotropic in spin space. Secondly, it is possible to
choose an arbitrary finite lattice A and the coupling need not be only between
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nearest neighbours. Thus the Hamiltonian (1.1) may be replaced by

HΛ——J £ cΛβ(k,k')σ*σk

β'+ ]Γ h(k)-σk. (1-16)
k,k'eΛ keΛ

JcΦίc'

Here cΛβ(k,k')~cβΛ(k',k) for any k,k'eΛ may be arbitrary real symmetric 3 x 3
matrices. Particular choices give the Ising or the X- 7 model. Thirdly, instead of the
self-representation of SU(2) (spin =1/2) one may as well consider an arbitrary
irreducible representation of SU(2). And finally, following Simon [Si], the group
SU(2) itself may be replaced by an arbitrary compact semisimple Lie group.

As a consequence, the classical spin configuration space S2 for one lattice point
will be replaced by another homogeneous space (i.e. a coadjoint orbit) which is still
Kahler but now of higher dimension. Correspondingly the number of fermions per
lattice site will also change, being equal to the complex dimension of this manifold.

Within our set-up, all these generalizations will come at no extra charge, since
presently we are not concerned with the more intricate physical questions such as for
instance the existence of the thermodynamic limit or the scale limit and the related
questions about possible critical temperatures and the nature of the phase
transitions. From the start therefore our presentation will be given in this general
context.

The article is organized as follows. In Sect. 2 we review facts from the theory of
group representations and the structure of Kahler manifolds needed to establish
(1.13) and (1.14), and to calculate the Lagrangian for the case \Λ\ = 1. The material is
basically well known but will be presented in such a way that the derivation of
analogous relations in the interacting case (i.e. |Λ|Φ1) in Sect. 3 will then be
straightforward.

In Sect. 4 we determine the resulting Lagrangian, first for the purely bosonic
sector and then for the full theory including fermions. Also here we start with the
case |Λ| = 1.

Our investigations are continued in a second paper with Sects. 5-7. Section 5
contains a stochastic derivation of a Feynman-Kac formula for the heat kernel of
the Hamiltonian (1.15) as well as a stochastic representation of the character (1.14).
The methods employed are inspired by techniques used by Bismut [Bil]. In Sect. 6
we extend the discussion to arbitrary |Λ|<oo. Finally, in Sect. 7 classical limit
theorems in the purely bosonic sector are obtained by letting the representation of
the group tend to infinity in a way well known from the theory of quantum spin
systems.

2. Preliminaries: Representation Theory and Kahler Geometry

For easy reference and to fix the notation, in this section we will summarize some
facts from the theory of representations of compact Lie groups and from Kahler
geometry needed in the remaining part of the paper.
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2.1. Notation

Let G be compact connected semisimple Lie group with Lie algebra g. We fix a
maximal torus Tin G; its Lie algebra will be denoted by t. We use the notation gc

and t<c for the complexifications of the Lie algebras g and t, respectively. Note that
t<cis a Cartan subalgebra of g^. Furthermore, there exists a complex semisimple Lie
group G<c with Lie algebra gc such that G is a maximal compact subgroup of GC (cf.
[Che, p. 200]). We denote by Γc the complex subgroup of GC corresponding to tc,
and by Φ = Φ(gc, tc) the set of nonzero roots of gc with respect to t€. For a given
α 6 Φ, the associated root space will be denoted by gfc. Since g is a compact real form

of gc, all roots assume real values on tR = it = ]/ — 1 1. We will regard Φ as a subset of
tjR, the dual space of tR. The Cartan-Killing form

B(Y, r)-Trace{ad(7)oad(7')}

with F, Γ'egc restricts to a positive definite bilinear form on t^, and by duality
determines an inner product ( , •) on t&. The hyperplanes Σβ = {μetR|(μ,α) = 0}
with α e Φ divide t& into a finite number of closed convex cones, the so-called Weyl
chambers. The group generated by the reflections about the hyperplanes ΣΛ is the
Weyl group W. Elements of t^ are called singular if they lie on a hyperplane Σa for
some αeΦ, and nonsingular otherwise.

A system of positive roots for (g€, tc) is a subset A + c Φ of the form

for some particular nonsingular λ e t^. Equivalently, such a set Δ + can be described
as the set of all elements of Φ that are positive with respect to some suitably chosen
order on g^. To each system of positive roots A + there corresponds a distinguished
Weyl chamber

)^0 for every

C is called the positive Weyl chamber with respect to Δ + . From now on, we will fix
such a system Δ + of positive roots. As usual, we set

0 = Σ α

2.2. Irreducible Representations

The finite dimensional representations of G are in one-to-one correspondence with
the holomorphic representations of GC This correspondence is determined by
restricting a given holomorphic representation of GC to G. An element λ e t^ is
called a weight if it is the differential of a character of T. The weights form a lattice L
in t]R, and L is contained in the lattice

ζ for every α e Φ
(α,α)

Let C be the positive Weyl chamber with respect to the given system of positive
roots A +. The finite dimensional irreducible representations of G are naturally
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parametrized by AeLnC. Given AeLnC, we shall denote the corresponding
irreducible representation of G by πλ and the representation space by Jjfλ. Then λ is
the highest weight of πλ with respect to the given ordering on L. Moreover, in 3tfλ

there exists a (up to a complex scalar) unique λ- weight vector ψλ characterized by the
following properties: (i) dπλ(Y)\l/λ = λ(Y)\l/λ for all 7etc, (ii) dπλ(Y)\//λ = 0 for
every Ye gj and α e A + .

Given λ e L n C, we have A = z'X with let*. We extend I to an element of g* by
setting it equal to zero on the orthogonal complement of t with respect to the
Cartan-Killing form. Therefore we may regard A as a linear form on g with purely
imaginary values given by

(2.1)

for 7eg, i.e. λ is an element of gj., the real dual of gκ=ιg.

2.3. The Borel-Weil Theorem

The Borel-Weil theorem provides a geometric realization of the finite dimensional
irreducible representations of G. Consider the quotient manifold

M carries various (/-invariant complex structures depending on the choice of a
system of positive roots A + . To describe the complex structure of M associated to
our fixed system of positive roots, we introduce the nilpotent subalgebra n of g^ by

n= Σ g~*.
aeΔ +

Note that n is Ad Γ-invariant and satisfies

gc=t cθή®n.

Furthermore, by b = t(C φn a Borel subalgebra of gc is defined; let BaG<£ be its
corresponding complex analytic subgroup. Then G&jB is a compact complex
manifold and the invariant hermitian metric of G^B is a Kahler metric. Since the
real span of g and b is all of gc, the G-orbit ofeBeGς/B is open. On the other hand,
this orbit is closed due to the compactness of G. The isotropy group of eB is Br\G
= T. Hence we get a canonical diffeomorphism

This is one of the G-invariant complex structures on G/T. Recall that a complex
structure on a manifold M defines a splitting of the complexified tangent space

= ΓZ

(1'0)M Θ Tf

at every point z e M. Here Γz

(1 >0) Mis the holomorphic tangent space at z and !ΓZ

(0>1)M
the antiholomorphic tangent space at z. In our case, the holomorphic tangent space
at eΓeG/Γcan be identified with n and the antiholomorphic tangent space at eT
with n. Since — B(Ϋ, 7') is an Ad Γ-invariant inner product on ή 0n (which is the
complexified tangent space of M at eT), we obtain by translation a G-invariant
hermitian metric on M. This metric is known to be Kahler [W].
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Next we turn to the discussion of homogeneous holomorphic line bundles over
M, i.e. holomorphic vector bundles of fibre dimension one admitting a lift of the
action of G<c on M=G^/B. Let & be such a vector bundle. The action of the
isotropy group B on the fibre of 3? over eB determines a holomorphic character
χ : £-»(C*. Via this character, & is associated to the holomorphic principal bundle
B-+G<£^>M. Conversely, given a holomorphic character χ:^->C*, we can
construct a vector bundle ϊ£ = G<c x χ<C over M. The points of & are equivalence
classes of pairs (#, w) under (gb, w)~(g, χ(6)-1 w). Denote the equivalence class by
[g, w]. The action of G<£ on & is given by gί [g, w] = [ g 1 g , w]. Thus & is a
homogeneous holomorphic line bundle. As a C°° vector bundle, JS? is associated to
the principal bundle Γ-*G->M via the restriction of χ to T=Bc\G. We may identify
the space C°°(JS?) of C°° sections of jSf with the space of C°° functions φ : G->C
satisfying Φ(gΐg2) = χ(g2)~l Φ(0ι) for all # 2 eΓand ^eG.

Let A e L and denote by eλ the corresponding character of T. We extend λ to a
linear functional on b = t<c0n by putting it equal to zero on n. This infinitesimal
character may be lifted to a holomorphic character χλ:B-+(C* because the
fundamental groups of B and Γare the same. The resulting holomorphic extension
of eλ is the only possible one since n must act trivially on any irreducible b-module.
Let Sf λ denote the associated homogeneous holomorphic line bundle over M.
Using the fact that eλ = χλ\τ is unitary, by translation is determines a G-invariant
hermitian metric in <£ λ. This hermitian metric is unique up to multiplication by a
constant.

Now consider the antiholomorphic cotangent bundle Γ*(0>1)M of M. This is
clearly a homogeneous vector bundle, i.e. the left action of G on M lifts to an action
of G on T*(0tl)M, the lift being given by (dLg-ι)*, where Lg : M->M denotes left
translation by geG. This isotropy representation of T is the coadjoint
representation

: Γ->GL(n*).

Via this representation, Γ*(0>1)Mis associated to the principal bundle T->G-+M.
Furthermore, a G-invariant hermitian metric in Γ* (0'υM is obtained by translating
the Ad Γ-invariant inner product on n* induced by the negative of the Cartan-
Killing form. For q = 0, 1 ,...,« = dim^M we set

(2.2)
and

Λ(^λ)=® Λq(&λ). (2.3)
q = Q

The space of C°° sections of Λq(<e λ) is usually denoted by Λ°'q(M, J£?A) which by
definition is the space of (0, #)-forms on M with coefficients in <£λ.

Since Λq(^λ) is a homogeneous vector bundle, we get a natural action of G in
Λ°'q(M, &λ}. If ω 6 Λ° 9(M, &λ) and g e G, then this action is determined by setting

for all z e M. The hermitian metric on M together with the G-invariant metric in <£λ

give an inner product for the sections of Λq(^λ). On the resulting Hubert space
L2(Λq(^λJ) a unitary representation πλ

q is obtained by the same construction as
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above. Let Indγ(eλ®ΛqAd*) be the representation induced by the representation
eλ <χ) ΛqAd* : T^>GL(Λqn*). By definition, the Hubert space of this representation
is just the space of L2 functions φ : G->Λ*n* satisfying φ(gίg2) = exp(-λ(\og(g2)y)
^ί(92ί)(P(9ι) f°Γ a'l 9ι 6 G and 92 e T. It is easy to see that the Hubert spaces are
naturally isomorphic and, with respect to this identification,

(2.4)

Furthermore, Λ° β(M, <eλ)<^L2(Λq(<eλ)) is the space of C°° vectors of π£.
Next we recall the definition of the S operator

Given ωeA°'q(M9 <£λ) and a coordinate neighbourhood Fc=M, we can write
ω)κ = s ®ω0, where s is a holomorphic section of <£λ over Fand ω0 a (0, #)-form on
V. Then δqω = s®dqωQ and dqωQ is the usual ^operator applied to ω0 . Clearly, dqω
is independent of the choice of the local holomorphic section s. Moreover, fiq

satisfies dq+1 ° dq = 0 and we arrive at the following elliptic complex, the so-called
Dolbeault complex

Let Hq(M, &λ) be the #-th cohomology group of this complex, i.e. Hq(M, &λ)
= kernel (δ^/range (Sq _ x). Since the left translation by g e G is a holomorphic map
of M, the operator ^commutes with the action of G on Λ°'q(M, <£λ). Therefore, πq

induces a representation of G in Hq(M, <$fλ).
This representation can be described in another way as follows. Let

5* : ΛQ'q(M, <eλ}-+Λ*>q-^(M, &λ)

be the formal adjoint of dq_ί9 and set

Then Πq is an elliptic second order G-invariant differential operator acting in
Λ°»«(Af, &λ} and its kernel is the space Jf °>q(M, &λ) of harmonic (0, ^)-forms with
coefficients in &λ. Equivalently, 3Jf°'q(M, gλ) is the space of J^λ-valued smooth
(0, #)-forms ω obeying 5ω = 0 and ^*ω = 0. The G-invariance of Πq implies the
invariance of 3>ίf0'q(M9 &λ) under πq, thus leading to a representation of G on
^f°'€(M,J^Λ) also denoted by πq. The well-known Hodge theorem gives an
isomorphism

which is compatible with the action of G on both sides. Now we are ready to state the
Borel-Weil theorem [Se].

Theorem (Borel-Weil). Let Cbe the positive Weyl chamber and assume that λeLnC.
Then

(i) f/r«(M,JS?λ) = 0 for q>0.
(ii) The representation π$ of G in H°(M,yλ) is equivalent to that irreducible

representation πλ of G in J^λ which has λ as its highest weight.
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Note that H°(M, <£ λ) is the space of holomorphic sections of the line bundle
J^λ->M.

This theorem has been generalized by Bott [Bo]. In place of B one considers now
any closed subgroup PciGc containing B. Any such P is called a parabolic
subgroup of GO The homogeneous space M=G<ε/P is again a compact complex
manifold. Let C/=PnG; then C7is a subgroup of G containing T. Moreover there
exists a canonical diffeomorphism Gς/P^G/U and M carries a canonical G-
invariant Kahler metric. Let u be the Lie algebra of U and Ψ = Ψ(m£,tς) the
corresponding root system. Again we regard IF as a subset of t&. Choosing a system
of positive roots Ψ+ with Ψ+c:A+, we take a unitary representation
σλ : U-*GL(V) such that λ is its highest weight with respect to Ψ + . As above, σλ

determines a homogeneous holomorphic vector bundle $λ-+M equipped with a G-
invariant hermitian metric. Let Λ°'q(M,$λ) be the space of smooth ^Λ-valued
(0,#)-forms, i.e. the space of C™ sections of δ λ®ΛqT*®Λ}M. Then the qth

cohomology group Hq(M, <?λ) of the Dolbeault complex

admits a canonical G-action which we denote by π* . The following generalization of
the Borel-Weil theorem is due to Bott [Bo] (cf. also [Wa] for a comprehensive
discussion).

Theorem. If λ + ρ w singular, i. e.(λ + ρ,&) = Of or some α e Φ, then Hq (M, $ Λ) = 0/or
all q. Otherwise, for nonsingular λ + ρletwe Wbe that element which carries λ + ρ into
the positive Weyl chamber, and let k be the number of a eΔ + such that w(α) < 0. Then
Hq(M, <fΛ) = 0 for q^k and the representation π£ of G on Hk(M, $λ} is irreducible
with highest weight w(λ + ρ) — ρ.

For our purposes we need the Bott-Borel-Weil theorem only for the particular
case of σλ being a character of U.

Finally, we restate the Bott-Borel-Weil theorem in a heat kernel formulation. To
this end, let j^A^Gc/P = Mbe a homogeneous holomorphic line bundle associated
with the holomorphic character χλ : P->C*. By Π we denote the elliptic differential
operator

on C00 (Λ(&λ)) = 0 Λ° q(M9 &λ} as well as its closure in L2 (Λ(&λ)) the resulting
q = 0

heat operator exp(-ίD) is of trace class for all ί>0. Since Q commutes with the
induced representation πλ of G in L2(A(^λ)\ it commutes also with dπλ(Y) for all
7eg. Now, for each w>0 the operator sum

— Π-idπλ(Y)
m

defines an elliptic, selfadjoint operator bounded from below; the semigroup
associated to this operator is of trace class. Furthermore, we introduce the linear
operator ε in L2(Λ(^λ)) which is equal to -I- 1 on even forms and equal to — 1 on
odd forms.
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Theorem 2.1. For λ e L n C let (πλ, 34fλ) be the irreducible representation with highest
weight λ. Then for all Lie algebra elements Γeg:

(i) For all t>0

lim Trace tf^ \ exp \ - 1 ( — D - ίdπλ ( Y) H I = Trace^λ {exp (itdπλ ( 7))} . (2.5)
m-»o+ I t \/n / J j

(ii) For all t > 0 α «d m > 0

-f Π-idπλ(Y) HτraceΛ{exp(ίWπλ(r))} . (2.6)

Proof. First we recall the well-known fact that for any selfadjoint operator
A^ΰ whose semigroup exp( — tA) for />0 is of trace class, the strong limit
s— lim exp( — tA) gives just the orthogonal projection onto the kernel of A.

t-» oo _

Choosing A = Π, the relation (2.5) becomes a direct consequence of the Bott-Borel-
Weil theorem.

To prove statement (ii), we replace the factor i on both sides of (2.6) by a complex
parameter w. Then

Trace^λ {exp {twdπλ(Y)}} (2.7)

is analytic in w. Furthermore, for w e C

— Π-wdπλ(Y)
m

is a holomorphic family of operators of type A (see [Ka, p. 375]). Thus

ε exp j - 1 (— Π - wdπλ(Y) J > i (2.8)

does exist and defines an analytic function of w. Consequently, we need only to show
that (2.7) and (2.8) are equal for w real. This, however, is an easy consequence of
supersymmetry and the Bott-Borel-Weil theorem. In fact, let 0 = μ0 < μt < . . . < μj

< ... be the eigenvalues of Π and lj the corresponding eigenspaces. Then lj
= lf φ/j", where Ip are the subspaces of even ( + ) or odd ( — ) forms; these
subspaces are invariant under πλ, so πλ can be restricted to finite dimensional
representations πf of G on If . Employing the Bott-Borel-Weil theorem, the
expression (2.8) becomes

7>0

But for j>0, the operator

Σ β-"-1^{Trace/,{π/ί^OJ-Trace .-ίπ/^^)}}. (2.9)
'

provides a unitary equivalence of the representations πj1" and π,- , implying
statement (ii). An alternative argument leading to (ii) and not based on the analytic
continuation of f2 fiϊ will he cnven in Serf ^continuation of (2.6) will be given in Sect. 3
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2.4. Coadjoint Orbits

As before, a given λ e L n C will be considered as an element of g^. Let Mλ be the
coadjoint orbit in g^ through λ. Obviously Mλ is diffeomorphic to the left coset
space G/Uλ, where Uλ = {geG\Ad*(g)λ = λ}^>T denotes the stabilizer of λ.
Equivalently, with πλ being the irreducible representation in Jjfλ corresponding to λ,
the stabilizer Uλ can be characterized as the subgroup of all those g e G leaving the
one-dimensional subspace of 3tfλ spanned by ψλ invariant. In addition, we have

|(/U) = 0}. (2.10)

Therefore, in the generic case, i.e. when λ lies in the interior of the positive Weyl
chamber C, the equality Uλ=T holds. Note that under the diffeomorphism Mλ

^G/Uλ the coadjoint action of G on Mλ corresponds to the left translation on the
homogeneous space G/Uλ.

On Mλ a normalized measure dμMλ is defined as the push forward of the
normalized Haar measure μ on G,

This measure can be equivalently characterized in terms of the involved
Riemannian structure. Since g^ carries the Euclidean metric induced by the Cartan-
Killing form on gR and Mλc:g|l is a compact subset, Mλ becomes a compact
Riemannian submanifold of g^. Note that this metric on Mλ induced by the
Euclidean metric on g^ coincides (up to a scale) with the (^-invariant Kahler metric
on G/Uλ considered above. In fact, define Pλ to be the parabolic subgroup of G&
leaving the one dimensional space spanned by ψλ invariant. Then we have Pλr^G
= Uλ and by the above discussion G^/Pλ^G/Uλ^Mλ.

The holomorphic line bundle &λ-+G/Uλ may also be described in these terms.
Namely, let g° be the orthogonal projection in Jj?λ onto the one dimensional
subspace spanned by ψλ. For any gεG consider the one dimensional orthogonal
projection

Γl (2.11)

with range spanned by the vector πλ(g)ψλ. If we set z = Ad*(0)ΛeMA, then Qλ(g)
depends on z only and, by abuse of notation, we write Qλ(z) = Qλ(g) such that
QλW = Qι The transformation property

g')z} (2.12)

is obvious. With dλ = dimJ#*λ the completeness relation

(2.13)
MA

is a consequence of Schur's lemma; in particular, it implies the relation (1.8) in
Sect. 1. Now, with the help of the Qλ(z), a subbundle of the trivial product bundle
3?λ = Mλx3ίfλ is constructed by setting the fibre over each z equal to
Q λ (z) 3?λ = range Qλ(z). The resulting bundle is isomorphic to the line bundle
&λ-+G/Uλ, and the G-invariant hermitian metric in <£λ is the one induced from
3? λ. Henceforth <£λ will therefore be viewed as a bundle over the coadjoint orbit
Mλ.
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Finally, we discuss the induced representations. Using the projections Qλ(z), a
linear map Qλ:L

2(J>ίfλ)-+L2(g>λ) is defined by (Qλφ)(z) = Qλ(z)φ(z). This map
satisfies Qλ ^jλ — \d, where jλ : L2(^λ)-^L2(J^λ) denotes the canonical embedding.
Furthermore, we define a unitary representation π^ of G in L2(J^λ) by

-*z). (2.14)

Then the induced representation π^ of G in L2(J2?λ) is given by

The induced representation πλ of G in L2(Λ(^λ)) can be described in a similar
way. Namely, with respect to the isomorphism L2(Λ(^λ)}^L2(^λ)®

(2.16)

Here σ stands for the induced representation of G in L2(Λ*T*(0tl)Mλ). More
precisely, if as usual we denote by dt/f*:Γ*M-»Γ*M the map induced by a
diffeomorphism ^:M-»M, then for all ωεL2(Λ*T*(QΛ}Mλ} and zeMA the
representation σ is given as

Note that Ad*0 defines a holomorphic map such that Λ*((dAd*g~1)*) is well
defined on Λ* Jτ*(0'1)Mλ. Let KΎ be the Killing vector field associated with the Lie
algebra element 7eg, i.e.

*y(z)=^Ad**-%=0, (2.17)

and let LKγ be the Lie derivative with respect to Kγ . The definition of σ implies

dσ(Y)ω = LKγω

for all Feg. Hence, by virtue of (2.16), we obtain

dπλ(Y) = dπ*(Y)®id + ιd®LKγ. (2.18)

To compute dπ^(Y) we have to apply the relations (2.1), (2.14), and (2.15). With

λ and φeC"(&λ) it follows

Here the purely imaginary quantity Y(z) is defined by F(z) = z(F) where we view
zeMλ as an element of g^. We have also used the fact that in terms of the trivial
connection d of 3? λ the hermitian connection F0

λ in $£ λ can be expressed as

V^Q^d*},. (2.20)

2.5. Connections and Kάhler Geometry

Recall that for any holomorphic hermitian vector bundle £->M over a complex
manifold M there exists a unique connection V : C °° (£) -> C °° (£ ® TfcM) satisfying



Feynmac-Kac Formula for Quantum Heisenberg Ferromagnet. I 479

(i) V" = d, where V = V + V" is the decomposition of V into type, i.e. V" =p° V
with p being the projection onto the space of E-valued (0, l)-forms.

(ii) d(s9s') = (7s,s') + (s, Vs') for all s,sfeCco(E).
This V is called the hermitian connection of E (cf. Chap. IX, Sect. 10 of [KN]).
In particular, if M carries a hermitian metric, we may consider the hermitian

connection in the holomorphic tangent bundle Γ(1'0)M of M. We extend the
covariant differentiation to T^M as follows

where X1,X2,Zί, Z2 are vector fields on M. This generalized connection induces a
corresponding connection in all tensor bundles. If the hermitian metric on M is
Kahler, then the hermitian connection is torsion free.

In the case of M=Mλ being the coadjoint orbit through λ and <£λ-+Mλ the
holomorphic line bundle discussed above, we denote by Vλ the connection in
Λq(&λ) = <eλ®ΛqT*(QΛ}Mλ which is obtained from the hermitian connection in
j£? λ and the generalized connection in Aq Γ* (0>1) Mλ just defined. This connection Vλ

can be described more explicitly in local holomorphic coordinates za on Mλ, where
1 ̂ α^dim€Mλ. Namely, in any tangent space TzMλ the inner product defined by
the hermitian metric g on Mλ admits an unique extension to a symmetric bilinear
form in the complexified tangent space Γz(CMA. Set

9 bdz*9 dz

and define g^, gab, and g-j similarly. Then gab
 = 9άb — ® an<^ the metric on Mλ

becomes

a,b

If g is a Kahler metric, the Christoffel symbols are given by (see e.g. [KN])

Γc _ V "βhd ncd_ pc
lab~L ~fcϊ~g -Lba>

"_ (2.21)
pc _ Γc

1 aE~ L ab >

and all the other terms are zero.
We take s to be a local nonvanishing holomorphic section of <£ λ over the given

coordinate neighborhood, and set

4=^log(|kω||2), (2.22)

where || || is the norm in the fibre of J£ λ over z determined by the metric of ϊ£ λ.
Furthermore, let

φ = s®( Σ <Pεί...Fqdzbί A ... Λ dzb

\bί<...<bq

be a smooth (0, ̂ )-form with values in £?λ defined on the given coordinate
neighborhood. The covariant derivative of φ in Λq(£?λ) is then given by the
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following formulas

(^d)d=»(P)bi...bq=-Q^ 9b,...bq-
laΨb,...b^

d (2.23)

(Vdfa«9)bi...bq=-fo» 9bι...bq-Σ Γk(P51-^155r+1 "V

Also, by virtue of (2.19) and (2.20), the relation (2.18) can be rewritten as

(rfπλ(7)φ)(z)=7(z)φ(z) + (P0

λ

Xy(x)id)φ(z) + (id®LXy)φ(z) (2.24)

for zeMλ and Feg.
Our next goal is to express the right-hand side of (2.24) in terms of the hermitian

connection Vλ. It suffices to calculate the Lie derivative LKγ on Γ(0'1}MA, the dual of
T*(0'1}Mλ. Since the hermitian connection Pon T(0tl)Mλ is torsion free, we have for

Moreover, in the local coordiante expression for KΎ,

(2-26)

the coefficients Kγ and KC

Ύ are holomorphic and antiholomorphic, respectively. In
fact, since Ad*(eίY) acts on Mλ as a one parameter family of holomorphic
transformations, KYfis holomorphic for any local holomorphic function / on Mλ.
Thus

* fl
(2-27)

We define the "Fermi field" ψ*a to be the (local) bundle endomorphism of
yl*Γ*(0'1)Mλ given by exterior multiplication with dza\ its adjoint with respect to
the hermitian metric on Λ*T*(0tί)Mλ defines ψa, and \l/a is then defined as

ψa = Σ9baΨ" (2.28)
b

The \j/ give rise to a Clifford algebra with the canonical anticommutation relations

<*-.«-«.
{* ,*"}-{*.,«-o.

Let the vector bundle endomorphism EΎ be locally given by

- Y ( p *>(id®* v) (2JO)

a,b
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Now, the wanted formula for the induced representation follows easily from (2.24)
and the observations above

(dπλ(Y)φ)(z)=Y(z)φ(z)+rJiγφ(z) + (Eγφ)(z). (2.31)

Finally, we want to recall a Weitzenbδck type formula for the operator Π in the
form given by Patodi [Pa]. It reads:

Π = Δ-DK+DS. (2.32)

Here A denotes the following Laplace operator given locally as

J=-Σί7o f t>a

ΛF/ί, (2.33)
a,b

where we use the abbreviations

The other two terms appearing in (2.32) are strict vector bundle endomorphisms
DK is defined in terms of the Ricci curvature tensor K of Mλ , and DS is defined in
terms of the curvature form S of the hermitian connection of the line bundle <£λ.

More precisely, consider the following components of the curvature tensor

The symmetry relation

*&=*L (2 35)
is special for Kahler manifolds. With

*ra=Σ0**L> (2 36)
e

the Ricci curvature tensor of Mλ is defined by

Kj=ΣKJ. (2.37)
b

Similarly, the curvature form S is given by

S°=Σβca~Scb-, (2.38)
c

where

||2) (2.39)

and la was introduced in (2.22). Thus, with these notations the endomorphisms DK
and DS take the form

α,b
(2.40)
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Formula (2.32) allows us to relate Π to the Bochner Laplacian — (Vλ)2 for the
hermitian connection Vλ. Namely, rewriting its definition

= 2Δ-ga\Vλ

BVΪ-VΪV$ (2.41)

= 2J-0'X— DK

and setting tτS=ga*Sa£, the relation

(2.42)

is a simple consequence of (2.32) and (2.41).
Notice that in the special case of the trivial line bundle where 2π = /d (see

e.g. [We]), by (2.35) relation (2.42) reduces to the usual Weitzenbock formula on
Kahler manifolds. Furthermore, since the Dirac operator on Kahler manifolds is

1/2 (δ + δ"*), the relation (2.42) is akin to the Lichnerowicz formula for the spinor
Laplacian [Lie, Hi). For a later purpose, we remark that according to (2.23) the
hermitian connection V in Λ*T*(Q'ί}Mλ may be written in local coordinates as

V—— + C-a~dza* "
(2.43)

V =—fl Sz-'
where

Q=-Σ WVc (2.44)
b,c

This motivates the definition of the -local one form

C=Σ cadza (2.45)
a

taking values in the space of (local) vector bundle endomorphisms of A* Γ*(0>1)Mλ.
Sometimes it will be convenient to work with the real coordiantes ;c7

xj+n = 3mzj, where 1 ^j^n = dim<cMλ. Then with

C= CjdχJ (2 46>
j=ι

we have

(2.47)

on Λ*T*(0-l)Mλ. This yields in particular

on Λ(<eλ).
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3. The Generalized Quantum Heisenberg Ferromagnet

Following Simon [Si] we generalize the quantum Heisenberg ferromagnet to an
arbitrary G and an arbitrary representation πλ. Then we establish a supertrace
representation for the partition function analogous to the one for the one lattice
point theory.

Let A be a finite lattice as described in the introduction. We set GΛ — xkeΛG
and write g = {g(k)}keΛeGΛ for its elements; the group G will be identified
with the diagonal subgroup of GΛ . The Lie algebra of GΛ is then gΛ = 0 g. The

keΛ

irreducible representation of G in 3tifλ defines an irreducible representation
πλ Λ(O) — ® πλ(β(k)) °f GΛ in ̂ e finite dimensional Hubert space 3?λ Λ = (x) 3Fλ.

keΛ ' keΛ

For any Feg and k eΛ. we let Yk be the element of g^ that agrees with Y in
the kth place and is zero otherwise. Let 7α (1 ̂ α^dim(g)) be a basis of g and
let c={c<xβ(k,k')}l^βζ4imG.k^>eΛ be any set of real numbers such that
c"β (k, Λ ') = cΛβ (k ', k\ and for any fixed k, k ' with k Φ k ' the matrix cΛβ (k, k ') is sym-
metric in α and /?. Also let heg^ be arbitrary and /real. We define the following
selfadjoίnt operator in Jfλ>yl :

fiλ,Λ=Hλ_Λ(J,c,h)=-JΣ Σ dnλ<Λ(
a,β k,k'eΛ

fc*fc' (3.1)

to be the generalized quantum Heisenberg model in the external magnetic field h.
The choice - c*β (k, k') = b*β( = inverse of B( YΛ , Yp) with B being the Killing form) if
k,kf are nearest neighbours, and zero otherwise, leads to an (in "spin" space)
isotropic Heisenberg ferromagnet (/^O) or Heisenberg antiferromagnet (/^O).
Then Hλ Λ for the case h = 0 is globally gauge invariant, i.e. commutes with πλ Λ(g)
for g e G. Specializing to G = SU(2) and its self-representation we recover the usual
quantum Heisenberg (anti-)ferromagnet. Also for other appropriate choices of c we
obtain (generalizations of) the X— Y or the Ising model.

One is interested in the partition function

Trace^*-^. (3.2)

We extend our one lattice point discussion in the following way. First we introduce
the Kahler manifold

MλtΛ=*keΛMλtk, (3.3)

where each Mλtk is a copy of Mλ. Points in Mλ Λ are written as z= {z(k)}keΛ with
z(k)εMλ. Then

dμMλ,Λ(i)=lldμMλ(z(k}) (3.4)
keΛ

defines a probability measure on MλtΛ.
Next we introduce the holomorphic and hermitian line bundle <£Λ = (x) jS?k

λ

keΛ

over MλtΛ, where <&k is the pull back of <& λ via the holomorphic projection
>MΛ k. Via this pullback the connection VQ on <£λ determines for all
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kεΛ a connection F0

λ

k on <g£ and hence a connection V£Λ on the tensor product
&A. A holomorphic and hermitian vector bundle over MλtA is defined by A(^A)
= <£λ

A ® Λ* T^Λ)MλtA. Obviously gA may be regarded as a subbundle ofΛ&ft.
By VA we denote the hermitian connection on Ά(&A) obtained from F<£ Λ on &A and
the canonical hermitian (torsionfree) connection VΛ on Λ*T^(0tl)MλfΛ. We set

CU= Σ °* (3-5)
fceΛ

mapping C°°(yϊ(JSf^)) into itself and leaving C°°(«3?;j;) invariant. Here Πfc is D acting
on the kth variable z(k) of z. The operator (3.5) is densely defined and has a unique
selfadjoint extension in L2(Λ(<£A)) which is denoted by the same symbol.

Finally, in analogy to the construction of πλjΛ the unitary representation
πλ of G on L2(Λ(<£λ)) gives a unitary representation πA(g)= (x) π λ ( g ( k ) ) of

JceΛ

GΛ on L2(Λ(J^))^ (x) L2(^l(^fλ)). Its restriction to L2(^A) is just

It will again be crucial that π\(g) for all geGΛ commutes with dΛ = ̂  3k and
hence also with its adjoint δj. keΛ

Now a second order differential operator acting on CCO(Λ(^Λ)) and leaving
C°°(J2?j) invariant is defined by

, (3.6)
α,/? fc,k'e/l

/ c φ f c '

where c and h are as in (3.1). In other words, HA is obtained from Hλ Λ by the
replacement nλfΛ-+πA. As was the case for the operator (3.5), the closure of (3.6)
determines uniquely a selfadjoint operator in L2(Λ(^>

Λ)) which we continue to
denote by HΛ.

Again, letting ε be 1 on even forms and — 1 on odd forms, the next theorem is a
consequence of the Bott-Borel-Weil theorem.

Theorem 3.1. For small m\J\ the operator $rΠΛ + HA is elliptic. The following
representation holds for the partition function (3.2)

lim TraceLa(J?i)^"iii'^+^} = Tracejr;if ^e- f f lA^ . (3.7)
m-»Ό +

Moreover for all sufficiently small m > 0,

^-'11*.-. (3.8)

Using Lemma 3.2 below, the arguments leading to (3.7) and (3.8) are the same as
those employed in Sect. 2. In fact, in the present context one simply has to work with
the supercharge operator

®Λ= Σ ^= Σ & + #) (3-9)
JceΛ keΛ

which anticommutes with ε, commutes with each πλ

A(g) for geGΛ and satisfies
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Lemma 3.2. The operator

(3.10)

acting in L2 (Λ^fy) is self adjoint and has pure point spectrum. For a given λ andc this
operator is elliptic for all h and the resulting semigroup of trace class, provided m \J\ is
sufficiently small.

Proof. We first prove selfadjointness and the spectrum property. Let
lμ^C™(Λ(&fy be the eigenspace of D^ for the eigenvalue μ^O. Each space lμ is
finite dimensional and is left invariant by the selfadjoint operator H\ with
g>(H$^C™(Λ(<efy Hence the claim follows. To establish the remaining
properties, we will bound the Hamiltonian (3.10) below by a sum of one lattice point
Hamiltonians. In fact, since the Cartan-Killing form on g is negative definite, there
is c>0 depending on c^(k,kr) such that the operator inequality

aβ

^c £ dπttYSdvttW + c Σ dπλ

Λ(Yk

a)dπλ

Λ(Yk

β)b«* (3.11)
α/3 <x.β

holds for all &Φ&', k,k' eΛ. Note that the dπ^Y^) are antiself adjoint operators.
Define N= N(Λ) ^ 1 to be the maximum of the number of fc"s any lattice point k e A
can be coupled to, i.e.

N(Λ) = supΦ{k'\3a,β with c«β(k,k ')*£>} . (3.12)
keΛ

Then by (3.11) we have

-ΏA + HfeΣ Hi, (3.13)
m keΛ

where each summand is a one lattice point operator [i.e. acts only on the kth

component in L2(Λ(JS?jJ)]). More precisely, in L2(Λ(<£ λ)) these operators take the
form

Hϊ=- Ώ-l-^-Nc X dπλ(YΛ)dπλ(Yβ)b*e-idπλ(h(k)). (3.14)
m L <*,β

Therefore it suffices to show that for all small m\J\ each of these one lattice point
operators is elliptic, bounded below and that the resulting semigroup is of trace
class. This, however, follows easily from the fact that Π^O is a second order elliptic
operator, and dπλ(h(k)) and dnλ(Y<y) are first order differential operators and that
Mλ is compact, thus concluding the proof of Lemma 3.2.

In the case of an isotropic Heisenberg ferromagnet (i.e. /^O and c*β(k,k') =
— baβ c (k, k ') for suitable nonnegative c (k, k ')) we may drop the restriction that m \J\
be small in the following way. Consider the Hamiltonian

#^ = #A,^C,h)
(3.15)

= Λ Σ Σ dπλ,Λ(Yx

k-Y^dπλ!Λ(Y^
z a,β k,k'eΛ
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We define H\ by replacing πλ>yl by πλ

Λ. Then the observation that the first term of H\
resulting from the corresponding one in (3.15) is a nonnegative operator yields the
following theorem.

Theorem 3.3. For all /^O, ί>0, m>0,

Also for allJ^Q, t>0

m->0+ Λ

We remark that relations (3.16) and (3.17) continue to hold if bΛβ is replaced by
any negative semidefinite matrix.

It would be an interesting attempt to try to evaluate (3.16) in the limit w->oo.
Note that in the corresponding one lattice point situation (see (2.6)) the limit w-» oo
gives the Weyl character formula. When combined with the zero temperature limit
(ί->0), this could shed some new light on the structure of the ground state of the
Heisenberg quantum ferromagnet [LM1].

4. Lagrangians

In this section we calculate the Lagrangians entering the (formal) Feynman-Kac
formula for the partition function of the generalized Heisenberg quantum
ferromagnet. As a preparation we first determine the Lagrangian for the one lattice
point theory. It will turn out to be convenient to work in real coordinates (see
Sect. 2).

Our first goal is to find the Lagrangian for the Feynman-Kac formula of

where h eg. We recall that on L2(^λ)^L2(Λ(^λ)) by (2.42)

Πltf^-H^HtrS. (4.2)

To exhibit the fact that V$ is a hermitian connection in <g λ, we choose the following
local gauge on g* λ : Given a local holomorphic nonvanishing section s over Vc: Mλ

as discussed in Sect. 2, we set

s0(zHlΦ)iΓΦ) (4 3)
such that s0 is fibrewise normalized. Then any other section φ may be written locally
as φ = s0f, where / is a C°° function on FcMΛ. With the help of s0 a real valued
local 1-form is defined by

0(z)> = Σ Aj(z)dx>, (4.4)
j

where the scalar product is taken in J^λ. Now a short calculation shows that
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applied to φ corresponds to

tτS (4.5)

applied to /. Here the first term in (4.5) is of course

1
(4.6)

and (A, Kh) denotes the canonical pairing of the 1-form A with the Killing vector
field Kh. As in relations (2.19) and (2.24), in the second term of (4.5) we regard heg
as a C°° function on Mλ.

Classically, (4.5) corresponds to the Hamiltonian

>-,VKz) + (/> + Λ(z), A,(z))+l trS(z)

j (4 7)

for/? e Tf Mλ. Again/?2 stands for the length squared of/? with respect to the metric
on Mλ. Applying a Legrende transformation, (4.7) leads to the following classical
Lagrange function:

m m 1
Lcl(z,z)-— z2+— (Kt9Kώ(z) + ih(z)-(A(z) + mKS(z\z)~ trS(z). (4.8)

Here zeTzMλ and Kjf is the 1-form dual to Kh with respect to the metric on Mλ.
Furthermore, after the substitution

z->-/z (4.9)

in Lcl describing the Wick rotation, we obtain the Euclidean Lagrange function

L(z,z)= -— z2+— (Kt9KMz) + ih(z) + i(A(z) + mKf(z\z)--\xS(z). (4.10)
2 2 h h 2

This gives the Feynman-Kac integral representation of (4.1),

j exp\\L(z(s\z(s))ds\ Π dμMλ(z(s)) (4.11)
z(0) = z(ί) lθ J 0^s<ί

on the space of "all loops z( ) on Mλ".
The Lagrange function needed for a Feynman-Kac formula for

(4.12)

is now obtained with help of the following three observations.
First we have to employ the Weitzenbόck type formula (2.32). Secondly, the free

Lagrange function for fermions is well known to be given formally by

(4.13)
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Here ψ*(s) and ψ(s) are time dependent Fermi fields with

(see e.g. [OK] for a detailed discussion). Since we are taking a supertrace in (4.12),
we have to impose periodic boundary conditions for the fermionic field.

Thirdly, in a local gauge the connection Vλ on Λ(<£λ) is obtained from the
connection F0

λ on <£λ^Λ(<i£ λ) by the simple replacement

ΪA-+ΪA + C, (4.14)

(cf. (2.43)-(2.48)). In addition, the relation (2.31) leads to the substitution rule

h^h + Eh. (4.15)

Combining the preceding observations, we arrive at the following Euclidean
Lagrange function :

•-trS(z) (4.16)
2

Note that in (4.16) the term (C(ψ*9 φ9 z), z) represents a typical Yukawa coupling,
while Eh(ψ*9 ψ, z) describes a coupling of the Fermi fields to the external magnetic
field //. We also recall that DK and DS are quadratic in the Fermi fields.

Consequently, (4. 1 2) is given as a Feynman-Kac formula of the form

ψ(θ)=ψ(t) (4.17)

where the fermionic integrations are carried out in the sense of Berezin [Bez] and
& denotes path ordering. Note that the term i(A(z\ z) in the Lagrangian leads to

t
the familiar gauge contribution i§ A(z(s))ds in (4.17); in the particular case of

o
G = SU(2) this becomes /spin x (Area enclosed by the curve z( ) on S2). Expressed
in terms of the projections Qλ(z) of Sect. 2, it is easily recognized as an integrated
Berry phase [Ber] and may be interpreted as a Wess-Zumino term (see the discussion
in e.g. [FS]).

Since the fermions appear only quadratically, the fermion integration may be
carried out formally in the usual way. This results in an effective Lagrangian for the
purely "bosonic mode" z, z. Moreover, we remark that the terms in the Lagrangian
containing h destroy the supersymmetry. In fact, for h = 0, as a consequence of the
Bott-Borel-Weil theorem, (4.17) is indeed a supersymmetric index equal to the
dimension dλ of fflλ. A precise discussion of (4.17) will be given in Sect. 5.
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We turn now to the case with interaction. Here, some more notation is required.
Recall that by z = {z(k)}keΛ we denote an arbitrary point in Mλ Λ = xkeΛMλ. Let
μ = (ra, k\ v = («,&')> with l^m.n^dim]RMλ and k, k'6 A let xm(k) be local real
coordinates for z(k)eVk, where Vk may vary with k (cf. Sect. 2). We define
xμ = xm(k) to be real coordinates for z in VΛ= xkeAVk^M^A.

In analogy to the one lattice point theory the operator

(4.18)
' K °° (y* ^

corresponds to the following operator on CCO(VΛ):

2m Λ

-J £
k,k'eΛ <*β

-ih+\K^+^trSA. (4.19)

Here

is the local real 1-form corresponding to the local (product) gauge over VΛ and
(A, Kγ) is again the canonical pairing of the 1-form A with the Killing vector field
KΎ, where Yeg^. Also we set

keΛ

and VΛ denotes the Levi-Civita connection on Mλ<Λ.
The operator (4.18) corresponds to the following classical Hamiltonian on

+J Σ Σ
k,k' aβ

-ih(z) + (p + A(z), A fc(2))+ trS/1(z) = ̂ °-1(p + A,z)+ trSΛ(z), (4.20)

where pe7"z*Mλ Λ and p2 is the norm of p with respect to the metric tensor
0Λ(z)= ® g on Mλ)Λ at z.

keΛ
To determine the resulting classical Lagrangian via a Legendre transformation

we have to calculate

*-
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Let p-^p* be the canonical isomorphism from T?Mλ Λ onto TxMλ Λ induced by the
metric gΛ. Then (4.20) gives

(4.22)

with z0e TzMλ tΛ being given by

z0= ~iJ Σ Σ ( W*yj(z) + YΪ(z)Kγkβ(z))c"t(k9k'), (4.23)
k,k' Λβ

fcΦfc'

and where the linear transformation

is defined as

D(z)^ = m Σ Σ((P>^z))*r;(z) + (P,̂ ^^ (4-24)
fc,k' α/3

k φ k '

As in Sect. 3 we will assume m\J\ to be sufficiently small such that (1 -fZ>(z)) is
invertible on TzMλ Λ for all zeMλ Λ.

Then, after some straightforward calculations the following classical
Lagrangian results :

Lcl(z,z)=~((l+Z)(z)Γ^^^

-~trSΛ(z)+J Σ ΣWW^fc'). (4.25)
^ k,k' α/5

k φ f c '

To reveal the structure of this Lcl more clearly, we introduce a new metric g on
Mλι/1 by

g(z)=^(z)(l+Z?(z))-1. (4.26)
Then

(z,z)Λ = ((l+Z)(z))-1z)z) (4.27)

is just the length squared of z e TzMλ <Λ with respect to this new metric. Note that g is
invariantly defined. In other words, if in a given coordinatization we write

(4.28)
V

then
^(z^gyW + D^z). (4.29)

Repeating the one lattice point discussion we now derive the Lagrange function
including fermions in the following way. Let

) (4 3°)
keΛ a

be the free fermionic Lagrangian where \j/*(k) and ψ(k) are the Fermi fields for the
lattice side keΛ as introduced in Sect. 3. A local 1-form C on Mλ >yl, bilinear in ψ*
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and ψ, is defined by

C(z)= Σ C(z(*)) = Σ Cm(ψ*(k\ψ(k\z(k))dx», (4.31)
keΛ μ = (m,k)

where the 1-form C(z(k)) of (2.43) is now supposed to act on the kth variable. With a
similar convention

)=£ DR(z(k)),
keΛ

=Σ DS(z(k)), (4.32)
keΛ

Eh(z)=Σ Eh(k)(z(k)).
keΛ

From Sect. 3 it is clear that all these terms are quadratic in the fermionic fields.
Furthermore, in analogy to the prescription (4.15) we apply the rule

. (4.33)

In particular this implies the substitution rule

z0->w0 (4.34)
with

*0=-tf Σ

') . (4.35)

These relations combined with the substitution ί'A-H'A+C finally lead to the
Euclidean Lagrangian

+J Σ Σ(^(2)+Erί(z))(^'(z)+Ey(z))c^(A:,A:'). (4.36)

k φ f c '

The following remarks are in order. First, the interaction described in terms of this
Lagrangian is nonlocal, even if the interaction in the original Hamiltonian is local,
say if cΛβ(k, fc') = 0 unless k and k' are nearest neighbours. This is an effect of the
metric g being such that in general #μv does not vanish for arbitrary μ, v, i.e. the
coupling is not only between nearest neighbours. If one expands gμv in a power series
in /, then the first order terms will couple nearest neighbours, the second order terms
will couple next nearest neighbours, and so on. However, in terms of the
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Hamiltonian

^α+^Λ (4-37)
we have a local theory in the sense that only nearest neighbours are coupled. The
reason for this somewhat unfamiliar picture is that the corresponding classical
Hamiltonian couples nearest neighbour momenta. The situation here is to a certain
extent opposite to the one in the Ising model when viewed as a Euclidean lattice field
theory. There the Euclidean Lagrangian, viz. the negative of the ordinary Ising
Hamiltonian, is local whereas the resulting quantum mechanical Hamiltonian,
defined as (minus) the logarithm of the transfer matrix, turns out to be nonlocal. In
combination with relation (4.37) it would be interesting to see whether the term
i(A,z) in (4.35) or the nonlocality of the Lagrangian is responsible for the known
violation of spatial reflection positivity for the quantum Heisenberg model [Sp].

To enhance our understanding of what is happening in this context, let us
consider the first term in (4.36). The classical equations of motion for the
Lagrangian — (w/2) (z, τ)A are of course just the geodesic equations with respect to
the metric g. When JΦO, its Christoffel symbols are such that the equation for the
acceleration z(k) involes the velocities z(k') for all other k'eΛ. Thus the equations
of motion are nonlocal. This contrasts with the equations of motion for the
Lagrangian — (m/2)(z,z) in the metric gΛ. There each z(k) performs a geodesic
motion on Mλ independent of the other z(k').

In Sect. 6 we shall give a rigorous proof of a Feynman-Kac formula for the
Hamiltonian (4.37) by constructing a horizontal stochastic motion on the bundle
Λ(yfy whose projection on Mλ Λ is a Brownian motion with infinitesimal generator
given essentially (i.e. up to a drift term) by the Laplace-Beltrami operator for the
metric g.

Note also that we have local fermion number conservation for the Lagrangian
(4.36); fermions do not propagate through the lattice. This is of course a
consequence of the fact that the second order differential operator (4.37) on
C°° (Λ(^fy) preserves the local order of the form [where the "local order" of a form
at he A is given by the "number QΪdz^(k) involved"]. Nevertheless, (4.36) contains
4-fermion interaction terms of the Luttinger type ψ*(k)ψ(k)ψ*(k')ψ(k') with
k Φk', k, k' e A which are also nonlocal. This follows from the fact that the E and w0

include terms quadratic in the Fermi fields. Besides these interactions we have again
Yukawa type couplings as well as couplings of both the bosonic and fermionic
modes to the magnetic field h.

The Lagrangian (4.36) gives the Feynman-Kac formula

Trace_

- J ^expjjL(^*,^,z,z)(j)ώ
PBC ί°

(4.38)

where PBC stands for periodic boundary conditions in time: z(0) = z(ί),
ψ* (0) = ψ* (t), and ̂ (0) = ψ(t\ Combining this with (3.8), a Feynman-Kac formula
for the partition function of the generalized Heisenberg model results.
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