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Abstract. Using the space of holomorphic symmetric tensors on the moduli
space of stable bundles over a Riemann surface we construct a projectively flat
connection on a vector bundle over Teichmϋller space. The fibre of the vector
bundle consists of the global sections of a power of the determinant bundle on
the moduli space. Both Dolbeault and Cech techniques are used.

0. Introduction

The new invariants of 3-manifolds introduced by Witten [21] can be approached
by defining a vector space V canonically associated to a closed surface Σ, a Lie
group G, and an integer fc. These spaces are to be thought of as analogues of
cohomology groups, though satisfying different functorial properties [17]. To
define cohomology groups one usually requires a choice of auxiliary structure - a
triangulation, Cech covering, differentiable structure, or Riemannian metric - and
one needs to prove that the resulting space is independent, in a suitable sense, of
that choice. The same is true of the vector spaces required for Witten's theory, and
the aim of this paper is to prove that independence for the case G = SU(m).

The underlying idea behind the vector space V is that of the geometric
quantization of a symplectic manifold M. Given the group G, we consider the space
of irreducible representations of the fundamental group π^Σ) into G:

which is in a canonical way a symplectic manifold M. Multiplying the canonical
symplectic form by the level fe gives it a different symplectic structure. These
symplectic manifolds are clearly canonically associated to the surface Σ. To
quantize them, in the Kostant-Kirillov-Souriau sense, requires a choice of
polarization and one then needs to prove that the space is independent of that
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choice. One type of polarization is a Kahler polarization - we choose a complex
structure on M to make it into a Kahler manifold. This is an appropriate thing to
do in the present context since a choice of conformal structure on Σ induces a
natural complex structure on M which defines a Kahler polarization. As a complex
manifold M becomes, due to the theorem of Narasimhan and Seshadri, the moduli
space of stable holomorphic vector bundles of rank m over the Riemann surface Σ.

For a Kahler polarization, the vector space V one takes for the geometric
quantization is the space of global holomorphic sections of a holomorphic line
bundle L which has a hermitian metric whose curvature form is the symplectic
form ω. It is a general feature of quantization that only the projective space P(V) is
canonically defined - in the presence of group actions on M one tends to get
projective representations or representations of central extensions. This means
that what we look for is a canonical way of identifying the projective spaces for two
different conformal structures on the surface Σ. This may be regarded as parallel
translation for a flat connection on the bundle of projective spaces P(V) over
Teichmϋller space. Given a diffeomorphism / of Σ, one may then compare parallel
translation between the points x and f(x) in Teichmuller space with the natural
action of / from IP(T^) to IP( J/(x)) to get a matrix whose elements enter into the
definition of the Witten invariants. The problem then breaks up into two parts: (a)
find the connection, and (b) prove that it is flat.

In Sect. 1 we consider the situation of a general symplectic manifold and give a
cohomological identification of what such a connection should be. This is framed
in holomorphic terms in what is really the Kodaira-Spencer deformation theory
for a triple (M, L, 5) where M is a complex manifold, L a line bundle, and s a section
of L. A connection is given by a class in the first hypercohomology group of the
complex of sheaves

where 2l(L) denotes the sheaf of first-order differential operators on L and the
map s is evaluation on the section s. [This approach is inspired by a paper of Welters
[20] who essentially deals with the abelian case G=l/(l).] The abstract
cohomological formalism can be made quite explicit and elementary in Dolbeault
terms, but it has the advantage of being accessible by other approaches - exact
sequences and so forth - which enable us to find canonical classes in the required
group.

In the second section we consider the specific case where the symplectic
manifold M is the space of equivalence classes of homomorphisms of the universal
central extension Γ of π^Σ) into SU(m). We consider this case initially since it is a
smooth compact manifold. It corresponds for a choice of conformal structure on Σ
to the moduli space of stable bundles of rank m, degree 1 and fixed determinant.
Some general properties of M as a complex manifold are given including the
identification of the holomorphic line bundle L. The principal result concerns the
infinitesimal deformations of the Kahler polarizations we are concerned with. For
a symplectic manifold in general, such an infinitesimal deformation is given by a
complex symmetric tensor Gij satisfying an integrability condition. In our case this
tensor is holomorphic and can be explicitly described.
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The connection is defined in Sect. 3. Formally speaking it arises from the
coboundary map of a short exact sequence related to the sequence of sheaves

where £^2(L) is the sheaf of second order differential operators on L, S2T the sheaf
of symmetric 2-tensors and σ the symbol map. This formal description can be
realized in two ways - either by a Dolbeault representative which uses the
differential geometry of the Kahler manifold M, or by a Cech representative using
a covering of M by coordinate neighbourhoods. Either way, the connection may
be described by a heat equation. Parallel translation with respect to the connection
means evolving a section s of L along a curve by solving the heat equation. The
differential geometric version is

The holomorphic one is of the form

(Gu^\ . lt , Bat ~ " G

where the holomorphic coefficients apart from Glj depend on the choice of
coordinates and trivialization of L.

In Sect. 4 we prove the flatness of the connection by using the holomorphic
Cech description. The essential point is that the symmetric tensors G1-7, considered
as functions on the cotangent bundle T*M, actually Poisson-commute for general
reasons. This becomes translated into commutation properties of the heat
operators which define the connection (and whose symbols are the tensors Gij) and
hence of the covariant derivatives of the connection. The final section deals with
the general case where the compact space Homίπ^Z); SU(m))/SU(m) is singular.
Here, as in Sect. 4 we make some use of the moduli space of stable Higgs bundles -
a completion of the cotangent bundle T*M - to prove some basic holomorphic
facts about M. Essentially, we work over the smooth open submanifold of
irreducible connections and rely on Hartog's theorem to provide a substitute for
compactness. One of the incidental outcomes of the holomorphic approach is to
note that on the square root X1/2 of the canonical bundle K of M there exists a
natural space of globally defined commuting second-order differential operators.
Its significance is, at least to the author, not clear - there is no connection to be
defined for Kl/2 since it has no global sections.

There exist a number of other approaches to the flat connection, some arising
from conformal field theory where this is a connection on the space of "conformal
blocks." The description of Tsuchiya, Ueno, and Yamada [19] is also algebro-
geometric in nature and, being phrased in the language of ̂ -modules shows how
to extend the connection to stable curves. Allied to this is Segal's point of view [17]
relating to representations of the loop group. The direct approach of Witten,
Axelrod, and Delia Pietra [22], viewing the problem as the relationship between
the quantization of an affine space and its symplectic quotient, leads to the
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differential geometric heat equation above and shows that the connection
introduced in a rather ad hoc manner in this paper is indeed the natural one.

Many aspects of the connection have so far resisted attack by the methods
presented here, most notably the unitary structure which the vector space F should
have. Only in the abelian case does the heat operator preserve the inner product
defined directly by the hermitian structure on L. Also, the behaviour of the space V
under degeneration of the conformal structure is not easily accessible. The method,
or at least the basic ingredients, does however extend to the situation of surfaces
with marked points - the starting point for Witten's knot invariants. The
corresponding moduli space here is the space of parabolically stable vector
bundles. It is easy to produce symmetric tensors and heat operators in this case,
and indeed the explicit connection of Knizhnik and Zamolodzhikov [9,8] can be
viewed as a holomorphic heat equation. However, the modifications of the method
given here to take into account the marked points are considerable and we have
left such discussions until another occasion.

1. Geometric Quantization

The goal of the programme of geometric quantization is to associate to a
symplectic manfiold a vector space, canonically defined up to a scalar factor, and
satisfying certain properties. (The reader may refer to [23] or [5] for more details
of this process.) The recognized method for producing this vector space requires
the choice of a polarization of the symplectic manifold. The difficulty in practice in
carrying out the quantization is in proving that, in an appropriate sense, the vector
space is independent of that choice. Here, we shall consider this general problem
for the case of a Kdhler polarization.

Suppose M2n is a compact symplectic manifold with symplectic form ω. The
symplectic form is a closed 2-form and thus defines a de Rham cohomology class

[ω]eH2(M;R).

If — [ω] is contained in the image of the integral cohomology
2π

then the symplectic form assumes a geometrical interpretation. It is the curvature
form of a connection on a principal [7(1 ) bundle over M, whose first Chern class is

— [ω]. When M is simply-connected, this connection is unique up to gauge
2π
equivalence.

Instead of considering the principal bundle, we may consider the associated C°°
complex line bundle L, which has a hermitian structure and a connection defined
by a covariant derivative
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Now suppose we choose a Kάhler polarization of the symplectic manifold M.
This consists of an endomorphism IeΩ°(M;EndT) of the tangent bundle of M
such that

/ 2 =-l, (1.1)

, J Y] = [X, Y] + /[/*, Y] + J[X, / Y] , (1 .2)

ω(X,/7)=-ω(/X,Y), (1.3)

ω(Jf, IX) is positive definite . (1.4)

By the well-known theorem of Newlander and Nirenberg the first two conditions
give M the structure of a complex manifold and the last two say that g(X, Y)
= ω(XJY) is a Kahler metric, with Kahler form ωeΩ l f l(M).

With a Kahler polarization, we can give the C°° line bundle L the structure of a
holomorphic line bundle by considering the differential operator

r" l:Ω°(M9L)-+Ω* \M 9L)

defined by

(1.5)

[Recall that the complex forms of type (0, 1) are those on which / acts as — i.~]
In local terms, this is a differential operator of the form

(1.6)

and by the Dolbeault lemma, a local solution to

exists if and only if δ(ZΘ/dzί) = Oeί20'2(M;R). This, however, is the (0,2)
component of the curvature of V. In our case the curvature form is the Kahler form
ω which is of type (1,1). Thus the integr ability condition is satisfied and the

has local non- vanishing solutions s. If s and s are two such solutions with s = gs,
dg

then from Eq. (1.6), — =0, and so g is a holomorphic transition function for the
OZi

line bundle L. This gives it its holomorphic structure in the traditional sense. It
means that a local holomorphic section 5 is a solution of the equation P0)15 = 0.

The space of global holomorphic sections of L is by definition the vector space
one takes as the quantization of M relative to the Kahler polarization.

To each Kahler polarization /, we therefore associated the finite-dimensional
vector space

0}. (1.7)

We now need to address the question of the dependence of this vector space on the
complex structure /. The first problem concerns the dimension of Vf: is it constant
as / varies?
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To deal with this, recall that the Cauchy-Riemann operator P0'1 may be
extended to act on (0,p) forms with values in L:

and the corresponding elliptic complex is the Dolbeault complex of the
holomorphic line bundle L, with cohomology groups HP(M; L). The vector space
Fjr = #°(M;L) is the zeroth cohomology group of this complex. By Serre duality,
(see e.g. [4])

Hp(M; L)* s Hn~p(M; KL~ *) ,

where K is the canonical bundle of holomorphic n-forms on M, and by the
Kodaira-Nakano vanishing theorem [4] this space is zero for p>0 if the line
bundle KLΓ 1 is negative, i.e. if the cohomology class —c^KLΓ *) = cv(L) — c^K) is

represented by a Kahler form. Since c^L) is represented by the Kahler form — ω
2π

then for large enough fc, — cί(KL~k) = kcί(L) — c^K) will be represented also by a
Kahler form whatever c^K) is. Thus replacing L by Lk (this change of level k will be
important later on) we will obtain vanishing in the general case. In particular cases,
the relationship between K and L will yield more accurate information about the
applicability of this argument.

This vanishing is relevant because the Riemann-Roch theorem [4] gives an
expression for the alternating sum of dimensions

Σ (-l)MimJP(M L)
p = 0

in terms of Chern classes which are deformation invariants of the polarization on
M. Given the vanishing of £P(M; L) for p > 0 this yields the dimension of F7, which
must therefore be a deformation invariant too.

Suppose now that N is a connected finite-dimensional parameter space of
Kahler polarizations 7. As / varies over JV, the constant-dimensional vector space
Vl defines, by elliptic regularity, a vector bundle V over N. To say that the vector
space Vl is independent of / is to say that given /, J e N there is a canonical
identification of Vl and Vj. Such an identification, if smoothly dependent on / and
J, can be interpreted as parallel translation of a connection on the vector bundle V
over N. Its independence of the path from / to J means it must be a flat connection.
Conversely, a natural flat connection on V will define, for N simply-connected, an
identification of Vl and Vj by parallel translation. This is the context, then, in which
we seek to answer the question of dependence on polarization - to look for the
infinitesimal version which manifests itself in the form of a flat connection. The fact
that the vector space of a quantization should be defined only up to a scalar factor
means that the projectίve spaces P(F^) may be identified. This leads in general to a
scalar ambiguity in the definition of the connection.

With this in mind, let us consider a path It of Kahler polarizations and a
smooth family st of solutions to
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Thus st is a section of the vector bundle V over the path. From (1.5) the
differential equation takes the form

(l+i/t)Fsf = 0.

Differentiating, we obtain

0. (1.8)

A connection on V will therefore be given by a C°° section u(s, ί) of L, depending
bilinearly on a holomorphic section s and a tangent vector / to the space of Kahler
polarizations, and satisfying the equation

= 0. (1.9)

Parallel translation along a path then consists of solving the equation

ds ί dl\

fr=U(S'^i)'

Note finally that since P0>15 = 0, (1.9) may be simplified to

ι7P1 °s+P0 1 f i = (1.10)

We shall eventually give a cohomological interpretation of Eq. (1.10), but first let
us consider what sort of tensorial object / is. It is an endomorphism of the tangent
bundle but since J2 = — 1, we have

In other words / transforms the — ί eigenspace of/ to the + i eigenspace, and hence

/eQ0 > 1(M;T),

where T denotes the holomorphic vector bundle of (1,0) tangent vectors. In local
coordinates,

Linearizing the integrability condition (1.2) for /, we have

dί = OeΩ°'2(M;T). (1.12)

Linearizing the compatibility condition with the symplectic form (1.3), we find that

/= Σ G'St-®^, (1.13)
ij,k dzi

where ω = Σ ωjk^zj Λ dzk is the Kahler form and
j,k

G-ΣG«f®f
ij dZi dZj

is a C00 section of T®T which is symmetric (i.e. Gij=Gji).
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Denoting by S2T the bundle of symmetric tensors of type (2, 0), then we see that
/ is defined by a section G of S2T, satisfying the integrability condition (1.12). In
local terms this condition is:

Σ ^ω^Λdz^O (1.14)
j,k,l OZl

since the symplectic form ω is closed.
Let us consider the question now of finding solutions u(s9 /) to Eq. (1.10). By the

Dolbeault lemma a local solution will exist iff

We check next that this condition does indeed hold. Using (1.13), the left-hand side
is in local coordinates

which, using (1.14) gives

X iG^ωj^(Vis)®dzk^dzl. (1.15)
i,j,k,l l

But since the holomorphic structure on L is defined by Γ°' 1, then

— (Fίs)

using the fact that the curvature of V on L is ω.
Since 5 is also a holomorphic section of L, Fjs^O, and so (1.15) may be written

as

f7S(x)dzfc Λ dzl .

But now the symmetry Gij = Gji implies that this vanishes. Hence we can always
find local solutions of (1.10).

This calculation can also be given a slightly different interpretation in terms of
the first order differential operator i/P1'0. Written locally, we have

1 °s= V iGiJωΛV,

in terms of a local holomorphic trivialization of L.
We now introduce the bundle &k(L\ defined as the vector bundle of

holomorphic linear differential operators of order k on L.
We can also identify it as the bundle Hom(Jk(L),L), where J\L) is the vector

bundle of fe-jets of holomorphic sections of L. The bundles @k(L) fit into short exact
sequences of vector bundles:

Q-+@k-l(L)-+@k(L)-^>SkT-+Q, (1.17)
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where the homomorphism σ is the principal symbol (or highest order term) of the
operator.

With the above definition the local expression of ϊ/F1 > 0 in (1.16) shows that it is
an element of Ω°' *(M; ί$l(L)). The calculation above for the local integrability of
Eq. (1.10) then shows that

a(ι7P1 0) = θ6Ω°'2(M;^1(^)). (1.18)

To reinterpret (1.10) cohomologically we now introduce a complex which
incorporates the basic data i/F1'0 and u of the equation - a (0, 1) form with values
in 2\L) and a C°° section of L.

We set
p-\M\L), (1.19)

and define ds:A
p-+Ap+ί by

Since 3s = 0, it is easily checked that ά2

s =0 and so we obtain a complex. The pt

cohomology group of this complex we denote by

With this formalism we see that (i/F1>0, u) can be viewed as an element of A1 and
the two equations (1.18) and (1.10) become

Thus any solution to (1.10) defines a cohomology class in H^M ^L)). This
cohomology group - a hypercohomology group of a double complex (see [20]) -
lies at the heart of the existence of the flat connection. It has the advantage of being
viewed either from the Dolbeault point of view, as we have done here, or the Cech
point of view which gives extra information as we shall see.

For the moment, note that the symbol map σ [see (1.17)] applied to
DeΩOΛ(Mι^ί(L)) gives a homomorphism of cohomology groups

In our context, σ(/F1'0,M) = [/] is the Kodaira-Spencer deformation class
corresponding to the infinitesimal deformation / of the complex structure of M.

The Kahler form ω = ̂ ωi-jdziAdzjEΩ()Λ(M; T*) also defines a cohomology
class [ω] eH1(M:> T*) and a cup product map

[ω]:H°(M 9T)-+Hl(M;Θ)9

defined at the Dolbeault level by
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for the holomorphic vector field X=ΣXί^-eH0(M; T). Using this notation, the
ΐ vZi

role of the hypercohomology group in defining a connection may be expressed by
the following theorem :

Theorem (1.20). Let Mbea compact symplectic manifold and L a line bundle over M
with connection whose curvature form is the symplectic form ω. Suppose we have a
family of Kdhler polarizations of M such that for each polarization
i) [ω] : H °(M; T}-+H\M\ Θ] is an isomorphism.

ii) For each holomorphic section SEH°(M;L) and tangent vector ί to the family
there exists a smoothly varying cohomology class

such that — iσA(ί,s) is the Kodaίr a- Spencer class [7]e/ί1(M; T).
Then A defines a connection on the bundle of projective spaces P(H°(M; L)) over

the family. [As we shall see, condition (i) says that there are no holomorphic vector
fields which fix the line bundle L.J

Proof. Firstly let us interpret condition (i) in the theorem. As in (1.17), the
holomorphic bundle ^(L) appears in an exact sequence

where °̂(L) ̂  0 is the trivial bundle of 0-order differential operators. This exact
sequence defines ®1(L) as an extension of β by Tand hence by a sheaf cohomology
class in Hl(M; T*). This is a multiple of the first Chern class

by the Atiyah interpretation of characteristic classes [1].
Taking the exact cohomology sequence we have

; T) — H\M; 0)...

\ T)-+H2(M; 0)

Condition (i) tells us that H°(M;^)^H°(M;^1(L)), in other words that the only
globally defined holomorphic first order operators on L are multiplication
operators by a holomorphic function. Since M is compact these are just constants.
It also says that the natural symbol map H\M\2i(L))^Hl(M\ T) is injective.

Suppose then we are given A(i9s)efJ£(M'9&
l(L)) as in condition (ii) of the

theorem. We represent the class by a 1-cocycle

(Z), w) e Ω°' \M\

Since -iσ(D)eΩ°'1(M; T) is cohomologous to / then D and i/P1 '0 have
cohomologous symbols and hence by the above injectivity are cohomologous in

\ i.e. there exists PeΩ°(M;&l(L)) such that

= 3P. (1.21)
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Since

and hence w = Ps + w gives a solution to (1.10).
Let ul9u2 be solutions to (1.10) such that (i/F1'0,^) and (ι7F1'°,M2) are

cohomologous in H^M ^L)). Then

From the definition of ds this means that

and
u2 — u1=Ps.

However condition (i) says that the only global holomorphic sections of ®*(L) are
constants, so P is a constant c and u2 = u1 + cs, i.e. w is well-defined up to a multiple
of s. This ambiguity is precisely the indeterminacy to obtain a connection on the
projective bundle rather than the vector bundle.

Note that this uniqueness also gives the bilinearity of the dependence of u on /
and 5.

This is as far as the general theory of Kahler polarizations will take us. We
consider next the more specific symplectic manifolds that arise from represen-
tations of surface groups.

2. Spaces of Representations

The manifolds to which we shall apply the above process of geometric quantiza-
tion are spaces of equivalence classes of representations of the fundamental group
of a compact oriented surface Σ of genus g > 1 into a compact Lie group G. We
consider then the space

of homomorphisms from the fundamental group π^Σ) to G and the quotient space

by the conjugation action of G.
Since π^Σ) is a group with 2g generators AίίB^...,Ag,Bg satisfying the one

g
relation Π [Λ »-BJ = 1> Λis compact space has an explicit description, but

unfortunately is rarely a manifold because of the existence of reducible represen-
tations and in particular the trivial one. At an irreducible representation it is
smooth, with tangent space the cohomology group if 1(π1(Σ); <?) - the cohomology
of the Lie algebra of G considered as a π^ΣJ-module.

There are, however, compact spaces of representations which are smooth
manifolds (see [2]) if we replace the fundamental group n^Σ) by its universal
central extension
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9

generated by A^ Bί9 ...,Ag,Bg and the central element J satisfying f] \_A^ B^\ = J.
i= 1

The space of equivalence classes of representations of Γ into SU(m) such that J
maps to a generator of the centre Έ/m is a smooth compact manifold M.

The spaces we have just defined as manifolds are not yet canonically symplectic
manifolds. This additional fact becomes apparent by adopting the point of view of
Atiyah and Bott [2] and interpreting via the holonomy representation the above
spaces as spaces of gauge-equivalence classes of flat connections over Σ. If P is a
principal G-bundle over Σ, then the infinite-dimensional affine space si of all
connections on P is canonically a symplectic manifold: a tangent vector to j/ is a
Lie-algebra-valued 1-form αeΩ^Z adP) and

ω(αl5α2) = JB(α 1Λα 2) (2.1)
Σ

defines a non-degenerate skew form where B is a bi-invariant positive definite inner
product on the Lie algebra. For G = SU(m\ we have

ω(αl5 α2) = - J Tr(αx Λ α2) . (2.2)
I

Since ω is a constant form it is closed. The infinite-dimensional group ̂  of gauge
transformations (automorphisms of P) acts on j/ preserving the symplectic form ω
and has moment map

μ : j3/->Lie(^)* * Ω°(Σ; adP)* ,

defined by

The reduced phase space, or Marsden-Weinstein quotient

then has an induced symplectic structure. This space is precisely the set of gauge-
equivalence classes of connections A with FA = 0, i.e. flat connections, and hence a
space of representations of π^Γ). The central extension case considered above may
similarly be interpreted either as the gauge equivalence classes of U(m)-
connections with central curvature or via a refined notation of equivalence for flat
PU(m)-(= l/(m)/centre)-connections. In either case the symplectic formalism goes
through and we are left with a symplectic manifold (M, ω) of equivalence classes of
representations of an abstract group.

With the flat connection interpretation, the tangent space to M is the first
cohomology group HA(Σ; adP) of the complex

Ω°(Σ; adP)— Ω^Σ; adP)— Ω2(Σ; adP) (2.3)

defined by the co variant exterior derivative dA. The symplectic form is obtained by
applying (2.1) to any two representatives α l 5α2 of Hΐ(Σ;adP). Since

co(dAψ9 α) = J B(dAψ Λ α) = J dB(ψ, α) = 0 ,
Σ Σ

the result is independent of the choice of representative.
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By irreducibility of the connection the zeroth cohomology group of (2.3)
vanishes and then by duality and the index theorem,

= 2g for G=L/(1)

= (2g - 2) dim G for G semi-simple . (2.4)

There is a natural way to produce a Kahler polarization of this symplectic
manifold and that is to choose a conformal structure on the surface Σ and make it
into a Riemann surface. This consists of the choice of a Hodge star-operator * (or
complex structure /) on Ωi(Σ):

* 2=-l.

With this choice each cohomology class in //^(Γ adP) has by Hodge theory a
unique harmonic representative α:

(A /y = n

'*α = 0 (15)

We define an endomorphism / on this space of harmonic forms by

/α=-*α. (2.6)

Since for any 1-form

then

— ω(/α, α) = ω(α, /α) = — J B(α Λ * α) ̂  0

and conditions (1.1), (1.3), and (1.4) for a Kahler polarization are then easily seen to
hold.

This particular choice of/ defines by the same argument a Kahler polarization
on the infinite-dimensional symplectic manifold Λ/, making it into a complex affine
space. For general reasons this induces an integrable complex structure on the
quotient, satisfying the condition (1.2) for a polarization of M.

In fact, there is a much more explicit description of this complex structure. For
the moment, to place ourselves firmly in the context of smooth manifolds, let us
assume that M is the compact manifold of equivalence classes of representations of
Γ into SU(m) with J generating the centre of SU(m\ denoted by
Hom^ΓjSlfyn^/Sl/ίw). Then M is the space of gauge-equivalence classes of
connections on a fixed rank m hermitian vector bundle E of degree one, and with
fixed central curvature.

The complex structure / on jtf identifies si as the complex affine space of
Cauchy-Riemann operators on E obtained by taking the (0,1) part of the
connection just as in (1 .5) - the space Ω0> l(Σ; adP) is by the definition of/ the space
of tangent vectors to $0 of type (1,0).
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Restricting to the connections with central curvature, the theorem of
Narasimhan and Seshadri (see [2,12]) provides the explicit description of M as a
complex manifold. This theorem states that a holomorphic vector bundle E on a
compact Riemann surface Σ is stable if and only if there exists a unitary connection
with central curvature compatible with the ^-operator on E. Here stability means
that for each holomorphic subbundle UcE,

deg£7 degE

rank U rank£'

It follows, as discussed in [2], that the moduli space of equivalence classes of stable
bundles of rankm, degree one and fixed determinant can be naturally identified
with the holomorphic structure on M defined by the Kahler polarization above. It
is a smooth projective variety of complex dimension n = (g — l)(m2 — 1) [cf. (2.4)].

Of course, for G=C/(1), we obtain also a smooth manifold. With this
polarization it is just a component of the group of holomorphic line bundles on Σ -
the Picard variety. Each component is isomorphic to the complex torus

We need now to establish some basic properties of Mn as a Kahler manifold.
The first is to identify the line bundle L of Sect. 1, and its holomorphic structure
relative to the polarization. Quillen's work [15] on determinants of Cauchy-
Riemann operators does this - the Kahler form on si defined above is the
curvature of a unitary connection on the determinant bundle of the universal
family of Cauchy-Riemann operators

parametrized by si.
Replacing E by adP = End0E, the bundle of trace zero endomorphisms of E, we

obtain another determinant line bundle for the family of operators

ΰA : Ω°(Σ; End0E)-»O°' l(Σ; End0E) (2.7)

whose curvature is a positive integer multiple λω of the symplectic form. The
integer λ may be calculated (see [2]) by the Grothendieck-Riemann-Roch theorem
or its formal equivalent.

These two properties pass to the symplectic quotient M, so we may identify the
line bundle L with the determinant bundle for the family of stable 3^-oρerators. In
the stable situation there are no holomorphic sections of End0£ (a vanishing
theorem using the flat connection will prove this) so the determinant bundle for
(2.7) is the line bundle ΛnHl(Σ\ End0£). However H\Σ\ End0£) is represented by
the harmonic solutions to (2.5) of type (0, 1), and thus using the complex structure /
is the holomorphic tangent space. Thus the canonical bundle K of holomorphic
n-forms on Mn is related to the line bundle L by

K^L~λ. (2.8)

From this we see that for every fc> 0, the line bundle KLΓ k = LΓ(λ+k} is negative and
so in particular the Kodaira-Nakano vanishing theorem guarantees that
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H°(M;lf) has constant dimension for Kahler polarizations of this type. Taking
k = 0 it also tells us that

H1(M'9β) = Q. (2.9)

There are two further properties of M we shall need, which were established by
Narasimhan and Ramanan [11]. The first is the non-existence of holomorphic
vector fields

H°(M;T) = 0. (2.10)

The second concerns the infinitesimal deformation map ρ:H1(Σ;K~l)
-^H1(M; T) which associates to each deformation of complex structure on Σ the
corresponding deformation of complex structure of M:

Q\H\Σ\K~^H\M\T} is injective. (2.11)

We shall in Sect. 5 give independent proofs of these results when we deal with the
case where M is singular.

Having reached the point of considering deformations of complex structure, we
should address now the question of finding the symmetric tensor G which gives rise
as in (1.13) to the infinitesimal deformation of a Kahler polarization of M.

An infinitesimal deformation of the conformal structure * on Σ is [cf. (1.11)] a
Beltrami differential

\Σ;K-1). (2.12)
az

We have from (2.5) and (2.6) that the (1,0) tangent vectors at a point of M are the
d^-harmonic forms in Ω°'1(Σ;End0E) and thus representatives for classes in the
Dolbeault cohomology H^Σ EndoE). Similarly the (0,1) vectors are harmonic
forms in Ω1'°(Γ;End0£), i.e. holomorphic sections of End0£(x)K over Σ. Thus

and as in (1.11), if / is the infinitesimal deformation of complex structure of M,

/ . y^O, 1 ) j^l,0

Lemma (2.13). If Xe T°' 1 is given by a holomorphic section α of End0£® K, then
1'0 is represented in H^;End0E) by

Proof. Consider a 1 -parameter family of deformations *(ί) of conformal structure
on Σ and the corresponding family I(t) of complex structures on M. Then
oceΩί(Σ;End0E) can be written as

for some form h harmonic with respect to *. Differentiating at ί=0,

ψ and ft = α. (2.14)
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Now by the definition of /,

/[α] = [

Hence differentiating

v>] from (2.14).

But now / transforms Γ0)1 to T1>0, thus this class is represented by a harmonic
(0, l)-form /?, i.e. there exists φEΩ°(Σ;End0E) such that

Since ίeΩ^^Σ K'1) and α6Ω%£;End0£),*αis already of type (0,1), so

and

which proves the lemma.
To find the symmetric tensor G corresponding to / all we need to do from (1.13)

is to use the symplectic form to give an isomorphism

and then compose with /: T0'1-*!11'0. The isomorphism

ω" * : H\Σ\ End0E)*-+H°(Σ; End0E®K)

is however precisely Serre duality - the bilinear pairing

H°(Σ;End0E®K)®Hl(Σ;End0E)-+H1(Σ;K)^<C

defined by

JTφΛjS).
Σ

Thus, considering G as a quadratic function on the holomorphic cotangent bundle

we have from Lemma (2.13)
2)4:, (2.15)

where Ύΐa2eH°(Σ',K2) is, for aeH°(Σ;End0E®K) a holomorphic quadratic
differential.

Note that G only depends on the cohomology class of ^eΩOΛ(Σ;K~'L) in
H1(Σ'yK~i)- the Kodaira-Spencer class - and depends holomorphίcally on M from
its cohomological description. It is clear also, ignoring the origins of G, that any
holomorphic symmetric tensor will satisfy the integrability condition (1.14) and so
give an infinitesimal deformation of Kahler polarization.
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We put this result more formally as follows:

Proposition (2.16). The cup product map

Σ; End0E® K)-+Hl(Σ; End0E)

defines for each infinitesimal deformation of conformal structure of Σ a holomorphic
symmetric tensor G on the moduli space of stable bundles M which is the
corresponding infinitesimal deformation of the Kάhler polarization.

3. The Connection

In the previous section we saw that the infinitesimal deformation coming from a
standard Kahler polarization on the symplectic manifold

M = Horn! (Γ; SU(m))/SU(m)

arose from a holomorphic symmetric tensor

On the other hand Theorem (1.20) says that to define a connection on the vector
bundle V over a family of Kahler polarizations we need a class in the
hypercohomology group TΆl(M\S$l(L)\

There is a canonical way of associating to a holomorphic symmetric tensor
such a class. It stems from the following short exact sequence of (very short!)
complexes of sheaves

0 - »^(L) - >@2(L)-^S2T - >0

i „ I* 1 e 1)
0 - > L — 1+ L - > 0 - >0.

The top row is just the sequence (1.17) for the sheaf ̂ 2(L) of second order operators
on L and the vertical homomorphisms consist of evaluating the differential
operator on a given section s of L. There is a corresponding long exact sequence of
hypercohomology groups

O^JHJ(M;®XL)HHJ(M^ (3.2)

It is the coboundary map δ which concerns us here. There are two ways to go from
this abstract cohomology formalism to explicit formulas - we can represent
cohomology classes by either Dolbeault or Cech representatives. Let us first
consider the Dolbeault version of (3.2). We also introduce the level k - that is, we try
to quantize the symplectic manifold M with symplectic form kω for a positive
integer k. This means replacing the line bundle L by lί.

Now from the definition of the complex (1.19) which defines the hypercoho-
mology groups Hf,
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Thus to describe <5(G), for Ge#°(M;S2T) in Dolbeault terms, we choose a C°°
section A of @2(L) such that σ(A) = G, ana then consider

dJ(A90) = (VΔ,-As). (3.3)

Since the principal symbol of the second order operator A is holomorphic, dA is
first order, an element of ΩQ>\M\@\L)} and (3.3) defines the class

Using the connection V on lί and the Levi-Civita connection on the Kahler
manifold M, there is a natural choice for A - the complex Laplace-Beltrami
operator

(3.4)

This is a second-order differential operator on lί with symbol G as required.
To find the hypercohomology class we take dA or equivalently we use the (0, 1)

part of the connection on the tangent bundle T of M and Lk. From (3.4) we have for
any local holomorphic section s,

Now Σ G '̂P S® — is a section of lί® T. The curvature of the connection on this

bundle gives

vp} = Σ (R-u +

where R^ is the Ricci form.
But

, since G is holomorphic

since s is holomorphic and the curvature of V on lί is feω. Hence, finally

ViΔs) = Σ (RΊi + 2kωlί)GiΨjs + fc Σ (^ W (3.5)
i»7 i.y

We can now prove the following:

Theorem (3.6). TΛe c/αss f G) eH^M;^1^)) dζf'nβs ϋία Tteorem(1.20) α

connection on the bundle of projective spaces P(H°(M; Lk)) oi ^r ί/ze family of Kahler
polarizations arising from a family of conformal structures on Σ.

Proof. First note that from (2.9) and (2.10), condition (i) of Theorem (1.20) holds. It
also holds in the abelian situation M = Hί(Σ;@)/Hi(Σ;'Z), where the symplectic
form ω is constant and positive definite.
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ζ(/~*\

If we take — — — = A(ί, s) in the theorem, then to obtain a connection we
(2k + λ)ι

simply have to check that

is the Kodaira-Spencer class.
From (2.13) and (2.15) the Kodaira-Spencer class is represented by

= Σ GVωjΊί-®dzk9 (3.1)
ί,j,k

whereas from (3.5), σδ(G) is represented by

d
zk. (3.8)

On the other hand, the Ricci form

represents the first Chern class of M, and from (2.8) this is cohomologous to λω.
Thus σδ(G) is also represented by

- σδ(G) = (2k + λ) [/] e Hl(M\ T) ,

thus proving the theorem.
We can, in fact, be a little more explicit about the form of this connection.

Firstly, since the Ricci form and λω are cohomologous we may define a real
function - the Ricci potential F characterized by

and normalized by the condition that its integral over M is zero. Thus (3.5) can be
written as

.. d2F
Vi(Δs) = (2k + λ)Σ GlJωflViS-2iΣGIJ Vp-kΣ(^iGlJ}ωβs>

and so, since G is holomorphic,

= (2fc + A)ΣG y.
ij

(3.10)
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The (0,1) form

is ^-closed from its origins in Theorem (1.20) and since Hί(M;Φ) = Q9 there is a
function /G, uniquely defined up to an additive constant, such that

3fo = θG. (3.11)

Thus (3.10) may be written as

ΆJ7 \
As + 2iΣGij— ΐjS + kfeS ) = -(2k + λ)^Gijωβ^s, (3.12)

ιwhere

From (1.9), parallel translation with respect to this connection then consists of
solving the differential-geometric heat equation

(3.14) Remarks. 1 . In the abelian case, then a simplification occurs. First of all, the
natural Kahler metric on the Jacobian torus is flat, so the Ricci tensor is zero and
λ=Q. Secondly, the holomorphic sections of S2T are just quadratic expressions in
global holomorphic vector fields and as such are co variant constant. Consequent-
ly (3.5) becomes

u

and we can take

as the heat equation defining the connection.

2. Although negative values of k have not been considered here in the context of
geometric quantization, note that putting 2/c=— λ, Eq. (3.12) tells us that the
second-order operator

is holomorphic. In the exact cohomology sequence of the sequence of sheaves
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this is clear from δ(G) = QeHi(M;@i(L-λ/2))^H1(M; Γ), but we have here an
explicit differential geometric formula for this operator. The operators (one for
each Gij) act on L~λ/2^X1/2 from (2.8). There are, however, no global sections of
Kί/2

9 nor cohomology groups of higher degree, to get a global space on which the
operators act.

We have now found in Theorem (3.6) a connection. We shall need the
alternative Cech description of the coboundary map δ in order to proceed further.

First consider the Kodaira-Spencer class of a deformation of complex structure
from the Cech point of view. We have a holomorphic fibration Z-̂ -> B over some
open set £cCfc with coordinates (ί1? ...,ίfe) such that each fibre is a compact
complex manifold M". With a suitable Stein covering of Z we choose on each open
set U of the covering a coordinate system of the form

(z1? ...,zn, ί1? ...,ίk)

and consider the holomorphic vector fields - - on l/α, (A = 19 ...,fc).
MA,*

On an intersection UanUβ, the vector field

ίd ίd
 -X* (315)70ΰ;~70ΰ7-

 x
«
 ( }

projects to zero in B and hence is a Cech representative for a class in H1(Mt; T) for
each t e B. This is the Kodaira-Spencer class for the infinitesimal deformation of
complex structure of Mt in the direction tA.

If we additionally have a holomorphic line bundle L on Z, inducing a family
(Mf,Lf) of complex structures and line bundles, then on each open set UΛ9

sufficiently small, we can trivialize L and then interpret - - as a first order
MA,**

differential operator on L over l/α. On the intersection UΛnUβ, then XΛβ in (3.15)
from this point of view is a Cech cocycle for a class

[X^\eH\M^(L)) (3.16)

whose symbol class is the Kodaira-Spencer class. This defines the deformation of
holomorphic structure on L in the direction tA. (Note that different choices of L on
Z are possible: L and L®U for U pulled back from the base B define the same
bundle on each fibre.)

Now consider the coboundary map (3.2)

δ : #°(M; S2T)->HS

1(M;

from the Cech point of view.
Given a global section G of S2T9 we choose on each open set M nl/α of M a

holomorphic section Aa of ^2(L) over Mnl/β, i.e. a holomorphic locally defined
second order differential operator on L. On the intersection MnUaπUβ, ΔΛ — Δβ

defines a section of ®1(L), since the principal symbols Gα, Gβ agree as G is globally
defined. A Cech representative for δ(G) is then a pair of cocycles

(At-Ap-Aj) (3.17)

in C\M\2\L)}®C\M\L) [cf. (3.3)].
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If we now have a holomorphic family of Kahler polarizations we can put
the connection defined in Theorem (3.6) in Cech form. In fact, since

ς ΐfi \

— — — ry- e H 1(M; T) is the Kodaira-Spencer class of the infinitesimal deformation
(2k, -f /t )

in the direction tA, with GA the corresponding symmetric tensor, then from (3.17)
and (3.16),

where DAtΛeC°(M ;&(!?)) defines the coboundary DAtβ — DAtΛ. Thus

' on u "u" {3 18)

and we obtain a globally defined holomorphic heat operator

~
dtA

d
Note that neither the "Laplacian" part PA nor the "time derivative" - — are

d A

globally defined but (3.18) shows that the combination - -- \-PA is indeed global.
ctA

This heat equation is well-defined up to the addition of a constant since under
hypothesis (i) of Theorem (1.20), Jff°(M ^L*))̂ . A covariant constant section
of the vector bundle Vt = H°(Mt, Lfe

f) (the direct image sheaf p*Lfc) over the family will
be a solution of the heat equation (3.19). In any local coordinate system and local
trivialisation of Lfc, therefore, parallel translation along a holomorphic curve is
given by solving an equation of the form

+ΣH*te+KAS}=^ (3.20)
dt y dt \tj Adzidzj t dZί

 A J v ;

Since a holomorphic section of lί is determined by its value on any open set, this
provides a local means of determining the connection. The same is true of the
differential geometric heat equation (3.13), but there we always need local
differential geometric information about the metric and curvature to write it down.

In both the Dolbeault and Cech descriptions of the connection, there is an
indeterminacy in choice, reflecting the fact that the connection is really defined
only on the project! ve space bundle P(#°(M; Lfe)). This choice, and its dependence
on fe, is most explicitly given in the differential geometric formulation (3.1 1). There
we considered the (0, 1) form

( ΆΊ7
liGZatfl—

OZί

and chose a function fA such that
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If f A 9 f A are two choices then fA—fA is holomorphic and therefore a constant
CA. The heat equation (3.13) then changes by an additive constant

ikcA

(2k + λ)'

In the Cech formulation, this constant ambiguity appears in the choice of local
holomorphic differential operator DA(X. In this context, we may regard DA α as
varying holomorphically with respect to the base variable t e B.

Making a choice of heat operator I h PA ) over each open set Ua in a

general complex base space, the difference on an intersection of two sets UanUβ

defines a holomorphic function

ikcA(ή
(2k+λ)

on the intersection and hence a holomorphic 1-form

(3.21)

which represents a Cech cohomology class in H1(B; Tg). If this class were to
vanish, then by judicious choices of fA, we could find a well-defined holomorphic
connection on the vector bundle V. This obstruction is called the central charge,
since if we had a connection with central curvature on V, then the curvature would
represent the same class [at least if B was a compact Kahler manifold so that

Thus far, we have said little about the curvature of the connection defined in
Theorem (3.6). Note that the holomorphic description by Cech cohomology shows
that for a holomorphic family the connection itself is holomorphic and thus the
curvature is of type (2, 0) - the (1, 1) and (0, 2) components already vanish. Note also
that to prove flatness it is sufficient to consider holomorphic families since the
deformations we are considering arise from deformations of conformal structure
on Σ and these are holomorphically parametrized by a complex manifold -
Teichmύller space.

In the next section we shall prove flatness by using the Cech formalism, and
some basic facts about symmetric tensors GeH°(M;S2T) on M.

4. Integrable Systems and Flatness of the Connection

The symmetric tensors G e H°(M; S2T) which yield the infinitesimal deformations
of Kahler polarizations were defined in (2.15) by

where αe#°(Γ;End0£(x)jK) is considered as a cotangent vector to M,
Trα2 e H°(Σ; K2) is a quadratic differential and * e Ώ°' i(Σ; K~ 1) is a deformation
of conformal structure.



370 N. J. Hitchin

This definition represents G explicitly as a holomorphic function on the
cotangent bundle T*M which is homogeneous of degree 2 in the fibre directions.
We may define more functions of this type of homogeneity / simply by taking
βeΩ^^Σ K'1-1) and defining

H(*) = ITτ(of)β. (4.1)
Σ

Proposition (4.2) (see [7]). With respect to the canonical holomorphic symplectic
structure on T*M, any two functions Hl9H2 of the form (4.1) Poisson-commute.

Proof. This is a very general fact. Following [7], we prove it by appealing to
infinite-dimensional symplectic geometry. As in Sect. 2 we consider si to be the
complex affine space of all Cauchy-Riemann operators on a C°° vector bundle E,
with an action of the group <&c of C°° automorphisms. This action lifts to a
symplectic action on the cotangent bundle

T*j/SJ/xO l ! 0(r;End0JE).

A point of T*^ consists of a pair (ffA, α) and the function H in (4.1) is clearly well-
defined as a function on T*«a/, independent of the ^/-variables. Since the
j/-variables and βlf°(Σ;End0E)-variables are conjugate with respect to the
canonical symplectic form, the two functions H^ and H2 certainly Poisson-
commute on T*^.

Now the moment map for the action of &c is

so the Marsden-Weinstein quotient (here in the complex case) consists of the
equivalence classes of pairs (^A, α) such that dAa = 0, i.e. α 6 H°(Σ; End0E(χ) K). If we
restrict to the stable holomorphic structures dA on E, then this is just the cotangent
bundle T*M of the moduli space of stable bundles.

Now Hί and H2 are invariant under the action of ^c, since it acts on α by
conjugation and Tr(α') is conjugation-invariant. Hence being invariant under &c

and Poisson-commuting, they inherit the same property on the quotient T*M,
where they are of course holomorphic.

In the above proposition we restricted attention to stable complex structures,
but in fact there is a notion of stability for a pair of objects - a holomorphic vector
bundle E of rank m over Σ and a Higgs field α e H°(Σ; End0£®K). This definition
is the standard stability criterion for subbundles UcE as in Sect. 2, but restricted
only to those U which are a-invariant. (In [6], which deals with the rank2 case these
are called "stable pairs." In [18], which holds for general rank - and dimension of
the base Σ - they are called stable "Higgs bundles.") There is a good moduli space
for these Higgs bundles (see [6,18,13]) denoted by Jl2n which contains T*M" as
an open set and is a (non-compact) complex symplectic manifold, extending the
canonical symplectic structure on T*M. Functions of type (4.1) are well-defined on
Jί and Poisson-commute there. It follows from [6, 7, and 18] (see also [3]) that
these holomorphic functions make M into a completely integrable Hamiltonian
system. More precisely:

Proposition (4.3). Let V= 0 H°(Σ;K\ and define p: J?2n->V by
i = 2
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then
i) p is proper,

ii) dim^ = 2dimF=2tt,
iii) the n functions pt defined by p Poisson-commute,
iv) the generic fibre of p is an abelian variety.

These properties of the moduli space M allow us to deduce the following property
of the vector space of holomorphic tensors on M, the moduli space we are
primarily interested in:

Proposition (4.4). The linear map

f:H1(Σ;K'1) ^H°(M;S2T)

defined by

for αeH0(i;;End0£(χ)X) and βeΩ^^Σ K'1) is an isomorphism.

Proof. The method of proof is to take Ge#°(M;S2T) and think of it as a
holomorphic function of degree 2 on the cotangent bundle T*M. We then want to
extend it to a holomorphic function on M by Hartog's theorem. To do this we
should prove that the codimension of the complement of T*M in M is greater than
one.

Recall that (see [2]) every holomorphic bundle E has a canonical filtration

by bundles for which D—EJE^^ is semi-stable and

degP2
> rkD2

 >'"

This type determines a stratification of the space of holomorphic structures on
E, whose maximal stratum consists of the stable structures. There is a natural
partial ordering on the strata (cf. [2]) which shows that the maximal strata in the
complement of the stable structures consist of holomorphic structures which are
extensions

0-> [/!->£-» 1/2 ->0 (4.5)

where μ(Ul)>μ(U2) (μ(U) = degU/rkU) and Uί and l/2 are stable. For stable
bundles it is a standard fact that if μ(U)>μ(V) then there are no non-trivial
homomorphisms from U to V, and it follows from this that E is uniquely
expressible as an extension in this way.

The stratification induces one on the Higgs bundle moduli space Ji, the
maximal stratum being T*M. We wish to estimate the dimension of the space of
stable Higgs bundles of type (4.5). First note that in order for E to appear as a stable
Higgs bundle, there must exist a Higgs field α for which U^ is not invariant. In
particular, H°(Σ; Usf®U2®K)ή=Q. Conversely, if this holds, it is easy to construct
a stable Higgs field on Uγ φ U2. This condition on U1 and l/2 is therefore necessary
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and sufficient to determine the relevant extensions. We may remark that by Serre
duality Hi(Σ; l/fφl/^φO so that non-trivial extensions exist.

Let deg Ut = fef and rk Ut = nt. Since Ut is stable its holomorphic structure is
parametrized by a moduli space of dimension nf(g — 1) + 1. We are fixing the
holomorphic structure on AmE, which yields the number of parameters for
choosing Uί and U2 as

For fixed U1 and ί/2, the holomorphic structures E expressed as extensions (4.5)
are parametrized by P(/ϊ1(Σ;l7|®C71)), so we have an additional number of
parameters

Finally, stability of the Higgs bundle implies that the automorphisms of E act
freely on the stable Higgs fields, so for each choice of holomorphic structure on E,
the number of extra parameters is dimH0(Σ;End0E®K)-dimH°(Σ',End0E)
which by Riemann-Roch and Serre duality is

The dimension of Jί is 2((n1 + n2)
2 — 1) (g — 1), so from the above expressions

the codimension of the stratum we are considering is

c = 2nίn2(g-l)-dimHi(Σ;U%®U1). (4.6)

To estimate c we use two methods. For the first, we choose a positive integer a such
that

HI n2

Let L be a line bundle of degree a with a section s. The inequality above implies
μ(U 2®L)> μ(U ̂  and hence #°(Σ; f/J ® [71®L*) = 0. By Riemann-Roch

Tensoring with the section s gives a surjective map of this space to H\Σ\ L/f ® C7J,
so

Now if ίί is the smallest positive integer with the property above, then

ί-iss^-A
Λ! n2

and it follows that dimfί1(Σ;l7|®£71)^n1Π2g Hence from (4.6) we obtain

2). (4.7)

This inequality establishes that the codimension is at least 2 if g > 3 or if g = 3 and
rk£>2 but not for g = 2 or g = 3 and rk£ = 2. To deal with these cases we use a
second argument.
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Consider a holomorphic section u of K and the exact sequence of sheaves:

where D is the divisor of u, of degree 2g — 2 = degJ£.
Since μ(Ui)>μ(U2\ H\Σ\ U$®U2) and its Serre dual H\Σ\

vanish, so from the exact sequence of cohomology groups

dimH°(Σ; U^U^^-dimH^Σ; U* ® C7J

Now sections of vector bundles can be interpreted as sections of line bundles:
H°(Σ; C7J® l/J = #°(P; t7) where P is the projective bundle of l/J® l/ί and [/ the
hyperplane bundle along the fibres. Consider the map

P(#°(P; I/)) x P(#°(P; K)HP(H°(P; C7® K))

obtained by adding effective divisors. It is finite-to-one, so

dimH°(P; U)- 1 + dim#°(P; K)- 1 ̂ dim#°(P; t7® jq- 1

and hence

l (4.8)

Here, if equality holds, every divisor of the system U®K on P is reducible.
Applying Bertini's theorem (after removing fixed components) this can only hold if

But by Riemann-Roch this gives

Since kίn2 — k2n1>Q, the only possibility for equality is g = 2, rk£ = 2. Excluding
this case, the codimension c is greater than or equal to 2.

We can, therefore, apply Hartog's theorem and extend G to a holomorphic
function on M, homogeneous of degree 2 with respect to the <C*-action

Now we use the integrable system of (4.3) - G is constant on each compact fibre of p
and hence is the pull-back of a holomorphic function on V, homogeneous of
degree 2. However, the weights of the (C*-action on V are (2, 3, 4, . . ., m) so the only
holomorphic functions of degree 2 are of the form gop for geH°(Σ;K2)*
= Hi(Σ;K~i), i.e. the functions of degree 2 referred to in the proposition.

This shows that / is surjective. The functional independence of these functions
certainly implies their linear independence so / is indeed an isomorphism.

(Note that we can prove (2.9) in the same way - a global section of T will define
a holomorphic function on V of homogeneity one which is impossible since 2 is the
smallest weight.)

Propositions (4.2) and (4.4) now allow us to prove the required flatness.
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Theorem (4.9). The connection defined in Theorem (3.6) is flat.

Proof. We adopt the Cech point of view and consider the holomorphic heat

operators h PA and h PB and their commutator
ctA otB

This is a globally defined operator on lί which involves no f-differentiation. We
can write it locally in the form

Now PA and PB are second order operators, and so therefore is the first term

-r— - — rΆ The second term is a 3rd-order operator whose principal symbol,
dtA dtB

thought of as a function homogeneous of degree 3 on T*M, is the Poίsson bracket
of the symbols of PA and PB (see e.g. [5]).

However, from Proposition (4.2) these functions Poisson-commute and so
(4.10) is a globally defined 2nd order operator on Lk, i.e. for each ί, a holomorphic
section of &2(lί) on Mf, with symbol G.

Now consider the exact sequence of sheaves

and the exact sequence of cohomology groups

H°(M; S2T)
(4.11)

From Proposition (4.4) G arises from some deformation of conformal structure on
Σ and from Theorem (3.6), δ(G) is a non-zero multiple of the Kodaira-Spencer map
of this deformation. Also, from (2.11), the Kodaira-Spencer map is injective hence

σδ:H°(M;S2T)^Hl(M;T)

is an isomorphism from (4.4).
In particular δ itself is injective. Thus from (4.11) the holomorphic section of

3)2(lί] is actually a section of 3t\IΪ) - a first order operator. But now the vanishing
of H°(M; T) and compactness of M show that it must be a constant. Hence

is a constant CAB.
Now from the definition of the connection, parallel translation of a global

section of If along holomorphic curves in the indirection means solving the
holomorphic heat equation
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Since the operators h PA, -r—h PB commute up to a constant, then it is clear
Ot^ vtβ

that, for given choices of PA and Pβ, the curvature of the connection is a scalar, and
hence the projective space connection is flat.

Remarks (4.12). 1. In the abelian situation, the most natural choice of local
coordinates and trivialization of Lk is to pass to the universal covering
C* = H\Σ\ &) of the torus Hl(Σ\ Θ)/H\Σ\Έ). On C ,̂ the global symmetric tensors
are just constant symmetric matrices. In this situation Proposition (4.4) does not
hold - not all principally polarized abelian varieties are Jacobians, but it is true
that every symmetric tensor gives a deformation of a Kahler polarization of the
torus. Indeed, the symmetric tensors are the tangent space of the Siegel upper half
space which parametrizes all principally polarized abelian varieties. The holo-
morphic heat operator in this trivialization is

dTtj 4πk dzβZj

which has as global solutions the classical theta functions of level fe

„«//*< Ϊ.ΓO^πKϊ.z)
" L>n

I = m(k)

Thus the theta functions are the covariant constant sections of the flat connection.
The flatness of the connection could in fact be proved a priori by the arguments of
Theorem (4.9), using the elementary fact that

is injective for an abelian variety.

2. Note that the proof of (4,9) concerned primarily the heat operator, before it was
applied to any global section. Recall from Remark (3.14) that when 2k = — λ, there
is no heat operator, but instead a global holomorphic second order operator ΔG

acting on K1/2, with symbol GeH°(M;S2T). We have seen in Proposition (4.2)
that the symbols of ΔG and ΔH commute and so [JG, JH] is a second order operator.
We may show in fact that this vanishes - the operators themselves commute.

The key to this is to note that for any operator D on Kΐ(2 there is a formal
holomorphic adjoint operator D*, a canonically defined operator such that for any
local sections s, t of K112 on an open set U CM,

(Ds)t - s(D*ί) = dφ(s, t) eH°(U;K). (4.1 3)

Here φ(s, t) is a holomorphic (n — l)-form, so dφ is a holomorphic n-form - a local
section of K. If D is of order m, with symbol G, then the symbol of D* is ( — l)mG.

Hence A G — A g is a holomorphic 1 st-order operator on K1/2 but we know since
H°(M; T) = 0 that this is just a constant scalar c. Since ΔG — Δ% is formally skew-
adjoint it follows that c— — c, i.e. c = 0.

Hence each ΔG is self-adjoint. This means that the commutator [^G>^H] is

skew-adjoint. However, since the symbols Poisson-commute it is 2nd order with
symbol FeH°(M:>S

2T). Being skew-adjoint F= — F = 0, so the commutator is
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first order and hence constant. Then, as above, skew-adjointness implies the
constant vanishes.

Thus Λ Λ Λ AΔGΔH = ΔΉΔG.

If we set W= H°(M; 322(K1/2))9 the vector space of these operators, then the symbol
map expresses W as an extension

(any two such operators with the same symbol differ by a constant). From
Proposition (4.4), H°(M;S2T) is canonically isomorphic to H^Σ K"1) - the
tangent space to Teichmϋller space. Thus, as the conformal structure on Σ varies,
W defines a vector bundle over Teichmϋller space which is an extension

and hence defines, on any family B of conformal structures an extension class in

Hl(B; Tf). This is essentially the central charge class — iλ^cAdtA [cf. (3.21)].
A

5. Singular Moduli Spaces

Let us finally outline how to deal with the case where the moduli space M is
singular. From the point of view of flat connections the singularities are the
connections which are reducible, i.e. E = E±®E2, where El and E2 are preserved by
the flat connection. In the holomorphic viewpoint they are the ^-equivalence
classes of semi-stable bundles - a notion of equivalence which is weaker than
holomorphic equivalence. The moduli space M is a normal projectίve variety [12].
Normality means in particular that there is a Hartog's theorem for extending
holomorphic sections of line bundles from the open stable subset Ms C M to M.
Since Ms is a manifold, and our description of the connection in either the
Dolbeault or Cech viewpoint is local then we can hope to work on the non-
compact manifold Ms and rely on Hartog's theorem to extend to M [and give in
particular finite dimensionality of H°(M;Lk)].

There are a number of occasions where we have used smoothness and
compactness. We list here the properties we require of Ms to make our arguments
carry through:

i) #°(Ms;tf)^(C,
ii) #0(MS;Γ) = 0,

iii) H1(Ms;β) = 09

iv) H\Σ;K-^-+H\Ms',S2T) is an isomorphism,
v) the Kodaira-Spencer map Hί(Σ;K~ί)-^Hi(Ms, T) is injective,

vi) the dimension of HQ(MS; lί) is a deformation invariant for the standard family
of Kahler polarisations.

Property (i) is immediate from Hartog's theorems and the compactness of M.
Properties (ii) and (iv) follow similarly by imitating the argument of Proposi-
tion (4.4) with Jί replaced by the corresponding singular space for semi-stable
Higgs bundles. This is a normal, quasi-projective variety [13] so Hartog's theorem
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can be applied to the holomorphic functions of homogeneity 1 and 2 respectively
defined on the smooth manifold T*MSC^ by sections of T and S2T on M5. Here
the arguments of (4.4) can be applied again, though taking account also of the semi-
stable case μ(U1) = μ(U2). The case g = 2, rkE = 2 is indeed special - the moduli
space M is (DP3 which clearly does have holomorphic vector fields.

Properties (iii) and (v) involve 1st cohomology groups rather than zeroth
groups. For this a general Hartog's-type theorem exists (see [16]) for the
complements of analytic sets of codimension > 2. We follow the same procedure as
in Sect. 4 (cf. [7]). By contraction a class in Hl(Ms\ SkT) defines a cohomology class
in Hl(T*Ms\ &) of homogeneity k. The Leray spectral sequence for the projective
bundle P(Γ*MS) shows that the space of classes in H\T$MS\ (9) (where T0*MS is the
complement of the zero section) of homogeneity k correspond bijectively to
H1(MS; SkT). The Hartog-type extension theorem shows that the classes in T*M5

are determined by their restriction to T0*MS since dimMs> 1. We may therefore
consider H\MS\ &) and Hl(Ms; T) as the subspaces of H l(T*Ms; &) of homogene-
ity 0 and 1 respectively.

To extend to J(, we have to extend across the singularities and the strata of the
Harder-Narasimhan filtration. The expression (4.8) is greater than 2 if g>2.

Apart from this case then, the classes can be extended. The singularities of Jί
are represented by reducible Higgs bundles. Since the dimension of a Higgs moduli
space is twice that of the corresponding stable bundle moduli space, the
codimension of the singular set of M is twice that of M, and hence by normality of
M at least 4. Hence these classes extend to classes in Ή.\Jt\G\

We now apply the proper map φ\Ji-+V of Proposition (4.3). The higher
cohomology groups of the vector space V vanish, so

H\JίιG)^HQ(V9R^O)9 (5.1)

where Rp*& is the 1st direct image sheaf.
We shall use the following result to identify classes in Hl(Jί,G)\

Proposition (5.2). There is a natural isomorphism

Ψ : H°(F; 0)® F* ̂  H\M\ &)

such that Ψ(ρ(λ)f) = λ~ lσ(λ)Ψ(f) for the natural actions, ρ, σ of λ e <C* on both sides.

Proof. To define Ψ, note that every linear functional /J e F* defines a Hamiltonian
function ft o p on J(s whose corresponding vector field Xt is tangent to the fibres of
p. Also Ms carries a natural Kahler form ω (see [6]) which restricts to the
symplectic form on MscTMscJΐs. This defines a class [ω] ̂ E\Jίs\ T|) which
gives a homomorphism

φ:H\Jts\TM}-*H\Jίs (9}^H\Jί ,Φ}. (5.3)

Restricting φ to the vector fields Xt gives a map

which extends obviously to define the H°(F; 0) - module map Ψ. The homogeneity
of Ψ follows from the fact that the holomorphic symplectic form on the cotangent
bundle Γ*MS has homogeneity 1.
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We use (5.1) to prove that Ψ is an isomorphism. Firstly, recall that the point
p(A, Φ) for (A, Φ) e Jt is given by (α2, %, . . ., am) where at e HQ(Σ; K*). This defines a
spectral curve (see [11])

in the surface which is the total space of the cotangent bundle of Σ.
On the spectral curve Σ, Φ has a single- valued eigenvalue — η and the kernel of

η -f Φ defines a rank 1 torsion-free sheaf on Σ, at least if Σ is stable, for example if it is
irreducible and has only nodes as singularities. The fibre of p is then the space of
equivalence classes of such sheaves. If Σ is non-singular this is essentially the
Jacobian of Σ. When Σ is stable this is a stable quasi-abelian variety X (see [14, 10])
and in particular

This means that the sheaf Rp*@ is a holomorphic vector bundle over the open set in
V of (α2, ...,αm) which define stable curves. In fact, apart from the ubiquitous
special case g = 2, m = 2, a simple application of Bertini's theorem shows that the
spectral curves with just one node or less form the complement of an analytic set
D C V whose codimension is greater than one. Since by Hartog's theorem classes in
Hv(Jί\ &) are determined by their restriction to complements of codimension 2
sets, (5.1) gives

H\Ji\ &)^H°(V\D; R^Θ) . (5.4)

Now for a non-singular abelian variety X the cup-product with a Kahler class
[ω] eHi(Xι T*) gives an isomorphism

The same is certainly true for the singular abelian variety corresponding to a
spectral curve with one node - the question reduces to checking the case of the
quasi-abelian variety which is a rational curve with a node. Now since the vector
fields Xί9...9Xn form a basis for HQ(X\ Tx) = Ext°(Ω1

x, Θx) we see that over V\D,
the vector bundle Rp*& is isomorphic with the trivial bundle V\D x V* by the map
φ. From (5.4) we have, as required,

^H°(V;&)®V* by Hartog's theorem.

From Proposition (5.2) we may easily deduce property (iii), that H1(MS,&) = Q.
Indeed, a class of homogeneity zero in R^(Jί\ Θ) corresponds under Ψ to a class of
negative homogeneity in HQ(V;(9)®V*> and there are no such holomorphic
functions with values in V*. There is only one subspace of H°(V;Φ)®V* of
homogeneity 2, namely the linear functions gA defined on the space HΌ(Σ;K2) of
quadratic differentials. This space is canonically Hl(Σ\K~l\ so Ψ defines an
isomorphism between this space and the space Hi(Ms; T) which defines the classes
in R\Jt\ &) of homogeneity 1 . To prove property (iv) we need to show that this is a
non-zero multiple of the Kodaira-Spencer map. Now since H1(MS;C?) = 0,
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restriction of Hv(Jt\ &) to the first order neighbourhood of the zero-section
MSC T*MS gives a map

which is the identity on Hv(Ms\T)tHl(Jί\&) by the way we constructed this
subspace.

Consider now the Hamiltonian vector field XA corresponding to the function
gA. In local coordinates (zl5 ...,zw) on Ms, suppose the canonical holomorphic
symplectic form is £ dz{ Λ dwh then gA is the Hamiltonian function corresponding

i

to a symmetric tensor

and so

with Hamiltonian vector field

Restricting to the first order neighbourhood of the zero section W; = 0 we just
obtain the class

since the Kahler form restricts on Ms to the standard Kahler form. This, from
(2.16), is a non-zero multiple of the Kodaira-Spencer class.

The final property we require - the constancy of dimension of #°(MS; lί) for the
deformations of complex structure we are considering - now actually follows from
the existence of a heat operator, which only requires properties (i)-(v). Evolving
with the heat equation gives a canonical way of extending any section of lί on Ms

with one complex structure to nearby ones. This proves the required property
without appealing to singular versions of Riemann-Roch and vanishing theorems
in the style of Sect. 1.
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