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Abstract. The trace-norm convergence of the Trotter-Lie product formula has
recently been proved for particular classes of Gibbs semigroups. In the present
paper we prove it for the whole generality including generalization of the
product formula proposed by Kato.

1. Introduction

Let A and B be linear operators in a separable complex Hubert space Jjf. Then,
under suitable conditions concerning {A, B} the strong limit

/ / t \ ( t \V
s-lim I expl --4 expl B I =exp(-ίC) (1.1)

«->oo \ V n ) \ n JJ

exists for t ̂  0, where the operator C can be constructed by means of A and B. This
is the well-known Trotter-Lie product formula for strongly continuous (C0-)
semigroups [1], (For finite matrices it has been established by Sophus Lie about
1875.) Since the discovery of the product formula, it has permeated through
mathematics and mathematical physics, challenging the problem of relaxation and
generalization of the hypotheses under which the formula holds, see [2-10].

A solution of this problem implies that one has to do the following:

(i) to find the set of pairs {A,B} for which the limit (1.1) exists;
(ii) to identify the operator C and to describe the mapping {A,B}: ->C;
(iii) to generalize (if possible) the exponential functions involved in the left-hand
side of (1.1) to a class of real-valued, Borel measurable functions /( ), g( ) such
that in some operator topology τ,

ί it \ it \\n

τ-lim / ( - A g ( - B ] } =exp(-ίCμi (1.2)
n->«> V \n J \n JJ
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for t E R + = {x e R1: x ̂  0} (or its continuation into the right complex half-plane)
where Π is the orthogonal projection from J^ onto the closed subspace in which
the operator C is defined;
(iv) to indicate a natural topology τ in which the convergence in (1.2) will take
place.

A lot of papers has been devoted to points (i) and (ii) of the above program
when {A, B} is a pair of self-adjoint operators. It was Trotter [1] who for the first
time proved (1.1) for Co-semigroups whenever the operators A and B are
semibounded from below and the algebraic sum A + B is essentially self-adjoint on
a common dense domain @ = @(A)n@(B), i.e., the operator A + B has a unique
self-adjoint extension defined by the closure (A + B)~=C. For unitary groups
(ί-Mί), the semiboundedness can be cancelled. The proviso about the domain Q) is
important because there exist examples of non-negative self-adjoint operators
{A,B} such that 0(A)n0(B) = {0} and (@(Aί/2)n@(Bΐ/2)Γ =#>. Therefore,
Chernoff [2] (see also Paris [3] and Simon [4]) has extensively studied (1.1) for Co-
contraction semigroups to define a generalized sum of two unbounded non-
negative self-adjoint operators A and B whenever their common form domain
Q = @(All2)n@(Bί/2) is dense in 34? and the quadratic form tB[u] = \\Bi/2u\\2,
ueQ(B) = @(Bif2) is bounded relative to tA[u]: Q(A)cQ(B) and tB[u]£a\\u\\2

+ btA [w], u e Q(A\ for some α, b ̂  0. Then, C = A + B is the form sum of A and B
[5], i.e. a unique non-negative self-adjoint operator associated with the non-
negative closed quadratic form

h [u] = tAlύ] + tB[u], u e Q(A)nQ(B). (1.3)

The essential contribution to the theory at point (iii) has been made by Kato
[6, 7]. In two subsequent papers he has proved the product formula (1.2) in the
strong operator topology τ = s for a very general (but a natural) class of real-valued
functions /, g:R+->[0,1] and an arbitrary pair {A,B} of non-negative un-
bounded self-adjoint operators in the Hubert space JίC. Then, Π is the orthogonal
projection from jff onto the closed subspace Jtf" spanned by Q = 3#(Ail2)n@(Bi/2)
and C = A 4- B is the self-adjoint operator in jff" associated with the non-negative
closed quadratic form h[u] = \\All2u\\2+ ||£1/2w||2, ueQ, which is densely defined
in Jίf'. In the first paper [6] he has proved the product formula (1.2) for pairs of
functions {/(x),g(x)} including {έΓ^l+x)'1}, {(l+xΓSέΓ*} and {(1+x)"1,
(1 + x)~1}, while in the second one [7] a completely different proof, which allows
one to include the important case oΐ{e~x,e~x}, has been proposed. Below we shall
refer to (1.2) for τ = s as the Ύrotter-Koto product formula.

The problem to prove the Trotter-Kato product formula for unitary groups
and imaginary resolvents {/, g} = {(1 + zx)~1, (1 + z'x)~x} has been considered by
Lapidus [8, 9].

Recently, one of the authors of the present paper has made an attempt to
connect the topology τ in the product formula with that in which semigroups
involved in (1.1) are continuous for ίeR+\{0} [10]. This question has been
inspired by point (iv) of the above program for Gibbs semigroups, see [11,12]. If at
least one of the operators A or B generates a self-adjoint Gibbs semigroup and
Trotter's conditions on the pair {A,B} are satisfied, then the strong operator
convergence in (1.1) can be lifted for f>0 to τ=| | j^-topology (trace-norm
convergence).
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In this paper, we continue these investigations related to (iv). We prove the
Trotter-Kato product formula (1 .2) for τ = || || j when at least one operator of the
pair {A,B} is a generator of a self-adjoint Gibbs semigroup. Furthermore,
relaxation of the conditions on {A,B} imposed by Kato [6, 7], which are relevant
in applications to quantum statistical mechanics, is discussed.

To formulate the problem more precisely we recall some notation and
definitions, see e.g. [13]. If Jti? is a separable Hubert space, then ^p(^} is the
Banach space of compact operators on #f with finite || ||p-norm:

r oo ) i/p
ll*llp=|j ι(W)pj , I^P«X>. (1.4)

Here {λk(X)}j*L ΐ are the singular values of the operator X e mp(3tf\ i.e. eigenvalues
of the operator \X\ = (X*X)112. The Banach spaces {^p(^)}^p<00 are *-ideals in
the Banach space of compact operators Com(^f) = <^00(Jf) and bounded
operators Λ(#F) in W ordered by

Definition 1.1 [11]. A Co-semigroup {G(ί)}f^0 in a separable Hubert space 3tf is
called a Gibbs semigroup if G(ί): (0, oo)->

Remark 1.2. From the continuity of multiplication (Grumm [14]):

(1.6)

for {Xn}n^1ea(j(f)9 {Ύn}n^E^p(^\ l<ip<oo, it follows that the Gibbs semi-
groups are || \\± -continuous for f>0.

The Gibbs semigroups naturally arise in quantum statistical mechanics (QSM)
as one-parameter self-adjoint Co-semigroups generated by a Hamiltonian
H:GH(β) = exp( — βH). Here, a parameter β>0 is nothing but the inverse
temperature of the system described by the operator H. For continuous systems of
QSM, H is a sum of two parts: an ideal (kinetic-energy operator T) and a nonideal
(interaction operator U). It is known [4] that for singular two-body potentials the
operator U is not small with respect to the kinetic-energy operator T in the usual
operator sense [5]. Therefore, in this case the definition of the Hamiltonian of the
system is not very obvious. Moreover, as far as in the QSM the main object of
investigations is the partition function Z(β) = Ύr(GH(β)), regularizations or limit
procedures defining the Hamilitonian H have to be such that the corresponding
families of operators approximating the Gibbs semigroup GH(β) should be || || r
convergent [11, 15]. The same arguments are applied to the Trotter product
formula which is often used (under the Tr) for constructing a sum of T and 17, trace
Feynman-Kac formula and other calculations, see e.g. [16].

The outline of the paper is as follows. In Sect. 2 we accumulate technical
preliminaries which in our opinion have also their own interest for the theory of the
*-ideals ^PPΠ, 1 ̂ p^ oo. In Sect. 3, we prove the Trotter-Kato product formula
(1.2) in || || 1 -topology. This is done in two steps. First, we consider a special case
when conditions similar to [6] plus the requirement that f ( t A ) e %>p(3ίf ) for ί>0
and 1 ̂  p < oo are fulfilled. In contrast with the case of Co-semigroups and τ = s (see
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[7]) we cannot avoid this intermediate step exploiting monotony properties of
auxiliary operator families. The vindication of this line of reasoning becomes clear
when one follows the proof of the product formula (1.2) in the general case of
conditions a la [7]. The last Sect. 4 is devoted to concluding remarks and possible
applications.

2. Technical Preliminaries

In the following, we prove some kind of bounded convergence theorem for trace
ideals which will be necessary in the sequel.

For X,LeJ^f) we write K<ζL if \\Ku\\ ^ \\Lu\\, uetf. This condition is
equivalent to K*K^L*L and also to |JC|^|L|. It is obvious that K<ζL with
LeVpW) implies that Xe<ί?p(Jf) and \\K\\ p£ ||L||p, 1 ̂ p< + oo.

Proposition2.1. Let Kn = K* e Λ(Jtf), Jw = J*e^pf), n = l,2,.... Assume that
s-limJn = I and that Kn<ζLJn, n = l,2,..., where L=L*e^p(^f) for some

(so that KnE^p(J^)). If w-lim Kn = K, then KE^P(^) and
|| 11,-UmK^K.

Proof. By w-lim Kn = K we find \\Ku\\ ^ lim inf \\Knu\\ ^ lim inf ||LJMw||
«—»• oo n~* oo W-*QO

= \\Lu\\, uEJf. Hence K^L and Ke^p(J^).
Since Le^pf) there is a sequence {P/Jjii of finite-dimensional orthogonal

projections such that LPj=PjLJ = \,2,..., and ||Lβ;||p= ||β/L||p< τ, J = l,2,...,

where Qj = I-Pj. By w-lim Kn = K we have || - ||p- lim PjKnPj = PjKPj for
w~* oo w -~* oo

every j=l,2,..., and every l^p< + oo. Given ε>0, therefore, we have
|| Pj{Kn — K)Pj\\p<ε for sufficiently large n depending on ε and j. On the other hand,
we have \\(Kn-K)Qj\\p£ \\KHQj\\p+ \\KQj\\p£ \\QjLJnQj\\p+ \\LPjJnQj\\p

+ ||Lβj||p. Since 5-lim Jn = I, we have sup ||Jn|| =c< + 00. Consequently, we

obtain the estimate
1 +r

' . II T II II ./"Λ T T^ II /^ /< \

' J
; = 1,2,.... Since Pj is a finite-dimensional projection, we get
|| - U p — lim QjJnPj=Q, 1 ̂ p< + oo. Therefore, choosing; and n sufficiently large,

we can achieve that \\Kn — K\\p<s. This proves the proposition. Π

Corollary2.2. Let Kn( }'.tf-*@(3?\ Jn( }\tf^>@(3?\ n=l,2,..., and K(-):tf
-+&(-) operator-valued functions such that the assumptions of Proposition 2.1 are
poίntwise satisfied. If in addition \\Jn(t)\\ ^c< H-oo, s-lim Jn(t) = I and

«->oo

w-lim Kn(t) = K(t) hold uniformly intεJf, then \\ - L-lim Kn(t) = K(t) uniformly in

Proof. Since w-lim Kn(t) = K(t) uniformly in ίeJf, we obtain that
n~* oo

|| Up-lim PjKn(t)Pj = PjK(t)Pj uniformly in ίe Jf. Further, replacing Kw K and
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Jn by Kn(t), K(f) and Jn(t\ respectively, the estimate (2.1) remains true. But the
uniformity of s-lim Jn(i) = I in ίeJf implies the uniformity of

«-*oo

,-lim QjJn(t)Pj = 0 in tε Jf, which completes the proof. ΠUp
H-+OO

Proposition 2.3. Let Kn e <ίί2ί,( Jf ) and £„ e ̂ 2p(^l n = 1,2,..., for some p e [1 , oo).
Assume s-lim Kn = KeV2p(J*?) and \\ ||2p-lίm &n = K. If \\Kn\\2p^ \\Kn\\2p,

n-*oo

n = ί,2,..., then \\ - \\2p-\\m Kn = K.
H-+OO

Proof. The proof is based on the inequality

\\^}, (2.2)

X, Ye^2p(^f), l^p< +00, which yields the uniform convexity of the Banach
spaces ^2p(^\ lgp< + oo. Since \\Kn\\2p^\\Kn\\2p, n = l,2,..., the sequence

uniformly bounded. Using s-lim Kn = K we find

w-|| ||2p-lim Kn = K> i e Λe sequence {Kn}*=1 tends in the weak sense of the
n-*oo

Banach space (£2p(^} to K as n-^oo. But this implies ||K||2p^ lim inf ||KJ2p
n-> oo

^ lim sup||Xπ||2p^ lim ||^n||2p= \\K\\2p. Hence, wefmd lim ||XJ|2p=||X||2p.In
«-*oo n-xχ> n-*oo

the same way, we get lim \\Kn + K\\2p = 2\\K\\2p. Setting X = Kn and Y=K and
n-»oo

taking into account (2.2) we complete the proof. Π

Corollary 2.4. Let Kn( ): JΓ-> 2̂p(^), £π( ):^-^2pW, π = l,2,...,
K( ) : ̂  -*c£2p(3f\ l^p<+co,be operator-valued functions such that the assump-

tions of Proposition 2.3 are pointwise satisfied. If in addition s-lim Kn(t) = K(t),
n-> oo

|| ||2p-lim Jtw(ί) = K(t) uniformly in tεtf and there is an LE^2p(^f) such that

K(t)<ζL, tεtf, then \\ - ||2p-lim Kn(i) = K(t) uniformly in tetf.
n~* oo

Proof. Let us in accordance with the previous considerations introduce a family

{P/}JLι of finite-dimensional projections such that LPj=PjL and \\LQj\\ 2p< -,

Qj = I-Pj,j=l,2,.... ]

Now we are going to show that lim ||-Kn(f)ll2p= ||JK(ί) || 2p uniformly in te tf.
n-xχ)

From the obvious inequality

n = l,2, ..., ίeJf, we get the estimate

I \\Kn(t)\\2p- \\K(t)\\2p\ ^ \\K(t)Qj\\2p+ \\(Kn(t)

-K(t))Pj\\2p+\\Kn(t)-K(t)\\2P
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Since K(t)<ϋL we find that \\K(t)Qj\\2p^ \\LQj\\2p< τ,j=l,2, ... . Hence, we have

1 ε
« = 1,2, ..., ίejf. Given ε>0 we fix a j such that τ < -. Since Pj is a finite-

dimensional projection we find that || ||2p-lim Kn(t)Pj=K(t)Pj uniformly in
n-»oo

ίeJf. Consequently, there is a n0 such that for n^.n0 we have \\(Kn(t)

—K(t))Pj\\2p< -z and ||J?ll(ί)-X(ί)||2l,< - uniformly in te tf . The last assertion

follows by assumptions. Summing up we find \\Kn(t)\\2p—^ — > ||K(f)||2p uniformly

Similarly we prove that lim \\Kn(t) + K(t)\\2p = 2\\K(t)\\2p uniformly in te Jf .
n-*oo

Since lim \\Kn(t)\\2P = ||*(f)||2j,and || K(t) \\ 2p ̂  \\L\\2p uniformly in ίeJf, there

is a n0^Γsuch that the sequences {\\Kn(t)\\2P}n=no and {II^W + ̂ WM^no are
uniformly bounded in ίeJf. Hence, it is not hard to see that

and H^W + ̂ W I I i S - i ^ l l X W l l i J uniformly in

ί e Jf. Taking into account (2.2) we get || Kn(t) - K(t) \\ 2

2

P

P -^> 0 uniformly in t e JΓ
which immediately completes the proof. Π

3. Product Formula

Let ^4^0 and 5^0 be self-adjoint operators in a separable Hubert space ffl.
Denoting by Q = @(A1/2)n@(B1/2) we do not assume that Q is dense in Jf . By 3?'
we denote the closure of β, i.e. J"f ' = β " . In general, J f ' is a proper subspace of $? ,
i.e. J f Φ jf '. The orthogonal projection from Jf onto ^fr is indicated by Π. We
recall that C is the self-adjoint operator in 3? ' associated with the non-negative
closed quadratic form f ^\\Aί/2f\\2 + \ \ B 1 / 2 f \ \ 2 , /eβ, i.e. C = A + B.

Further, we introduce a class of Borel functions / and g defined on
Ri = {t e R1 : t ̂  0} characterized by

/(o)=ι, /'(o)=-
g(0)=l, g'(0)=-l.

Notice that f(tA)a^->I and g(tB)a-^I as ί-> +0 for any α^O. At the beginning
we assume that

0</(ί), ίeRi, (3.2)

and that

and v(ί)={(l-gW)
(3.3)

are monotonously nonincreasing functions .
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Condition (3.2) is necessary in order to give a correct statement of condition (3.3).
The condition (3.3) itself has firstly been used by Kato in [6]. The conditions are
satisfied for f ( t ) = (\+kt)~k, 0<fc^l, and g(t) = e~\ for example.

In accordance with Kato [6] we define the family {M(t)}t>0,

- (3.4)

of non-negative self-adjoint and, in general, unbounded operators. Since (3.1) and
(3.2), the operators M(t) are well-defined on 9(M(ί)} = 0t(f(tA}\ £>0.

Furthermore, we assume that

\ ί>0, 1 ̂ p< + oo . (3.5)

Lemma 3.1. // the conditions (3.1)-(3.3) and (3.5) are satisfied, then

(λ + MMΓ^eVJίJr) (3.6)

for λ>0 and t>0.

Proof. On account of the identity

(3.7)

λ, t > 0, the result follows if one proves that the operator in the curved brackets is
boundedly invertible for λ > 0 and t > 0. For λt ̂  1 we get

For 0<λt<l we get the inequality

D

Lemma 3.2. Let A and B be two non-negative self-adjoint operators defined on the
separable Hilbert ffl ana let f and g be two Borel functions obeying (3.1)-(3.3). Let
F(t) = g(tB)l/2 f(tA)g(tB)112, t e Ri . // (3.5) is satisfied, then e~tce ̂ 2p(^f} fort>0
and

e-'cΘO (3.8)

uniformly in ίe[τ/,τ], 0<f/<τ< -f-oo, where C —

Proof. Let us introduce the operator- valued function S(t) = t ' 1 [/ — F(tJ] ^ 0, t > 0.
Fixing ί>0 in the sequel and setting t' = t/n and λ = ί/t we get

which implies Fψy^λψ + SW1. Hence

F(tf)n + 1 <^ λ(λ + 5(0) " 1 F(t') . (3.9)
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On the other hand, starting from the identity (3.7) one gets

1 g(tS)1/2 = (λ + S(ί)) - 1 F(t)

+ λ(λ + S(t)Γ 1 g(ίB)1/2 [/-/(ίX)] (λ + M(t)Γ 1 g(ίβ)1/2 ,

λ,t>0. Setting t=( and A = l/ί as well as using ||g(ί'B)1/2|| gl, \\λ(λ + S(t')Γl\\
and |1 /-/(L4) H ^ l we find

we JT. Hence (/H-S(ί'))"1F(ί')^2(A + M(ί'))"1g(ί'5)1/2. But taking into account
(3.9) we obtain

F(t')n+ 1 <^ 2λ(λ + M(f)Γ 1 g(t'B)1'2 .

By monotonicity (cf. [6]) we have (λ + M(f ')) ~ 1 ̂  i - + M(τ) j , ί e |, τ . Thus

Λ"+1 1 / 3 / 1 V1 / 2 f t \1/2

F
K »/ \τ

ί e -, τ I . Substituting t by — - 1 and then n by n — 1 we immediately obtain
|_ J _J Til I Zr

/2

1 / 3 / 1 V1 / 2

ί6[if,τ] Here 2l/- ί-+M(τ)J e^2p(^) by (3.6). Since

/ t V+ 1 / ί \
5-limF - - =e~

tC®Q (see [6,7]), and s-limF - - =/ we obtain
n-»oo \n-\-\J n^oo \Π+1/

Setting
1 / 3 / 1 V1 / 2 / t \1/2

L = 2 / - - + M(τ) , JM(ί) = g - - B and applying Proposition 2. 1 we
I/ n \τ / \n+l /

get β-ίC6^2p(^) and || - ||2p-lim F - - =e~tcφ0 for every f >0.

In order to show the uniformity of (3.8), we note that under our assumptions we

have only to check that s-lim / - -A =1 and

(3.10)
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uniformly in t e [0, τ]. For instance, denoting by EB( -) the spectral measure of B we
get the representation

/-*

t2 +co

= ί i-ί hrhr*

!2d(Eβ(A)t

. Assuming uε@(B) and taking into account (3.1) we obtain the estimate

t
^ const.

ίe[0,τ], which yields the uniformity of lim g

Since 3>(B) is dense in ffl and I —

(3.10).

The estimate

formity of s-lim g

to ||^ const.

t

|| Bu \\ ,

w = u for every u

Y / 2

B ] =1 in ί e [0, τ]. Since s-lim /
/ H-00

B I =/ uniformly in ίe[0,τ], we get 5- lim F

formly in t e [0, τ] . Therefore, by the uniformity of 5- lim F

tt + 1

is uniformly bounded we obtain

yields the uni-

^— B]=I and

/ ί

5- lim g
t

=/ uni-

= e t€

/ t Y
ίe[>,τ] (cf. [6]) we find the same for 5-lim F f -) =e~tc®0. Taking into

^1, ίeR+, and applying Corollary 2.2 we complete theaccount

proof. Π

Let a {/, g} be a pair of Borel functions obeying only the condition (3.1). With
such a pair we can associate a pair {/0, g0} of Borel functions such that the
conditions (3.1H3.3) and, additionally, 0^/(ί)^/0(t) and 0^g(ί)^g(f0)» ίeRίμ,
are satisfied. To prove this we introduce the pair {φo^o} defined as follows:

^φ0(ί)= inf φ(s)= inf

= inf
0<s<ί

where we agree to set -^—r = + oo if f(s) = 0. Defining /0(ί) by
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we get 0</o(ί)^l (condition (3.2) for /0) and

(3.11)

Since lim /(ί) = l, we find lim /0(ί) = l. Moreover, we have
ί-» +0 ί-» + 0

1= lim φ(i)= lim inϊφ(t)= lim φ0(ί)=l.
t-*+0 t-*+0 ί-» + 0

Thus, using lim fQ(t) — 1 we find
ί->+0

= - lim

Consequently, /0 obeys (3.1). Since ί-1 1 —r— —1 I =φo(t) and <p0(ί) is monoto-
\/ow /

nously nonicnreasing by construction, the condition (3.3) is satisfied. Let

ί>0.

Since φ0(ί)^φ(ί)? ί>0, we get 0^g(ί) = l-ίtp(ί)^l -ίtp0(ί) = g0(ί), ί>0. Fur-
thermore, the representation

implies 0^1— g0(ί) or g0(ί)^l, ί>0. Thus, summing up we obtain
0^g(ί)^g0(ί)^l Taking into account

1= lim ψ(t)= lim infφ(f)= lim ψ0(t)=l

we find lim - - = — lim φ0(ί)= — 1. Hence, g0 obeys (3.1). Since
ί-> + 0 t ί-> + 0

ί~1(l— go(0) = ΨoW is monotonously nonincreasing by construction, the con-
dition (3.3) is valid.

Therefore, starting with the functions / and g obeying (3.1) we have
constructed an associated pair {/0, g0} of Borel functions satisfying (3.1)~(3.3).

In order to apply the previous considerations, we replace the condition (3.5) by

/oM^Cn ί >0, 1 ̂ p< + oo . (3.12)

For example, let f(t) = e~t. It is easy to check that in this case fo(t) =
Hence, (3.12) means that (I + tA)~l e^pf), f >0, 1 ̂ p< + oo.

Lemma 3.3. Let F0(ή = (g0(tB))ΐf2 f0(tA)(g0(tB))1/2. If the condition (3.12) is satis-
fied, then f(tA)e%p(3tf\ t >0, 1 ̂ p< + oo, and

||F(ίril^||F0(ίΠ|p, ί>0, (3.13)
for m^l.

Proof. The first assertion follows from (3.11) and (3.12). Now let F(t)
= (g(ίB))1/2/oM)fe(ίB))1/2 Since F(t)^f(t) we get [13]

l^ (3.14)
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Let F(t) = (f0(tA)^2g(tB)(f0(tA)^2 and F0(t) = (f0(tA))^go(tB)(f0(tA)^2. Obvi-
ously, one has

= \\F(t)m\\p

p
(3.15)

(3.16)

and, analogously,

\\F0(t)m\\p

p=\\l

On account of (3.14), (3.15), (3.16) and f(t)^fΌ(t) we find

which proves (3.13). Π

Theorem 3.4. Let A and B be two non-negative self-adjoint operators defined in the
separable Hilbert space ffl and let f and g be two Borel functions obeying (3.1). //
(3.12) is satisfied, then e~ιc^γ(^f'\ ί>0, and

f f t \ f t \V
IHIi-lim / (-A )g (~B\) =e-*c®Q (3.17)

π/ι>°°)

holds uniformly in t ε [//, τ], 0 < η < τ < -f oo.

Proof. By Lemma 3.2 we have e~(tl2p)Ce<e2pW)> ί>0 Since (e-^^c}^ = e-
tc

Next we show that

(3.18)

uniformly in t e —, - L where η' is an arbitrary real number obeying 0<η'<η and

k is a natural number greater than 2p, i.e. 2p^k. Using Lemma 3.3 we find

'* Λ ft Λ1/2 /A"'1 /t v/2

2p

π-1

(3.19)
2p

Furthermore, we note that s-lim

\ n - l

= e~tc®0 and
n / ~ \ n ' '

= β~ίC00 uniformly in ίe y,| by [7] and Lemma 3.2,

f it \ it λλπ

respectively. Setting Kn(f) =[f[-A]g[-.

\\2p,-lim

taking into account (3.19) and applying Corollary 2.4 we prove (3.18).
Since the convergence of (3.18) is uniform we obtain

B-'™C e o
(3 20'
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uniformly in ί e [η, τ] and in / = 0,1,2,..., k — 1. By the estimate

\kn

\kn + l

k-l

^ Σ
V kn + l

B f^ιA )4knτϊB

_{e-< /*>cΘO} ||β-<"*>cΘO||ίfc-m-1

ίe[>7,τ], and (3.20) we get

uniformly in ί e [)/, τ] and in / = 0, 1 , 2, . . . , k — 1 . By considerations similar to those

of Lemma 3.2 we find that s-lim /U - -A) =1 and s-lim - - -B =1
kn + l

uniformly in ίe[0,τ] and in /=0, 1,2, . . . , fc — 1. Thus, it is easy to see that

s-lim ( / * ( - - r ^ l g f - - -B\ } =1 uniformly in ίe[0,τ] and in
^^y \kn + l J*\kn + l JJ J L J

/ = 0, 1,2, ...,fc— 1. Hence we obtain that

IHIrlim
' \

uniformly in ί e [f?, τ] and / = 0, 1 , 2, . . . , k — 1 . But the last assertion coincides with
(3.17). Π

4. Application and Conclusion

As an application of the above results for the Gibbs semigroups, we mention
continuous systems of the QSM in a finite volume.

Let us consider an JV-particle system enclosed in a box ΛcR v which is a
bounded, open, connected subset of the v-dimensional Euclidean space with a
smooth boundary dA. Hence, the appropriate Hubert space is $? = L2(AN). In our
discussion, the statistics of particles is not important, therefore, we ignore the
symmetry of the wave function ψ e J ί f . The kinetic-energy operator Tσ for the
particles of the mass m is a self-adjoint extension of the sum

_ V I— L \ — 2m *j= Σ
α = l

with the domain &(TN) = C$(ΛN). The domain &(Tσ) is specified by a boundary
condition σ e C(dA). Then, one can check that Tσ is a p-generator for the self-

Nv
adjoint Gibbs semigroup GTσ(t) [12], i.e., for — ^p< -f oo we have

(4.1)
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The stable particle interaction UN ̂  — Nul is a self-adjoint multiplication operator
with a real-valued measurable function defined on the domain 2(UN)
= {ψe^:UNψe^}, see e.g. [17].

Therefore, we have to generalize our results a bit to include the semibounded-
ness of the operator UN. Moreover, to describe the short-distance behaviour of the
two-body interaction, a hard-core potential is frequently used [17]. Then, the
original Hubert space of the wave functions ffl = L2(ΛN) should be reduced to
J^' = IJJ^=L2(AN\SN), where SN is a region forbidden by hard-cores.

Theorem4.1. Let Tσ^0 and UN^ — Nul be self-adjoint operators defined in a
separable Hilbert space Jf = L2(ΛN). Let H=Tσ+UN and let Π be the orthogonal
projection from Jtf onto jer = L2(AN\SN) spanned by Q = @(Tσ

ll2)n@((UN

+ NuI)1/2). If (4.1) is satisfied, then

n (4.2)

uniformly in the inverse temperature β>0 varying in a compact interval bounded
away from zero.

Proof. Let us introduce A = Tσ ̂  0 and B = UN + Nul ̂  0. Then by (4.1) we get that
the condition (3.12) is fulfilled. Applying Theorem 3.4 we get

|| - lU-lim (e-(βMτσe-(β/nκuκ+Nuiy = e-βcπ (43)

n-»oo

uniformly in β>0 on any compact interval bounded away from zero, where
C = A + B = H + NuI. Cancelling both parts of (4.3) by exp(-βwJV) one gets
(4.2). D

Remarks 4.2. Our results are not applicable to interactions 17 which are not
semibounded from below (e.g. for Coulomb systems) in spite of the semibounded-
ness of the operator H.

Acknowledgement. The authors wish to thank the referee for his hints which have allowed them to
essentially simplify the proofs of their earlier work.
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