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Abstract. A GL(p, C)-valued lattice gauge field u on a simplicial complex
determines a principal GL(p, C)-bundle ξ if the plaquette products are sufficient-
ly small with respect to the maximum distortion coefficient of the transporters.
A representative cocycle cq for the qth Chern class of ξ can be computed on
each 2g-simplex σ by taking cq(σ) to be the intersection number of a certain
singular 2<?-cube Mσ with a Schubert-type variety Σq in the space of all p x p
matrices. This reduces to the solution of polynomial equations with coefficients
coming from u and thus avoids numerical integration or cooling-type procedures.
An application of this method is suggested for the computation of the
topological charge of an S(7(3)-valued lattice gauge field on a 4-complex.

Introduction

This work grew out of our earlier research in the topology of lattice gauge fields
[23,24], which in turn was inspired by the work of Martin Luscher [17]. There
we gave algorithms for the computation of the characteristic numbers of (7(1) and
S U(2)-valued lattice gauge fields on triangulated 2 and 4-dimensional manifolds.
Here we examine the problem of computing characteristic classes of lattice gauge
fields with values in GL(p, C), for arbitrary p, defined on simplicial complexes of
arbitrary dimension. In particular this work could be used as the basis of a new
algorithm for the evaluation of the topological charge of an S U(3)-valued lattice
gauge field on a 4-dimensional complex, a problem that has recently been examined
from a wide variety of angles [3,7,8,10,13,14,15,22], some of them reviewed in
[12] along with the physical context of the problem. In our SU(2) work we were
able to exploit the extremely simple geometry of the group: since geodesies on a
3-sphere are its intersections with 2-planes in 4-sρace, most questions about relative
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position can be immediately settled by linear algebra. Higher SU(N) have a more
complicated geometry; this led us to consider them as embedded in GL(N, C), where
the local geometry is linear. Also, for Sί/(2)-bundles on a 4-complex, the only
characteristic class is the second Chern class c2; this is the obstruction to a section
in a bundle with fibre the 3-sphere and can be calculated directly from this property.
In general an Sl/(JV)-bundle on a d-dimensional complex can have characteristic
classes c2, c4, etc. obstructing sections in bundles with more complicated fibres (see
[21, Problem 14-C]; this led us to devise a different, non-obstruction-theoretic
method which applies equally well to any of them.

We take as data a triangulation Λ of a topological space X, a local ordering
o of the vertices of Λ, and a GL(p, C)-valued lattice gauge field u on Λ. Our earlier
work was based on the extension of u, by interpolation, to a principal coordinate
bundle [26]. Here instead we define from u a GL(/?, C)-valued parallel transport
function V on /I, a concept which is closely related to a twisted cochain [4]. This
construction is possible if u is "continuous," i.e. if the plaquette products of u are
sufficiently close to the identity.

Our main contribution is the explanation of how a continuous lattice gauge
field u extends to a parallel transport function V; how a parallel transport function
V can be used to define a bundle ξ (we show that if u is "strictly continuous," then
ξ does not depend on how u was extended to V); and how generically V can be
used directly to yield integer-valued cocycles on Λ representing the Chern classes
o f ξ .

Here is an outline of the rest of this article. To each parallel transport function
V we associate (in Sect. 2) a canonical pseudosection H, which gives a specific
classifying map

f:X-+BΔG,

where G is short for GL(p, C), and BΔG is the base of Milnor's model of the universal
G-bundle [19]. This map defines the principal G-bundle ξ determined by V. In Sect.
3 we show how V can be constructed from a lattice gauge field u, and examine
the dependence on u of the bundle ξ so determined. Our computation scheme for
characteristic classes is presented in Sect. 4. There we go from / to a map taking
X to the standard (Grassmannian) classifying space, where the integral Chern
classes are represented by canonical dual varieties, the Schubert cycles. We show
how to compute intersections with Schubert cycles locally, and, when V is defined
from u as above, in terms only of u. It will turn out that computing these intersection
numbers amounts to solving polynomial equations of a simple type, which we
describe explicitly in Sect. 5 for the cases 17(1), SU(2) and SU(3). Proofs of some
of the more technical propositions are given in Sect. 6, and the equivalence between
parallel transport functions and principal coordinate bundles is proved in the
Appendix.

The calculation from u of cochains representing characteristic classes can be
applied (exactly as explained in the Introduction of [24]) to give a new algorithm,
an (integral) alternate to the Chern-Weil construction, for the local computation
of the characteristic classes of GL(p, C)-bundles with connections.
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1. Combinatorial Preliminaries

1.1 Let C' be the standard r-cube in Rr, that is,
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For 7= l , . . . , r the faces djCr and djCr are defined by the equations Sj= 1 and
Sj = 0 respectively.

1.2 Let Ar be the standard r-simplex in Rr, that is,

where e0 is the origin (0, . . . , 0), ef is the ith standard basis vector and ί0 + + ίr = 1.
We call (ί0, . . . , tr) the barycentrίc coordinates of ί0e0 H- — h ίrer. More generally,
we use letters i, 7, ... to denote vertices of a simplicial complex Λ, and the notation
σ = < i0, . . . , ir ) to indicate that σ is a simplex of /I, with those vertices. In contexts
where σ is being considered in isolation from Λ, we often write simply σ — < 0, . . . , r > .

Let djΔr = < e0, . . . , e,-, . . . , er >, = 0, . . . , r.

Definition 1.3. We define the standard projection πcr:Cr-+Δr by induction on r; see
Fig. 1.
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Fig. 1. The standard projection πcr:Cr-+Δr
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For r = 0, the definition is trivial. Now assume that πcr~ 1 : Cr~ 1 -» <e0, . . . , e r_ ί >
has been defined. We identify (7"1 with <5r<7 and set

πcr(sl5 . . . , sr) = (1 - sr)πcr" \sl9. . . , s r_ J + s/er.

In terms of coordinates, πcr(sί9 . . . , sr) = (ί0, . . . , ίr), where

ίι= s1(l-s2) -(l-sr)

ί 2 = s2 (l-s r)

ίr - sr.

1 A Orderίngs. A simplicial complex Λ is locally ordered by giving a partial ordering
o of its vertices in which the vertices of each simplex are totally ordered. We shall
usually refer to "the locally ordered simplicial complex Λ" and mention o only
when necessary. For example, the first barycentric subdivision of any simplicial
complex has a natural local ordering: if τ and σ are barycenters of τ and σ
respectively, then τ X σ if τ is a face of σ. A local ordering o of a finite set can be
refined to a total ordering: start with any o-minimal vertex; and inductively select
any vertex which is o-minimal among those not yet selected.

An ordering of the vertices of an r-simplex σ determines a unique order-
respecting linear homeomorphism σ-^Δr and picks out faces d^σ corresponding
to the similarly labelled faces of Δr.

1.5 Notation. Consider a simplex σ in Λ, say σ = <i0,...,j r>, with vertices so
ordered. To σ we associate two cubes in R°°, labelled Cσ = Cr

σ and cσ = cr

σ~
ί, as

follows:

and all the other coordinates are 0.
In particular, if dim σ = 0, set C° = 0 eR°° and c~ 1 = 0.

1.6. The order-preserving homeomorphism mentioned above, together with a
similar one from Cr to C£, combine with the standard projection of Definition 1.3
to define a standard projection πcΓff:

1.7 Milnor's Universal G-Bundle. For a Lie group G, let yΔG = (πΔ:EΔG-^BΔG)
be Milnor's model of a principal G-bundle [19]. Here EΔG = G 0*G 1* , the join

00

of countably many copies of G. A point of EΔG is represented as Σ ^9^ where

h 0 ̂  t( ^ 1, all but finitely many tt are 0, and £ f j = 1. G acts on the left on
EΔG by 0/ (Σίί0i) = £ίί(0/ 0ΐ), and BΔG is the quotient space. Note for future
reference that the map π^'.E^-^Δ00 =t0^G1*'" defined by ̂ (^1^^ = ̂ ^ is
constant on G-equi valence classes and so defines a projection p:BAG-+Δ™. It is
convenient to use the vectors e£ to index the various copies of G, by identifying ef
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with the identity element in the ίth copy; thus we will write £ tiqi as £ t^Cf, where
now all

2. Parallel Transport Functions and their Canonical Pseudosections,

Principal Bundles, and Classifying Maps

We start with a finite simplicial complex A and a partial ordering o of its vertices.
For notational convenience we will embed o in a total ordering, and renumber
the vertices 0, 1,2,... accordingly. (We will be using the consequent identification
of A with a subset of 4°°.)

Definition 2.1. A parallel transport function over a locally ordered simplicial
complex A consists of a family V of maps of cubes into G, one Vσ\cr

σ~
l ->G for

each r-simplex σ of Λ, r^ 1, such that, for every σ = <ί0,...,ϊ r> the following
compatibility conditions hold:

p_ l tip + l

For σ = <ί0ί'ι> a 1-simplex, we will abbreviate V<iQiι>(θ) to ι></0/1>. In particular
the compatibility conditions for a 2-simplex become

(i . , = a ,. y\ 1 0'1 1 2/ V \ lθ'2/

2.2 Remark. The notion of parallel transport function (p.t.f.) is a useful starting
point for many basic structures in the topology and geometry of principal bundles.
a) A parallel transport function includes a lattice gauge field (see Definition 3.2),

namely that one defined by M/O/I = ι></oίl> and uilio = (v<ioil>Γ
l for h<h in the

ordering.
b) Conversely, a lattice gauge field u which is continuous (i.e. satisfies a certain
bound/ on its plaquette products; see Definition 3.7) determines a p.t.f.
c) A p.t.f. can be understood as a set of transition functions for a principal bundle,
as follows. Reinterpret cr~l as σnC 0nC r, where C0 and Cr are the dual cells to
the lowest- and highest-ordered vertices of σ, respectively. Then the coordinates
in cr~ 1 match the "modified barycentric coordinates" [24] in σ, and the Fs can
be interpreted as giving a set of G-valued transition functions on the interfaces of
the dual cells of the vertices. The first compatibility condition is the cocycle
condition, and the second guarantees coherence when passing from a σ to a
neighboring σ'. Details are given in the Appendix.
d) The concept of a p.t.f. is closely related to one of the standard models used in
algebraic topology to represent a fibre bundle. Let A^ denote the chain complex
generated by Λ, and ̂  the singular chain complex of G. According to Brown [4]
for any principal G-bundle ξ = (π:E-> X) over X = |Λ| one can equip ^^®A with
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a new differential dφ to obtain a chain-complex model of E. Brown derives dφ

directly from what he calls a twisting cochain φ^ for ξ. It turns out that a twisting
cochain is essentially the same thing as a p.t.f., so that a p.t.f. V on A leads almost
immediately to the chain-complex model (^^®Λ,dφ) for the total space of a
G-bundle. (This is the same bundle that we will associate to V by a construction
more appropriate for our calculations.) More specifically, consider the standard
subdivision of the r-cube Cr into r! oriented r-simplexes τα, each with the same
orientation as Cr. These simplexes are indexed by permutations α of (1, . . . , r}; the
vertices of τα are e0,eα(1),eα(1) + eα(2), etc. For dim σ = r ̂  1, the map Vσ defines a
chain φr

σ~
lE(^r-l by ψr

σ~
l =]Γ Vσ\τ<χ. Then φ# is the sequence of chain maps

φr\Ar-+(&r-l given by φi(σ) = ψ° — e (here e, strictly speaking, represents the
0-chain with image the identity element of G) and φr(σ) = ψr

σ~
l, for r > 1.

e) If G is a Lie group, X = |/l| a smooth manifold, ξ = (π:E-+X) a principal
G-bundle, and ω a connection in ξ, then, by using parallel transport with respect
to ω along certain short paths, we obtain a p.t.f. as follows. (Thus the p.t.f. emulates
the role played by a connection, but on the small scale rather than the infinitesimal.)

For each vertex </> choose an identification of the fiber over <ί> with G; let
ef be the point in that fiber corresponding to the identity in G. Let o be a local
ordering of the vertices of A Let σ = <i0, . . . , z r>e/i, with vertices so ordered (r ̂  1),
and in σ pick points Pi9...,Pr_i so that

• Pl is on the line segment from <f 0> to (i^) (in the affme structure on σ):
P 1 =(l-s 1 )<i 0 >-f5 1 <i 1 >;
• P2 i

s on the line segment from Pj to <ι'2>:P2

 = (1 ~52)^ι + 52< z*2>; and so on
until
. P r _ 1 =(l-s r _ 1 )P Γ . 2 - |-s Γ _ 1 <i Γ _ 1 >.

Then let α be the piecewise linear path from <i0> through P l 5 P2, P r_ 15 to <ίr>.
This path is determined uniquely (up to parametrization) by the r — 1 numbers
s l 5 s2, . . . , s r_ ! . We may now define Vσ\cr~ l -> G by the rule: Kσ(s l5 . . . , s r_ J e^ = the
result of parallel transport of e/0 along the corresponding α. The collection of Vσ's
so defined, for σe/1, dimσ^ 1, forms a parallel transport function over A. To
check the compatibility condition

it is sufficient to remark that the corresponding paths all have Pp = <ΪP>; each can
be written uniquely as the composition α'°α" of two paths, where α', corresponding
to parameters s l 5 . . . , sp_ 15 runs from <i0> to <ip> in <i0, . . . , ίp> and α", correspond-
ing to parameters sp+1,...,)sr-ί, runs from <ip> to <ίr> in <ip,...,i r>. Parallel
transport along α; takes eίo to V<io 5 > ί p >(s 1,...,sp_ 1) eίp; parallel transport along
α" takes eίp to V < i p t f m m t i r > ( s p + l 9 . . . , 5 r_ ι) eίr; the compatibility condition then follows
from G-equivariance of parallel transport.
f) There is a widely shared intuition that the system of transition functions that
makes up a coordinate bundle, in the terminology of Steenrod [26], is itself a
"connection." Formally, it is a Cech 1-cocycle on the base space with values in
the structure group, and can be interpreted as the macroscopic form of a connection
(which is locally a 1-form with values in the Lie Algebra of that group). A p.t.f.,
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v<123>.(D-Θ3

.(0) β3

Fig. 2. Over the simplex <123>, the canonical pseudosection is built up from the maps V<}

and - G. Here G is drawn as a circle

in view of items c) and e) above, gives a different expression of this conceptual
equivalence.
g) Concerning global geometry, let G, ξ and ω be as in e) above; then the
corresponding p.t.f. enables us to approximate the holonomy group of ω. Roughly
speaking, let ̂  be as in d) above, and let 3F(A^ be the cobar construction on A
(See [2]; this is a chain-complex model of the loop space β(|yt|)); then the p.t.f.
determines a homomorphism of algebras ^(Λ^)-^^^ which is a model for the
holonomy map β(|/l|)-»G of ω.

A p.t.f. enters into our proof and calculations via its canonical pseudosection.
This is defined as follows, using Milnor's model of the universal G-bundle (see 1.7).

Definition 2.3. The canonical pseudosection H of a parallel transport function V
defined on a simplicial complex A (see Fig. 2) is a collection of maps Hσ:C

r

σ-^EΔG,
one for each σeA (r = dim σ), satisfying

1. if σ = <f>, Hσ:C°-+EΔG takes ~5 to et , the identity in G£.
2. //<ίo,..., ί r>(s ί l,...,5£r)-(l-s ί r)

where e, is the identity element in Gj.
These two conditions permit an inductive definition of H, beginning with the
0-simplexes of A. In addition the //σ's clearly will satisfy

where π^ E^G-M00 is the projection defined in 1.7 and τfa is the standard
projection of 1.6. Here we are using the identification of A with a subcomplex of
4°°, so σcΛ 0 0 .



262 A. V. Phillips and D. A. Stone

Proposition 2.4. Let V be a G-valued parallel transport function on the ordered
simplicial complex A, and H the canonical pseudosection ofV. Given xeσe/1, with
dim σ = r, choose ye(πc>σ)~ l(x) and set fσ(x) = πΔ(Hσ(y)). Then
a) this gives a well defined map fσ:\σ\-+BΔG\
b) the various fff's fit together to give a well defined map f : X -> BΔG. Thus V
determines the bundle ζ=f~1yΔG.

Proof of a). Consider two points y,yf with nc^(y) = πc'(/). For simplicity of notation
let us suppose again here that σ = <0, 1, . . . , r>. Examination of the map πCff shows
that either y and / both have sr = 1, or they have the same sr-value and s r_ 1 = 1,
or . . . , or they have the same sr, s r_ 15 . . . , s3- values and s2 = 1, or all their coordinates
are the same. In the first case formula 2) shows Hσ(y)= Fσ(s1,...,5Γ_1)er and
Hσ(y') = ^(r( sΊ» »Sr-ι)βr These two points of EΔG are clearly G-equivalent.

In the second case, formula 2) gives (with notation from Sect. 1)

Hσ(y) = (1 - sr)H<0,...,r- !>(«!,. . ,s r_2, 1) + srVσ(sί9. . . , 5 r_ 2, l)er,

Let us unravel the formulas, using

V (s s l} = V (s s ) v

It is now clear that Hσ(y) = g Hσ(y'\ where

In the next-to-last case mentioned,

Hσ(y) = (\ -sr)H<0t...,,._!>(«!, I , s 3 , . . . , s r _2,s r _ 1 )

= (1 — S r) |_(l ~~ 5r-l) "<0,...,r-2>(5l> M 53> •> Sr- 2/

+ Sr^<τ(5l? 1 > 5 3 5 ? 5r-2' 5r- 1 )er

-5 rFσ(s1,l,s3,...,5 r_2,5 r_1)e r

+ (l-s r )s r _ 1 K < 0 ) . < . , r _ 1 > (s 1 , l ,s 3 , . . . ,s r _ 2 )e r _ 1

+ (1 -sr)- (l -53)K<012>(51)e2,

and Hσ(y') has the same expression, except that the coordinate sl is replaced by
s\. So the two //σ-values are related as above, with g = K<012>(sι). (^o^)!5!))"1-
Intermediate cases correspond to intermediate formulas for g, and in the last case
y = y' so there is nothing to prove.
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Proof of b). Consider the case of τ*-<σr, and of a point xe |τ | . We need to show
that /σ(x)=/τ(x), i.e. that if yeCk

τ with πc\y) = (x) and y'eCσ with πc'(/) = (x),
then there exists geG with Hτ(y) = gΉσ(yf).

It is sufficient by iteration to show this when τ is an (r — l)-face of σ. As before,
suppose σ = <0, l,...,r>. There are two cases to consider, according as τ does or
does not contain the vertex <0>.

If <0>eτ then C~ 1 is a face of Cr

σ, and Hτ(y) = Hσ\cr-ι(y), so the claim follows
from part a). Otherwise, τ = <l,2,...,r>. We will prove by induction on r that
Hτ(s29. .,sr) = VζQ\> //σ(l,s2,...,sr). Since πC f f(l,s2,...,s r) is also equal to x, the
claim will again follow from part a).

We begin with r = 2.

l) + s2K<012>(l)e2

+ s2t;<01>t;<12>e2

Suppose the identity has been proved for r — 1. Then

^<01,...,r-l>(l>S2> > S r- l ) = y<01 > ̂ <1,. ...r- 1 >(S2> > S r - l )

This gives

Hσ(l s2, . . . , sr) = (1 - s><0 !>//<!,...,,_ ! >(s2, . . . , s r_ t) -f sr Vσ(l9s29 . . . , sr) er

which completes the proof of the proposition. Π

2.5 Remark. The map / embeds X in £4G. This follows from the fact that the
composition π°°o f:X-+Δ°° (where π^ l^G-M00 is as in 1.7) maps each simplex
of A homeomorphically onto the corresponding simplex of 4°°. Consequently
ζ — 7jG|/PO This allows us to consider E as a subset of EΔG, and the /ίσ's as
maps into £; it is in this sense that H is a pseudosection.

3. Lattice Gauge Fields

3.1. In [24] we showed that a S[/(2)-valued lattice gauge field satisfying a certain
nonsingularity condition could be embedded in a S£/(2)-coordinate bundle; and
we gave an algorithm for computing the second Chern class of that bundle directly
from the lattice data. Here we are interested in GL(p, C)-valued lattice gauge fields,
but for this group the convenient spherical geometry of SU(2) is no longer available.
Our substitute is to think of GL(p, C) as sitting inside M(p), the affine space of all
p x p complex matrices, and to use the affine geometry of M (p) to do the necessary
interpolations to make a lattice gauge field u into a more continuous object. Clearly,
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the closer the transporters utj lie to the set of singular matrices in M(p), the less
room there is for these interpolations. We assign to u a distortion coefficient K(u)
(this coefficient is 1, for example, if the transporters are all unitary), and give an
algorithm which, if the modulus of continuity of u is sufficiently small with respect
to K(u), will produce from u a GL(p, C)- valued parallel transport function. We will
also show that under a more stringent condition on the modulus of continuity,
the bundle determined by that p.t.f. does not depend on the interpolation algorithm
chosen, and may therefore be called the bundle determined by u.

Definition 3.2. Given a Lie group G, a G-valued lattice gauge field (l.g.f.) u on a
simplicial complex A is a function that assigns to each 1 -simplex <(/> of A an
element w^ eG, subject to the condition ujί = (uij)~1.

3.3. Let M(p) be the algebra of all p x p complex-valued matrices. For AeM(p)
we take, as usual,

\\A\\ =max\Av\9

|TΓ| = 1

and for any p ^ 0 we let B(A, p) denote the open ball of radius p about A in
M(p):

B(A,p)={A':\\A-A'\\<p}.

Definition 3.4. For AeGL(p,C) we define the distortion coefficient of A to be the
number

K(A) = m3x{\\A\\,\\A-l\\}.

(Note that K(A) ^ 1, with equality if and only if AeU(p).) The distortion coefficient
of a l.g.f. u with values in GL(p, C) is then

K(u) = max
<U>eΛ

Lemma 3.5. Let A be an element of G = GL(p, C) with distortion coefficient
K = K(A)ι then

B(A, l/K) c G.

Proof. Suppose A'eB(A,l/K) but A'φG, so 4'7 = 0 for some 17 with |V| = 1.
Then \Av\ = \Aυ\/\'υ\ = \vi\/\A-1vi\^l/K9 with w = Av. On the other hand
\Aυ\ = \Av - A'~v\ ^ || A - A' \\ < l/K, a contradiction. Π

Definition 3.6. Let A be a simplicial complex with vertex ordering o, and u a
GL(p, C)-valued l.g.f. on A. The modulus of continuity of u with respect to o or,
more briefly, its o-modulus of continuity, is the number

δ = max || u^-u^ — uik || ,

where the maximum is taken over the set of all 2-simplexes <ί/fc> (with vertices
so o-ordered).

Definition 3.7. A l.g.f. u on Λ, as above, with distortion coefficient K is continuous
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with respect to o if its o-modulus of continuity δ satisfies

1

where n = dim A and, for K ^ 1 and / = 1, 2, . . . ,

(Note that φ(K, I) ^ / with equality if K = 1 or / = 1.)

Proposition 3.8. Let ube a GL(p, C)-valued l.g.f. on the n-dimensional locally ordered
simplicial complex A, with distortion coefficient K and o-modulus of continuity δ
satisfying δ < \/Kφ(K, n) (so u is continuous with respect to o). Then there is a
GL(p, C)-valued p.t.f. V on A such that

(1) v<ijy = Uij whenever < (/> 6/1 with ί o-preceding j\
(2) For every σeA with dim σ = r ̂  2, and every ~secr

σ~ \

\\Vσ(s)-uσ\\<δφ(K9r).

(Here uσ = uij9 where < i > and < j > are ί/ze /irsί- and last-ordered vertices of σ).

Proof. The construction of Vσ is made by induction on dim σ. When dim σ=l,Vσ

is determined by (1).
In general, the compatibility conditions of Definition 2.1 determine Vσ on the

vertices of cσ. More explicitly, setting σ = <0,...,r>, every vertex of cr

σ~
l can

be uniquely determined by a subset / c= {!,..., r- 1} as follows: the subset
/ = (/!<•••< ik) corresponds to the vertex Σk

j= ί efj. (or to the origin 0 when / = 0).
Set HJ = uoil uilh uίkr; then by the axioms for a p.t.f. (Definition 2.1), V^Σe^) = Uj.
In particular, Kσ(0) = M0r.

We define Vσ initially as a map Vσ:c^~1-*M(p); then we shall prove that in
fact Im(Kσ) d GL(p,C). The definition proceeds by successive linear interpolation
in the coordinates s !,..., s r _ i . Specifically,

"+" Sr-l ^<01,...,r-l>(Sl5 » 5r- 2)' Mr - l.r

We now prove by induction on k that if / = {i l9 . . . , ik} as above, then

(*) \\uI-u<>r\\<δφ(K,k\

This is trivial when / = 0, and follows from the continuity of u when k = 1.
For fc ̂  2 we have

Using the inductive hypothesis and the fact that each || u0 || g K, it follows that

|| Uj - u0r \\<δKk~l+ δφ(K, fc - 1) = 5φ(X, fc).

Thus (*) holds.
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In particular, assertion (2) in the statement of the proposition holds at every
vertex of cr~ 1 . Since the || || -balls are convex, the construction of Vσ using successive
linear interpolations now implies (2) in general. Since δφ(K,k)< 1/X, it follows
from Lemma 3.5 that Vσ actually takes values in G. To complete the proof that
V — {Vσ} is a p.t.f., it remains to check the product axiom of 2.1. To do so, it is
convenient to develop another formula for Kσ, which will also be useful in the
sequel. For each / as above, define the function λj'.c^'1 ->[0, 1] by

Then

(**) Kσ(s 1,...,5 r_ 1) = X/l / (5 1 , . . . ,S r _ 1 )M / .
/

The product axiom now follows. Π

It is natural to ask to what extent the bundle determined by V really depends
on u; our uniqueness result, stated below and proved in Sect. 6, will require a
stricter bound on the modulus of continuity.

Definition 3.9. A G-valued l.g.f. u of distortion coefficient K on an n-dimensional
simplicial complex A with local vertex ordering o is strictly continuous with respect
to o if its o-modulus of continuity δ satisfies

Note that for a unitary l.g.f. this collapses to δ < l/4n2.

Proposition 3.10. Let u be a strictly continuous G-valued l.g.f. on the locally ordered
simplicial complex A, with distortion coefficient K and o-modulus of continuity <5,
and let V and V be two G-valued p.t.f.'s on A such that for every σ of dimension
r ^ 1 and every ~secr

σ~
 1, we have

\\Vσ(-s)-ua\\<δφ(K,r),

\\V'a(-s)-uJ<δφ(K,r)

(for example, one could be the p.t.f. constructed from u by the method of
Proposition 3.8). Then V and V determine the same bundle. We will call this the
bundle determined by u. Π

Definition 3.11. Let V and V' be G-valued p.t.f.'s on A. Then V is an ^-approximation
to V if

\\V'σ(-s)-Vσ(-s)\\<ε

for every σεA and every

Corollary 3.12. Let u be a G-valued l.g.f. on the locally ordered simplicial complex
A which is strictly continuous with respect to o, and let V be a G-valued p.t.f. on A
satisfying

\\Vβ(-s)-u,\\<δφ(K,r),
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where r = dim σ, for every σeA and every ~secσ. Then there exists ε > 0 such that
any p.t.f. V which is an ^-approximation to V determines the same bundle as V.

Proof. Let ηr = max || Vσ(~s) — uσ\\, where the maximum is taken over the compact
set (J cr~ *, so ηr < δφ(K, r). Choose a positive ε < min (δφ(K, r) — ηr). Then

σeΛ,dimσ = r r

\\V'σ(~s)—Vσ(~s)\\<ε implies for every σ of dimension r, and Tec^"1, that
|| V'σ(~s)-uσ\\<ε + ηr<δφ(K,r); we may now apply Proposition 3.10. Π

Definition 3.13. Let u and u' be G-valued l.g.f.'s on the simplicial complex A. We
will say u' is an ^-approximation to u if

\\Uij-u\j\\ <ε

for every <ij>eA

Corollary 3.14. Let u° be a strictly continuous G-valued l.g.f. on the locally ordered
simplicial complex A. Then there exists ε > 0 such that if u is an ε-approximation
to u°, then u is strictly continuous and determines the same bundle as u°.

Proof. Let K° and δ° be the distortion coefficient and modulus of continuity of
u°. Strict continuity of u° means <5° < l/4n(X°)2φ(X°, ή). Choose δ and α > 1 such
that

1 1

°, n)

A first condition on ε is to choose it so that

X(u) < αK°, (5(u) < δ

for any u which is an ε-approximation to u°; such a u will also be strictly continuous.
The rest of the proof follows immediately from Corollary 3.12 and formula (**)
in the proof of Proposition 3.8. Π

4. Local Intersection-Theoretic Computation of Characteristic Classes
of Lattice Gauge Fields

We shall now show that, provided the lattice gauge field u is "generic," the Chern
classes of the bundle ξ determined by V, where V is the parallel transport function
defined from u in Proposition 3.8, can be evaluated from u in terms of intersection
numbers between explicit, polynomially defined geometric cycles in the linear space
M (p) of all p x p complex- valued matrices. We continue with the notation

Let A be a locally ordered, finite simplicial complex, and let V be a G-valued
p.t.f. on /I, with canonical pseudosection H. Let f:X-+BΔG be the classifying
map constructed from H in Proposition 2.4 (where Jf = |yl|), ξ = (π:E^X) the
corresponding G-bundle and f:E->EΔG the bundle map covering /.

4.1. Let m: G -> M(p) be the inclusion map. We extend m to a map M Δ :E ΔG -> M(p)
by
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In addition, for each σeΛ9 let Mσ:C^-»M(p) be given by

4.2. In case V is defined from a continuous lattice gauge field u, we can give an
explicit formula for Mσ in terms of u. Say σ = <0, . . . , r >, with vertices ordered as
listed. Let / be any subset of {!,..., r}; say / = (z'1 < ... < jk). Set uI = u0il'-uik_iik

(with the convention M0 = 1, the identity matrix). With λl defined as in the proof
of Proposition 3.8, we have

This follows by a straightforward induction argument from Definition 2.3 and
equation (**) in the proof of Proposition 3.8, where ul = ύj-u^.

4.3. For any matrix AeM(p\ let Al,...,Ap be its column vectors. Define subsets
\ for <z = l , . . . , p b y

Thus Σ! = {A \detA = 0} and Σp = {A \ A 1 - 0}. In general, setting N = ί _ P j,

Σp is defined by the vanishing of the N determinants φl9...9φN formed from
A1

9...9A
p~q+l

9 and is thus an algebraic variety. As such, it is a cycle with a
canonical orientation (see, for example, [9, Chapter 0, Sect. 4]). Actually Σq has
real codimension 2g, so no more than q of these N determinant functions can be
linearly independent at a point of Σq\ this fact will be established during the proof
of Theorem 4.8. For future reference it will be useful to study the structure of this
set of equations a little more closely.

4.4. For a p x p matrix A, let A' be the p x (p - q + 1) matrix constituted by its
first p-q+l columns, and let Uq c Σq be the set of Λ's in Σq such that any set
of p — q different rows of A is linearly independent. Clearly Uq is an open, dense
subset oίΣq. Now let φi ,,..., φiq be any collection of the φ's satisfying the following
independence contion: each φ^ involves a row which does not appear in any of the
others. (There are clearly at most q determinants in such a collection.) Then it is
straightforward to show that at any point A of Uq the q gradients (in the sense of
[20]) Vφil9...9Vφiq are linearly independent. It follows that, near A, the variety
Σq is defined by the vanishing of φίp . . . , φ( .

We want to show that the Chern classes cq(ξ) of ξ may be computed as
2g-cocycles on Λ by means of the intersection numbers Mσ Σq, for dim σ = 2q. But
such intersection numbers are only defined for "generic" V, and we must first
explain this point.

Definition 4.5. A G-valued p.t.f. V on Λ is generic with respect to {Σq} if

(1) Each Vσ\cσ-+G is piece wise differentiable.
(2) If dim σ = 2q9 then there are (none or) finitely many interior points p l 5 . . . , pseCσ
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such that:

(i) the 2q-cham Mσ meets Σq in the points Mσ(/?ί), which belong to Uqι
(ii) Mσ is diίϊerentiable at each p^
(iii) Mσ and Σq are transverse at each Mσ(pi) (in particular, if dim σ < 2q, then

Definition 4.6. Let u be a G-valued l.g.f. on A which is continuous with respect to
o, and let V be the p.t.f. constructed from u following the proof of Proposition 3.8;
we say that u is generic if V is.

The following proposition is proved in Sect. 6.

Proposition 4.7. Let u° be a strictly continuous G-valued l.g.f. on the locally ordered
simplicial complex A. Then there exists an open neighborhood U of u° in the space
of all G-valued l.g.f.'s on A and in U an open dense set U' consisting of l.g.f.'s which
are generic and strictly continuous and which determine the same bundle as u°. Π

Theorem 4.8. Let V be a generic G-valued p.t.f. on a finite simplicial complex A with
local vertex ordering o. Then, for q = 1, . . . ,/?, the qth Chern class cq(ξ) of the bundle
ξ associated to V by Proposition 2.4 is represented by the 2q-cocycle Cq(V) on A
defined by

Mσ:Σ, dimσ = 2q.

Here Mσ Σq represents the intersection number ΣiN(Mσ,Σq,pi\ where the sum is
taken over all the intersection points, and N(Mσ, Σq, p{] = ± 1 is determined as
follows. Suppose σ = <0, 1, . . . ,r >, with vertices so ordered, with r = 2q. M(p) and
Σq both have canonical orientations, since one is a complex manifold and the other
a complex subvariety. If the 2g-frame (M<τ)s|ί(3/δ51)5...5(Mσ)s|c(δ/δsr), followed
by a 2(p2 — g)-frame giving the canonical orientation of Σq gives a positively
oriented 2p2-frame (with respect to the canonical orientation of M(p\ then
N(Mσ,Σq,pi) = + 1; otherwise it is — 1.

Proof. We start by embedding the local ordering o in a total ordering l , . . . , v
(which we shall also call o) of the vertices of A. Set £^G = G 1* *G v gE 4 G,
B\G = E\G/G c BΔG, and y\ = (π\:E\G-+B\G) the principal G-bundle so defined.
The classifying map f:X^BΔG given in the proof of Proposition 2.4 has image
contained in B\G, so we may regard / as a map from X — \A\ into B\G. Now let
yvG = (πv:EvG-+BvG] be the G-bundle of p-frames in Cvp. We shall construct a
G-equivariant map Ψ : E\G -> £v G; this will induce a map Ψ:B\G^BVG, and we
will have ξ = (Ψ°fΓlyvG.

To construct Ψ we number the coordinates in Cvp p by /?, as follows:
z1 !,..., zlp,z2 !,..., z2 /,,...,zv l,...,zv / r Consider the point g^^E^G. Using matrix
notation for G = GL(p,C), let 0u,...,0 ί>p be the rows of gt; then let ^(^e^eC^
be the vector with the entries of the row 0U in positions numbered Π through ip,
and zeroes elsewhere; similarly φ2(9i^i) nas tne entries of gίt2 in positions
numbered i\ through ip9 and zeroes elsewhere, etc. Finally let Ψ(g^ι} be the frame
Ψι(9i*i)>' '>ΨP(9i*i) Now extend each φj linearly by
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and define ψ( £ ί̂  e,- 1 to be the ordered set of vectors ψΛ YJtigiei •), . . . ,
\ * / \ i /

ΨP{ Σ tiQ&i \ This is in fact a frame, because at least one tj must be nonzero, and
\ » /

then linear independence can be checked using the components numbered
7*1, . . . , jp, which are just ί, times those of the nonsingular matrix Q-Γ

If we identify EVG with the space of p x vp matrices (by using the standard
basis corresponding to the z£/s to associate to each vector the row-vector of its
components, and by stacking these p rows into a matrix) then two frames span
the same p-plane if and only if they differ by left multiplication by some geG. The
map Ψ is clearly G-equivariant with respect to this multiplication and the left
action of G on E\G, and so induces Ψ\B\G^BVG, as promised.

The homology of BVG may be represented by Schubert cycles [6,9, Chapter 1,
Sect. 5]. These are defined as follows: choose a basis 2F = (f1 19 . . . , /lp, /21, . . . ) for
Cvp and define Sq^BvG to be the set of p-planes whose projection into the span
of/! ! , . . . , fι,p-q + 1 has dimension ίg p — q. (This is the same as requiring, as in [6],
that their intersection with the span of fίtp~q + 2> - > fvp have dimension ^ q.) This
set has codimension 2q. If we use the basis J* to identify each vector in the frame
with a row vector, and the entire frame with a p x vp matrix, then the frame with
matrix F belongs to

if and only if rank (F11,...,F1 l '~ f f + 1)^p-g, where FU,F12,... are the column
vectors of F. Now if T: Cvp -> Cp is defined by projection onto the span of/! { , . . . , /lp,
then T induces f :£vG->M(p) which clearly satisfies

(**) S^f^Σ,.

(Comparing (*) and (**) shows immediately that Σq and Sq have the same
codimension, and that therefore Σq is a variety of codimension 2q as we claimed
earlier.)

By naturality of the Chern classes, cq(ξ) = (Ψ°f)*cq(γvG). Since cq(fG) is
Poincare dual to the homology class of Sq [6], this means that cq(ξ) is represented
by the 2g-cycle Cβ(V)(σ)= Ψ°f(σ) Sq (provided this intersection number is well
defined).

For our purposes it is convenient to use the basis

Jίί ~ eil> '" flp = eip

where the etj are the elements of the standard basis with respect to the coordinates
2^ mentioned above.

Then if a vector has components αn,...,αv p with respect to the standard
basis, its components with respect to 3F will be bίk = αlk + α2k -f ••• + dvk,b2k =
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— a2k,...,bvk= — avk, for k = 1,...,p. In particular,
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The relation between these maps and the various spaces and maps used in this
work is summarized in the following commutative diagram. The horizontal arrows
on the right are inclusion maps.

EΛG

» BΛG

Ψ

Ψ

M(p)

£VG

BVG

Applied to our calculation this gives

Ψ*Hσ(Cσ)-Sq = f o ψ*Hσ(Cσ} Σq = Mσ(Cσ) Σq,

using (**). On the other hand, since Hσ(Cσ) is in fact a section over the interior
of σ, we have

Ψ°Hσ(Cσ) Sq=Ψ°f(σ) Sq,

and finally

The genericity hypothesis guarantees that this last intersection number is well
defined; it follows that the other intersection numbers occurring in this proof, since
they turn out to be equal to this one, are equally well defined. Π

Corollary 4.9. Let u be a generic G-valued l.g.f. on A, which is strictly continuous
with respect to the local vertex ordering o, and let ξ be the corresponding principal
G-bundle. Let V be the G-valued p.t.f. constructed from u by the method of
Proposition 3.8. Then the qth Chern class of ξ is represented by the cocycle Cq(V)ι
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furthermore, as is clear from Paragraph 4.2, the formula for Cq(V) depends only
on u. Π

4.10 Remark. Similar formulas could be given for the Pontrjagin classes and Euler
characteristic of a generic p.t.f. with values in GL(p, R).

5. Computations in ί/(l), 567(2) and SU(3)

Example 5.1. G = GL(1,C). Then M(1) = C and Z\ = {0}. Let u be a generic
G-valued lattice gauge field on an ordered simplicial complex Λ; assume that u is
strictly continuous with respect to the local ordering. Let V be the parallel transport
function constructed from u by the method of Proposition 3.8; let ξ be the
corresponding G-bundle; and let Cί = Cι(V) be the cocycle representative on Λ of
the first Chern class c^eH^/i Z), constructed as in Corollary 4.9. Here is what
is involved in computing CΊ(σ), where σ = <012>eΛ

From paragraph 4.2, we have

Mσ(51?S2) - (1 - Si)(l - 52) + S^l - S 2 )W 0 1 + (1 - SJS2UQ2 + S1S2UQIU12.

The map Mσ sends the unit square into the complex plane, and Cx(σ) is the number
of points sent to 0, each counted with the sign of the Jacobian of Mσ at that point
with respect to the coordinates (s l 5s2) and the standard coordinates x + iy in C.
It is clear that generically there are 0,1 or 2 such points, and when there are two
their signs cancel.

In the special case G = 17(1) c GL(1,C) this procedure gives exactly the same
Cj(σ) that one would obtain by scaling down to U(l) the Sί/(2)-algorithm of [24],
i.e. constructing an as-constant-as-possible section following the local ordering and
calculating the obstruction to extending that section over the 2-skeleton. This is
different from the more differential-geometric method of [23], which assigned to
each 2-simplex σ a real number, the analogue of j KdA\ the Gauss-Bonnet theorem

a

(generalized to arbitrary circle bundles) guarantees that the two procedures give
the same cohomology class.

Example 5.2. For lattice gauge fields with values in G = SU(2) we could use
G = GL(2, C), but it is geometrically more natural to use G = GL(1, H), since SU(2)
is also the group of unit elements in the quaternionic number system H. (Our
results extend easily to quarternionic line bundles.) Then M(l) = H and Σ\ = {0}.
Let u, V, ξ be related as in the previous example, and let C2 = C2(V) be the cocycle
representative on Λ of c2(ξ\ as in Corollary 4.9. Say σ = (01234>, oriented by the
ordering. From 4.2 we have

Mσ(s1,s2,s3,s4) = (l -5l)(l -s2)(l -s3)(l -s4)l

+ ̂ (1 -s2)(l -s3)(l -s4)«oι H—(four terms)

-f (1 —s1)52s3(l — S4)w0 2w2 3 -f ---(six terms)

-f Sj( l — S2)s3s4u01u13u34 ~f ---(four terms)
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(Here 1 is the quaternionic identity element (1,0,0,0).) The points where Mσ meets
Σ\ are given by

Mσ(sί9s29s39s4) = 09 with O^s^l.

Separating the quaternionic coordinates gives four quartic equations in four
variables. The signs of the intersection points and the total intersection number
are determined as in the previous example.

Again it is interesting to compare this method with that of [24] applied to the
same simplex. Both methods start from the same set of sixteen points on S3 c R4.
Our earlier method does a certain geodesic interpolation to obtain a map from
3C4. to S3, and then yields the winding number of that map. This method applies
iterated linear interpolation to obtain a map from C4 to R4, and then counts how
many times that map covers 0. We know that for u sufficiently continuous both
algorithms must yield the same cohomology class (on the other hand it is not
difficult to construct examples of strictly continuous u's for which the two methods
produce different cochains). But since the geodesic method leads directly to a very
simple calculation, it is preferable for this example.

If we considered 5(7(2) c GL(2,C) instead, the map Mσ would be defined just
as above (1 is now the 2 x 2 identity matrix), with the interpolations taking place,
nominally, in the 8-dimensional space M(2). Actually since the quaternions form

a linear subspace of M(2) ( they correspond to the matrices of the form

x + iy z + i
the previous picture is just embedded in a bigger space. The

zw x — y
locus Σ2 is in this case the set of matrices with first column zero. Since this locus
intersects the quaternions exactly in the origin of H, the two calculations are in
fact identical.

Example 5.3. For lattice gauge fields with values in SU(3) one can generalize the
geodesic method directly (see [14,15]); our method suggests using GL(3,C). If A
is a 4-complex, the only relevant characteristic class is c2(ξ), continuing with the
notation of Examples 5.1 and 5.2. The cycle Σ2 c M(3) = {(Λj )} is the set of matrices
whose first two columns are linearly dependent. This set is defined by three
equations, no more than two of which are independent at any point of Σ2:

A\ A\
A

= 0,
1 A2A\ A

A\ A
= 0,

A\ A\
= 0.

We abbreviate these determinants to φi9φ2,φ3, respectively. Since any two of
the three satisfy the independence condition of paragraph 4.4, our genericity
hypothesis implies that the intersection points between Mσ and Σ2 will take place
in the portion of Σ2 where any two of the three equations are independent.

Let C2 = C2(V) be the cocycle representative of c2(ξ\ as in Corollary 4.9.
Say σ = <01234>, with vertices so ordered. The function Mσ:C

4->M(3) is given
by the same formula as in Example 5.2 (except now 1 is the 3 x 3 identity matrix).
Substituting this expression into the real and imaginary parts of the equations
φ2 = 0, φ3 = 0 leads to four equations of degree 8 in the four unknowns sί9s2,s3
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and SΛ.:

Wφ2(Mσ(sl9s29s39s4)) = 0

3φ2(Mσ(sl9s29s39s4)) = Q

3lφ3(Mσ(sl9s29 s39 s4)) = 0

3φ3(Mσ(s1,s2,53,54)) = 0

Si real, O^gl.

(*)

Each solution of these equations and inequalities will be an intersection point p
of Mσ and Σ2. Before discussing methods for solving (*), let us check the sign of
p. Let y2 = Vφ2(p) as in [20] and y3 = Vφ3(p). They define a complex 2-dimensional
subspace L of M(3), with a canonical orientation given by (9ϊy2,3^2* ^tya* 3^3)- By
the genericity hypothesis, the projections into L of the vectors (d/dst)Mσ(p)9

i = 1,2,3,4, form a real basis of L. The sign of p is + or — according as this basis
agrees or disagrees in orientation with the canonical one.

Finally

C2(σ)= Σ ±!>
intersection points p

plus or minus following the sign of p.
Detailed consideration of the methods for solving a system like (*) is beyond

the scope of this work. There are two main types of scheme. One, explained in
[5], uses elimination theory to reduce (*) to a system which can be solved by
repeating extraction of roots of polynomials of one variable. The other (see [16]
and the references therein) can be called the homotopy method: one constructs a
homotopy between (*) and a similar system (**) all of whose roots are known.
Then one can follow the homotopy backwards, tracking the roots of (**); generically
they will lead to those of (*).

Whichever method one uses to solve (*), using intersection numbers expresses
the topological charge as a sum of integers. It therefore avoids the round-off errors
associated with a computation shceme expressing the topological charge as a
curvature integral and using numerical integration, errors which can only be
aggravated by increased lattice size.

On the other hand both the intersection scheme and the integration scheme
involve a fixed amount of computation per simplex, whereas in a scheme involving
cooling the entire lattice the computation time is sure to grow much more rapidly
as a function of the total number of simplexes.

6. Proofs of Propositions on Equivalence and Generic Approximation

This section contains the proofs of Propositions 3.10 and 4.7.

Proof of Proposition 3.10. We shall construct a family

of maps Wσ:c
r

σ~* x [0,1] -> M(p) such that, for each σ,
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(a) writing σ as <0,...,r>, we have

\\W.(sl9...9sr-l9t)-u0,\\<2(2r-l)K'δ.

(Recall that strict continuity means δ < l/4K2nφ(K, n\ and therefore 2(2r- \)Krδ <
4nKrδ < l/K for 0 ̂  r ̂  n\ so condition (a) implies that Wσ takes values in G.)

(b) for each ί, set V*σ = W^-ix{ί}; then {V,} is a (G-valued) p.t.f. V on A
(c\ VQ —V -V1 = V '{^) y σ — v σ> y σ v σ >

Once W has been constructed, the proposition quickly follows; for if ξt is the
bundle over \Λ\ determined by V, then {ξ*} is a one-parameter family of bundles
joining ξ° = ξ to ξ1 = ζ'\ so ξ and £' are isomorphic.

We construct Wσ by induction on r = dimσ. When r = l , W<τ:/-yM(p) is
determined on dl by condition (c): W^τ(0) = ι?<0ι>, W«r(l) = t><oι> By hypothesis,
| |u < 0 ι> — MOI II <<5> and the same holds for ι/<0ι> That is, J¥σ(3/)<i#(w01,<5). Let
Wσ:/->#(w01,<5) be any extension of Wσ\dl. Since δ<2Kδ, condition (a) holds,
while condition (b) is automatic in dimension 1.

Now assume Wτ has been constructed whenever dim τ < r, and say σ = <0,..., r >.
Then Wσ is prescribed on d(c£~1 x /) by (b) and (c), as follows:

(i) On cr

σ~
1 x 3/, Wσ is given by condition (c).

(ii) On (djd^1) x /, for; = 1,..., r - 1, condition (b) forces Wσ(sί9..., s7 = 0,..., t) =
W d j σ ( s l 9 . . . f , $ j , . . . , t ) .
(Hi) On(djdr

σ~
1) x I,foτj= l,...,r — 1, condition (b) forces W /

σ(s1,...,s J = l,...,ί) =
^<o,...,7>(siJ > sj-ι> ί)'^<j,...,r>( sj+iJ j'Sl.-1,ί). (We omit the verification that
these prescriptions are compatible.) We now claim that Wσ satisfies (a) on
d(cr~1 x /). This follows from Proposition 3.8 (2) in case (i) since φ(K9 r)δ ^rKr~lδ<,
2(2r—l)Krδ, and from the inductive hypothesis in case (ii). For case (iii), set
σ' = <0,...,;>, σ" = <7,...,r>, 7 = (s1,...,5 r_1), ~s' = ( s l 9 . . . 9 S j - ι ) 9 7// = (5J + 1,...,5 r_1).
Then

Wσ(s, t) - u0r = (Wσ.{sf, t) - uQj) (Wσ.{S"9 i) - ujr) + M0/(HU7", 0 - «>)

H- (Wσ,(T91) - u0j) ujr + UQJ UJΓ - u0r.

Applying condition (a) to Wσ, and Wσ» and using the fact that each || utj \\ ̂  K, gives

|| Wσtf9t) - u0r || ̂  4(2; - l)(2(r -7) - l)δ2Kr

+ K 2(2(r-j)-l)Kr~jδ

+ 2(2j-\)Kjδ K

+ (5.

Now (2j - l)(2(r -7) - 1) < 4j(n -j) g π2, so the first term is dominated by 4n2δ2Kr

which in turn, using strict continuity, is dominated by δKr; also here 1 ̂ 7 g r - 1
so Kr~j+1 and K7+1 are both ^Kr, and the sum of the two middle terms is
dominated by 2(2r - 2)Krδ; hence

|| Wσ(-s, t) - u0r || < δKr + 2(2r - 2)δKr + δKr

<2(2r-\)Krδ.

Thus Wσ satisfies condition (a) on d(cr

σ~
1 x /).
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Define Wa:c
r~l x I-+B(u0r,2(2r - l)Krδ) to be any extension of H^|a(cr-ιx/).

This completes the inductive step in the construction of the Wσ, and the proof of
the proposition. Π

Proof of Proposition 4.7. The existence of an open neighborhood U consisting of
strictly continuous l.g.f.'s u which determine the same bundle as u° is given by
Corollary 3.14. It remains to show that the generic u's form an open, dense subset
l/ 'c l/ .

Let u be an element of 17; let V be the corresponding p.t.f., constructed according
to Proposition 3.8; for each σ = <0,...,r>, let Hσ:C

r

σ-*EΔG be constructed from
V as in Definition 2.3; set M£ = M^Hσ, and for ~s εCr

σ, set F*(u) = MJ(7). This
gives a map Fs

σ:U-+M(p). (In fact, Fs

σ only depends on {My:<(/>^<σ}.) The function
Fs

σ is clearly smooth. Note that FjJ(u) = 1 for every u. We shall now show that,
provided 7^0, Fs

σ has maximal rank at every uel/; that is, that the map of
tangent spaces:

is surjective; here z is the number of 1-simplexes of A.
We start from the formula of paragraph 4.2:

(**) Fl(u) = ̂ λj(-s) ύj.
j

We shall prove (*) by induction on the number of vertices i along l,...,r such
that sf is equal to either 0 or 1 (but without restriction on r = dim σ).

Case 1. None of the st is 0 or 1. In this case, the dependence of Fs

σ on u0r in
r- 1

(**) occurs only in the term A{r}(7)w0r, with J = {r}. Here λ{r}(~s) = sr f] (1 — Sj) φ 0.

Hence the matrix j=1

δu0r

 w

of partial derivatives of F* with respect to the entries of u0r is equal to A{r}(7)
times a p2 x p2 identity matrix. So (*) clearly holds in this case.

Case 2. Some Sj = 0. Set p = dp, and 7' = (s l 5..., £,-,..., sr). Then F* = F*',
and in 7' there is one fewer index that has the value 0 or 1. So (*) holds by the
induction hypothesis.

Case 3. No Sj = 0, but some Sj = 1. Let j denote the largest index such that Sj = 1.
Set τ' = <0,...J>, τ" = O,...,r>, 7' = (s1,...,s ι /= 1), 7" = (s7+1,...,sr). Then

Now Fτ» and Fτ» depend only on {«/_/:<(/> < τ'} and {wl7:<i7> < τx/}, respectively, and
these are disjoint sets of variables. Since none of sj+1?..., sr is 0 or 1, we know by
Case 1 that d/duj+l^Fs^' is nonsingular at u. Also, since F^'(u)=K"(s1,...,s< /_1)
is a non-singular p x p matrix, left-multiplication by Fτ

s,'(u) is a diffeomorphism
M(p)-»M(p); it follows from the chain rule that d/duj+lίt.F

s

σ is nonsingular at u,
so (*) holds in this case too.



Computation of Characteristic Classes of Lattice Gauge Fields 277

For each σ, we now apply [1, Theorem 19.1] to the map U-^(g<!0(Cr

tr9M(p))
given by uι->M". We conclude that the subset Uσ of U, consisting of these u such
that M" is transverse to Σq c M(p\ is open and dense in U. Then U' = (~] {Uσ:σ<ΞΛ}
is the required open, dense subset of U consisting of generic l.g.f 's. Π

Appendix. Parallel Transport Functions and Coordinate Bundles

Our purpose in this appendix is to demonstrate, for a fixed simplicial complex Λ
with local vertex ordering o, an algorithm that assigns to each parallel transport
function V on Λ a coordinate bundle v on Λ of the type constructed in [24] and
another algorithm in the reverse direction, such that in each case the corresponding
G-bundles are isomorphic.

AΛ Notation. Coordinate bundles will have slightly different notation from
that of [24].

First we summarize from [24]: Let σ = <0,...,r> be a simplex of Λ (vertices
written in increasing o-order). The dual cell block c°, i = 0, . . . , r is defined in terms
of the barycentric coordinates (ί0, . . . , ίr) by

Set cfj = c?ncj, etc; c*= Qcf, for τ<σ; and let the dual cell dual to vertex i be

A.2. A coordinate bundle v on Λ consists of a family of maps {vίj:cij-^G}<ij>eΛ

such that

^iM^yW"1' for

%(*) = f. jM ϋjfcW' for

From v we construct a principal G-bundle ξ over X from the disjoint union
uuc f. x G by identifying (x^^eq x G with ( x , v i j ( x ) ' g j ) e c j x G, for xec/7 .

A3. In [24] we worked with certain coordinate bundles that we shall now call
o-adapted. First, we observed that it is convenient to replace barycentric co-
ordinates on cf by the modified barycentric coordinates (s'0, . . . , s'h . . . , sj.) given by
sj = tj/tΐ *n tnese coordinates cf is the cube {s'f = l,0^s}^ 1 for 7^1}, while

c.j = {s = s'j = 1, 0 ̂  5; ̂  1 for fc ̂  U }, etc.

Definition AΛ. A coordinate bundle v is o-adapted if on each c0 (here we assume
i <j) the transition function vtj is a function only of {sJJ/ < k <j}.

A.5. It follows from [24] that, given any principal G-bundle ξ over X, if Λ is a
sufficiently fine triangulation of X, then ξ can be represented by an o-adapted
coordinate bundle on Λ.

A.6. For our present purposes we find it more convenient to use variants of these
constructions. Recall the standard projection πCr:Cr-+σr from Definition 1.3; it is
given in terms of coordinates s l 5 . . . , sr, 0 ̂  st ^ 1 on Cr and barycentric coordinates
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(ί0,..., tr) on σr by

t1= s1(l-s2) (l-sr)

tr= sr.

The inverse relations, when defined, are

5ι = j

S-, = I

We shall use the sf's as (over-determined) coordinates on σr.

Definition A.7. The quasi-dual cell blocks cf, z = l , . . . , r are defined by cf =
{(s 1,...,s r) |s i^iands^ifor;>/j if ί^ 1, and eg = {(s1?...,5r)| all Sj£±}. (See
Fig. 3.)
Set c y = c? n cj, etc., for τ < σ set c? = f) cf and define the quasi-dual cell c{ = (J cf .

ίeτ σ3ί

Lemma A.8. The complex {c?|τ-<σ in A] is combίnatorially isomorphic to the
complex {c?}, in such a way that each simplex of Λ is preserved.

Proof. We will construct {c?} as an amalgamation of a "quasi-barycentric"
subdivision Λ ( 1 ) of Λ. Let σ denote the bary center of σ; then

Now for each σ = <0, . . . , r>, define its quasi-barycenter σ to be the point with
coordinates

s ί(σ)=l/2 r- ί + 1 for ί=l , . . . , r

or

ί 0(ff)=l/2 r,ί f(σ)=l/2 r- i + 1 for i^l.

With these points as new vertices, we can construct a quasi-barycentric
subdivision Λ(1) of Λ (see Fig. 3); and clearly /ϊ(1) is simplicially isomorphic to the
standard first barycentric subdivision A(l\ Now

So the isomorphism Λ ( I ) « Λ ( 1 ) induces an isomorphism {c°} « {c^}. Π
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Fig. 3. (a) dual cell blocks in A2\ (b) quasi-dual cell blocks in Δ2; (c) dual cell blocks and (d) quasi-dual cell
blocks in Δ3

A.9. It follows that we can use the quasi-dual cells {cj as domains of charts for
any bundle over X, and the transition functions of a coordinate bundle v will now
be maps

satisfying conditions analogous to the previous ones.
On cσ

ijk — { (sλ , . . . , sr) I Si ^ ̂ , Sj ̂  \ for / > ϊ, and s7 = sk = ^} the cocycle condition
becomes (for i < j < k)
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As before, we say that v is o-adapted if, on each cί7 ,fJ ί7 is only a function of
{sk\i<k<j}.

A.10. Define μ:/->[0,£] by

For each te[^91], define λt\I-+I by

fs/ί, O^s^

and set λ = λί/29 so μ(s) — λ(s)/2.

A.ll. Now, given an o-adapted coordinate bundle v, define F<τ:C
r~1->G, where

Vσ(sί9. ..,sr_1) = vσ

Qr (μ(s1), . . . , μ(sr_ J),

and set V(v) = { Kσ |dim σ ̂  1 }. Conversely, given a p.t.f. V on /I, define #£:c£ -» G by

££($!,..., S,. = i,...,Sr) = K<M+lt...f ι/>(Λ(5 ί+ J,..., ̂ j-!)).

For fixed i and 7, the ?;?• define a map t^-rc^-^G; let v(V) = { £ί7 j^ e/1.

Proposition A. 12

1. V(v) is a p.t.f. on Λ.
2. v(V) is an o-adapted coordinate bundle over Λ.
3. In either case, the bundles ξ constructed from V and ξ from v are isomorphic.

Proof. The proofs of (1) and (2) are immediate. Now let v be given, and set V = V(v).
We shall display charts for ξ for which the transition functions are precisely
the ty/s.

To simplify the exposition in this proof, we shall assume the vertices of Λ are
totally ordered.

Let πΔ:EΔG-+BΔG be Milnor's universal bundle, and let f:X-^BΔG be the
classifying map for ξ given in Proposition 2.4. Consider σ = <0, ...,r>e/l and set
σf = <0, . . . , i> for 0 ̂  i ̂  r. Then / is defined on σ by

/(f0> Λ) = Mίoeo + ίι(Pσ,K

As open charts for the universal bundle, we may take the

Then EΔG\V. = { Σ t j β j ' t j ^ i > 0}> an<^ ^e fibre coordinate at ΣtjQj'^j ^s ^ Thus
the transition function u^U ^U ^G is given by

Now f(ci)^Ui, so we may use the induced charts on ct, yielding {u i i7- =
°f''Cij^G} as transition functions for ξ. Thus, when st ̂  j, 5fc ̂  ̂  for /c> i, and
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S = \ we have

= #?• (s !,..., sr _ J, since v is o-adapted.

Thus the vu are the transition functions for ξ.
Now let V be given, and set v = v(V). We shall show that the 0ί7 's are

transition functions for a bundle £* isomorphic to ξ. For each f e[|, 1], define
F ί

σ :C r" 1-^Gby

Vt

σ(sl9...9sr-1)=Vσ(λt(s1),...,λt(sr-ί)).

Then V = {F'Jdimσ ̂  1} is a p.t.f. on Λ, and therefore induces a bundle ξ* over
J^f. So ξ1 = ξ is isomorphic to ξi/2. To complete the proof, taking ξ* = £1/2, it is
enough to show that V(v) = V1 / 2. Unraveling the definitions we obtain

(V(ΐ))σ(sί9. . , S r_ XH ^OrGΦl), - - - , AΦr- l ) )

> . ..̂ J. D
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