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Abstract. Given the local observables in the vacuum sector fulfilling a few basic
principles of local quantum theory, we show that the superselection structure,
intrinsically determined a priori, can always be described by a unique compact
global gauge group acting on a field algebra generated by field operators which
commute or anticommute at spacelike separations. The field algebra and the
gauge group are constructed simultaneously from the local observables. There
will be sectors obeying parastatistics, an intrinsic notion derived from the
observables, if and only if the gauge group is non-Abelian. Topological charges
would manifest themselves in field operators associated with spacelike cones
but not localizable in bounded regions of Minkowski space. No assumption
on the particle spectrum or even on the covariance of the theory is made.
However the notion of superselection sector is tailored to theories without
massless particles. When translation or Poincare covariance of the vacuum
sector is assumed, our construction leads to a covariant field algebra describing
all covariant sectors.

1. Introduction

If one starts from local observables which are assumed to be given a priori and
to satisfy a few basic principles characteristic of local quantum theory, then the
superselection structure of the theory is determined in an intrinsic manner. In this
paper, we solve a long-standing problem by showing that this superselection
structure can always be described, in a sense that will be made precise, in terms
of a compact group of gauge automorphisms of a field net with normal Bose and
Fermi commutation relations.

This is a remarkable result for several reasons: first of all we start from local
observables which are by their nature gauge invariant so there is no hint of any
gauge symmetry. Secondly, although we do have to define carefully what is meant
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by a superselection sector, we make no postulates on the structure of these sectors.
Thirdly, we assume neither the existence nor the commutation properties of any
unobservable field quantities; all that is assumed is that, as a reflection of Einstein
causality, local observables commute at spacelike separations.

These results stem above all from the existence of an intrinsically defined
statistics (permutation symmetry) of superselection sectors, established in earlier
work [1]. This rules out a gauge symmetry described by a more general object
such as a (compact) quantum group or paragroup. It also allows us to introduce
fields which obey normal (i.e. Bose-Fermi) commutation relations. However
parastatistics is not ruled out by our results: on the contrary, they necessarily arise
whenever our gauge group is non-Abelian. A superselection sector with para-
statistics of order d corresponds to a multiplet1 of fields transforming under a
d-dimensional irreducible representation of the gauge group.

From a mathematical point of view, the problem we have solved is one in the
duality theory of compact groups [2]: we characterize, in an abstract way, the
representation theory of a compact group. The superselection structure can then
be recognized as the action of a dual of a compact group on the local observables.
The fields are then constructed as the cross product of the observables by this dual
action.

The existence of superselection sectors in quantum field theory was first
recognized by Wick, Wightmann and Wigner [3] and Haag and Kastler [4] took
the important step of proposing that superselection sectors should be interpreted
in terms of inequivalent irreducible representations of an abstract C*-algebra
describing the local observables.

In a local quantum theory without gravitation, the basic object is an inclusion
preserving map 0 -> 21(0) assigning to each (open) double cone Θ in spacetime the
C*-algebra generated by the observables that can be measured within Θ. We refer
to such a structure as a net 91 of C*-algebras over Jf, the set of double cones. As
a reflection of Einstein causality this net will satisfy local commutativity, i.e. if
Θ^Jf is included in the spacelike complement β'2 of Θ2eJίr then MiΘJ and 9l(02)
commute elementwise. The C*-algebra generated by all 31(0) is called the
C*-algebra of quasilocal observables and is again denoted by 91.

The question arises as to which irreducible representations of 91 describe
elementary excitations of the vacuum rather than, for example, some ground state
with finite density. It is only these representations which are candidates for the
superselection sectors of elementary particle physics. A natural approach is to
impose the (relativistic) spectrum condition on the desired representations and an
early attempt by Borchers [5] to study superselection sectors adopted this
approach.

In a programme developed with Haag [1], we took the point of view that
the representations of the C*-algebra 91 of quasilocal observables relevant to an

1 In other words, we use Bose or Fermi fields with a colour index to describe parastatistics. However,
quark fields in the confinement phase are no part of our formalism since our sectors are, by definition,
physical sectors
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investigation of superselection structure should be selected by the localization
properties of the associated states with respect to the vacuum state ω0. The relevant
states ω should deviate from the vacuum essentially only in a finite region of space,
i.e. (ω — ωo)|9I(0') should have a norm which can be made arbitrarily small by
choosing a sufficiently large double cone Θ. This condition led us (see [1]) to
consider the following restriction on the associated representations which is a
variant of the conditions considered by Brochers [5]:

π\SΆ{Θ')^πo\SΆ(Θ'\ ΘeJf.2 (1.1)

Condition (1.1) says that if π carries a charge3, this charge can be localized in any
double cone Θ and we refer in this connection to localizable charges. These are
the charges which can be created by localizable fields4.

It was pointed out in [1] that condition (1.1) is too stringent for Quantum
Electrodynamics as it excludes all states with nonvanishing electric charge by virtue
of Gauss' law. However, Buchholz and Fredenhagen [6] pointed out that (1.1)
could possibly also be too stringent in massive non-Abelian gauge theories because
the string or flux line attached to particles in such theories forces the localization
regions of the corresponding charges to extend to spacelike infinity at least in some
arbitrary direction. An investigation of charges in lattice gauge models supports
this conclusion [7].

Furthermore, Buchholz and Fredenhagen [6] proved a remarkable result
asserting that, in a theory with no massless excitations, a weaker form of (1.1)
where double cones Θ are replaced by spacelike cones5 #,

(1.2)

is automatically satisfied by any massive single particle representation π6. They
thus established a direct general link between spectral properties and localization.
The validity of (1.2) shows that the effects of strings or flux lines can be localized
in an arbitrary spacelike cone so that it vanishes in the spacelike complement. For
this reason, charges fulfilling (1.2) but not (1.1) will be called topological charges.

The superselection structure of gauge theories with massless particles has yet
to be analysed. It is clear that a weaker condition than (1.2) is needed to select the
relevant representations. Furthermore, the appropriate definition of charge should
correspond to equivalence classes of irreducible representations under a weaker
equivalence relation than unitary equivalence since representations generated by
states in Quantum Electrodynamics differing by infinitely many soft photons with

2 For an unbounded region such as Θ\ the spacelike complement of Θ, 91(0') denotes the C*-subalgebra
of 21 generated by all 21(01) with Θx ε Jf and Θγ c &'.
3 The term "charge" is used generically to denote the properties specific to a particular superselection
sector.
4 Local fields defined on a space with indefinite metric should not be regarded as localizable since the
apparent localization properties get lost on passing to the associated Hubert space of physical states.
5 Spacelike cones are defined in the Appendix; / denotes the set of spacelike cones.
6 I.e. π is a translation covariant representation with positive energy on a separable Hubert space
where the mass spectrum begins with a strictly positive isolated eigenvalue



54 S. Doplicher and J. E. Roberts

small total energy carry the same electric charge but are inequivalent. In fact, the
investigations by Buchholz [8] make it clear that a sector is determined not just
by the total electric charge but also by the asymptotic Coulomb field. The cor-
responding representation can be equivalent to the vacuum representation on the
spacelike complement of a spacelike cone ^ only when this asymptotic Coulomb
field is localized within c€. Hence for a sector with nonzero total electric charge
(1.2) can at most hold for spacelike cones which are sufficiently large and point in
the right general direction.

After this digression on gauge theories with massless particles, we report briefly
on the analysis of the superselection structure carried out in [1,9] on the basis of
the selection criterion (1.1) and extended in [6] to the case of the weaker criterion
(1.2). In either case the analysis leads to the following structure. To each charge
corresponds a unique conjugate charge; the particle-antiparticle symmetry is a
consequence of this fact. Every charge has an associated permutation symmetry
characterized by a sign and an integer d, its statistical dimension; particle statistics
is a consequence, d is the order of the parastatistics and the sign distinguishes
para-Bose from para-Fermi statistics. Ordinary Bose and Fermi statistics corres-
pond to the case d = 1. Finally, two charges can be composed because they can
be created in spacelike separated regions. Regarding these separate causally disjoint
acts of creating a charge as one single act defines the composed charge in a physically
meaningful way7.

This common superselection structure was seen as analogous to the structure
of the equivalence classes of irreducible, continuous, unitary representations of a
compact group. The composition of charges corresponds to the tensor product of
representations, charge conjugation corresponds to passing to the conjugate
representation whilst the permutation symmetry corresponds to permuting the
order of factors in the tensor powers of a given representation. In view of concrete
models where the observables were taken to be the gauge invariant part of a field
algebra [10] it was natural to conjecture [11] that this superselection structure
actually determines a compact group G which then acts as the gauge group of the
theory8.

We settle this conjecture in this paper by constructing a net of unobservable
fields with normal Bose-Fermi commutation relations on which a compact group
G acts as a group of automorphisms. The observable net can be recovered as the
gauge invariant part of the field net. The field net serves to describe all superselection
sectors in the sense that a single irreducible vacuum representation of the field net
provides a reducible representation of the observable net which is a direct sum of
irreducible representations satisfying the selection criterion where each sector
appears with a multiplicity equal to its statistical dimensions.

7 For a more detailed survey of these results the reader is referred to the introductions to the original
papers.
8 In the absence of parastatistics, i.e. if every sector has d = 1, then G is Abelian and the facts which
follow were already established for the case of localizable charges in [12]. The presentation of this
important special case can be simplified by employing the constructions of this paper
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These results were conjectured on the basis of the detailed analysis of
superselection structure. They are by no means "obvious" when the subject is
approached from the standpoint of field-theoretical models. First, as the examples
of solitonic sectors show [13], it is not a priori clear that the original fields will
suffice to generate all superselection sectors. Secondly, as soon as one envisages
applications to gauge theories, it is no longer clear how to pass from the original
fields to fields on a physical Hubert space with simple transformation properties
under a global gauge group because of the problem of regularizing formal
expressions of the form

ψ(x)*PexpL]A»(x')dbμ(x')

For this reason, even the relation between the local gauge group of the gauge
theory and the global gauge group determined intrinsically by the superselection
structure is unclear. Thirdly, our results are dimension dependent; a sector
corresponding to a localizable charge does not necessarily exhibit permutation
symmetry in two spacetime dimensions and for topological charges this pheno-
menon already occurs in three spacetime dimensions.

Our paper is organized as follows: we begin in Sect. 2 with an informal discussion
of the problem met in trying to construct a field algebra. This is designed to help
readers with a more physical background grasp the construction of field algebras
as the cross product of observable algebras by the action of the dual of the compact
gauge group. Readers interested only in the results could begin with Sect. 3 where
we treat the case of localized charges. To express the desired properties of the field
algebra and gauge group we introduce the concept of a field system with gauge
symmetry (Definition 3.1) and our main result (Theorem 3.5) asserts the existence
and uniqueness of a complete normal field system with gauge symmetry. We also
classify abnormal commutation relations in terms of the related permutation
symmetry (Theorem 3.15). A noteworthy feature of our analysis is that so little is
assumed. The principal assumption is duality in the vacuum sector. Positivity of
the energy plays a very indirect and rather minor role.

Section 4 gives a treatment of the basic results on superselection structure in
the case of topological charges first obtained by Buchholz and Fredenhagen [6].
We include this material as it represents a substantial conceptual and technical
simplification. In Sect. 5 we construct fields and a gauge group for the case of
topological charges. The most noteworthy difference as compared with the case
of localizable charges is that the fields can of course, in general, only be localized
in spacelike cones so that we get a net # -• g(#) of von Neumann algebras over
the set of spacelike cones. There is now nothing resembling a global algebra of
fields because the C*-algebra generated by the gauge invariant part of the g(#),
# e / , can no longer be expected to be algebraically intrinsic (i.e. faithfully
represented on each superselection sector).

In Sect. 6 we discuss the co variance properties of the field algebras now of course
assuming translation covariance and the spectrum condition in the vacuum sector
and restricting our attention to covariant sectors. The spectrum condition then
propagates to all sectors (cf. [9,5]). In Sect. 7 we comment on theories with
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spontaneously broken gauge symmetries. At the level of the observable algebra
this manifests itself in a breakdown of duality in the vacuum sector. Instead we
assume only essential duality and the superselection structure is determined by
the representation theory of the unbroken part of the gauge group. Here too we
construct fields carrying an action of the full gauge group. The paper concludes
with an Appendix where we discuss some geometrical properties of spacelike cones
needed in the analysis of topological charges.

2. Cross Products by Dual Actions

The existence of field algebras and gauge groups of the first kind rests upon
recognizing that the superselection structure determines the action of a dual object
of a compact group on the algebra of observables. The field algebra is then
constructed as the cross product of the observable algebra by this dual action and
the gauge group materializes as the group of automorphisms of the field algebra
leaving the observable algebra pointwise fixed.

The basic results on which this construction rests have already been written
up in a mathematical context [2,14]. All that remains to be done is to adapt this
mathematical context to the different physical contexts in which we wish to apply
these results and to draw the appropriate conclusions. However, to render this
construction more accessible to readers with a physical background we should
like to explain the basic idea of the cross product construction by concentrating
on the simplest case and omitting proofs.

We will start by supposing that we have a field algebra 5 acted on by a gauge
group G and then gradually uncover the problems which have to be solved if ones
faces, as we do, the task of constructing g and G from 2Ϊ and its superselection
structure.

The simplest case is to suppose that the field algebra g is generated by the
observable algebra 21 and a single multiplet \j/i= 1,2,...,d from g transforming
according to a faithful9, but not necessarily irreducible, unitary representation of
G. G may then be regarded as a closed subgroup of U(d) and is hence a compact
Lie group 1 0. Conversely, if G is a compact Lie group, the field algebra will always
be generated by the observable algebra and a single multiplet of fields. This simplest
case therefore includes most of the gauge groups one would envisage.

We may also assume that the multiplet of fields transforms according to a
representation of determinant one so that G is then a subgroup of SU(d). If necessary,
we may, for example, replace the original faithful representation of G by the direct
sum of this representation and its conjugate representation. As we shall see, the
choice G c SU(d) is essential if the simple cross product construction is to work.
The basic reason for this is that, if G c: SU(d), every irreducible representation of

9 Our gauge group G acts faithfully on g by definition. This might, for example, mean using SU(3)/Z3

rather than SU(3), but has the invaluable merit of making G unique up to isomorphism.
1 0 G need not, of course, be a connected Lie group and it might even be a o-dimensional compact Lie
group, i.e. finite group
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G is a subrepresentation of some tensor power of the defining representation so
that the set of such subrepresentations is automatically self-conjugate.

In view of the correspondence between irreducible representations of G and
superselection sectors which can be established in the presence of a field algebra,
ct [10; Theorem 3.6] and Eq. (3.27), the simple case we are considering can be
characterized intrinsically by saying that the superselection structure is finitely
generated, i.e. every sector is obtained by reducing the products of powers of a
finite number of basic sectors.

In order to recognize what is intrinsic in the structure of the *-algebra generated
by 91 and a basic multiplet, the first important step is to realize [11; Sect. 3] that
this multiplet can be chosen to satisfy the simple algebraic relations

ΦtΦj = δijI, (2.1)

. (2.2)

Their linear span is then a d-dimensional Hubert space H with a scalar product

given by

(φ,φ')I:=φ*φ\ φ,φfeH. (2.3)

Next, it is easily seen that setting

ψr (2.4)

must define a unit-preserving endomorphism of 91. In fact, p(I) = I follows from
(2.2), p(AB) = p(A)p(B) from (2.1) and p(A*) = p{A)* from (2.4) itself so that it only
remains to understand why ρ(A)eSΆ. However, whatever subgroup of SU(d) G
turns out to be, the right-hand side of (2.4) will be invariant under G and hence
must be an element of 91. The endomorphism p is part of the given data of our
cross product construction and has in our context an intrinsic physical meaning11.
If the multiplet transforms irreducibly under G, p generates from the vacuum
representation some superselection sector. In general, it generates some finite direct
sum of sectors.

The next point to realize is that

φA = p(A)φ9 φeH. (2.5)

This follows by multiplying (2.4) on the right with φ and using the fact that the
φi form an orthonormal basis of//. Thus (2.5) is the commutation relation between
our basic multiplet and 91.

The problem we have to solve now begins to take a precise shape: given 91
and the basic endomorphism p, define a *-algebra generated by 9Ϊ and d elements
Φh Φii- iΦd satisfying (2.1), (2.2) and (2.5). This *-algebra should carry an action
of a group G <= SU{d) by automorphisms leaving the subspace H globally stable
and having 9ί as the fixed point subalgebra.

1 1 This will become clear in Sect. 3, cf. Eq. (3.13)
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Inside our *-algebra will be the *-subalgebra generated by the multiplet
ψi9i=l929...9d which we denote by °Θdand whose structure is entirely determined
by (2.1) and (2.2) in the sense that there can be no further independent relations
within our *-algebra. In fact Cuntz showed [15] that the algebra °Θd can be
completed in a unique way to give a C*-algebra Θd, the Cuntz algebra.

It is very easy to compute within the algebra °Θd: every element of this algebra
can be written as a finite linear combination of elements of the form

ΨuΨn-ψirΨt-ΨίM (2-6)
and (2.1) tells us how such elements can be multiplied. Now if we set

S:=dΓ1/2 £ sign(p)Ψp(i)ΨP(2)' 'Ψp(d), (2.7)

where J*d denotes the permutation group on d elements, then a computation within
°Θd shows that (cf. [17; Lemma 2.2])

ψΐ^-lY-iy/dS φt, (2.8)

where

& : = ( ( < * - I ) ! ) " 1 ' 2 Σ s i g n ί p ) ^ , ^ , - ^ (2.9)

and Pd(i) denotes the subset of permutations with p(l) = i.
Now under a unitary transformation in H, the isometry 5 gets multiplied by

the determinant of that unitary transformation. Therefore, whatever subgroup of
SU(d) G turns out to be, S will be a G-invariant element of our *-algebra and hence
equal to an isometry R of 21. This isometry R is also part of the given data of the
cross product construction. Actually, R is given as an element of 21 expressing the
"special conjugate property" of p [14; Sect. 4], cf. Lemma 3.7. It allows us to
complete the commutation relations between °Θd and 21 in our *-algebra since
(2.8), (2.9) and (2.5) imply

ψfA = (-l)d-1^dR*pd-1(A)φi. (2.10)

Bearing (2.6) in mind, we see that (2.5) and (2.10) allow us to write every element
of our *-algebra in the form

, Ane% Cne°Θd (2.11)

and tell us how multiplication and the adjoint are to be computed in our *-algebra.
At first sight, it might seem as if our *-algebra has been constructed and that

only more technical problems such as the completion to give a C*-algebra remain.
However, the trouble is that the expression (2.11) for an element of our *-algebra
is highly non-unique: as a linear space our algebra is not just the tensor product
of 21 with °Θd as (2.11) might suggest. Indeed we have already made essential use
of the fact that the isometry Re<Ά is identified with Se°Θd in our *-algebra. Since we
want 21 to be the gauge-invariant part of our *-algebra, the *-algebra °ΘG of
gauge-invariant elements of °Θd must be identified with a *-subalgebra of 2ί. It is
convenient to express this identification as a morphism μ:o0G->2ϊ of *-algebras
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so that in particular μ(S) = R. We now identify

= {Λμ{X))C9 Xe°ΘG, Λe% Ce°Θd (2.12)

so our *-algebra, instead of being the tensor product of 2ί and °Θd as a linear
space, is the °0G-module tensor product of 21 and °Θd. The multiplication and
•-operation are defined using (2.5) and (2.10) as before. Of course, it has to be
checked that these operations are consistent with the identification (2.12). It then
immediately becomes apparent that μ and p must satisfy certain compatibility
conditions: if we define an endomorphism σ of °ΘG by setting

then we can only identify X and μ(X) in our *-algebra if μσ(X) = pμ(X\Xe°ΘG, i.e. if

μ°σ = p°μ. (2.14)

It turns out that rather more is needed to make the construction work. If we
consider the spaces of intertwining operators between powers of these endo-
morphisms,

(σ\ σs):= {Xe°ΘG:Xσr(Y) = σ\Y)X, Ye°ΘG},

then we need

μ{σ\σs)c:{p\p% r,seN0. (2.15)

In particular, it is easily checked that Se(ι, σd) so that we must have μ(S) = Re(ι, pd).
Here / denotes the identity automorphisms σ° and p° respectively.

This leads us to define an action of °ΘG on a unital *-algebra J / to be a pair
consisting of an endomorphism p of srf and a morphism μ\°ΘG-+stf of *-algebras
with unit satisfying (2.14) and (2.15). Under these circumstances, the construction
sketched above can be carried through and leads to a *-algebra M called the cross
product of srf by the action μ. The details may be found in Sect. 2 of [14].
Furthermore, as we might anticipate from the discussion above, M comes equipped
with an action α of G such that the fixed-point subalgebra is stf.

When J / is a C*-algebra, the resulting *-algebra may be completed in a natural
way to form a C*-algebra denoted stf®μΘd called the cross product of srf by the
action μ which comes equipped with an action α of G with fixed-point algebra s$.
The details may be found in Sect. 3 of [14].

Again it might seem as if our problems are over but, if we return to our original
task of constructing the field algebra g from the observable algebra 21 and its
superselection structure, we note that all the above construction says is that if we
knew the gauge group G in the shape of the appropriate action μ:0G->2I then we
could construct the field algebra g. Conversely, if we knew the field algebra 5 then
we could construct G as the group of automorphisms of g leaving 2ί pointwise
invariant and μ:0G->2I is just the restriction of the embedding Θd^^ to the
gauge-invariant elements. However, we know neither g not G.

The way out of this dilemma is to begin with the group SU(d) that we do
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know 1 2 .1
operator
know1 2. The algebra ΘSU(d) is generated by the isometry S of (2.7) and the unitary
operator

ft =Σ4ΊΦJΨTΨ7 (2.16)

More precisely, it is the smallest σ-invariant C*-subalgebra of Θd containing 9
and S (see [17; Lemma 3.7]). This is closely related to the statement that all
invariants for SU(d) are built up from the scalar product and the determinant.
μ(3) = ε is also part of the data of the cross product construction. The operator ε
is also known in the field-theoretic context; it is the basic statistics operator ε(p, p)
associated with p in the case of para-Bose statistics or its "Bosonized" version
έ(p, p) in the general case (cf. Sect. 3).

One can now show [17; Corollary 4.4] that there is a unique action μ'.0sι/(d)~*®ί
such that μ(9) = ε, μ{S) = R with μ°σ = p°μ. Hence there is no obstacle to defining
the cross product of 91 by this action. This construction does not yield the field
algebra directly since it is only the SU(d)-invariant elements of Θd which have been
identified with their counterparts in 91. If G is a proper subgroup of SU(d\ the
algebra 2 ϊ ® μ 0 d is thus too large and has a non-trivial centre. The field algebra
g is now the quotient of ςΆ®μΘd by an ideal which kills the centre of <ϋ®μΘd9

see [14; Lemma 4.4]. In retrospect, this field algebra 5 is just the cross product
of 3ί by the dual action of a closed subgroup G of SU(d). G may be identified as
the group of automorphisms of 5 leaving $ϊ pointwise fixed and it is that subgroup
of SU(d) whose canonical action on 2I(χ)μ0d leaves the chosen ideal invariant.

The properties of this indirect cross product construction are the content of
the pivotal Theorem 4.1 of [14]. The uniqueness is stated as Theorem 4.7 ibid. By
virtue of the identification of ε with έ(p, ρ\ the field algebra has normal Bose-Fermi
commutation relations.

The reader will discover that we do not make direct use of [14; Theorem 4.1]
in the sequel but rather of a more general result [14; Theorem 5.1] which is derived
from it. There are two good reasons for this. First, it allows us to treat the general
case where G turns out to be an arbitrary compact group, and secondly we do
not have to single out a particular p but can treat them all on an equal footing.
Finally, since we want to construct the field algebra 3 in its vacuum representation,
it turns out to be more convenient to use a spatial version of the cross product
[14; Sect. 6] derived in a rather simple fashion from [14; Theorem 5.1].

3. Localizable Charges

In this section we present our basic results on the existence of a field algebra and
a gauge group describing the superselection structure when the charges in question
can be localized in any double cone 1 3. Quite apart from the intrinsic importance

1 2 The integer d is uniquely determined by p, it is the statistical dimension of p.
1 3 The analysis of [1,9] only demands that the charges can be localized in all translates of some double
cone. We have desisted from working in this generality here so as to keep the ideas as simple as possible
and because there is no evidence for a minimal length associated with charges
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of this case, this has the merit of not obscuring the basic construction with
technicalities which arise in the case of topological charges. For the same reason,
we will begin this section by assuming that the observable algebra satisfies duality
for double cones in the vacuum sector:

π 0 W ) ) ' = πo(M(0)X 0eJf . (3.1)

This rules out the possibility of spontaneously broken gauge symmetries but
we shall allow for this possibility later by discussing a weaker form of (3.1), essential
duality. It has been shown by Bisognano and Wichmann [16] that essential duality
holds whenever the local algebras are generated by an underlying Wightman field
theory. It is a noteworthy feature of the analysis that the existence of a gauge
group and a field net describing the superselection structure depends only on
duality and two further assumptions, first that the vacuum representation14 π 0 is
faithful and irreducible and that ^f 0 , the vacuum Hubert space is separable15 and
secondly

Property B. // £e2ϊ(0) is a non-zero projection then, for any Θί containing the
closure ofΘ, there is an isometry We21(0J with WW* = E and W*W=I (i.e. the
projection E is equivalent to I in (H{Θί)).

Property B was derived by Borchers [18] from standard structural assumptions
of Quantum Field Theory, viz. positivity of the energy, locality and weak additivity.
Of course, as we shall see, certain properties of the field net such as the
Reeh-Schlieder property, additivity and covariance depend on the corresponding
property of the observable net.

As mentioned in the introduction, studying localizable charges means more
precisely investigating the property of the set of representations satisfying (1.1).
Such an investigation was carried out in [1,9] and the concept of statistics or
permutation symmetry played a fundamental role. To every representation π
satisfying (1.1), we can associate [1; Sect. V] a unitary equivalence class of
representations of the permutation group P n on n symbols, n = 2,3, If there are
no restrictions on the Young tableaux involved π is said to have infinite statistics. If
the Young tableaux involved are those whose columns (rows) have length ^ d,
then π is said to have para-Bose (para-Fermi) statistics of order d (the statistical
dimension ofπ). It is a remarkable consequence of the general assumptions above
that if π is irreducible these are the only possibilities. If π is an infinite direct sum
of representations with finite (i.e. not infinite) statistics, then π has infinite statistics.
The converse is expected to be true and results in this direction may be found in
the Appendix of [9] and in a paper of Fredenhagen [19]. The statistics of π depend,
of course, only on the unitary equivalence class of π and they are hence a property
of the underlying charges.

1 4 Should the vacuum representation fail to be unique then the field algebra and gauge group are to
be understood as relative to the chosen vacuum representation. Faithful means that πo(A) = 0 implies
A = 0.
1 5 But see the remark following Lemma 3.11
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Under the assumptions stated above, our main theorem, Theorem 3.5 below,
asserts the existence and uniqueness of an irreducible net of local field algebras
with normal commutation relations acted on by a compact group of internal
symmetries (the group of global gauge transformations) where the underlying
Hubert space contains all superselection sectors. Namely, the local field algebras
are generated by field operators which lead from the vacuum Hubert subspace
(vacuum sector) to Hubert subspaces associated with each equivalence class of
irreducible representations of 21 satisfying (1.1) and having finite statistics and
which either commute or anticommute at spacelike separations depending, in the
usual way, on the para-Bose or para-Fermi character of the sectors involved.

Before stating our main results as theorems, it is convenient to specify the
desired structural properties in the form of definitions.

3.1 Definition. Let π0 denote the vacuum representation of the net 91 of local
observables acting on the Hubert space Jf0. A field system with gauge symmetry,
{π, G, 5}, consists of a representation πofΆona Hubert space 3tf containing π 0

as a subrepresentation on Jf0 c Jf, a (strongly) compact group G ofunitaries on J f
leaving Jf0 pointwise fixed and a net ΘeJf^> g(0) of von Neumann algebras acting
on Jf (the field net) such that
α) the geG induce automorphisms ag o/g (0) with π(2l(0)) as fixed-point algebra,

β) the field net g is irreducible;
γ) Jf o is cyclic for %(Θ), ΘeJΓ16;
δ) the fields are local relative to the observables, i.e. ^(Θ^ and π(9l(02)) commute
elementwise whenever Θx and Θ2 are spacelike separated.

Condition δ) does not, of course, imply normal commutation relations so we
make a further definition:

3.2 Definition. A field system with gauge symmetry {π, G, g} is normal if there is
an element k in the centre of G with k1 — e such that the net g obeys graded local
commutativity for the Z2-grading defined by k. In other words, if Θί9Θ2eJf are
spacelike separated and F e g ^ j ) , F e g ( 0 2 ) then

F + F+=F+F+9 F+F_=F'_F+, F _ F _ = - F _ F _ , (3.2)

where

F±=UF±ak(F)). (3.3)

The field systems defined so far do not necessarily describe all superselection
sectors, for example {π0, {/}, 9ί} is always a normal field system with (trivial) gauge
symmetry. This motivates the next definition:

3.3 Definition. A field system with gauge symmetry {π, G, 5} is complete if each
equivalence class of irreducible representations of*Ά satisfying (1.1) and having finite

1 6 This reflects the fact that (1.1) holds for all ΘeX and would need modification if there were a

minimal length associated with charges
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statistics is realized as a subrepresentation of π, i.e. π describes all the relevant
superselection sectors.

Finally, we need a notion of equivalence of two field systems so that we can
claim our construction is unique up to equivalence.
3.4 Definition. Two field systems with gauge symmetry {πi,Gi9

i&i}9 Ϊ = 1,2 are
equivalent if there is a unitary operator W\3tf?

1-±3tf?

2 such that

Wπ1(A) = π2(A)W, Ae<Ά, (3.4)

(3.5)

ΘeJf. (3.6)

We can now state our main results on the existence, uniqueness and principal
properties of field systems.

3.5 Theorem. Let S&be a net of local observables satisfying Property B and suppose
that duality (3.1) holds in the faithful, irreducible vacuum representation π 0 acting
on a separable Hubert space J f 0. Then there exists a complete normal field system
with gauge symmetry and this system is unique up to equivalence.

3.6 Theorem. Let {π, G, g} be afield system with gauge symmetry then
a) π(2I)'ng = C/ 1 7;
b) an automorphism y of the C*-algebra g is a gauge automorphism, i.e. y = OLg

for some geG if and only if y acts trivially on π(9l).
c) π(2l)' = G" and

(3.7)

where the πξ are inequίvalent irreducible representations of 9ί fulfilling (1.1) and
having parastatίstics of finite order d(ξ)18.

If furthermore the system is normal then
d) The grading of J f defined by keG corresponds precisely to the distinction
between para-Bose and para-Fermi statistics, i.e. ifΦeJ^ξ, the Hubert space ofπξ,
then kΦ= ±Φ according as πξ has para-Bose or para-Fermi statistics.
e) The net g satisfies twisted duality, i.e. if we set

φ(0) = V%(Θ)V*, V = 2~1/2(I + ik), (3.8)

then

(3.9)

Before going on to prove these results we make some general remarks. First,
the existence of a gauge group is critically dependent on the existence of statistics
(permutation symmetry) and we shall later comment briefly on the exceptional
situation of localizable charges in a 2-dimensional spacetime. Secondly, the
algebraic structure of the field net is unique in Theorem 3.5 precisely because we

1 7 The symbol 5 is used to denote both the net and, as here, the C*-algebra generated by the net.
1 8 When the system is complete the sum runs by definition over all classes ξ of such representation
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are insisting on normal commutation relations for the fields. The unitary
equivalence class of π is the same for any complete field system with gauge
symmetry, i.e. it is independent of the choice of commutation relations. Note that
the representation πξ in (3.7) appears with multiplicity d(ξ); the price to be paid
for describing parastatistics (d(ξ) > 1) in terms of a field net constructed from
parafields (trilinear commutation relations) is that the field net will not admit a
gauge symmetry, cf. [20]. Finally, it is worth noting that the algebraic structure
of the complete normal field system is independent of π 0 : if there were another
vacuum representation π 0 also acting faithfully on a separable Hubert space and
fulfilling duality (3.1) (so that, in particular, π 0 and π 0 would be locally unitary
equivalent) and if {π,G,g} were a complete normal field system with gauge
symmetry relative to π 0 , there would be an isomorphism γ of g onto g such
that

γ(πo(A)) = ήo(A), Ae% (3.10)

§ (3.H)

We next recapitulate those results of [1,9] which are needed as input here,
introducing at the same time the relevant notation. These results are used to prove
Lemma 3.7 below which in turn allows us to employ the results on cross products
contained in Sects. 5 and 6 of [14].
a) The set of representations satisfying (1.1) is closed under (finite) direct sums and
subrepresentations [1; Lemma 2.5]. It is here that Property B plays a crucial
role.

b) Every representation π satisfying (1.1) is equivalent to a representation of the
form πo°p, where p is an endomorphism of 21 satisfying

p(A) = A, AeSΆ(Θ'). (3.13)

This is proved in [1; Proposition 2.1] and such an endomorphism is termed a
localized morphism with localization region or support in Θ.

The set of localized morphisms for which πo°p satisfies (1.1) and has finite
statistics will be denoted by A and we write A(Θ) for the subset localized in Θ.
c) If p,p'eΔ and T interwines the representations πo°p and πo°p', i.e. if

Tp(A) = p'(A)T, Ae% (3.14)

then Te$I. This is an elementary consequence of (3.1) and (3.13), cf. [1; Sect. 4].
It is here and in the proof of b) that duality plays a role. We write Te(p,ρ') to
express (3.14) and l p to denote the unit / considered as an element of (p,p). If
Te(p\ρ"\ we write T°T to denote T'T considered as an element of {ρ,ρ"\ With
this composition law we get a category ZΓ whose objects are the elements of A
and whose arrows are the intertwiners. A is closed under direct sums and subobjects
[1; Sect. VI]; this reexpresses a) but for representations of the form πo°p, peΔ.
Every element of A is a finite direct sum of irreducibles from A.
d) If pί,p2eΔ, then pxρ2eA [1; Corollary 6.8]. Given T^ip^pW we write 7\ x T2

to denote Tίp1(T2) = pr

1(T2)T1 considered as an element oϊ (ρ1ρ2,p\p2).
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e) For each pl9p2eΔ there is a unitary έ(ρlip2)e(p1p2,p2p1) satisfying

pί), i = l , 2 , (3.15)

(3 1 6 )

(3.17)

pp P3) (3-18)

See Eqs. (5.5)—(5.7) of [21]. Here i denotes the identity automorphism of 91. έ(pl9 p2)
is just the "Bosonized" version of the operator ε τ(p1 ?p2) in [1; Theorem 4.2] which
we shall denote by ε{Pι,p2) and which also satisfies the analogues of (3.15)—(3.18).
ε is uniquely characterized by the fact that ε(p1,p2) = / whenever ρx and p 2 are
spacelike separated. If π o°p 1, and π o °p 2 are irreducible then

£(Pi,P2)=±e(Pi,P 2), (3.19)

where the minus sign is to be taken if and only if the sectors πo°p1 and π o °p 2

both have para-Fermi statistics. Thus if pί and p 2 are also spacelike separated we
simply have

έ ( P i , P 2 ) = ± l p l P 2 . (3.20)

It is the use of ε in our construction which ensures that the field net has normal
Bose-Fermi commutation relations.
f) Given peΔ there exists a peΔ and an Re(ι,ρp) such that

£ * x l p o i p X j R = l p , (3.21)

R * x l - o l . X j R = l., (3.22)

where R = έ{p,p)°R, see [9; Theorem 3.3] and [21; Theorem 5.2].
The properties d), e) and f) express the three main elements of superselection

structure mentioned in the Introduction namely charge composition, permutation
symmetry (statistics) and charge conjugation and correspond to the main structural
properties of the category U(G) of finite dimensional, continuous, unitary represen-
tations of a compact group G 1 9. 2Γ is a strict symmetric monoidal C*-category
with conjugates in the terminology of [2; Sect. 1]. Furthermore & is closed under
direct sums and subjects (cf. c) above) and (ι,i) = Cl, since π 0 is irreducible.

The main theorem of [2] could now be invoked to show that 9~ is isomorphic
to a category of the type U(G) for a compact group G unique up to isomorphism.
However, we prefer to make our discussion independent of Sects. 4-6 of [2]. The
computations of Sect. 2 of [2] are essentially contained in [1,9 and 21] but the
computations in Sect. 3 of [2] are new and are needed to prove:

3.7 Lemma. The pair (4,ε) is a permutation symmetric semigroup of unital
endomorphisms of 21 and is specially directed in the sense of [f 4; Sect. 5].

1 9 The reason for using ε rather than ε is precisely so as to have the conjugate equations, (3.21), (3.22),
in the form holding in U(G)
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Proof, e) above expresses what is meant by a permutation symmetry. By
[2; Lemma 3.7], if p is a special object of F there is an isometry RE(ι9p

d) with

(-iγ-1d'1I9 (3.23)

= dΓ1 Σsign(p)ε», (3.24)
pePd

where εp is the unitary representation of the group P^ of finite permutations of
the integers associated with p by the theorem in the Appendix of [14]. Actually,
by [1; Proposition 4.4] there is a representation εp of P^ associated with ε and έp

is just its "Bosonized" version; d is the statistical dimension of p. Equations (3.23)
and (3.24) express what is meant by p being special in the sense of [14; Sect. 5].
Since A has direct sums, subobjects and conjugates, given pί9p29...,pneΔ,

p : = P i θ p 2 θ Θ P n θ p π Θ Θ p 2 Θ P i (325)

is a special object dominating pι,ρ1,...,pn [2; Theorem 3.4], i.e. (Δ,έ) is specially
directed in the sense of [14; Sect. 5].

We are now in a position to establish the most novel aspect of Theorem 3.5,
the existence of a complete normal field system with gauge symmetry by applying
the spatial version of the cross product construction, [14; Corollary 6.2], to the
C*-algebra 21, the permutation symmetric, specially directed semigroup (Δ,έ)
of unital endomorphisms and the faithful representation π 0 . This gives us a
representation π of 21 on Jtif => Jf0, a compact group G of unitaries on Jtf and a
homomorphism p^>Hp from A to the semigroup of finite dimensional Hubert
spaces with support / in J^(Jf)2 0 such that

A) 3eo =
B) π 0 is the restriction of π to 34f0,
C) π(2I)cG',
Ό)0Lg{Hp):=gHpg-ι=Hp9 peΔ, geG,
E) φπ(A) = π°p(A)φ, ψeHp, Ae% peΔ,
F) 9(Hp9H,) = π(έ(p,p')), p9p'eΔ9

G) (up, up>) = π((p, p')\ p, p'eΔ,
H) the family up,peΔ, separates the points of G,

where 3(Hp,Hp) denotes the canonical unitary operator permuting the factors in
the tensor product of Hp and Hp,, i.e.

ψ'eHp.9 (3.26)

up denotes the unitary representation of G on Hp induced by ocg on H and (wp, up>)
denotes the space of interwiners between up and up.. Here the space of linear
operators from Hp to Hp,, denoted (Hp9 Hp.\ is canonically identified with (the linear
span of) Hp H* (cf. e.g. [23, Sect. 2]).

We now define 5(0) to be the von Neumann algebra generated by the Hp as

2 0 For an account of the properties of Hubert spaces inside operator algebras the reader may consult
[11; Sect. 3], [22; Sect. 2] or [23; Sect. 2]
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p runs through Δ(Θ) and we must verify that {π, G, g} is a complete, normal field
system with gauge symmetry.

We let U(G) be the category of finite dimensional continuous unitary represen-
tations of G with objects up,peΔ, then F) and G) show that T^π(T) defines an
isomorphism21 from (<̂ ~,ε) to (U(G), 3). A standard application of the Stone-
Weierstraβ Theorem using H) (cf., for example, the proof of [23; Lemma 6.2])
shows that every ξeG, the set of equivalence classes of irreducible, continuous,
unitary representations of G, is realized one some Hp. This establishes, without
appealing to the main theorem of [2], that the superselection structure of 91 is
described by the representation theory of a compact group G.

We next show that {π, G, g} is a field system with gauge symmetry by verifying
the conditions α), β, γ) and δ) of Definition 3.1. It follows from G) that π((p, p')) a %(Θ)
whenever ρ,ρ'eΔ(Θ). In particular, any unitary of π(SH(Θ)) is in g(0), thus π($l(0))
is contained in the fixed-point algebra of $(Θ) under αG. Harmonic analysis now
shows that g(0) is actually the weak closure of the span of the Hp,peΔ(Θ) (cf., for
example, [11; Theorem 2.3]). Now if peΔ(Θ)

m(Hp) = m((Hι9 Hp)) = (nf, up) = π((*, p)) c π(9I(tf))

and this verifies α), m denoting the mean over the action αG.
We pick for each ξeG a pξeΔ such that up is of class ξ then the πξ:= no°ρξ

are mutually inequivalent irreducible representations so that by [14; Corollary
6.4] 5' is isomorphic to πo(2I)' = C/ verifying β).

Since each ξeG is realized on a Hubert space in g(0) and, by A), 3tf0 is the
space of G-invariant vectors, J^o is cyclic for g(0). The simple argument may be
found in the proof of [14; Theorem 6.1]. This verifies γ). Finally δ) is an immediate
consequence of E).

Our field system is complete since by [14; Proposition 6.3]

π £ 0d(ξ)π ξ, (3.27)
ξeG

where d(ξ) is the dimension of ξ, which by F) coincides with the statistical dimension
of pξ. It only remains to show that our field system is normal. For each peΔ, there
is a unitary κ(p)e(p,p) with

Γ o φ ) = φ > Γ , Te(p,p'). (3.28)

Such an element is uniquely determined by its values on irreducibles and K is fixed
by requiring that κ(p) = ± lp according as p is para-Bose or para-Fermi respect-
ively, K is introduced in [21; Sect. 4] and is used in the definition of ε. It is also
discussed in [2; Sect. 7]. We have

Φ i ) x κ(p2) = ΦiP2)> PuPi^A. (3.29)

Now, as we have remarked, F and U(G) are isomorphic by G). Hence (3.28) and

2 1 More precisely, this is an isomorphism of strict symmetric monoidal C*-categories. The terminology
is explained in [2; Sect. 1]
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(3.29) imply that there is a unique keG with up(k) = κ(p\ peΔ22. Since κ(p)e(ρ,p\
k must be in the centre of G and, since κ(ρ)°κ(ρ) = \py k2 = e, the identity of G.
Since k is in the centre of G, it suffices to suppose in (3.2) that F and F' transform
irreducibly under G. In this case F = Bψ and F' = B'ψf

9 where
B'eπ{(Ά(Θ2)l ψeHp, ψ'eHβ., with peΔ(Θ,) and p'eΔ(Θ2). Now

FF' = BφBψ = Bp{B')ψψ' = BB'3(Hp,9Hp)ψ'φ

= B'Bπ(έ(p\ p))ψ'ψ = ± £ ' £ ^ > = ± B'ψ'Bψ = ± F F ,

where the minus sign is to be taken if and only if both p and p' are para-Fermi.
But in this case

= Bκ(p)φ =-Bψ=-F9

and similarly αfc(F) = — F', and we have verified (3.2) and completed the proof of
existence in Theorem 3.5.

It is convenient to establish Theorem 3.6 before proving uniqueness in
Theorem 3.5. In Theorem 3.6 we do not assume that we are dealing with a complete
field system. This added degree of generality gives information on a situation of
practical importance, where the theory has been defined using a field net and a
gauge group, but the field net does not yet describe all sectors. We shall also take
the opportunity of classifying all field systems with gauge symmetry up to unitary
equivalence even though we believe that anomalous commutation relations have
no practical importance.

We begin the proof of Theorem 3.6 with an elementary lemma.

3.8 Lemma. Let {π, G, 3} be a field system with gauge symmetry then J f 0 is the
space of G-invaήant vectors and is separating for g. Furthermore

)' = G", (3.30)

$')Γ, (Pejr. (3.31)

Proof By definition G leaves Jf0 pointwise fixed and α) with β) or γ) implies that
any G-invariant vector lies in Jf0. Let m denote the normal conditional expectation
got by integrating ag over the compact group G using Haar measure. If F e g and
Fje0 = 0 then m(F*F) J4f0 = 0 and since m(F*F)eπ(9I) and π 0 is faithful m(F*F) = 0.
But m itself is faithful so F = 0 and tf0 separates g. Now

G' = niβ(3f)) = m(g-) = m(SΓ = π(ίl)-.

Here " denotes the closure in the weak operator topology; see [10; Sect. Ill] for
a detailed proof of these equalities. This proves (3.30). By α) and δ), π(2l(0'))~ cz
g(0)'nG'. Now by γ), an element Tof %(O)' nG' is uniquely determined by its
restriction to Jf 0 which is an invariant subspace for T. Let EQ be the projection
onto 3tf0 then %(Θ)'nG' c π(9l(0))' so

T| JT0eπ(«((9)yEo = πo(2I(0))' = πo(Sl(0')Γ

by duality (3.1). This proves (3.31).

2 2 This is Tanhaka's contribution [24] to the duality theory of compact groups which is discussed,
for example, in the comments following Lemma 6.2 of [2]
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Let Ξ denote the set of equivalence classes of irreducible subrepresentations
of the defining representation of G and if ξeΞ, let EξeG'nG" = π(3I)~ nπ(3ί)' be
the corresponding central projection. Then (3.30) tells one that Ξ is in 1-1-corres-
pondence with the equivalence classes of irreducible subrepresentations of π and
that the class corresponding to ξeΞ has a multiplicity d{ξ\ the dimension of ξ.

It might seem that we are close to establishing c) of Theorem 3.6, but we have
yet to establish that the representation πξ corresponding to ξeΞ satisfies the
selection criterion. This is our next task.

3.9 Lemma. Let F1,F2,...,Fde'$(Θ) be a non-zero tensor transforming under αG

like a unitary representation, then if 0 " <=0X there is a tensor X1,X2,...,Xd in
transforming in the same way such that

= /. (3.32)

Proof Regarding Fί9 F2,..., Fd as the entries of a column vector F, let F — V\F\
be the polar decomposition of F. Since the polar decomposition is unique, the
entries of the partial isometry V again transform in the same way under αG. But
then E = V* V is a non-zero projection in 91(0) and, by Property B, there is an
isometry WeS&ψJ with WW* = E. Taking X= VW,X*X = I so we may take
Xγ, X2,..., Xd of the lemma to be the entries of X.

3.10 Lemma. If ξeΞ, then EξJf is cyclic for g(0).

Proof Let 0Q CZ 0, then since jf0 is cyclic for 3r(0o)> there is a non-zero tensor
in 5(0O) transforming as a unitary representation of class ξ and hence, by
Lemma 3.9, a tensor XX,X2,.. .,Xde^{Θ) of class ξ satisfying (3.32). But

so that EζJtif is cyclic as required.

3.11 Lemma. Let {π,G,%} be afield system with gauge symmetry and πξ an
irreducible subrepresentation of π corresponding to ξeΞ then

πξ\S&{Θ')^π0\S&(Θ'\ ΘeJf. (3.33)

Proof By δ), 5(0) cz π(2l(0'))' so by Lemma 3.10, EξJίf and Jf0 = £ 0 J f are cyclic
subspaces for π(2l(0'))'. Hence Eo and Eξ have central supports / in π(2l(0'))' so
that we at least have quasiequivalence in (3.33). By Property B, the commutants
of π$ 131(0') and π0131(0') are properly infinite so that unitary equivalence will follow
once we know that the separability of J^πξ follows from that of Jίf0. Since πξ is
irreducible, each non-zero vector ΦeJ^πξ is cyclic and J^πξ is the closure of the
union of π(«(3l(0w))Φ for an increasing sequence of double cones. Hence it suffices
to show that πξ(3I(0))Φ is separable for each ΘeJf. Since Jf0

 i s separable, 7^(31(0))!
is compact metrizable in the weak operator topology. But we already know
quasiequivalence in (3.33) for each ΘeCff so nξ(

<Ά(Θ))1 is compact metrizable and
7^(31(0)) Φ is separable.

Remark. Lemma 3.11 is the only place where the separability of Jf 0 is used. If
J f o w e r e n o t separable and if we were to impose (3.33) as an additional condition
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on a field system with gauge symmetry then Theorems 3.5 and 3.6 would remain
valid. We shall shortly establish that πξ has finite statistics.

We would like to establish that Ξ = G. This was shown in [10; Theorem 3.6]
using the cluster property. Here we follow a different route. We first show that if
πo°p is an irreducible subrepresentation of π with p localized in Θ then there is a
Hubert space of support / in g(0) inducing p. This was already established, under
rather more restrictive hypotheses in [11].

If p is irreducible then (πo°p,π), the space of intertwiners, is a Hubert space
with scalar product given by

(V,V')lπoθp=V*V. (3.34)

If (πo°p, π) Φ 0 and ξ is the corresponding element of Ξ then

where Vί9V29...9 Vd{ξ) is an orthonormal basis of this Hubert space. (π0 ° p, π) carries
a unitary representation of G of class ξ given by the left multiplication with g,geG.
Hence

ΣVfF^ΣVftθWVi^ΣVTMnVi, FeO(3f). (3.35)
i i i

We now prove a variant of [11; Proposition 2.1] which does not require that the
vacuum vector be separating for each

3.12 Lemma. Let {π, G, g} be afield system with gauge symmetry and set

Hp:= {φe%:φπ{A) = πop{A)ψ9 Ae<Ά}. (3.36)

Then Hp is a Hubert space in 5 and given Ve(πo°p,π\ p localized in Θ and
irreducible, there is a unique φe<S(Θ)nHp with

ψ*φ=VΦ9 ΦGJTO (3.37)

Proof. JtT0 is separating for g by Lemma 3.8. lϊψ, φ'eHp, ψ*ψ'eπ(SΆ)f n'$ = G"n<8,
hence ψ*ψ'Φ = λΦ, ΦeJ^0 so ψ*ψ' = λl and Hp is a Hubert space in g which
might of course be {0}. However, given Ve(πo°p, π), φ is certainly uniquely specified
by (3.37) and we have no option but to set

(3.38)

We must, however, verify that (3.38) defines a bounded operator φ*. Now, using
(3.35), we have

= \\V\\2Yj{Φj,Vfm{FJFk)ViΦk).
i,j,k

By (3.31), m(F*Ffc)eπ(9l(0')Γ and, since p is localized in 0,

(Φj9 VfmiFjFJVtΦk) = (ΦJ9m(FJFk)Φk) = (Φj9FfFkΦk).
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Thus we conclude that

so that ψ* is a well defined bounded operator, φefflO) and (3.37) holds. Now

φ*πp(A)Φ = Vπo°p(A)Φ = π(A)VΦ = π(A)φ*Φ, ΦeJ^0, Ae%

and, since Jfo is separating for g, we deduce that φeJfp completing the proof of
the lemma.

Using the above construction we have obtained a d(£)-dimensional Hubert
subspace of Hp. Let Φi,φ2>-->Φd(ξ) be an orthonormal basis of this subspace,
then Σφiφ?eG'n<8(Θ) = π((Ά((9)). But (3.37) shows that ΣΦtφf is a multiple of

i i

the identity in restriction to Jf0. Thus ΣΦiφ* = I and Hp must be a d(ξ)-dimen-
i

sional Hubert space of support /. Taking p = i as a particular case we have proved
a) of Theorem 3.6. It also follows immediately from (3.36) that ug(Hp) = Hp so that
we have a continuous, unitary representation up of G induced on Hp.

3.13 Lemma. Let {π, G, 3} be afield system with gauge symmetry, then Ξ = G and
for each ξeG there is an irreducible p localized in Θ such that up is of class ξ. Thus,
in particular, the action of G on %(Θ) has full monoidal sepectrum.

Proof Since Jf 0 is cyclic and separating for g(0), Ξ coincides with the spectrum
of the action of G on 5(0) and is hence automatically closed under conjugates. Ξ
separates the points of G so that, if we can show that, given ξeΞ, there is an
irreducible p localized in 0 such that up is of class ξ, then a standard application
of the Stone-Weierstraβ Theorem completes the proof. However, an irreducible
subrepresentation πξ of 91 corresponding to ξeΞ must be equivalent to a
representation of the form π o °p by Lemma 3.11 and Hp constructed in Lemma
3.12 carries a representation of class ξ, as required.

We now define a subset of localized morphisms:

Δ%:= {p:Hp is a finite dimensional Hubert space of support /}. (3.39)

Note that Δ% is trivially closed under products, direct sums and subobjects and
we let &~d denote the category with objects Δ% and with (p,p') as the set of arrows
between p and p'. Let U(G) denote the category of representations with objects
up9 peΔ%.

3.14 Theorem. Let {π, G, 5} be a field system with gauge symmetry, then the map
Te(p,p')^>π(T)e(Hp,Hp,) defines an isomorphism23 from P% to U(G). Every
equivalence class of finite dimensional, continuous, unitary representations of G is
realized on some Hp,peΔ%. Δ^c^Δ and is closed under conjugates. The statistical
dimension of p equals the dimension of up. The irreducibles of Δ% are precisely the
irreducibles peΔ for which (no°p, π) φ 0. The span of{Hp:ρeΔ%(Θ), p irreducible) is
a weakly dense subspace of %{Θ).

More precisely an isomorphism of strict monoidal C*-categories, cf. [2; Sect. 1]
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Proof. Since, by definition, π(9I) is the fixed-point algebra of the action of G on
g, the isomorphism of 9~^ and U(G) is a trivial consequence of π(9I)' n g = C/ (cf.
[23; Lemma 2.4] or [11; Theorem 3.6]). It is now clear that every finite dimensional,
continuous, unitary representation of G is realized on some Hp,peΔ% and that
each object pεΔ^ is a finite direct sum of irreducibles. It was, in effect, shown in
[11; Theorem 4.1] that each irreducible psΔd obeys parastatistics whose order is
the dimension of up. Hence the statistical dimension of p equals the dimension of
up for all ρeΔ%, and thus Δ% a Δ. The notion of conjugation in Δ% must coincide
with that in U(G), since, for irreducibles, a conjugate p for p is defined up to
equivalence by requiring p to be irreducible and (ι,pp)Φ0. Hence Δd is closed
under conjugates. If (πo°p,π) = 0, then Hp = 0 since J^o is separating for g. Hence
the irreducibles of Δ% are precisely the irreducibles peΔ for which (π o°p,π)/0.
Finally, it is a simple matter of harmonic analysis to see that the span of
{Hp.ρeΔ^(Θ\ p irreducible} is a weakly dense subspace of g(0) since we know
that each ξeG is realized on some such Hp, cf. [11; Theorem 2.3].

Remark. Every finite dimensional αG-invariant Hubert space in g(0) is of the form
Hp, for some peΔ%(Θ).

In the course of proving Theorem 3.14 we have also completed the proof of c)
of Theorem 3.6. Now let y be an automorphism of g leaving π(3I) pointwise fixed,
then y(Hp) = Hp so that we have a unitary vp defined on Hp which must satisfy
vpp> = vpp(vp,) = vp(g)vp>. Hence by Tannaka's result [24], there is a unique geG
with vp = up(g\ i.e. α ^ ) = y(φ), ψsHp, peΔ%. Since, as we have just seen, the Hp

generate g, we conclude that γ = ag proving b) of Theorem 3.6. The remaining
points still to be proved in Theorem 3.6 concern normal field systems.

If {π, G, g} is normal and ΦeJ4?ξ, the Hubert space of πξ, then, since k is in the
centre of G and k2 = e, we anyway have kΦ— ±Φ. Writing πξ^π0°ρ and taking
φeHp we then have ock(φ) = ±ψ. We now compute ε(p,ρ). Let p' be equivalent to
p and have a spacelike separated support, then Hp and Hp, transform according
to equivalent (irreducible) representations of G and we have Σψ'iψ* = π(V) with

Ve(p,p') unitary, where ψl9ψ2>-->Ψd a n ( i Ψ'uΨΊ* •>Ψ'd a r e orthonormal bases of
Hp and Hp, transforming in the same way under G. Since ε(p,ρf)= lpp,ε(p,p) =
V* x lp°lp x V by the analogue of (3.15). Hence

π(ε(p,p)) =

so that the plus and minus signs correspond to para-Bose and para-Fermi statistics
respectively. This proves d) of Theorem 3.6.

The computation we have just made also shows that

$(Hp9 Hp) = π(ε(p, p')), p, p'eΔd (3.40)

for, by virtue of (3.15) and the analogous property of S(Hp,Hp>), it suffices to take
p and p' to be spacelike separated irreducibles. But, in this case, since the field
system is normal

ψeH
p9
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where the minus sign is to be taken if and only if ak(ψ) — — φ and ock(φf) = — φ'.
Thus, by the above computation, S(Hp, Hp) = ± lH H ,, where the minus sign holds
if and only if both p and p' are para-Fermi, and, in view of (3.20), we have established
(3.40).

To complete the proof of Theorem 3.6, we must show that a normal field system
satisfies twisted duality. We first remark that if V is given by (3.8) then
VFV* = F++ikF. and that since Feπ(9I)'nG', {π,G,g'} will also be a normal
field system with gauge symmetry. Now let FeffiΘ)' transform irreducibly under
G, then, since %{&)~ c ftXΘ)' contains a Hubert space Hp transforming under the
same equivalence class of irreducible representations by Lemma 3.13, F = Bφ with
φeHp and Beg'(0)' n G'. Hence, by (3.31) applied to g', £eπ(2I(0')Γ and Feg(0')~.
Thus g(0')~ = 5 W and taking commutants we get (3.9).

Now consider a complete normal field system with gauge symmetry, {π, G, g},
then Δd = A and, in the course of proving Theorem 3.6, we have established the
existence of a homomorphism p^Hp from A to the semigroup of Hubert spaces
of support / in B(J^) satisfying A)-H). But, by [14; Corollary 6.2] a system
(Jtf, π, G, pen -• Hp) is unique up to unitary equivalence. However, %(Θ) is generated
by {Hp:peΔ(Θ)} so any two complete normal field systems are equivalent in the
sense of Definition 3.4 and we have completed the proof of Theorem 3.5.

We can at this point classify field systems with gauge symmetry up to
equivalence. In place of (3.40), we exploit the isomorphism of 2Γ% and U(G) to
define a (permutation) symmetry εδ by

S(HpiHp,) = π(ε%(p9p')\ p,p'eΔ%. (3.41)

Thus the analogues of (3.15)—(3.18) hold and (U(G), 9) and (^g,ε$) are isomorphic
by construction. In particular, (Δ%,ε%) will be a permutation symmetric semigroup
which is specially directed in the sense of [14; Sect. 5] (cf. Lemma 3.7). Appealing
to the uniqueness result of [14; Corollary 6.2] we see that {π, G,5} is determined
up to equivalence by the pair 04g,ε$) Conversely, given any pair (Δ\ε') consisting
of a subsemigroup A of A and symmetry ε' for the full subcategory F' of 3~
determined by A' making (SΓ\ε') into a strict symmetric monoidal C*-category
with conjugates24 in the sense of [2; Sect. 1], (Δf, ε') will be a permutation symmetric
semigroup which is specially directed in the sense of [14; Sect. 5] and we may
construct, as in the proof of existence in Theorem 3.5, a field system with gauge
symmetry {π, G, 5} for which Δ% = A' and εδ = έ. Hence we have

3.15 Theorem. Let {π, G, g} be a field system with gauge symmetry then the map
{π, G,5}^(^5 ? ε & ) determines a 1-1 correspondence between equivalence classes of
field systems and pairs consisting of a subsemigroup of A closed under direct sums,
subobjects and conjugates and a symmetry making the corresponding full subcategory
of 2Γ into a strict symmetric monoidal C*-category with conjugates (cf. [2; Sect. 2]).

The following simple construction will help to clarify the relationship between
the different nets.

The notion of conjugate is easily seen to be independent of the choice of symmetry
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3.16 Proposition. Let {π, G, g} be afield system with gauge symmetry and N a closed
normal subgroup of G then we can construct another such system {πN, G/N, gN} as
follows: let πN denote the restriction of π to the invariant subspace

JtTN = {Φe^\gΦ = Φ, geN}. (3.42)

The restriction of G to the invariant subspace is naturally isomorphic to G/N. Let
g N be the restriction of the ^-invariant subnet of g to the invariant subspace J f N.
Furthermore,

Λ^s = {peΔ9:up{g) = 1 v geN} (3.43)

and ε^N is the restriction ofε% to Δ%N^

Proof Jf0 is a subspace of JfN so π 0 is still a subrepresentation of πN and HN is then
trivially separating for g. Hence the restriction map of the α^-invariant subnet of
g onto g N is an isomorphism. By definition, the action of G on the αN-invariant
subnet of g factors through N and G/N acts faithfully on this subnet since the
representations up with up(g) = 1H , geN, separate the points of G/N. Indeed, each
equivalence class of irreducible representations appears in this way. Thus G/N acts
faithfully on g* and the fixed-point net is trivially πN(9ί). Furthermore, it is now
clear that N is the kernel of the restriction mapping of G onto JtN. Hence we have
verified α). If mN denotes the normal conditional expectation got by integrating
over N with respect to Haar measure then

Reducing to the subspace J^N we see that g N is irreducible verifying β). Given
ΦeJfN, there is a sequence Φke^(Θ)J^0 which also tends to Φ. Hence Jίf0 is cyclic
for %N(Θ) verifying γ). If FemN {%(Θ)) and AeW(Θ') then Fπ(A) = π(A)F and,
restricting to the invariant subspace, we see that nN(W(0')) a gN(0)' Since ^ N is
separating for the α^-invariant part of g, the subspace Hp a g N for peΔ^N is just
the restriction of the corresponding subspace of g. Hence, bearing in mind the
definition of gN,

Δ%N a {peΔd:up(g) = 1 v geN}.

On the other hand, we must have equality here since if up(g) = lH , then Hp is

α y-invariant and its restriction to J^N will be a finite-dimensional Hubert space

of support / in g N , e ^ is trivially the restriction of ε% to Δ%N completing the proof

of the proposition.
The field system {πN, G/N, gN} is a subsystem of {π, G, g} and we show that

all subsystems arise in this way.

3.17 Proposition. Given field systems with gauge symmetry {πx, Gx, g j and {π, G, g}
and an isometry V:J^>

1~^J^? such that

Vπ1(A) = π(A)V, Ae% (3.44)

VG1V* = GE, (3.45)

K^K = (5 n {£}')£, (3.46)
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where E=VV* then there is a closed normal subgroup N of G such that E is the
projection onto the subspace of N-invariant vectors and {πl9 Gί9 3^} is equivalent to

Proof Equation (3.44) implies £eπ(9l)' and Eo g E. In particular, E is separating
for g. Let Hίp be the Hubert space in <Sι corresponding to pezlδ l then given
φx eHlp, there exists a unique φe% with Vφί V* = φE. Since ̂ π^Λ) = π2 °p(A)φl9

we get φπ(A)E = π°p(A)φE9 and hence φeHp. Since # l p has support 7,HP must
have support / so Δ% cΔ. Since 4^ is closed under products, direct sums,
subobjects and conjugates, there is a closed normal subgroup N of G such that

By (3.44), sdί = εdN so by Proposition 3.16 {πί,Gu'S1} and {πN,G/N,gN} are
isomorphic. Now £^f = Kg i e ^ 0 = Fg x K* Jf0 = 8 ^ 0 = ̂  so that £ is just the
projection onto the subspace of N-invariant vectors as required.

We recall that a net 5 over JΓ is said to be additive if

0 = U Gi implies 3(0) = V $(^),
i i

the von Neumann algebra generated by the g ^ ) .

3.18 Proposition. Let {π, G, g} be a field system with gauge symmetry then g is
additive if and only ifSΆ is additive.

Proof. Let ρeA%(G\ then there is a unitary Ue(ρ\ p) c ϊΆ(Θ) with p'eΔ^ΘJ. Hence
Hp = π(U)Hp,. If 9ί satisfies additivity then Hp = π(U)Hp,cz V g(^) so g(0)

I

V S(^i) The converse involves more work and we refer to [25; Theorem 1.3] for

details remarking that we are here dealing exclusively with double cones which
are connected.

4. Superselection Structure for Topological Charges

We come now to the analysis of topological charge. The goal of this section is to
start from representations satisfying (1.2) and give a selfcontained account of
superselection structure: composition of charges, existence of statistics and charge
conjugation. These results then allow us to associate a compact group dual with
the superselection structure (cf. Theorem 4.20 and the subsequent comments). They
will be used in the next section to construct a field net over spacelike cones acted
on by a gauge group.

We again draw the reader's attention to the role of the dimension of spacetime
in this discussion. Whilst the analysis of statistics for localizable charges is valid
for two or more space dimensions, the basic properties of the intertwiner calculus
for topological charges, in particular Lemma 4.2 below, can only be established
in three or more space dimensions.

Thus this section extends the results of [1,9] to the set of representations
satisfying (1.2). This task was first carried out by Buchholz and Fredenhagen
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[6] 2 5 . As their discussion is relatively technical, we have thought it worthwhile to
present in this section a simpler approach which is also conceptually clearer as it
avoids having to introduce an auxiliary cone and an associated C*-algebra.

Our discussion here will depend on the duality relation2 6

(4.1)

and the analogue of Property B.

Property B'. // £e2I(#')' ί 5 a non-zero projection then, for any spacelike cone <^1

containing the closure ofΉ there is an isometry WetyLffli)' with WW* = E.
This property is again a consequence of standard structural assumptions of

Quantum Field Theory, viz. covariance, positivity of the energy and locality. We
denote by (S) the set of representations satisfying the selection criterion (1.2). It
follows from Property B' that (5) is closed under direct sums and subrepresentations.

If πe(S) and we pick a unitary V such that

= πo(A)V,

and set

p(A)=Vπ(A)V*, Ae% (4.2)

then we get an equivalent representation defined on ^f 0 which has the property
of acting trivially on 2l(#')>

p(A) = πo(A)9 AeΏiV). (4-3)

If «Ί ID #, then p(8I(«Ί)) c no{S&{^\))' = πo(?l(«Ί)Γ, but it does not follow that p
defines an endomorphism of 31 because πo(5I) does not contain the von Neumann
algebra πo(2l(#\))~. The representations p are the analogues of our localized
morphisms and we write Δffi) to denote the set of representations satisfying (1.2)
and (4.3). Although we cannot use the composition laws for endomorphisms, we
show that if πe(S) and peΔt(%>) then πp can nevertheless be defined consistently.

4.1 Lemma. Ifπe(S) and peΔffi) then there is a unique representation πp
such that ifAe%{Θ) and Vx e(pί9π) is unitary, where p1eΔt(

(£1) and c€ι^
c€i' n Θ' then

πp(A)=VίP(A)V*. (4.4)

Actually Buchholz and Fredenhagen study representations satisfying

where SΆC(<#):= {AeW .AB = BA,Beyi(<$)}, the relative commutant of 2T(#). They demonstrate that this
stronger condition is automatically satisfied in a translation-covariant representation where the lower
boundary of the energy-momentum spectrum is an isolated mass hyperboloid, i.e. in a massive 1-particle
representation. In contrast to the case of localizable charges, this stronger condition is automatically
equivalent to (1.2) as a consequence of duality (4.1). We prefer to use the form (1.2) which parallels our
discussion of localizable charges.
2 6 Buchholz and Fredenhagen, of course, need only the corresponding weaker duality assumption

' = πo($l(#))~. This condition may well prove to be equivalent to (4.1) in practice
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Remark. The idea behind this definition is that, under the stated support condition
/?! should act trivially on p(A) and hence (4.4) should define πp(A) correctly.

Proof. Provided we can show that (4.4) defines πρ(A) unambiguously, we shall
have a unique representation πp. To see that πp(A) is independent of the choice
of Vι note first that if BeSlCίf J then 2 7

p(A)B = p(AB) = p(BA) = Bp(A),

thus p(A)e($ί(^ly = <}ί(^f

ly. Given a unitary F 2 e(p 2 ,π), where p2eΔt(<£2) and
<β2 cz « " n 0 \ suppose first that (€2 c <gx and pick CeSΆ(<$\) c «ί(«"2), then

K* FXC = V$ViPl(C) = p2{C)V*2Vx = CKf F l 5

thus KipCdJK? = V2ρ(A)V^. However, by Lemmas A.7 and A.8, <€' is spacelike
cone connected (cf. Definition A.6) and so, by Lemma A.5, is VnΘr

9 thus
Vxp(A)VX = V2p(A)V^ for any (€2 cz «"n0 ' . We still need to show that πp(A) does
not depend on the choice of localization regions for p and A. Suppose peΔffi)
and A e 51(0) then, since ΦnWnΘ'nΘ' still contains a spacelike cone by Lemma
A.5 and e) of the Appendix, (4.4) determines πp(A) unambiguously as required.

We shall see later that πpe(S). In the next lemma we take a first step towards
establishing the commutation properties of intertwiners.

4.2 Lemma. Let Txe(pup3) and T2e(p2,p4) with p^A^^ and ^ 2 u ^ 4 c <€\ n«"3,
then T1T2 = T2T1.

Proof. Suppose first that there is a spacelike cone ^ 6 => # 2 u # 4 with # 6 c=
Then if AeSU(<gf

6) we have

so Γ2e2I(<r6)' = « ( * 6 ) " . If AeSΆ(^6) then

so Ti e2l(#6)'. Hence Γx T2 = T2T1. We prove the result by reduction to this special
case. Replace T2 by T3:= T2°U, where Ue(po,ρ2) is unitary, P Q G / I ^ O ) and there
exists a spacelike cone # 6 c= ^ n ^ 3 , # 6 =3 ^ 0 u ^ 2 , then

7 ^ 3 = T i ^ ί / ; Γ37Ί = ^C/Ti = T2TXU.

Thus Ti and T2 commute if and only if 7\ and T 3 commute. Now suppose ^ n # ' 3

is spacelike cone connected, then a finite number of such moves reduce us to the
special case treated above. Hence 7\ T2 = T2TX whenever <€\ n # 3 is spacelike cone
connected. Now pick U1e(p1,p1) and U3e(p3,ρ3) unitary where p{eAt^€^ i = 1,3,
#f ci ^ . and ^ x n # 3 is spacelike cone connected. This is possible by Lemma A.7
and e) of the Appendix. Then U^T^Ufeip^pJ so U3T1U

:fT2 = TzU^Uf.
But also ί/JT2 = T2UX and U3T2 = T2U3 since ^ and «"3 are spacelike cone
connected. Hence TγΎ2 — T2TX as required.

2 7 In this section, we will identify 51 with πo(2l) and omit the symbol π 0 except where special emphasis
is desired
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Our next goal is to define π(T) unambiguously when πe(S) and Te(pί9p2)9

PieΔJ&i), i = 1,2. We pick a unitary Ve(ρ, π), where ρeΔt(<£) and # c # i n«" 2 and
set

π(T):= F7Ύ*. (4.5)

Again this should be the correct definition since p should act trivially on T

4.3 Lemma. π(T) is independent of the choice of V under the stated conditions.

Proof If F'e(p',π), p'eΔtfg0) and <g0 a<ti\nW2 then V*Vfe(p',p) and hence, by
Lemma 4.2, V*V'T = TV*V, but this gives Γ T Γ * = VTV* s required. We must
still allow for the possibility that π(T) might depend on the localization cones
assigned to p1 and p2. It will clearly be enough to consider two different localization
regions for pί9 say pi^eΔffi^nΔffii). The problem is still not trivial because it
is not clear whether # i n # ' 2 n # ' 3 contains a spacelike cone. We proceed as follows:
pick unitaries Ve(p9π)9 Ve(β9π)9 where peΔtft), Vc<g\n<V'2 and βeΔ£$)9

tfc^n*^. We have to show that VTV* = VTV*. By f) of the Appendix,
we can find spacelike cones # 3 , # 3 and # 4 with <g3c<Vί9<i3c:<$ί and # 4 cz<g2

such that ^'3 n ^ n ^ contains a spacelike cone. Pick unitaries U1e(p3,p1%
U2e(P4,p2) and t/ 1 e(p 3 ,p 1 ) with p3e4(<ίί3), p^eΔt(^^) and β3eΔt(<£3). Pick

^ and a unitary We(p,π) with ρeΔj[Vs). Then we have
5 1 f 1

r * . Hence VTV* = VU2V*WU^TUιW*VU*V* and
similarly VTV* = VU2V*WU^TU1W*VU*V*. Now VU2V* = VU2V* by
Lemma 4.2. Pick a unitary Ze(p, π), where pzΔ$) and f cz ̂  n # x , then VU* V* =
XU*X* and VU*V* = XU*X* both by Lemma 4.1. Finally, UXUXW*X =
W*XU* Uί again by Lemma 4.1. A trivial computation now yields VTV* = VTV*
completing the proof.

It is obvious that T\->π(T) is linear and that π(T)* = π(T*) but π also preserves
the composition of intertwiners.

4.4 Lemma. Let Te(pl9p2), Se(p29p3) and πe(S) then

π(SoT) = π(S)π(T). (4.6)

Proof Let p^eΔ^β^ i = 1,2,3, then, by f) of the Appendix, we can pick unitaries
UiE(pi9βi), where β^Δ^^ <%i^

c€i and ^\n^'2n^'z contains a spacelike
cone. Let S' = U3°S°U2

< and V = U2°T°U*, then using the spacelike cone in
^€\r\^'2r\Φ3, we can conclude that

π(S'°Γ) = VS'TΎ*9 π(S') = VS'V*9 π{T) = VTV*,

thus π(SΌΓ) = π(Sf)π{T). Now picking a spacelike cone in # 3 n * ' 3 n * 2 n«" 2 =
^ 3 n ^ 2 we can similarly conclude that π((/3°S°C/f) = π(l/3)π(S)π(l/£). Similarly,
we get π(C/2oTot/ί) = π((72)π(Γ)π(U*) and π(
Hence

as required.

/1) = π((/3)*π(5Ό T)π{Ό,)

T °U J = π(S°T\
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4.5 Lemma. Let π1,π2e(5), and peΔffi) and Se(πί9π2) then Se(π1p9π2p).

Proof. It is enough to show that if AeSΆ(Θ\ then Sπ1ρ(A) = π2ρ(A)S. Pick a
spacelike cone # < = # ' n 0 ' and unitaries V^pi.π^ ί = l , 2 with p^Affi). Let
BeW<β\ then p(A)B = p(AB) = p(BA) = Bp(A) so that p(A)eSU(<£)'. By definition,
πip(A)=Vip(A)Vf, f = 1,2 and Ffo5oF1e(p1,p2) so V^SoV^Sa^y, thus
ρ(A)V^°S° V1 = Ffo5°V^iA) and rearranging we see that Sπ1p(A) = π2p(A)S as
required.

4.6 Lemma. Lei πe(S) and Se(pl9p2), ρteAt^€^ i= 1,2, ί/ien π(S)e(πpi,πp2).

Proof. It is again enough to show that if AeWiΘ) then π(S)πp1{A) =
Pick a spacelike cone ^ci(€\r\c€t

2r\&\ this is possible by Lemma A.5 and d) of
the Appendix. Pick a unitary Kβ(p,π), peAffi\ then, by definition, π(S) = KSK*.
Since piA)eW$'Y, i = 1,2, we also have πp^Λ) = Fp1(y4)F*,πp2(/l) = Vp2(A)V*.
Hence

= πp2(A)π(S)

as required.

4.7 Lemma. Given πί9π2e(S), Se(πuπ2\ p^Affi^ i= 1,2 and Te(p1,p2) then

SxT:=5π 1 (T) = π2(T)S (4.7)

defines an element of(π1pί,π2p2).

Proof. Pick a spacelike cone ^ c ^ n ^ and unitaries ^6(^,71;) with PiG
ί = 1,2. Then T G S I ^ and V^SoVxe{pup2) so 7 ^ 6 2 1 ( ^ 7 = 9ϊ(^)". Hence
TV+SV^V^SVJ and thus V^VξS^SV^V* or, by definition, π2(T)S =
Sπ^T). Now, by Lemma 4.5, Se(π1p2> ̂ 2^2) a n ^ by Lemma 4.6, n^^eiπ^p^ nip2)
thus Sπ1(Γ)e(π1p1,π2p2) as required.

4.8 Corollary. Let πe(S) and ρeAt(<#) then πρe(S). In particular if ρuρ2eΔt(<#)
then p1p2eΔt{

(£).

Proof Given any spacelike cone ^ pick unitaries V1e(puπ) and V2e(p2,p) with
pup2eAt(^) then Vx x V2e(ριρ2,np) is unitary and p x p 2 is localized in <f. Hence
πpe(S).

4.9 Lemma. L̂ ί π^^^aβίS), S^^i,^), S2e(π2,π3), PfG^l^), i= 1,2,3,
ΆΦuPiX T2e(p29p3)then

(S2oSJ x ( ^ 0 7 0 = 52 x T.oS, x τ l β (4.8)

Proo/. 5251π1(Γ2oT1) = S2S1π1(T2)π1(T) by Lemma 4.4. 51π1(T2) = π2(T2)S1

by Lemma 4.7. Thus S2Sιπί(T2°Ti) = S2π2(T2)Sίπ1(T1) = S2xT2°S1xT1 as
required.

Let έf denote the category of representations in (S) and their intertwiners and
F (respectively ^(^)) the full subcategory defined by those representations which
are localized in some spacelike cone (respectively in the spacelike cone #). Then
the intertwiner calculus developed up to this point may be summed up in the
following theorem.
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4.10 Theorem. There is a *-functor G of two variables

G\9> xF^tf

defined by G(π, p) = πp, G(S, T) = SxT.

Proof. The only points which have not been explicitly checked are the bilinearity
of G(S, T) and the self-adjointness of G, G(S*, T*) = G(5, T)*. But these properties
hold trivially.

Let us now restrict our attention to a fixed spacelike cone #; we then claim
that <?{<€) becomes a strict monoidal C*-category. What we still have to verify is
that x regarded as a functor #"(*) x <^(#) -• #"(<ίf) is associative and that i, the
identity representation π0, is a monoidal unit. Given ^(p^pί-), p^pί e ^ ^ ) ,
ί = 1,2,3 and a double cone 0, pick a spacelike cone * cz * ' n 0' and then spacelike
cones ^ , # 2 with ^ u ^ 2 c Ί and ^ c ^ 2 . Pick unitaries V^p^p^) with
A G Λ C ^ X ^ 1,2.Then Kx x V2e{β1β29p1p2)3ndβ1β2eΔt(<$). V, x V2 = p1(V2)V1

and since «Ί c«"2 n«", F 1 x F 2 = F x F 2 F*F x = F x F 2 . Now if

(T1xT2)xT3 = TlPl(T2)p1p2(T3)=T1V1T2V*VίV2T3(V1V2)*

= τιvίτ2v2τ3v*2v*
= Tx V^T^iT^V* = TlPί(T2p3(T3))

= T,x (T2 x Γ3).

Hence x is associatve. Obviously pi = ιp = p and l f x T=Tx lt=T so that i acts

as a monoidal unit.

Remark. The above proof of associativity does not require p^pΊ e A W s o it shows

that we have an action of ^ ( ί f ) on < 9 ^ x

4.11 Theorem. ZΓi{€) is a strict monoidal C*-category and Ϊ / ^ C Z ^ then the
inclusion of^^γ) in «^"(#2) is a strict monoidal *-functor and each object of$~(%>2)
is unitarily equivalent to an object of 3~{%>i\ i.e. the inclusion is a relaxed unitary
monoidal equivalence.

Proof We have just verified that ^(W) is a strict monoidal C*-category. The
inclusion of ^ ( ^ Ί ) in ^(^2) is trivially a strict monoidal *-functor and each object
of 3~i{€2) is unitarily equivalent to an object of ^"(#i).

We turn now to questions of permutation symmetry. The basic lemma is

4.12 Lemma. Let pxeAt^€^ i= 1,2,3,4 and Tιe(pί,ρ3) and T2ε(p2,ρA) and
suppose (€ι c <T2,

 (€3 <= <jf̂ , then T1xT2 = T2xT1.

Proof. Suppose first that #2 u # 4 c ^\ n^'3 then T1ρι{T2) = Tι T2 and T2ρ2(Tx) =
7^2^ by definition. But by Lemma 4.2, Tι T2 = T2Tί so we just need to prove that
PiP2 = PiPi and ρ3ρ* = p4p3. Pick ^ιcV2nΘf and <€2tz<€\r\<€\c\Θ' and
unitaries V ̂ p^p^ with p^Δ^^ i= 1,2. Then if 4891(0),
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But c€1κj^1ci(€\rΛ^\ so Lemma 4.2 again shows that V1V2 = V2V1. Hence
P\Pi = PiP\ a n d similarly p 3 p 4 = p 4 p 3 . In the general case, pick a unitary
Uφo,p2l where p0eΔt(<£0) and « Ό u * 2 cz # ; , then if Γ3 = Γ2°I/,

7\ x Γ 3 = 7\ x (7V>£/)= 7\ x Γ 2 ° l p i x t/;

Γ 3 x I\ =(T2oC/) x Γ 1 = T 2 x TtoU x l p i .

But the first part of the proof shows that 1P1 x U = U x l p i hence Γ 1 x Γ 3 = T 3 x 7\
if and only if TίxT2 = T2xTί. Hence, by a finite set of such moves, we see that
we can assume that cβ2 c ^ n # 3 . Shifting V4, the left support of T2, in the same
way inside #' 3 we can also assume # 4 c ^ n ^ 3 . Thus from the first part of the
proof we can conclude that TίxT2 = T2x 7\ completing the proof.

We now define the permutation symmetry ε: if pί and p2 are two objects of
y then pick unitaries U^p^p^ where ργ and p2 can be localized in mutually
spacelike cones and set

siPuPiY^U.xU^UUm. (4.9)

4.13 Lemma. ε(ρl9p2) is independent of the choice of Uί and U2. If H£ε(p£,σ{),
i= 1,2, then

e{σl9σ2)oR1xR2 = R2xR1oε(pup2)m (4.10)

Proof This is a straightforward application of Lemma 4.12. If l/Jeίp^p,-), where
Pi and p 2 have spacelike separated supports then by Lemma 4.12

and rearranging we get

(u2 x i/iMi/f x ι/!) = (i/'2 x i/'Joίi/Ί x ι/'2*)

as required. If ̂ ^(σ^σ,) are unitaries and σx and σ2 have spacelike separated
supports then

and rearranging gives (4.10) as required.

4.14 Lemma. If p9σ9τeΔt(^) then

β(p,σH(<7,p)=lσ p, (4.11)

ε(p,*) = φ , p ) = l p , (4.12)

ε(p, στ) = 1 σ x ε(p, τ) ° ε(p, σ) x 1 τ, (4.13)

so ί/iαί («^(^), ε) becomes a strict symmetric monoidal C*-category.

Proof ε(p,σ)oε(σ,p)=VxUoU*xV*°UxVoV*xU* = lσp, ε(p,ι)=ltx l p°l p x
1, = l p . To prove the final identity, choose Ue(ρ,p)9 Ve(σ,σ) and We(t,τ) in such
a way that p, σ, τ have mutually spacelike supports within the fixed spacelike cone
# so that we can compute within
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lσxε(p,τ)°ε(p,σ)x lτ=lσx(Wx U°U* x W*)o(V x UoU* x V*) x lτ

= \σx Wx Ό°\σx U* x W*oVχU x lτoJJ* x V* x lτ

= (VxW)xUoU*x(VxW)*.

But provided we have chosen p,σ,τ so that p and στ have spacelike separated
supports, the right-hand side is just ε(p, στ) completing the proof.

We can now define a notion of statistics: let Δt:= (J Affi).
<e

4.15 Theorem. For each peΔt there are unique unitary representations εjj° of P w in
(p\p») = p»(SO)\ n e N such that

$Kp)x$'Kp') = $+HΊ(pxn p e P n , p'eVH , (4.14)

where pxp' is the obvious permutation obtained by juxtaposition of p and p' and

ε<r>((r,S)) = ε(p',p s), r + s = n, (4.15)

where (r, s) denotes the permutation

1 2 ••• r r + 1 r + 2 ••• r + s

5 + 1 s + 2 ••• s + r 1 2 s Γ ( 4 1 6 )

// Te(ρ9ρ') is an arrow of 3Γ(<g) then

ty(p)oT*n=TXnoeM(p), pe?n. (4.17)

Furthermore, the equivalence classes of ε{£\ neN, depend only on the equivalence
class of p.

Proof Let peΔffi) then the existence and uniqueness of εjj0 within $"{{€) follows
from the coherence theorem for strict symmetric monoidal C*-categories, cf.
[2; Appendix]. Alternatively, one may follow the arguments of [1; Sect. 4] taking
care of work within 2Γ^β\ Now it follows from (4.14) by induction on n that ε̂ w)

is independent of the choice of localization region for ρ\ recall, that x and ε are
defined on all of F. Given Ue(p,ρf) unitary, where p^p'sAffi) then the unitary
equivalence of ε(

p

π) and ε$ follows from (4.17). Since Minkowski space is spacelike
cone connected, the equivalence class of εf depends only on the equivalence class
of p.

To analyze the equivalence classes of ε j^neN, we need a left inverse for p. We
will work with a fixed ZΠ$) and the following notion will be adequate for our
purposes: a left inverse φ for peΔffi) is a completely positive2 8 linear map

such that

φ(pp'(A)B) = p'(A)φ(B)9 Ae% p'eAt(<€\ Be^(^oX (4.18)

φ(p(T)B)=Tφ(B), Te(pup2), pup2eΔt(n BeΛ(JToλ (4.19)

φ(I) = I. (4.20)

I.e. φ and its extensions entry by entry to the n x n-matrices over ^(Jf0) are positive for all n
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Note that, since a positive linear mapping is automatically self-adjoint, the
analogues of (4.18) and (4.19) hold with the order of the factors reversed. Since φ
is completely positive

φ(B*B)ϊ:φ(B)*φ(B), BeΛ(Jf0). (4.21)

To show that there are left inverses for p, we proceed as follows: pick a sequence
(€k of spacelike cones in W which tend spacelike to infinity in the sense that they
are eventually spacelike to any ΘeJf. Pick a unitary Uke(pk,ρ), where pkeAt(^k)9

then the map B\-^UkBU^ is a unital completely positive map from Λ(JfΌ) into
#(Jf 0 ) . N o w i f Te(pup2% pup2eAt(

(tf) then Ukp(T) = TUk9 furthermore, if AeM
theniϊ p'eAt(<£)

|| Ukpp'(A)BUi - p{Λ)UkBUt II - 0

as k -> oo. Indeed if Ae^i(Θ) then for k sufficiently large we have Ukpp'(A) = p'(A)Uk,
thus any limit point φ of the mappings B\-^UkBU^ in the pointwise weak operator
topology will be a completely positive linear map satisfying (4.18), (4.19) and (4.20).
Such limit points exist since the set of unital completely positive linear maps from
$(3Ίf0) to 0S(3fo) is compact in the pointwise weak operator topology.

What interests us is the behaviour of φ on the intertwiners between the powers
of p. We have

4.16 Lemma. Let φ bealeft inverse for peAffi). IfSG(ρr+ί,ρs+1), then φ(S)e(ρ\ρs)
and

φ(S*S) ^ ε(p,pr)φ(ε(p,p))S*Sφ(ε(p,p))ε(p,pr) (4.22)

and, in particular,

\\φ(S*S)\\* IISφ(ε(p,p))||2. (4.23)

Proof. lϊSe(pr+\ps+1) then, by (4.18)

φ(S)pr(A) = φ(Spr+1(Λ)) = φ(ps+1(A)S) = ps(A)φ(S)

so φ{S)s{p\ps). Since, by (4.10),

S*S = ε(p, pr+1)p(S*S)ε(pr+ \ p) = p(ε(p, p'))ε(p, p)p(S*S)ε(p, p)p(ε(p'9 p))

by (4.13). Taking B = ρ{S)ε(ρ, ρ)ρ(ε(ρr, p)) in (4.21) and using (4.19) we get (4.22) and
hence (4.23).

With this lemma, we can employ φ in a standard way to obtain a classification
of statistics.

4.17 Theorem. If peΔffi) is irreducible and φ is a left inverse for p then

φ(ε(p9p)) = λl, where λe{0, ±d~1:deN}. (4.24)

The Young tableaux associated with ε^ are all Young tableaux

a) whose columns have length ^d if λ = d~ι (para-Bose statistics of order d);
b) whose rows have length ^d if λ= —d~ι (para-Fermi statistics of order d);
c) without restriction, if λ = 0 (infinite statistics).

This is proved as [1; Theorem 5.5] with the minor modification that, when
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λ Φ 0, the faithfulness of φ on intertwiners between powers of p is deduced from
(4.23). For reducible p, we introduce the concept of a standard left inverse being a
left inverse such that φ(ε(p,ρ))2 is a multiple of the unit. The existence of such a
left inverse is proved as in [1; Proposition 6.3]. p is said to have infinite statistics
if there is a left inverse φ with φ(ε(p,p)) = 0, otherwise p has finite statistics.

The classification of statistics for reducible p with finite statistics is given in

4.18 Theorem. IfpeΔt(%>) has finite statistics and φ is a standard left inverse for p then

d(p)φ(ε(p,p)) = /c(p), (4.25)

where d(p) is an integer, the statistical dimension of p and κ(p)e(p9p) is of square
lp. Furthermore,

d(p)φ(κ(p)) = (b(p)-f(p))\ι9 (4.26)

where b(ρ) and f(p) are integers with b(p) + /(p) = d(p). The Young tableaux
associated with ε(

p

n) are all Young tableaux with at most b(p) rows of length > f(p)
and at mostf(ρ) columns of length > b(p). If p'eΔffi) also has finite statistics then
so does pp' and

κ{p)xκ(p') = κ{pp'\ (4.27)

d(pp') = d(p)d(pfy (4.28)

IfSe(p,p')then

SoK(p) = κ(p')oS. (4.29)

p has finite statistics if and only if it is a finite direct sum of irreducibles with finite
statistics.

A proof can be given along the lines of [1; Sect. 6] again using (4.23) to show
that a standard left inverse of a peΔffi) with finite statistics is faithful on
intertwiners between powers of p.

The following result is crucial for the existence of conjugates for peΔffi) with
finite statistics.

4.19 Theorem. For an element yeΔffi), the following are equivalent
a) d(y)=l,
b) there exists a y 1eΔt(

(£) with yy 1 =ι = y xy.

Proof If we can find y" 1 then d(y)d(y~1) = d(ι)= 1 so that d(y)= 1. Conversely,
suppose d(y) = 1 then, if φ is a left inverse for y, φ(ε(y, y) + /) = 0 according as y
satisfies Bose or Fermi statistics, respectively. Thus ε(y, y) = + / since φ is faithful
on intertwiners between powers of y. Given Ae%(Θ\ pick a unitary Ue(y1,y) where
yxeΔx\<βx) and (€1ci^fnΘ\ then

A = y1(A)=U*y(A)U.

Now, by (4.10), ε(γ9γ)γ(U)=U, i.e. U = +γ(U). But then A = y(U*)y(A)y(U) and
we define

y-ι{A):=φ{A\
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and see that for AeSΆ(Θ\

y-1(A)=U*AU.

If follows that γ~1(AB) = γ~1(A)γ~1(B)9 Λ,2*e9ϊ so that y " 1 is a representation
which is localized in (€. We want to show that y~1sΔt(

cβ)\ pick Ve(y,y') unitary
with say y'eΔt(<g0) then picking V1c<grn(ί(f

onΘr

9 we deduce that for AeSΆ(Θ\

y'-ί(A)=U*V*AVU=U*V*Uy-1(A)U*VU.

Now letting ^x tend spacelike to infinity and applying Lemma 4.2 we deduce that
there is a unitary We(γ ~x, y'~ι) and that W = U* V* U whenever Ue(γl9γ) is unitary
and yxeΔt{$γ\ ^ c f n ^ . Hence y-χsΔt{^). Now if AeSΆψ) and

yy-1(A)=Uy-1(A)U* =

Thus yy'1 = ι and consequently ^(y"1) = 1. Hence there is a yeΔffi) with y ~ 1y = i,
but then multiplying on the left by γ we get y = y completing the proof.

Our final goal is to show that if peΔffi) has finite statistics then it has a
conjugate within Δt^€\ We let Δf(^) denote the subsemigroup of Δt{<&) consisting
of elements with finite statistics. To express the notion of conjugate in as simple
a manner as possible we introduce a "Bosonized" symmetry for the strict monoidal
C*-category yfφ!) whose objects are Δf^€\ We set:

(4.30)

where

2δn(pup2):=(lPί x lP2) + (lpix κ(p2)) + (κ(Pl) x lP2)-(κ(Pl) xκ(p2)), (4.31)

and one checks easily that ε is a symmetry for ^"/(^), i.e. that (3.15) to (3.18)
hold.

We can now show

4.20 Theorem. (β~fi<€\ί) has conjugates, i.e. given peΔf(^), there is a pεΔf(%>) and
an Re(ι,ρp) such that

R*xlpolpxR=lp

R*xlβolβXR=lβ ™here K = t(P>P)oR'

The proof follows that of [9; Theorem 3.3]. In fact, all the computations
involved are just algebraic manipulations within the category 3~f{%>).

This completes our discussion of the intertwiner calculus for topological charges.
The main theorem of [2] could again be invoked to show that ^f{^) is isomorphic
to a category of the type U(G) for a compact group G unique up to isomor-
phism.

Note that if «Ί c # 2 the inclusion of (^"(«Ί), έ) in (f(V2)>έ)is a s t r i c t symmetric
monoidal *-functor and a relaxed unitary monoidal equivalence (cf. Theorem 4.11)
so that (cf. [2; Theorem 6.10]) G is independent of c€. However, just as in the case
of localizable charges, we shall construct G directly, together with the field algebras
associated with spacelike cones. This is the task for the next section.
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5. The Gauge Group and Normal Field Operators for Topological Charges

In this section we derive our main result on the existence of a compact group of
internal symmetries describing the whole superselection structure, including both
localizable and topological charges. Here too this group will act on field operators
which obey normal commutation relations at spacelike separations, and this
makes it unique. However the field operators can no longer be localized in
bounded spacetime regions if there are indeed topological charges in the theory
(cf. Theorem 3.6c); instead, like the representations p of Sect. 4, they will be
rather associated with spacelike cones. We shall therefore deal with von Neumann
algebras %(%>) of field operators associated with spacelike cones #.

In the case of localizable charges studied in Sect. 3, g(#) can be defined as the
von Neumann algebra generated by all g(0), Θe X*, Θ a <g. In this case it is easily
seen that its gauge invariant part is π(9ί(^))", the weak closure of π(9I(ίf)).

This motivates the following variant of Definition 3.1.

5.1 Definition. Let π 0 denote the vacuum representation of the net 91 of local
observables, acting on the Hilbert space J^o.

An extended29 field system with gauge symmetry {π, G, 5} consists of a
representation π of 91 on a Hilbert space Jf containing π0 as a subrepresentation
on Jf0 c Jf, a (strongly) compact group G ofunitaries on ^f leaving Jf0 pointwise
fixed, and an inclusion preserving map <$ -• %(%>) assigning to each spacelike cone a
von Neumann algebra acting on Jti? such that
α) the geG induce automorphisms ocg of g(#)) with π(9l(#))~ as fixed-point
subalgebras, *&€</;
β) for each30 Ήef, the union of g ( # 4- a) over all spacetime translates of <# is
irreducible;

γ) jf0 is cyclic for each g(^),^e/;
δ) the fields are local relative to the observables, i.e. g(#) and π(9l(0)) commute
elementwise whenever the spacelike cone %> and the double cone Θ are spacelike
separated.

Since the field systems studied in Sect. 3 can only describe localizable charges,
the definition of completeness given there was appropriate. Here, of course, we
need a different definition:

5.2 Definition. An extended field system with gauge symmetry {π, G, 5} is complete
if each equivalence class of irreducible representations of^i satisfying (1.2) and having
finite statistics is realized as a subrepresentation of π, i.e. π describes all charges,
both localized and topological.

The definition of normal extended field systems with gauge symmetry reads as
Definition 3.2 but for the obvious change that (3.2), (3.3) should now apply to

F'e%(q>2) whenever (€x,
c€1 are spacelike separated spacelike cones.

29 The field systems discussed in Sect. 3 might well have been termed local field systems to stress the
fact that the field operators, unlike those studied here, can be localized in bounded and even arbitrarily
small regions of spacetime.
30 For what follows one might equivalently assume this property for just one
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The definition of equivalent extended field systems with gauge symmetry reads
as Definition 3.4 but for the obvious modification of Eq. (3.6):

(5.1)

Our main results can now be stated and parallel Theorems 3.5, 3.6.

5.3 Theorem. Let 2ί be a net of local observables fulfilling property B' and suppose
that duality (4.1) holds in the faithful irreducible vacuum representation π 0 acting on
a separable31 Hilbert space Jf0. Then there exists a complete normal extended field
system with gauge symmetry and this system is unique up to equivalence.

Given an extended field system and a double cone D at spacelike infinity, we
will denote by g D the C*-algebra generated by all g(#), # e / with D(^) c D (cf.
Appendix). Thus β) of Definition 5.2 is equivalent to g£ = ffl(#?) for each D.

5.4 Theorem. Let {π, G, 5} be an extended field system with gauge symmetry; then,
if D is any double cone at spacelike infinity

a) π(<Ά)'n%D = C /;

b) an automorphism y of the C*-algebra g D is a gauge automorphism, i.e. γ = cngfor
some geG, if and only ifγ acts trivially on π(SΆ);
c) π(9I)' = G",

ξ

where the πξ are inequivalent irreducible representations of 21 fulfilling (1.2) with
parastatistics of finite order d(ξ).

If furthermore the sytem is normal, then the analogues of d), e) of Theorem 3.6
hold (with the obvious modification that twisted duality (Eq. (3.8), (3.9)) now refers
to each Wef rather than ΘeJf).

The present results are the analogues of those of Sect. 3 with the spacelike
cones ^ playing the role of double cones Θ as localization regions, and with
π(S&(^))" playing the role of the local algebras %(Θ). However, <€ is now infinitely
extended and, if we take the weak closure of π($l(^)), we can expect that the
C*-algebra generated by all the n(S&(%>))",<£e/, contains global quantities like a
total charge, since the t = 0 part of spacelike infinity can be covered by finitely
many double cones. This is the reason why 3 D appears in Theorem 5.4a), and we
will further comment on this point at the end of this section.

In order to prove Theorem 5.3, the essential step going beyond the discussion
of Sect. 3 is to establish the existence and uniqueness of a system {π, G,peΔf^Hp}
fulfilling properties similar to A)-H) of Sect. 3. Here we cannot apply [14;
Corollary 6.2] directly since the elements of Δf do not leave the C*-algebra 21
stable nor can 21 be extended in any useful way in order to achieve this property.

However we shall be able to apply those results if we first restrict our attention
to a given double cone D at spacelike infinity, so that each peAf(%>),D(%>)<^D,
defines an endomorphism of a fixed C*-algebra 2ίD.

3 1 Cf. the remark following Lemma 3.11
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Let /(D) denote the set of all spacelike cones <β such that D(%) c D9Δf(D) the
union of all Δf(<%),<$ef(D)9 and Ff(D) the full subcategory of Tf with objects
Δf(D). Denote by SHD the C*-algebra generated by all W(<g)",<gef(D).

We will first embed ^~f(D) in End9ID as a full strict symmetric monoidal
subcategory. This will allow us to apply [14; Corollary 6.2] to get a representation
πD of SΆD on a Hubert space J? => Jf0, a compact group G of unitaries on f̂, and
a homomorphism p - > # p of 4 7(D) into the semigroup of Hubert spaces with
support / in J^(Jf) fulfilling properties similar to A)-H) of Sect. 3.

Next we will consider the restriction π of πD to 51 and extend the map
p - > # p to all of Δf in a unique way by means of the unitary intertwiners in
<Tf:Hp = π(U)Hpι if Ue(puplPleΔf(D).

In this way we shall get a system {π,G,peΔ f-+Hp} fulfilling a slight variant
of properties A)-H) and making no reference to a choice of a double cone D at
spacelike infinity. Changing D in this construction would not change the system
to within equivalence.

From this point on, the argument will proceed exactly as in Sect. 3: we will
define g(#) as the von Neumann algebra generated by the Hp as p runs through

f

The embedding oi$~f(D) into End S&D is made possible by the following lemma
whose basic idea is close in spirit to the construction of [6; Lemma 4.1].

5.5 Lemma. Each ρeΔt(D) admits a unique extension to an endomorphism ρD of 2ίD

which is normal in restriction to each 9 ί (^)~^^/(D). This extension is compatible
with Eq. (4.5) in the following sense: if ρl9p2eΔt(D) and Te(pί9p2), then Te*HD and

(5.2)

Furthermore

(5.3)

Proof IϊpeΔt(<#\ D(%) c D then given <ίfx with D ^ J c D pick#2 with D(c€2) c D
and # 2 3 tfu*!. Let AeSΆ^^BeSΆ^) then Bp(Λ) = p(BΛ) = p(AB) = p{A)B so
p(A)eM(<$2y = SIC?2)~. Now pick a unitary Ke(p\ p), where p'eΔt(%3) and # 3 c «"2

then if AeSΆ{^2\ p(A) =VAV~X so p admits a normal extension to a mapping of
2Ϊ(#2)~ into 2I(#2)~ Thus p admits a unique extension to an endomorphism pD

of 9ID which is normal in restriction to each 21 (<#)~, D{^) czD. If p1 and p 2 are
objects of 3Γt(D) then we may suppose p , p l 9 p 2 e 4 f ( # ) , D(#) c Z) and if Te(ρί9p2)
then T69I(^7 = 9Ϊ(^)-. If we pick a unitary F6(p',p) with p ' e 4 ( * ) , * c « " we
have

Picking * x => ^ D ^ J c= D, we have for i4eSί(«Ί),

r p ? μ ) = r P l (Λ) = p 2 μ ) τ = pD

2{A)τ.

Since p? and pf are weakly continuous on each ϊ t ^ J " , we conclude that

ΐtPΪ). Now pick a unitary U^^pt) with A e4θ£), i = 1,2 and * c «"l9 then
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if A e M ^ ) we have

so

p°pξ(A) = Ux Ό2AU*2 l/f =

Thus PiP% = (P\P2)
D since each is an extension of ρxρ2 normal on each

We may sum up the last result as

5.6 Corollary. The maps p -> pD, Te(pί9 p2) -> TeϊΆD define a faithful strict monoidal
*-functor of βΓt(Ό) onto a full subcategory o/EndSI^.

Now ($~f(P\έ) is a strict symmetric monoidal C*-category with conjugates;
in virtue of Corollary 5.6 the proof of Lemma 3.7 applies here too to show

5.7 Lemma. The pair (Δf(D),έ) is a permutation symmetric specially directed
semigroup ofunital endomorphisms of *&D.

Since 2ID has trivial centre, Lemma 5.7 will allow us to use [14; Corollary 6.2].
This will be an intermediate step in establishing our key result, a variant of the
spatial version of the cross product [14; Corollary 6.2] which applies to Δf without
any reference to a choice of a particular double cone D.

If we want a completely general result we shall need to clarify one technical
point of little practical importance. Should there be an uncountable number of
sectors, the representation π of the observable algebra in our field system will fail
to be in the class (5), i.e. to satisfy (1.2) simply because the Hubert spaces 2tf and
tf0 fail to have the same dimension. We therefore introduce the class (S) of arbitrary
direct sums of representations from (S). If πe(S) we may still define πp for any
object p of ^t and π(T) for any arrow T of 9~t in the obvious manner: pick
isometries V^iπ^π) with π£e(S) and £ VtVf = lπ and set

i

(5.5)

(5.6)

These definitions are independent of the choice of the V{ so that the results in
Sect. 4 pertaining to (S) hold trivially for (S) and this result will be used freely in
the proof of Proposition 5.9 below. The following result, a simple consequence of
Lemma 5.5, will also be used at several points in that proof.

5.8 Lemma. Let πe(S), then π admits a unique extension to a representation πD of
9ίD which is normal in restriction to each ^ ( ( ^ " j D ^ c z D . // T is an arrow of
2Γt{D\ then

πD(T) = π{T). (5.7)

// p is an object of &~t(D) then

(πpf = τ<P°eP. (5.8)

Proof, π is a direct sum of objects of Ft(D) so by Lemma 5.5 π obviously admits
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a unique extension to a representation πD of $lD which is normal in restriction to
each 9l(«T, D^aD and πD(T) = π(T) for each arrow T of Ft(D). To prove
the last part of the lemma, we pick isometries V^ip^n) with p^A^D) and
YιViVf = lπ. But by Lemma 4.5 we have V^pip.πp). However we also have

VMp?,πD) and V^iPiPfΛπpf) and Vie{pfpD,πDopJ>). Since (piPf = p^pD by
Lemma 5.5, we conclude that (πp)D = πD°pD as required.

5.9 Proposition. There is a Hubert space 34? containing Jf0 as a subspace, a
representation π o/9l on Jf in the class (S% a (strongly) compact group G ofunitaries
on J^ and a map peΔf-+Hp ofΔf into the semigroup of Hubert spaces with support
I in J*(Jf), which is multiplicative on each Δs^€\ such that
A) 3fo = {Φεjr:gΦ = Φ,geG};
B) π 0 is the restriction of π to Jf0;
C) π(<H)c=G';
D) ^(HJ^gH^-1 =Hp;geG,peΔf;
E) ψπ(A) = πp(A)ψ,ψeHp, Ae%peΔf;
F) θ(Hp9Hp,) = π(έ(p9p')l p,p'eΔf(n # e / ;
G) (up,up,) = π({p,p')\ p,ρ'eΔf;
H) the family up9ρeΔf, separates the points of G.

The system {π, G,peΔf -» Hp} fulfilling A)-H) is unique up to unitary equivalence.
Namely, if {π1,GlipeΔf-^Hp} is another system acting on a Hilbert space J^l9

there is a unitary W from 2tf to f̂x leaving 3tif0 pointwίse fixed such that

= π1(A)W, Ae% (5.9)

(5.10)

p \ peΔf. (5.11)

Proof. By Lemma 5.7 and [14; Corollary 6.2] there is a system

{τι»9G9peΔf(D)^Hp} (5.12)

acting on a Hilbert space Jf 3 j f 0 and fulfilling the obvious variant of A)-H) of
Sect. 3 for p,p'eΔf(D). By [14; Proposition 6.3]

l (5.13)

where π% is the defining representation of 2ίD on Jίf0 and ξt-^pξ is a section of the
unitary equivalence classes of all irreducible elements in Δf(D). If we let π be the
restriction of πD to 91 then by (5.8),

(5.14)

and π belongs to the class (5). Hence π(T) is defined by (4.5) and (5.6) for any
arrow T of &~f and (5.7) holds. If psΔf and Ue(pl9ρ) is unitary with p^Δ^D),
we set

Hp:=π(U)HPi (5.15)

and check that this definition is independent of the choice of U. In fact, if Ό'e(p'up)
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is unitary with p\eΔf(D% then by (5.7) and Lemma 4.4

πD(U*o Uf) = π(U*o V) = π(U)*π(U').

But by G) for the system (5.12), πD(U*oU')Hpi=HPί so π(Uf)Hpfι = π(U)Hpl as
required. Conditions A) and C) are obviously fulfilled. B) follows since if

= πD

0{A) = πo(A).

If T is any arrow in &~f then

π(T)eG' (5.16)

by (4.7). D) then holds for each ρeΔf as it already holds for ρeΔf(D). By E) for
the system (5.12) and (5.3) we conclude that

Hence, by Lemma 4.6 and (5.15), E) holds. Since π and %pypeΔf are in the class
(5), (4.7) shows that E) extends to give for each arrow T of &f

p peΔf. (5.17)

We turn now to the proof of F). Given pyρ'sΔf(<£) pick unitary intertwiners
Ue(pί,ρ) and JJ'e(ρ'ι,p') with pup\eΔf(D). Now bearing (5.15) in mind, the
analogue of (3.15) for the permutation symmetry θ defined by (3.26) yields

θ(Hp9 H p , ) π ( U ) π P l ( U ' ) = π ( U f ) π p ι p ί

after using (5.17). On the other hand, έ being a permutation symmetry, we have
using Lemma 4.4,

π(ε(p,p'))π(U x U') = π(U' x U)π{ε{pup\

Furthermore, the remark following Theorem 4.10 shows that

π(U x Uf) = π(U)πp(U') (5.18)

so that F) now follows from the same property for the system (5.12) using (5.7).
(5.15), (5.17) and (5.18) also show that ρ\-+Hp is multiplicative on each Δf{<$). To
prove G), we first note that by (5.15) and (5.16),

(up,upι)π(

On the other hand, by Lemma 4.4,

Thus G) follows from the same property for the system (5.12) using (5.7) and (5.4).
H) is trivially true so the proof of existence is completed.

To prove uniqueness it will suffice to show that any system arises in the way
just described. Given any such system since π is in the class (5) we can extend it
to the representation πD of 2ID using Lemma 5.8 and can restrict the map pι-+Hp

to Δf(D) to obtain a system (5.12) which trivially satisfies A), C) and D). π% is the
restriction of πD to f̂0 since both are extensions of π 0 normal on each 2Ϊ(^)~,

D. Since πp is in the class (5) for peΔf{D\ E) is a consequence of (5.8) and
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the extension process of Lemma 5.8. F) is a consequence of (5.7) and G) follows
from (5.7) and (5.4). H) follows from G) for the original system since for each
peΔf there is a unitary Ue(pl9ρ) with pγeΔf(D). By the uniqueness statement in
[14; Corollary 6.2] we can conclude that if {π l5 Gί9ρeΔf\-+Hl} is another system
as described in the present proposition and acting on a Hubert space Jf^ z> ̂ f0,
there is a unitary W from Jf to 3tfx leaving 3tf0 pointwise fixed such that (5.9)
and (5.10) hold and

WHp = H\W, peΔf(D). (5.19)

By (4.7), we automatically have Wπ(T) = n^T)W for an arrow Tof Ff so that by
G) using a unitary intertwiner we may pass from (5.19) to (5.11) completing the
proof.

Having established Proposition 5.9, the proof of the existence of a complete,
normal extended field system with gauge symmetry proceeds as in Sect. 3 and we
will not bother to repeat those arguments which apply without major changes.

To prove the existence claim of Theorem 5.3, we now define

W) = {Hp9H*;peAf(V)}". (5.20)

For each double cone D at spacelike infinity, the C*-algebra generated by
πD(9ID) and by {Hp;ρeΔf(D)} is irreducible by [14; Proposition 6.4]. Since every
unitary l/e3l(«T, with D(^)czZ), provides a Hubert space C π(l/) in the family
{Hp;peΔf(D)}9 *mV))~ <= SW and

The arguments given in Sect. 3 now apply to show that {π, G, g} is a complete
extended field system with gauge symmetry. To prove that it is also normal, along
the lines followed there, it suffices to show that, if p,p'eΔf are irreducible and
localized in <^1 and # 2 respectively, where <^ι <=#'2, then

ΨΨ'=±Ψ'Ψ, φeHp, ψ'eHp, (5.21)

where the minus sign applies only if both p and p' are para-Fermi.
If there is a common spacelike cone # containing (€^<€2, th e n (521) follows,

as in Sect. 3, from F) in Proposition 5.9. In the general case, we can choose spacelike
cones ^Oi c c€i and <β with <gOi c <€9 ί = 1,2 (cf. Appendix h)). By choosing unitary
intertwiners Ueip^p^, Ό'e(p\p2\ PieΔf(^Oi), we have by relation (5.15) and by
F) that

' = π(U')ψ2,ψ2eHP2, (5.22)

By our choice of U and U\ we have C/e3ϊ(«Ί)", l / ' e ί l C ^ Γ a n d Pi(u') = U'9
p2(U) = U. Thus (5.21) now follows from (5.22) and from E), and the proof of
existence is complete.

One has to go about proving uniqueness in the same way as in Sect. 3, first
proving Theorem 5.4 and then using it to show that any complete, normal extended
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field system with gauge symmetry is determined as above by the data described
in Proposition 5.9. The uniqueness assertion of Proposition 5.9 implies that there
is, up to equivalence, a unique complete normal extended field system with gauge
symmetry.

Now the relevant arguments of Sect. 3 are essentially algebraic in nature and
hence easily adapted to the different geometrical context of this section. We will
therefore refrain from repeating them and content ourselves with a brief sketch.

Let {π, G, g} be an extended field system with gauge symmetry. Then, by γ)
and δ), π|2l(#) is quasiequivalent to πo |2l(#) (cf. Lemma 3.11). Hence (cf. Lemma
3.8) f̂0 separates g D and consists precisely of all G-invariant vectors; also

π(2I)' = G", (5.23)

$(#)' n G = πW)Γ, «e/. (5.24)

The arguments of Sect. 3 go through unchanged since g D is generated by a net
and is irreducible by β) of Definition 5.1. As already indicated, Jf0 cannot be
expected to be separating for the C*-algebra generated by all g (#).

By (5.23) the classes ξ of irreducible representations appearing in the decomposi-
tion of the defining representation of G label the classes of irreducible subrepresenta-
tions of π. If πξ is such a subrepresentation, we can prove as in Sect. 3 (Lemma
3.11) that

(5.25)

Here too this is the only place where the separability of Jf0 enters.
Of course the reason why the arguments of Sect. 3 do not give more in the

present case, that is why (3.33) itself might fail, is that we do not now have local
algebras of field operators cyclic on Jf0 (cf. the comments below).

If peΔt(D) we now use gz> to locate the Hubert space inducing p by setting

Hp = {ψe$D:ψπ(A) = πp(A)ψ, AeSΆ). (5.26)

Since π(9ϊ)' = G" and jf0 separates gD, we have π(?ϊ) 'ng D = CΊ and Hp is indeed
a G-stable Hubert space. We can prove as in Sect. 3 that, if p eΔt(D) is an irreducible
subrepresentation of π, Hp has support /. Next we show that Hp is independent
of D, i.e., denoting it temporarily by HD

p,H
D

p' = HD

p

2 if peΔt(Dι)nΔt(D2). This is
clear if Dx a D2 since H^ a Hp

2 and a Hubert space of support / is maximal. In
general there are, by g) of the Appendix, double cones at spacelike infinity D and
DOi c= D t n D , i = 1,2. Choosing unitary intertwiners

υ\£{p\pOι\ p'eΔt{D), i = 1,2,

we have by the last remark that HD

p°>•= H*[ = Hfo = Hpo a n d also that ,
using (5.26)

Then, by Lemma 4.4,
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and

with

V=U2oU'2o{U1oU'1)*e{p,p).

Since V is unitary we get π(V)H»ι = H*1 and H^ = HD

p\
Lemma 3.13 is valid here too if we read %>ef for ΘeJf. Similarly, Theorem 3.14

holds with just the same change if we again define

Δd= {peΔt:Hp is a finite dimensional Hubert space with support /},

where Hp is now defined by (5.26) for each peΔt, and Δf plays the role of Δ in
the statement of Theorem 3.14. In contrast to the footnote appended there, 3~% is
not itself a monoidal category, but only ^n&Ί,, for each double cone D at
spacelike infinity.

At this point we can proceed as in Sect. 3 to show that if {π, G, g} is a normal
extended field system with gauge symmetry, then

p9p'eΔfnΔ(V), «e/; (5.27)

(5.28)

where the twisting is defined as in Eq. (3.8) but for spacelike cones.
The uniqueness statement in Proposition 5.9 can now be applied to give

uniqueness in Theorem 5.3.
We could here too discuss abnormal commutation relations and subsystems,

as well as the additivity property for spacelike cones, along the lines which led to
Theorem 3.15, Propositions 3.16-18.

We limit ourselves to a comment on a subsystem of special relevance. Given
the complete normal extended field system with gauge symmetry {π, G, g}, we can
define the subspace Jft of J f reached by localized fields acting on the vacuum by

p p (5.29)

and we can define a field system on Jft by

MO) = {HP,H*;peΔ(O)}"\J,r (5.30)

Then Jfz is obviously stable under G and π(2ί) and we can set

π ^ π l ^ ; GX = G\#X. (5.31)

The system {πh Gh Θ -> S/($)} is just the complete normal (local) field system with
gauge symmetry given by Theorem 3.5. Defining

we would get the subsystem defined, as in Proposition 3.16, by the closed normal
subgroup HaG, which is the kernel of the restriction map geG^>g\Jfι and
Gι = G/H.
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Therefore a superselection sector ξ carries a topological charge if and only if
the irreducible representation of G it corresponds to is non-trivial on H.

The homomorphism geG^>g\JfιsGι can also be viewed as corresponding to
the embedding of 3Γ into ff(D) by Theorem 6.10 of [2].

Starting from a local field system we can always define an extended field system
by setting g(^) = {g(0):0eJf, 0 a <£}" (it will, in general, not be complete even if
the original local system were complete). We might ask whether we can go the
other way around and define a local system from an extended system by first setting

Π (5.32)

The trouble is that, at the present level of generality, it is not guaranteed

that g(0)Jfo = U 5 ( ^ ) ^ o which would be a familiar consequence of the Reeh-
Θ

Schlieder theorem if the net (5.32) satisfied additivity.
However by using further standard assumptions of Quantum Field Theory

we can conclude that

(5-33)

(5.34)

β (5.35)

Namely we assume now that the net 91(0) fulfills the additivity property
in V/ n

91(0) c \ (J 9l(0{) \ if 0 cz (J 0., 0, 0 l 5 . . . , 0 Π Ejf, and that the representation π
U=i J i=i

is translation covariant and fulfills the spectrum condition (cf. Sect. 6). Moreover,
this is the unique point of our discussion where the restrictive nature of condition
(1.1) reveals itself. We required (1.1) to hold for all double cones, but this might
well be a consequence of its validity for all the translates of a given double cone.
We will assume now that this is the case, just to avoid reformulating all our results,
since the physical relevance of such a generalization would be doubtful.

Under the stated assumptions, to conclude that a sector πξ appearing in the
representation π is associated with a localizable charge, it suffices, by the arguments
in [1; Appendix], that, for some 0 e JΓ, the representations πξ9 π 0 restricted to 91(0')
are not disjoint: ,

π o |9I(0 ')6π ξ |9I(0 ') . (5.36)

With this information the statements (5.33), (5.34), (5.35) are easily proved.
Indeed we need only show that

g(0)^{Hp,/f*,PGZi(0)}", 06JΓ, (5.35')

since the opposite inclusion is trivial by (5.32), and the other relations follow easily.
If Xί9...9Xne'&(Θ) is an irreducible tensor under G, we have to show that the
corresponding sector carries a localizable charge ξ. There would then be a peΔ(Θ)
such that an orthonormal basis φx,...,φn in Hp transforms like Xl9...,Xn under
G. Hence we would have Xt = π(B)φh where π(B) = ZtX^f is in π(9I(0)) by duality
in the vacuum sector. Then X1^..,Xne{Hp,H*\ peΔ(Θ)}" as required.
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Let £ 0 , Eξ be the orthogonal projections of J f onto f̂0 and J^ξ respectively,
where Jfξ is an irreducible subspace for π carrying a subrepresentation of the class
ξ. Then for some i EξXfE0 is nonzero and, by locality of fields relative to the
observables, it intertwines the restrictions to 21(0') of the subrepresentations of π
on f̂0 and Jdfξ. Hence (5.36) holds and the inclusion (5.35') is verified.

Note that the above conclusion allows us to define H more directly: it is the
kernel of

where <€^c€1 are fixed spacelike cones with nonempty intersection such that
=> ®' for some double cone Θ. For the additivity property of 91 then implies

and if β^eJf, ^ c ^ n ^ , we have

where the first inclusion is obvious and the second one follows from the above
argument. Since H is the kernel of geG-+ocg\mc)) for any Θ, the assertion follows.

The reader will have noticed that one of the added difficulties when dealing
with charges localized in spacelike cones was that our category Ff was not
embedded as a full subcategory of End Φ for some C*-algebra Φ. We end this
section with some comments on why there is no natural choice of SΪ.

One might be tempted to use the C*-algebras 91 and % generated by all π(9l(#))~
and g(#) respectively, as # varies over the spacelike cones. However this
C*-algebras may now contain global charge operators. Actually it may be expected
that, in contrast to the simplicity of 91 [18] and to Theorem 5.4 a), in typical cases
we have

9t n 9Γ = π(3l)" n π(3l)' = G'n G", (5.37)

π(9iy = G" c g. (5.38)

These conclusions are suggested if we assume the split property for the net g,
i.e. the inclusion gC^) c 5(^ 2 ) is split whenever f x c # 2 and D ( ¥ J cz D(^2). We
would then have local implementations of the gauge group on cones [26] and
additivity properties may be expected for the corresponding local generators and
local charge operators, so that the global ones would be a. finite sum of the local
ones. This motivates the conjecture expressed by (5.37), (5.38).

These equations would show in particular that Φί is not faithfully represented
in the different sectors, a fact that could be expected on intuitive grounds. For the
algebraic equivalence of different sectors relies on the possibility of compensating
any charge distribution with corresponding conjugate charges localized far away
[4]. If, however, by taking all weak limit points of observables within each spacelike
cone, we allow global observables which measure the distribution of charges on
double cones at spacelike infinity, this compensation is no longer possible (cf.
Appendix, c)). Indeed, the intersection of spacelike infinity with any spacelike
hyperplane is a compact manifold and there is no room to localize charges "far
away."
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6. Covariance and Spectrum Condition

We derived our main result, Theorem 5.3, assuming only a few general properties,
of an algebraic nature, about the vacuum sector, which in fact do not suffice to
characterize π 0 as a vacuum representation. Indeed, for each peΔf with d(p) = 1,
πop would enjoy the same properties.

In physical terms, a vacuum state can be singled out as being a ground state in
its own representation. As is well known, this means, more precisely, that we have
a strongly continuous unitary representation °UQ of the spacetime translation group
acting on J^o such that

a\ αeR 4, 0eJf, (6.1)

Spectrum ^ 0 c= V +, (6.2)

and a unit vector ΩeJίf0 (the vacuum state vector) invariant under <^0,

<V0(a)Ω = ί2, αeR 4. (6.3)

The translation covariance of the theory is expressed by the action α of R 4 by
automorphisms of 31 induced by <%0,

0La(A) = Wo(a)A<%o(aΓ\ aeR\ AeK (6.4)

and ( π o , ^ o ) can be thought of as a covariant representation of {31, α}.
Superselection sectors are also expected to have the property that the

energy can be defined and is bounded below; more precisely they should corres-
pond to covariant representations (πξ9<%ξ) of {3ί,α} fulfilling the spectrum
condition

ξ ξ ξ ξ (6.5)

Spectrum ύUξ a Vτ. (6.6)

These conditions, strengthened to require πξ to be a massive particle represent-
ation, have been taken as the starting point for the analysis of superselection
structure by Buchholz and Fredenhagen, who then derived property (1.2) for πξ

relative to some vacuum representation [6].
In our approach, localization properties relative to a given vacuum are

emphasized and it would be desirable to deduce the spectrum condition (6.5), (6.6)
for our sectors from localization properties (1.2), finite statistics, and from
fundamental properties of the theory such as the spectrum condition in the vacuum
sector (6. l)-(6.3).

This problem however falls outside the scope of this paper and we will rather
restrict attention to the covariant elements in Λf leaving open the possibility that
in sensible theories each element of Δf might be automatically covariant.

First we discuss the simple case where full Poincare covariance is assumed in
the vacuum sector and we focus attention on Poincare covariant localized
morphisms.

More precisely, let °U0 denote the strongly continuous unitary representation
of the covering group # of the Poincarέ group 0> which describes the covariance
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of the vacuum sector, so that the analogues of Eqs. (6.1)—(6.3) hold3 2. Let α
denote the action of ^ on 31 induced by <^0. We consider those peΔ for which
there is a covariant representation (p,^ p ) of {31, α}.

As was discussed in [9; Sects. 2,5], the covariant elements in A form a subset
which is stable under products, subrepresentations, direct sums and conjugates.
By Theorem 3.15 there is then a unique corresponding normal field system with
gauge symmetry.

The results in [9, Sects. 2,5] also show that %p is unique, it fulfills the spectrum
condition and the (p, ̂ lp) form a coherently covariant family of representations in
the sense of [14; Theorem 8.4] (cf. Eqs. (2.3), (2.5), (2.6), (2.8), (2.9) and Lemma 2.2
of [9]).

From these facts it is easy to adapt Theorem 8.4 of [14] to the construction
of Sect. 3 above, to obtain

6.1 Theorem. Let {π, G, 3} denote the unique normal field system with gauge
symmetry such that an irreducible representation of 31 fulfilling (1.2) with finite
statistics is contained in π if and only if it is covariant for the action α of the covering
group 0> of the Poincare group on 31.

There is then a unique strongly continuous unitary representation tflof&on J f π

such that (π, <%) is a covariant representation of {31, α} and this °U satisfies:
(i) W(L)Ω=Ω9 L e # ;

(ii) Spectrum %|R4 cz ~V+\
(iii) « ( £ ) c π(3l)";
(iv) ^

We will refrain from giving a proof of this theorem here since the quoted
references and Theorem 6.3 discussed in detail below should provide a sufficient
guide.

We now turn to the analysis of sectors which are only translation covariant
and describe both localized and topological charges. The vacuum representation
is assumed to be translation covariant and to fulfill the spectrum condition (6.1),
(6.2), (6.3), and α will denote the action of translations on 31 given by (6.4).

We will consider the subset Δc consisting of all peΔf for which there is a
covariant representation (ρ,°Up) of {3ί,α}. Since p(3t)' is finite dimensional by
Theorem 4.13, the action induced by °iίp on p(3l)' is uniformly continuous. Hence
by [27, Theorem 8.5.2] this action is inner and there is a covariant representation
(p,Φp) such that <%p{a)ep{S&)\ aeR 4 .

Therefore each subrepresentation of p is also covariant and Δc is closed under
subobjects and direct sums.

Moreover Δc is a subsemigroup of Δf: if (p,°ttp) and (p\^ίp>) are covariant
representations of {31, α}, where p,p'eΔci define

Wp(a) = <%0(a)Wp(aΓ\ αeR4, (6.7)
then

WAa)e{p^aPOL^) (6.8)

of course factors through 0> but ^ p , in general, does not
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is a strongly continuous 1-cocycle for {21, α}. It is easy to check that (pp\^pp) is
a covariant representation of {91, α}, where

®PAa) = ρ(Wp,(a)y1Wp(al αeR 4 (6.9)

We next note that Δc is stable under conjugates and that, if ρeΔc, %p can also be
chosen to fulfill the spectrum condition. Obviously it suffices to verify these
assertions for the irreducible elements.

If (p,^ p ) is a covariant representation of {21, α} with p an irreducible element
of Δc and p is a conjugate for p, the arguments leading to Theorem 7.1 of [6] and
Theorem 5.2 of [9] show that there also exists a strongly continuous unitary
representation °U-p of the translation group such that (p, <%β) is covariant and that

Spectrum °lip + Spectrum °lί-p c Spectrum ^ 0 .

Therefore, since Spectrum °lί0 c V+, multiplying < p̂ by a character if necessary,
we conclude that we can choose °UP such that

S p e c t r u m ^ aV+. (6.10)

In the case of a Poincare covariant theory, the uniqueness of the representation
% of & making (π, ^ ) covariant, where π(2l)' is a direct sum of finite dimensional
full matrix algebras, was a simple consequence of the fact that & does not have
non-trivial finite dimensional unitary representations. In the case of translation
covariance alone, we have to use both the spectrum condition and the local structure
of 21 to get a unique choice of %. A covariant representation (π, ̂ ) of {21, α} is
said to be minimal if

(i) Spectrum % a V+;
(ii) ^(α)eπ(2l)", αeR 4 ;

(iii) for each projection £eπ(2I)' and peK+, Spectrum <^|£jf <= p + V+ =>p = 0.
This notion has been introduced in [28] (cf. also [6]) where it is proved that, if
(π, %) is a covariant representation fulfilling (i), there is a unique choice of % such
that (π, tfί) is minimal covariant. The key point is that the spectrum of this ^lί has
Lorentz invariant lower boundary; more precisely it must contain the full orbit of
mass m, {p:p2 = m2,p0 >0}, where m is the minimum of the spectrum of the
associated mass operator in the orthogonal complement of the ^-invariant vectors.

For each peΔc, let <%p denote the unique representation such that {p,°Up) is
minimal covariant, and let Wp be the associated cocycle defined by (6.7). The main
properties of the representations (p,°llp\ peΔci are summarized in the following

6.2 Proposition. The set Δc is a subsemigroup of Δf closed under direct sums,
subobjects and conjugates. The family (p,°Up\ peΔc forms a coherently covariant
family of representations (cf. [14\ Sect. 8]) in the sense that, for each p,ρ'eΔc,

P P P M (6.12)

Proof First we note that (6.11) follows from the uniqueness of ^ίp for a minimal
covariant representation. It suffices to consider intertwiners Te(p,p') which are
partial isometries with initial and range projections which are minimal in p(2ί)'
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and in p'(2I)' respectively, since (p,pf) is the linear span of such elements. Such a
T expresses the unitary equivalence of irreducible components of p and p' and
°llp, °llp. reduce to the associated minimal representations; hence by uniqueness they
are intertwined by T.

If pl9p2eΔc and we define a representation % by

qi{a) = pι{Wpi{a))-ι%pγ{a\ aeR\

we have seen that (pip2,
(%) is covariant. Moreover it has been shown in [6], in

the course of proving Lemma 7.5, that % — ̂ pιP2 and hence (6.12) holds whenever
pup2 are irreducible. From this we shall now deduce that <% = (%P1P2 in general,
hence (6.12) will be valid and this will conclude the proof.

Let TiGip'iipi) with ρ\ irreducible, i = 1,2. Then

7\ x T2e(p\p'2,plP2)^Wp ιP29<1ΐpxβ2). (6.13)

To show ^ = ̂ PίP2 it would suffice to show that

7\ x T2e(VpW2,n (6.14)

since from (6.13), (6.14) we would get

*p 1p 2(fl)Γ 1xT 2 = * ( f l ) Γ 1 x Γ 2 . (6.15)

We could vary 7\, T2 so that the range projections span the identity and WPiP2 = °U
would follow from (6.15).

To check (6.14) note that (6.12) holds for p'l9p'2 so that, by the covariance of

using (6.4) and (6.7) we also have

α«~ \T2 Wp 2(a)-x) = « 0 (f l )- ' T2WP2(a) = %M~XύU

where we used (6.11) for T2. Substituting into the original expression and using
(6.11) for 7\ we get

x T2 = W{a)Tx x T2,

where the co variance of (p 1 ? %pι) and the cocycle identities for WP2 have been used.
We can now state the desired result.

6.3 Theorem. Let {π, G, 5} denote the unique normal extended field system with
gauge symmetry such that an irreducible representation of 21 fulfilling (1.2) with finite
statistics is contained in π if and only if it is covariant.

There is a strongly continuous unitary representation ^U of the translation group
on J^π such that (π, ̂ ί) is a minimal covariant representation of {21, α} and this °U
satisfies

(i) %(a)Ω=Ω9 aeR4;
(ii) Spectrum^ aV+;

(iii) «(α)eπ(«Γ, aeR4;
(iv) *(α)af(ςf)*(έi)" * = 8r(<f + a\ aeR\
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Proof. Obviously, (i), (ii) are just part of the definition of minimal covariant and
are just repeated here to stress the symmetry with the statement of Theorem 6.1.
The existence of °U follows from the fact that π is a direct sum of irreducible
components, each covariant and fulfilling the spectrum condition by the remarks
above, and from the quoted theorem of [28]. Thus % is unique.

We need only prove (iv). Actually we will prove directly the existence of % with
properties (i)—(iv) and it will follow that the <% we construct is minimal.

Let D be an arbitrarily chosen double cone at spacelike infinity. Then if peΔc(D)
and °lίp is chosen as above, (pD, tfίp) is also (minimal) covariant, and by Proposition
6.2 we get a coherently covariant family of representations. We can then apply
Theorem 8.4 of [14] to π%9$XD and to that family of representations.

We obtain in this way a map which assigns to each peΔc(D) a Hubert space
Hp which, extended to all peΔc as in Eq. (5.15), allows us to define the required
field net by

»(<*) = {Hp,H*;peΔe(<g)Y. (6.16)

Let fy be the representation of the translation group provided by Theorem 5.4 loc.
cit., then %(a)^G = π(2I)", αeR 4, so that (iii) follows and by Eqs. (8.15), (8.19) of
[14] and (5.15) above we have

na)Hpna)~1 = π(Wp(a))Hp = H^-i. (6.17)

By Eqs. (6.16), (6.17), (iv) follows immediately.
If peΔc is irreducible, we choose φeHp with φ*φ = d(p)Ί9 so that

V=φ* Jfo

is an isometric intertwiner in (πop,π) (cf. the proof of Proposition 6.3 of [12]). By
(6.17), (6.7), using E) in Proposition 5.9, we have

In other words V not only intertwines π o p and π but also °UP and °U. This proves
that, if we identify π with the direct sum @d(ξ)πopξ, then °U is identified with
Q Therefore ξ

and °lί fulfills the spectrum condition. Properties (i)—(iv) are proved and (π, °H) is
indeed minimal.

We conclude with a remark on Poincare covariant theories with topological
charges. Restricting attention to all peΔf which are covariant for the action α of
9 we get a unique corresponding normal extended field system with gauge
symmetry. The discussion of this section applies and yields a representation °U of
& fulfilling, as in Theorem 6.1,

(i) #

(ii) Spectrum
(iii) Wψ) a π(9I)";
(iv)
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By this result the analysis of [29] can be applied, extending to topological charges
the theorem of the connection between spin and Bose or Fermi type of the
parastatistics obtained in [9; Theorem 6.4].

It should, however, be possible, if more involved, to derive this result directly
without using the existence of a field system. The analogous argument for
localizable charges was given in [9].

7. Concluding Remarks

In this section we will comment on the situation where the duality assumption
is weakened to essential duality. This situation is typical of theories with
spontaneously broken gauge symmetries. We will construct both the full gauge
group, which might not be compact, in general, and the compact subgroup of
unbroken gauge symmetries. We shall limit our discussion to the case of localizable
charges.

We will also comment briefly on theories in a spacetime of lower dimensions.
In a theory with spontaneously broken gauge symmetries, the net of local

observables no longer fulfills duality [30]. It is, however expected on general
grounds [16] to fulfill essential duality. This means that the dual net 9ld defined by

(7.1)

is a local net: hence

and S&d fulfills duality; moreover

S&\Θ'y =<&{&)-. (7.2)

Thus 51 = W expresses duality whilst 9Id = 9Id</ expresses essential duality [31].
A representation π of 91 fulfilling (1.1) can be canonically extended to a

representation πd of 9Γ* acting on the same Hubert space and fulfilling (1.1) and this
extension preserves irreducibility and unitary equivalence. Therefore the super-
selection structure can be analyzed using the net 2ϊd [31] and the discussion of
Sect. 3 applies.

We obtain in this way a complete field system {π, G, g} with gauge symmetry
and of course (cf. Sect. 3)

δ n G ' = π(«d). (7.3)

By construction, G is a compact group of unitaries leaving the vectors in the
vacuum sector elementwise invariant and describing the superselection structure
of the theory. It is therefore the unbroken part of the gauge group.

We can now define the full gauge group of the theory to be the group ^ of all
automorphisms of the C*-algebra $ leaving π(9ϊ) pointwise fixed. This terminology
is justified since, as will be shown elsewhere, the elements of ^ act locally on $,
i.e. they leave each local field algebra g(0) globally stable; the subgroup G of ^ is
the stabilizer in ^ of the vacuum state [32].

We can associate another compact group Go to 21 in an intrinsic way. To this
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end, note that representations of 21 satisfying (1.1) with finite statistics are described
by localized morphisms p of 2ld, peΔ. Such a peΔ will not, in general, leave 21
stable nor will the space of intertwiners (p, σ), p, σeΔ be contained in 21. Nevertheless
we can consider the transportable localized morphisms of 21 with finite statistics.
They correspond to those peΔ which leave 2ί globally stable and can be localized
in any double cone Θ by left multiplication with an automorphism induced by a
unitary in 21. Let ^~0 denote the corresponding full subcategory of End 2ί. It is
easily checked that the permutation symmetry έ of Δ when evaluated on objects
of ^~0 gives arrows in End 21 and that (^~0,έ) is a strict symmetric monoidal
C*-category with conjugates, subobjects and direct sums. Since we obviously have
(/,/) = C 7, (̂ ~o>£) is an abstract dual of a compact group Go [2; Theorem 6.1].

We shall not attempt to discuss the relation of ^ to Go in detail. Instead we
limit ourselves to pointing out a natural homomorphism of ^ into Go.

&~0 is a subcategory of 2Γ which is embedded in the category ^f(g) of Hubert
spaces in g. Let the embedding functor of $~0 in 3tf (g) be denoted by H, then Go

is realized as the group of monoidal natural unitary transformations from H to
H (cf. [2; Sect. 6]). Since π is normal on 2Id(0'), #eJf , we have by (7.2)
π(Md(&')y = π(2I(0')Γ and hence π(2ί)" =π(2I d )" . Therefore

so that 3 3 γ(H(p)) = H(ρ) for each object p of ^" 0 and each yeΦ. Thus y defines a
unitary operator up on H(p). The map p -> MP is easily checked to be a monoidal
natural unitary transformation from H to H and is the image of y under a natural
homomorphism of ^ into Go. This homomorphism will be analyzed more closely
elsewhere.

The reader has been warned on various occasions that the analysis presented
in this paper applies to local quantum theory without massless particles on the
physical Minkowski space. We close this section with brief comments on the cases
where our analysis of statistics does not apply.

In the case of topological charges on a spacetime of dimension 3 or lower one
meets, as already mentioned, obstacles even in defining the monoidal structure on
our categories, which we have not attempted to overcome.

In the case of localizable charges in a 2-dimensional spacetime there is no
problem in establishing the monoidal structure on our categories but the very first
steps in the analysis of statistics do not, in general, lead to a permutation symmetry
making ZΓ into a strict symmetric monoidal C*-category. Instead we get a strict
braided monoidal C*-category where coherence associates to each object unitary
representations of the braid groups which will not, in general, factor through the
permutation groups [33] 3 4 .

More precisely, (^", ε) will be called a strict braided monoidal C*-category if
for each pair p,σ of objects of ^,ε(p,σ)e(pσ,σp) fulfills the assumptions of

3 3 Cf. the proof of [23; Lemma 2.4].
3 4 For an earlier analysis of braid statistics in 2 or 3 dimensional models from a different point of
view cf. [34]
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[2, Sect. 2] except (1.6), which is replaced by

ε(p, στ) = Iσ x ε(p, τ)°ε(ρ, σ)xlτ. (7.4)

This condition would be redundant in the symmetric case; in either case, Eq.
(1.7) of [2] is a consequence of the remaining assumptions [35].

The following problem, already posed in [2], arises naturally:

Problem. Can we extend the duality theory for compact groups [2; Theorem 6.1]
to more general objects, by replacing strict symmetric monoidal C*-categories by
strict braided monoidal C*-categories? What is the full class of compact group-like
objects which arise in this way?

It is not clear to what extent a solution of this problem would aid our
understanding of 2-dimensional models. In any case, a simple 2-dimensional model
apparently gives rise to a category F that cannot be embedded monoidally into
the category of Hubert spaces35.

Finally, we point out that the analysis of statistics does not cover the case of
theories on ordinary Minkowski space involving massless particles. It deserves
further investigation to decide whether anomalous statistics can be excluded so
that ordinary groups suffice to describe the internal symmetries of the system. We
hope to turn to all these problems in future investigations.

Note. We call the reader's attention to the recent paper by P. Deligne [36] of
which we learned after submitting this paper and which is devoted to a problem
very close to the one considered in [2].

Appendix. Spacelike Cones and Spacelike Infinity

In order to establish the intertwiner calculus in the case of topological charges we
need some simple properties of spacelike cones and spacelike infinity. As the
material presented here is of an elementary nature, we have refrained from giving
any proofs.

Let @:=(n:n n= — 1) and we regard 2 as representing spacelike infinity. We
give Q) the causal structure inherited from Minkowski space. If n,rie@, then
(n — ri)-(n — ri) = — 2 — 2n-ri so that the causal structure on & is determined by
the invariant n ri. Two distinct points n,ri of Q) are lightlike if n-ri = — 1 and
timelike if n-ri < — 1. In either case we can distinguish positive from negative
according to the sign of n° — ri°. Finally, n and ri are spacelike if n-ri > — 1.

If n+ and n_ are points of 2 and n+ is positive timelike to n_, then the (open)
double cone (of S>) generated by n+ and n_ consists of the set of points of Θ which
are negative timelike to n+ and positive timelike to /ι_.

Let D be a double cone in ©, then the spacelike cone %> with apex a and base
D is the set of points

<jf:= (J {a + λn:neD}.
λ>0

We thank K. Fredenhagen and B. Schroer for a discussion on this point
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Alternatively,

r Ί

•a+{JλΘ,
λ>0

where G is the double cone in Minkowski space with vertices n+ and n_.
The final formula for # shows that a spacelike cone is a spacelike cone in the

sense of Buchholz and Fredenhagen [6]. The converse is not true; in fact, a spacelike
cone 9 in the sense of [6] is a spacelike cone in the above sense if and only if 9
is causally closed, i.e. £f = 9".

If # is a spacelike cone we write D(%>) to denote the double cone in 2 which
is the base of c€.

A.I Lemma. Let %> be a spacelike cone and x a point of Minkowski space then
i) / / neD(<#) then x + λnetf for λeR + sufficiently large.

ii) Ifx + λneW for λeR+ sufficiently large then neD(<£).

A.2 Corollary. // <V1 c <£2 then D(<gx) c D(<$2).

A.3 Lemma. Given spacelike cones %>ι,%>2,...,
cβn and %> with D^)c/)(<<?),

i = 1,2,..., n, there is a spacelike cone <$ with D{<$) = D{<g) am/ # ! u # 2 u u #„ cz #.

A.4 Definition. Let U be a set in Minkowski space, then we say a point ne2 at
spacelike infinity is attached to U if there is a spacelike cone %> with %> c U and neD(^).

If # is a spacelike cone then ne2 is attached to # if and only if neD^€).

A.5 Lemma. / / ne<3> is attached to Uί and U2 then n is attached to U1 n U2.

A.6 Definition. A subset U of Minkowski space is said to be spacelike cone connected
if given spacelike cones <&0,

<$1czU we can define spacelike cones <&2,
(&3,...l,

<£m and
<iu

(i29...,
(im in U with <έ'ίu<«ί\+ x a<$\ and ^mκj^0^^m.

The above concept arises naturally in trying to establish an intertwiner calculus
for topological charges. The next lemma reduces this concept to a question at
spacelike infinity which can be more easily visualized.

A.7 Lemma. A subset U of Minkowski space is spacelike cone connected if and only
if the set of points at spacelike infinity attached to U is pathwise connected.

A.8 Lemma. Let ^ be a spacelike cone then ne2 is attached to <€' if and only ifn
is in the interior of the spacelike complement of £>(#) in 2. This set is pathwise
connected.

As a crude first approximation, working with spacelike cones in a spacetime
of dimension d is like working with double cones in a spacetime of dimension
d—\. There are, however, some important differences related to the fact that 2
has a different topology from (d — l)-dimensional Minkowski space. In particular,
the set of double cones in 2 is not directed under inclusion and the spacelike
complement of a double cone in 2 is bounded set.

Here are some words of warning on double cones in 2 and hence implicitly
about spacelike cones in Minkowski space. The statements refer to the usual
4-dimensional Minkowski space.
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a) Not every double cone D in 2 is contained in a double cone based on x° = 0.
b) There are double cones D1 and D2 such that D\ nD'2 is not pathwise connected.
c) There are double cones Dί9D2 and D3 in 2 such that DΊnD^nD^ is the empty
set and we may even choosen D1 and D2 to be based on the same spacelike
hyperplane.

Here are the positive results which allow us to develop a good intertwiner
calculus in a 4-dimensional Minkowski space._
d) Given two double cones Dx and D2 in @>,D\ nD'2 is not empty.
e) Given n,nfe^ there are arbitrarily small double cones Dι and D2 with neDγ
and n'eD2 such that D\nD2 is pathwise connected.
f) Given nί9n29n3e29 there are arbitrarily small double cones Dhi= 1,2,3 with
nieDi such that D\nD2nDf

3 is not empty.
On occasion, we also use

g) Given double cones DUD2 in 29 there are double cones D0l,D02,D in 2 such
that D O i c D £ n Z ) .
h) Given two spacelike separated spacelike cones <gx, # 2 in /> there are #01»*02> *
in / such that ¥ O i < ^ (
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