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Abstract. We consider two-dimensional Bernoulli percolation at density p > pc

and establish the following results:
1. The probability, PN(p\ that the origin is in a. finite cluster of size N obeys

where P^ip) is the infinite cluster density, σ(p) is the (zero-angle) surface tension,
and α>{p) is a quantity which remains positive and finite as p[pc. Roughly
speaking, u>(p)σ{p) is the minimum surface energy of a "percolation droplet"
of unit area.
2. For all supercritical densities p>pc, the system obeys a microscopic Wulff
construction: Namely, if the origin is conditioned to be in a finite cluster of
size JV, then with probability tending rapidly to 1 with JV, the shape of this
cluster—measured on the scale y/N—will be that predicted by the classical
Wulff construction. Alternatively, if a system of finite volume, JV, is restricted to a
"microcanonical ensemble" in which the infinite cluster density is below its
usual value, then with probability tending rapidly to 1 with JV, the excess sites
in finite clusters will form a single large droplet, which—again on the scale

—will assume the classical Wulff shape.

1. Introduction

We consider Bernoulli bond percolation on the square lattice in which bonds are
independently occupied with density p and vacant with density I—p. This model
is known to have a phase transition at density pc = 1/2, below which the occupied
clusters are finite with probability one (w.p. 1) and above which there is a unique
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infinite cluster w.p. 1. In this paper, we study the finite occupied clusters throughout
the high-density or percolating phase, i.e. whenever p > pc. Specifically, we obtain
detailed estimates on the distribution of sizes and shapes of asymptotically large
finite clusters.

In order to motivate our questions and our results, it is worth noting at the
outset that the study of large finite clusters in the high-density phase of percolation
has an analogue in other statistical mechanics models. The high-density phase of
percolation corresponds to the ordered, and hence low-temperature phase of
models such as the Ising magnet; the infinite cluster density is the analogue of the
spontaneous magnetization [FK] (see also [ACCN]). Thus, in a distributional
sense, the infinite cluster in a percolation configuration corresponds to the
collection of excess plus spins in a low-temperature plus-state Ising configuration.
Similarly, an anomalously large finite cluster in a percolation configuration
corresponds to an anomalously large droplet of minus spins in a plus-state Ising
configuration; i.e. the asymptotically large finite clusters may be viewed as "droplets
of the wrong phase." In a more general context, the study of the shapes of these
clusters is related to the question of crystal formation in other systems: What are
the equilibrium shapes of crystals of one phase immersed in another?

LA. Previous Results. Let us first discuss the size distribution of large finite
clusters in percolation. This is typically described by the so-called finite cluster
distribution:

PN(P) = PP(\C(O)\ = N), (1.1)

where Pp( —) denotes Bernoulli measure at density p, and |C(0)| denotes the size
of the occupied cluster of the origin. There has been a good deal of previous work
on the large-ΛΓ behavior of PN(p). It has been known for some time that below
threshold PN(p) obeys the bounds

in all dimensions, with cx{p) and c2(p) positive, finite, dimension-dependent
constants. The lower bound in (1.2) is trivial; the upper bound was originally
derived in [H], and then rederived in [ K l ] and [AN]. The behavior above
threshold is of a very different form; for d dimensions, PN(p) is expected to satisfy

with c3(p) and c4(p) positive, finite, dimension-dependent constants. Both bounds
in (1.3) were originally derived only for p near 1 [KS]. The lower bound was later
shown to hold for all p > pc in [ADS]. That the upper bound in (1.3) holds for all
p>pc was demonstrated for two dimensions in [K3] (see also [CC2]). Still later,
in [CCN], an upper bound of the form (1.3) with logarithmic modifications (i.e.
with c4(p) replaced by c4(p)/log N) was shown to hold in dimensions d ^ 3 whenever
p is above a value1 which was conjectured to coincide with the percolation

1 Very recently, there have been two independent proofs that this value coincides with the half-space

percolation threshold ([BGN], [Z])
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threshold. Recently, in [KZ], an upper bound of the form (1.3) was derived without
a logarithmic modification, but p is still restricted to lie above the value used in the
[CCN) proof. In any case, we note that (1.3) has been established completely for
two-dimensional percolation.

To our knowledge there has not been any previous work on the distribution
of shapes of finite clusters in percolation, although there has been work on the
analogous problem in other systems. As explained above, this problem is related
to the classic question of determining the equilibrium shape of a crystal of one
phase immersed in another. Under the assumption that the shape is determined
only by a single intrinsic property, namely the surface tension (thus neglecting
extrinsic effects such as gravity), one arrives at the following variational problem:
For a fixed crystal volume, determine the shape which minimizes the surface energy.
The solution of the continuum version of this problem was given at the turn of
the century in the so-called Wulff construction [Wu]: Let σ(n) denote the surface
tension of a flat interface orthogonal to the outward normal n. Then the equilibrium
shape W of a crystal of fixed volume is given by the convex set

W = {xeRd |x-n ^ σ(n) for all n}. (1.4)

For a crystal of volume V, the linear dimension of the Wulff shape (1.4) is simply
scaled by the multiplicative factor (K/|WΊ)1/d, where \W\ denotes the volume of
W. That (1.4) is the unique minimizer of the variational problem has been proved
by Taylor ([T1],[T2]).

The Wulff construction described above, and variants of this construction which
account for the effects of gravity [ATZ] or the effects of substrates in the system
[W], [ZAT], provide a good explanation of the observed thermodynamic properties
of equilibrium crystal shapes. Changes in specific features of the Wulff shape have
been related to various phase transitions: the roughening transition is believed to
coincide with the disappearance of facets in W; if W is the Wulff shape for crystals
in the presence of a substrate (see e.g. [ZAT]), the transition to complete wetting
can be formulated as the vanishing of | W '| See [RW], [BN], [A] for reviews on
the study of equilibrium crystal shapes in various models; work on the Wulff
construction for constrained (1 + 1 dimensional) models can be found in [DD]
and [DDR].

On the other hand, from the viewpoint of statistical mechanics, the Wulff
construction alone does not provide a theory of equilibrium crystal shapes. In
many microscopic models, it is of course possible to extract an angle-dependent
surface tension by studying the behavior of asymptotically large surfaces. However,
it is not entirely obvious that the shapes of finite crystals will be distributed about
the Wulff shape determined by this surface tension; furthermore, even if this is the
case, one would like a probabilistic description of the deviation of the actual crystal
shapes from the Wulff shape.

There has been progress on a microscopic theory of the Wulff construction for
the two-dimensional Ising magnet at low temperatures. Minlos and Sinai [MS]
studied a finite-volume microcanonical system with plus boundary conditions in
which the magnetization was fixed at a value below the plus-state spontaneous
magnetization—thereby forcing excess minus spins into the system. Roughly
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speaking, they proved that in typical configurations at very low temperature, most
of the excess minus spins form a single large droplet of essentially square shape.
In this regard, it should be noted that as the temperature tends to zero, the Wulff
shape W of the two-dimensional Ising magnet tends to a square. More precisely,
let m(T) be the spontaneous magnetization of the two-dimensional Ising magnet
at temperature T. Minlos and Sinai studied a system of volume L2 with plus
boundary conditions in the microcanonical ensemble with magnetization
m — (1 — 2α)m(Γ), which therefore had an excess volume fraction α of minus spins.
For T very small, they showed that in the L|oo limit, a typical configuration
contains a large (dual) contour γ separating plus and minus spins such that

, (1.5)

(1.6)

where s/(y) denotes the area enclosed by y, and <&(y) denotes the length of y. The
constants c5(T) and c6(T) tend to zero as Γ|0. They also had estimates similar
to (1.5) which showed that the magnetization inside y tends to —m(T\ while that
outside y tends to m(T) as T JO, thus establishing that "most" of the excess minus
spins are indeed enclosed by y. That y tends to the boundary of a square is clear
from the factor 4^/αL in the length bound (1.6). The Minlos-Sinai droplet theorem
is thus a microscopic verification of the Wulff construction for the two-dimensional
Ising magnet in the limit TjO.

Simultaneously with the work presented here, Dobrushin, Kotecky and
Shlosman [DKS] have announced a substantial refinement of the Minlos-Sinai
result which deals directly with the Wulff construction for the two-dimensional
Ising magnet and which closely parallels our work on two-dimensional percolation.
Dobrushin, Kotecky and Shlosman again consider a system of volume L2 (with
periodic boundary conditions) in the microcanonical ensemble at magnetization
m = (1 — 2α)m(T), 0 < α < 1/4. Again, they show that in the L | oo limit, a typical
configuration contains a large contour y. However, rather than comparing γ to
the boundary of the zero-temperature Wulff shape (i.e. the square), they compare
it to the boundary, d W = γw9 of the actual Wulff shape W at temperature T. (The
natural means of comparison, namely the Hausdorff distance, is also used in our
work and will be explained below.) For very low temperature, they show that
the Hausdorff distance between γ and a translate of yw is bounded above by a
sublinear power of L; since the length of y itself is only of order L, the deviation
of y from yw—i.e. the ratio of the Hausdorff distance between y and yw to the
length i?(y)—tends to zero like a power of L. Thus their work is a strong
microscopic proof of the Wulff construction for the two-dimensional Ising magnet
at small but positive temperature. As we will see below, the work presented here
for two-dimensional percolation is complementary to the Dobrushin, Kotecky and
Shlosman work on the two-dimensional Ising magnet; we do not obtain as sharp
an estimate on the deviation from the Wulff shape, but we are able to prove a
microscopic form of the Wulff construction for all supercritical values of the
parameter p.

In order to formulate a microscopic Wulff construction for percolation, we
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must first identify the "crystals of one phase immersed in another" and then define
a surface tension for these crystals. As mentioned earlier, our candidate crystals
are just the large finite clusters when p > pc—these are the analogues of the droplets
of minus spins in a sea of plus spins in the Ising magnet at T < Tc. In the latter
system, surface tension is the exponential decay rate of the probability of an
asymptotically large dual surface separating the plus and minus spins. Similarly
in bond percolation one can define a dual model in which a dual (d — l)-cell is
occupied whenever the corresponding bond is vacant; then the surface tension is
just the exponential decay rate of the probability of large surfaces composed of
these dual (d — l)-cells. More precisely, the zero-angle surface tension is the decay
rate for dual surfaces spanning large loops in a lattice hyperplane, while an angle-
dependent surface tension is the decay rate for dual surfaces spanning loops oriented
at some non-zero angle to a coordinate axis. In both the Ising magnet and
percolation, one expects that the Wulff shape (1.4) derived from this surface tension
is not spherical (except at the critical point), reflecting the anisotropy of the system.

l.B. Statement of Results and Discussion. The upper and lower bounds in (1.3)
suggest that for p > pc, log PN(p)/N{d~1)/d should approach some well-defined value
as NI oo. Our first result is that this is indeed the case in two dimensions; moreover,
we can identify the limiting value in terms of other quantities in percolation. Here
we will briefly define these quantities; precise definitions are given in Sects. 2 and
3. First, let P^ip) denote the infinite cluster density at bond probability p. Next,
let σ(n, p) be the angle-dependent surface tension at bond density p, obtained by
considering the probability of dual surfaces oriented orthogonally to the outward
normal n. We will denote the standard zero-angle surface tension at density p by
σ(p) = σ(ey, p); i.e. σ(p) is the surface tension for a surface along the ex-axis, and
thus orthogonal to the outward normal ey. Note that, in two dimensions, σ(p) is
just the inverse of the on-axis dual correlation length. We also define a new quantity,
^(p), which we call the Wulff constant, as follows. Consider the Wulff variational
problem, as described earlier, for the surface tension σ(n, p): namely, given σ(n, p),
what is the minimum surface energy of a "droplet" of unit area? (Recall that the
surface energy of a droplet is the integral of the surface tension σ(n9 p) over the
boundary of the droplet.) We define n>(p) to be the ratio of this minimum surface
energy to the zero-angle surface tension σ(p). At first, it may seem rather unnatural
to divide out the surface tension σ(p); however, this is the appropriate scaling from
the viewpoint of critical phenomena. Indeed, we can show that for all p

(p)^4, (1.7)

so that a>(p) remains finite as p[pc. Our first main result is:

Theorem 1. In the two-dimensional Bernoulli bond percolation model on the square
lattice, for every p> pc

Of course, this theorem completely determines the leading critical behavior of the
decay rate of the finite cluster distribution as p[pc.
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It is worth noting that we also prove upper bounds on PN(ρ) which are
somewhat stronger than Theorem 1 implies: namely

P^N(p) ^ exp {- ίMp)σ(p)/y/Pjp)ly/Nίl - ΛΓ 1/4(log N)4] }, (1.8)

where P^N(p)^PN{p) is the probability of the event N ^ |C(0)| < oo. (See
Theorem l.A in Sect. 4.) However, we cannot yet supplement this with a lower
bound which is stronger than that implied by Theorem 1.

Our next set of results constitute a microscopic proof of the two-dimensional
Wulff construction for all p > pc. Roughly speaking, we show that in the (unlikely)
configurations in which the origin is in a finite cluster of size exceeding iV, this
cluster assumes a Wulff shape of linear scale ΛJN/P^. Of course, this shape will
not be achieved exactly on the scale of the lattice; the best that can be expected
is that, with high probability, the cluster achieves this shape on scales which are
large relative to the lattice spacing, but small relative to the size of the cluster.

To be precise, consider the angle-dependent surface tension, σ(n,p), for
two-dimensional percolation at density p. Let W — W(p) be the unit area continuum
Wulff shape for surface tension σ(n,p), defined via Eq. (1.4), and let yw = yw(p) be
the boundary of this shape.2 We use the Hausdorff distance to compare the
boundary of our cluster to a translate of yw. The reader should recall that the
Hausdorff distance between two fixed curves, yλ and y2, is simply

!,y2) = max <j max min |x — y|, max min |x — y| f. (1.9)
eyi yey2 xey2 yeyi

We use the metric

xeR2

i.e., we translate the curves until their Hausdorff distance is minimized.
Our second principal result is:

Theorem 2. Consider the two-dimensional Bernoulli bond percolation model on the
square lattice with p > pc, and condition on the event N ^ | C(0) | < oo. Then there
exists a function η(N) = η(N;p\ with η{N)lO monotonically as iVjoo, such that,
with conditional probability tending rapidly to one with N, there is an occupied circuit
of dual bonds, y, encircling the origin satisfying

In the statement of Theorem 2, and in later theorems, we use the term " tending
rapidly to one with JV" to mean tending to one faster than any inverse power
ofN.

For future reference, it is worth noting that we also derived a variant of

2 We will often make no distinction between a curve γ and its image
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Theorem 2 in which the final inequality is replaced by

S η(N), (1.11)

where srf{y) denotes the area enclosed by y, and fj(N) is another function which
tends monotonically to zero with N.

In order to prove Theorem 2, we first had to establish a stability result for the
Wulff variational problem, which may be of independent interest. Roughly
speaking, the stability result says that if a curve, y, enclosing unit area, differs from
the minimizer by an amount η >0 (i.e. if p(yw,γ)^η>0), then the value of the
surface energy functional for y exceeds the minimum by some strictly positive
function f(η). See Theorem 5.2 for more details. It is worth noting that such a
stability result will fail for dimension d > 2 due to the existence of arbitrarily thin
filaments. Thus an extension of the microscopic Wulff construction to higher
dimensions may require a new formulation of the problem.

In Theorem 2, we achieved a cluster of large size by directly conditioning on
its existence—i.e. by conditioning on the event Λf ̂  |C(0)| < oo. While this is
perfectly reasonable from the viewpoint of percolation theory, it is rather unnatural
from the viewpoint of statistical mechanics. In the latter case, one would restrict
to a microcanonical ensemble, as in the Minlos-Sinai droplet theorem [MS] and
in the Wulff construction theorem of Dobrushin, Kotecky and Shlosman [DKS].
In percolation, the analogue of restricting to the microcanonical ensemble at the
"wrong magnetization" is to condition on the event that the volume fraction of
the infinite cluster which intersects a large finite box has the "wrong density," e.g.
this volume fraction is strictly less than P^ip). In order to compensate for this,
the configurations must have more sites in finite clusters within the box than would
be the case in the unconditioned measure. Roughly speaking, our result states that
under this conditioning, typical configurations have "most" of these excess sites
in one connected component: a single droplet. Moreover, this droplet behaves like
the cluster in Theorem 2: with probability tending to one in the size of the system,
the droplet—when appropriately scaled—approaches the Wulff shape.

More precisely, let C& = C^ώ) denote the sites of the (w.p. 1 unique) infinite
cluster in configuration ω. Let ALaΈ2 denote the square of side L centered at
the origin. We will condition on the event

{ ^ ^ ( 1 _ A ) P o o ( p ) | (U2)
with 0 < λ < [diam (y j ] ~ 2, where diam (yw) is the maximum distance between any
pair of points in yw. Here our λ is analogous to the α in the Ising problem discussed
above. The occupied bonds of ω partition the sites of Z 2\C 0 0(ω) into an infinite
number of connected components: the finite clusters. Those finite clusters which
are sufficiently large (presumably of linear dimension exceeding the correlation
length) qualify as "droplets of the wrong phase." Our single-droplet result is:

Theorem 3, Consider the two-dimensional Bernoulli bond percolation model on
the square lattice with p > pc, and condition on the event FL(λ) with 0 < λ <
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[diam(γw)]~2. Then there exist functions φL(λ) = φL(λ; p\ ζL(λ) = ζL(λ; p) and
μL(λ) = μL(λ;p) tending monotonically to zero as Lf oo, such that, with conditional
probability tending rapidly to one with L, there is an occupied circuit of dual bonds,
y, satisfying
(a) sf(y)>ll-φL(λ)lλ\ΛL\,

(c) Int(y) contains a connected cluster of size exceeding Poo(p)[l — μ>L.W\λ\ΛL\.
It is worth remarking that in order to prove Theorem 3, we first required an

estimate on the probability of FL(λ)—which is, of course, just a large deviations
estimate for the random variable |Co oπylL |/|ylL | . For 0<λ< [diam(yw)]~2, our
estimate is:

lim ) logP p [F L μ)] = -y/λσ(p)«>(p). (1-13)

See Theorem 6.1 for more details.
This paper is organized as follows. In Sect. 2, we set our notation and review

a few basic results in percolation theory. Section 3 is devoted to geometrical
preliminaries: There we define the angle-dependent surface tension for percolation,
and use it to construct a norm on R2. This norm is then used to formulate the
Wulff variational problem for percolation. Theorems 1, 2 and 3 are the contents
of Sects. 4, 5 and 6, respectively. Some of the more tedious aspects of our stability
result for the two-dimensional Wulff problem are relegated to appendices.

2. Notation, Definitions and Preliminaries

In this section, we will set our notation and review some of the basic results in
percolation.

We will consider the square site lattice Z2, the dual square site lattice
(Z*)2 = Z 2 + (£,£), and the plane R2. Points of (Z*)2 will sometimes be denoted
with a * superscript, e.g. for x = (x l 5x2)eZ2, x* = (xx + \, x2 + |)e(Z*)2; however,
for notational convenience, we will often omit the *. On Έ? and (Z*)2, we will use
the lattice L1, L2 and L00 norms: i.e. for x = (x1? x2)eZ2,

Ix l^ lx i l + lxil, (2.1a)

(2 l b )

|x | 0 0 =max{|x 1 | , |x 2 | } . (2.1c)

On R2, we will generally use the Euclidean (i.e. L2) norm, in addition to another
norm to be introduced in Sect. 3. For 5c :Z 2 , | 5 | will denote the cardinality (i.e.
number of points) of S, while for R c R2, | R | will denote the Euclidean area of R.

For γ: [0, Γ] -+R2 a continuous curve in R2, let &{y) denote the (Euclidean)
arclength of γ. Recall that the curve γ is said to be rectifiable if $£(y) < oo. Let /
denote the set of rectifiable Jordan curves in R2. For yef, let Int(y) c R 2 denote
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the interior of γ, and let

l = |Int(y)| (2.2)

denote the (Euclidean) are enclosed by y.
The set of all bonds between nearest-neighbor sites of Z 2 , i.e. pairs x,yeZ2 with

|x — y\i = 1, will be denoted by B 2 . A path in B 2 is a sequence (finite or infinite)
of bonds fc1,b2,...,with no repetitions, such that bn and bn + ί have a common
endpoint. A contour in B 2 is a finite closed path: bl9b29...9bN such that the initial
endpoint of b± is the final endpoint of bN. Two paths are said to be disjoint if they
have no bonds in common. For x,yeZ2

9 a set S a Z2 is said to separate x from
y if every path from x to y includes at least one bond with an endpoint in S.
Similarly, the set of all bonds between nearest-neighbor sites of (Z*) 2 will be
denoted by Bf; we can, of course, define paths, contours, etc. in B£.

The nearest-neighbor Bernoulli bond percolation model on the square lattice
at density p is defined by independently choosing each bond of B 2 to be occupied
with probability p or vacant with probability 1 — p. We denote by Pp the product
measure on Ω at density p9 and by Ep the expectation with respect to P p . We will
often suppress the subscript p in P p and Ep. For Sl9S2 <=Z2, we say that Sα is
connected to S2 in the configuration ω if there is a path of occupied bonds in ω
from a site in SΊ to a site in S2. If such a path occurs within a set of bonds B a B 2 ,
we say that Sx is connected to S2 in B. The maximal connected subsets of ω are
called the (pccupied) clusters of ω. Note that, as defined, these clusters are sets of
sites in Z 2 , not bonds in B 2 . For xeZ 2 , we denote by C(x) = C(x ω) the cluster
containing x in ω. If x is not connected to any other site by occupied bonds, then
C(x) = {x}. Consistent with the notation defined above, |C(x)| denotes the
cardinality of C(x).

In d dimensions, bond percolation at density p is dual to (d — l)-cell percolation
at density 1 — p. In two dimensions, the model is self-dual: if a given b e B 2 is vacant
(occupied), then we can view the unique b*eM% which intersects b as occupied
(vacant). It is often convenient to view a given configuration ω not as a collection
of occupied and vacant bonds, but rather as a collection of occupied bonds and
occupied dual bonds. Then it is clear that each finite cluster of ω is surrounded
by an innermost contour of occupied dual bonds in ω. Henceforth, unless otherwise
specified, when we speak of clusters of ω, we will mean clusters connected by
occupied bonds, and when we speak of contours in ω, we will mean occupied dual
bond contours.

Next we review a few basic results concerning bond percolation on the square
lattice. It is known ([BH], [Har], [K2]) that the model has a phase transition at
density pc = 1/2, below which the occupied clusters are finite w.p. 1 and above
which there is a unique infinite occupied cluster. Let us denote the infinite cluster
by Coo = Coo(ω) ^ Z2. The order parameter for the transition is the infinite cluster
density:

It is known that (in d = 2), Pao(p)tO continuously as p[pc [R].
The analogue of the two-point correlation in a spin system is the connectivity
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function: For x, yeZ2, the connectivity event is

txy = {ω\x is connected to y by occupied bonds} (2.4a)

and the connectivity function is

Wri = MU ( 2 4 b )
Similarly, for x*,y*e(Z*)2, the dual connectivity event and dual connectivity
function are given by

t** y* = {ω\x* is connected to y* by occupied dual bonds}, (2.5a)

τ*^(p) = P,(ί*^). (2.5b)

By duality (in d = 2), τ**y*(p) = τxy(l - p). For /? < pc, the correlation length, ξ{p\
is defined by the behavior of the on-axis connectivity function:

lim - Iogτ0,(π,0)(p) = - — (2.6)
n-oo Π ζ(p)

furthermore, even for the off-axis connectivity function, ξ(p) provides the following
a priori bound:

τ ^ p ) ^ ^ - 1 1 ^ " 1 * - ' 1 - . (2.7)

It is known that ξ(p) < oo for p < pc [K2], and that ξ(p)] oo continuously as p]pc.
(For a general review of ί z properties of τ, see e.g. [CC1] or [G]). A final useful
fact concerning the connectivity function is that it obeys the Hammersley-Simon
inequality ([H], [S]): For x, yeZ2, let S a Έ2 be a surface which separates x from
y. Then

zeS

The behavior of the finite cluster distribution for percolation has already been
discussed in some detail in the introduction. Here, let us just set some additional
notation. We define

p N% (2.9a)

P*N(P)= Σ Λ M (2.9b)

P±N(P)= Σ P.(P) (2 9 c )

Although Theorem 1 of the Introduction is stated in terms of PN(p\ the quantity
with which we will be working most often is the tail of the finite cluster distribution,

P*N(P)

Finally, we review a few general notions and inequalities. We denote the
indicator function of an event A a Ω by iA:

. , x f 1 if ωeΛ
tA(ω) = < . (2.10)

(0 lίωφA
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Definition 2.1. Let ωί9ω2eΩ. There is a natural partial order on ί2 defined by the
relation ωλ <ω2 if all occupied bonds in ω1 are also occupied in ω2. An event
A a Ω is said to be positive or increasing (respectively, negative or decreasing) if
iA is nondecreasing (respectively, nonincreasing) with respect to this partial order.

The Harris-FKG inequality ([Har], [FKG]) says that if AUA2 c Ω are both
positive (or both negative) events, then

Pp(A1nA2)^Pp(A1)Pp{A2). (2.11)

Definition 2.2. Let ωeAczΩ and β c B 2 . The event /I is said to occur on the set
B in configuration ω if A occurs in ω restricted to B9 regardless of the configuration
in B 2 \ β ; more precisely, we define

A\B = {ωeA\ώeA for all ώ such that ώ = ω on all bonds in B). (2.12)

Two events A1,A2aΩ are said to occur disjointly, denoted by A1 °A2, if there are
(bond) disjoint sets on which they occur:

B2}. (2.13)

Similarly, three or more events are said to occur disjointly if they are pairwise
mutually disjoint, e.g.

(2.14)

The van den Berg-Kesten inequality [BK] says that if Al9 A2 ^Ω are both
positive (or both negative) events, then

Pp(A1oA2)£Pp(A1)Pp{A2). (2.15)

The inequality (2.15) was extended to the case of the A x being intersections of
positive and negative events by van den Berg and Fiebig [BF]. By induction, an
analogue of (2.15) clearly holds for the disjoint union of three or more (say) negative
events.

3. Geometrical Properties

In this section, we define the surface tension and establish some geometrical
properties of its angular dependence. We then formulate the Wulff variational
problem for percolation.

We begin by defining the zero-angle surface tension, σ(p). Since we are in two
dimensions, we need only consider the (on-axis) dual connectivity function
τo*,(n,o)*(p\ a s defined in Eq. (2.5). The following proposition is an immediate
consequence of the duality relation τ*, y*(p) = τ x y(l — p) and well-known properties
of the ordinary connectivity function (cf. Eq. (2.6) and (2.7)).

Proposition 3.1. For the two-dimensional Bernoulli bond percolation model, the limit

σ{p)= - lim - log τ* M Π i 0 ) *(p)
n->oo W

exists with σ(p) > 0 for p> pc and σ(p)[0 as p[pc. Furthermore, for finite n

r* (n\ <
τO*Λn,O)*\P) =
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The limiting constant in Proposition 3.1 is called the surface tension by analogy
to similar quantities in spin systems, e.g. the Ising ferromagnet. There one considers
spin configurations in a cube of scale L in which the top and bottom regions
correspond to distinct pure phases separated by an interface. The Gibbsian weight
of such configurations—relative to the total weight of all allowed configurations—
has the purported scaling e~σLd~ \ The constant σ has the interpretation of an excess
(surface) free energy or surface tension. In percolation, rather than studying the
Gibbsian weight of configurations with an interface, one considers the probability
that the top surface of a cube of scale L is disconnected from the bottom. This
has the dual representation of an interface separating the top and bottom of the
cube. In d = 2, it is readily established that this probability has the desired scaling
(modulo power law corrections in front of the exponential factor), with σ given as
in Proposition 3.1. By duality, it is clear that σ(p) = [ξ(l — p ) ] " 1 , where ξ(p) is
the correlation length (cf. Eq. (2.6)). What is not so obvious, but has nevertheless
been established [CCGKS], is that σ(p) = £[£'(/>)] - 1, where ξ'(p) is the above
threshold correlation length, i.e. the decay rate of a truncated connectivity function.
The higher-dimensional problems are not on quite this sound a footing; for further
discussion of the zero-angle surface tension in d 7> 3, see [ACCFR], [CC2].

An angle-dependent surface tension can be defined by considering the behavior
of the off-axis dual correlation function τ$*x*(p). Although such a surface tension
(or the correlation length) has been discussed previously, both in the context of
percolation [CC1] and spin systems [CCS], here we will treat the problem from
a somewhat more geometrical perspective.

Proposition 3.2. Consider the two-dimensional Bernoulli bond percolation model at
density p.
A) Let x e Q 2 (where Q denotes the rationals) and let k be any integer for which
kxeZ2. Then the limit

g(x;p) = - lim — — - logτ*, w ^(p)
n->oo nkσ(p)

exists and is independent of k. Furthermore, VxeZ2, #(x;p) provides the a priori
bound:

B) For each p, the function g(x) = g(x\p) has the following properties:
(i) Scaling (or homogeneity): For each

g(λx) = \λ\g(x).

(ii) Symmetry: g(x) is invariant under interchange of the components of x or sign

reversal of either component of x; that is, if x — (xi,x2)eQ2>

(iii) Convexity: For each x, y e Q 2 and each AeQ, with 0 g λ g 1,

g(λx + (1 - λ)y) S λg(x) + (1 - λ)g(y).

Proof. Let xeQ 2 , and denote by k (say) the smallest integer for which kxeZ2.
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Then existence of the limit

lim ~\ogτ$*Mx*(p) (3.1)
n-+ oo n

follows from the (log) subadditive inequality

τ o * , ( Λ l +n2)kx*(p) ^ τt*,nίkx*(p) τt*,n2kx*(p) (3.2)

Denoting the limit in (3.1) by kσ(p)g(x; p\ (3.2) directly implies the a priori bound.
Furthermore, the scaling in (3.2) shows that g(x;p) is independent of k, and
establishes property (i). Property (ii) is a ΊL2 lattice symmetry which g{x) clearly
inherits. Convexity is established by observing that for x,);eQ2, ΛeQ, with Og
λ ^ 1, and m any integer for which λmxeZ2 and (1 - λ)myeZ2, we have

τ0*,w(Λλ + (l -λ)y)* = τ0*,mλx*τmλx*,m(λx + (l -λ)y)*

= τ0*,mλx*τ0*,m{\-λ)y* > W' ^)

which, after logs and limits, is the desired result. •

Collecting the above properties, we have:

Corollary. The function g(x) may be extended to a convex, continuous function on
R 2 , where it defines a norm equivalent to the Euclidean norm.

Proof. Convexity implies that g(x) is continuous on Q 2 ; hence it may be extended
to a continuous function on all of R 2 , where it enjoys properties (i), (ii) and (iii).
Obviously, g(0) = 0. Furthermore #(1,0) = #(0,1) and convexity imply that if x T^O,
then g(x) Φ 0. Finally, convexity at λ = \ and the scaling property imply the triangle
inequality. Hence, g defines a norm on R 2 . Finally observe that if x e R 2 , then

(3.4)

which demonstrates the equivalence of g to the Euclidean norm. •

Remark. The norm g is, of course, closely related to the angle-dependent surface
tension. Assume we have an interface oriented at an angle θ to the ^-axis. It is
customary to track the direction dependence of the surface tension in terms of the
outward normal n = eθ to the interface: σ(n; p) = σ(eθ; p). In two dimensions, since
there is only a single tangent vector, t = en to the interface, it is just as convenient
to track the direction dependence of the surface tension as a function of er. The
relationship between our g and the conventional direction-dependent surface
tension is

σ(p)g(έr;p) = σ(eθ;pl (3.5)

where, as usual, σ(p) is the surface tension for an interface oriented at angle 0 = 0
to the <vaxis: that is, σ(p) = σ(eθ = ey;p), so that g(er = έx;p)= 1. It is also
conventional to define σ(eθ; p) only as a function of the normal vector n = eθ,
whereas here we define g for all x e R 2 . If x = rer = r(cos 0, sin 0), then

p) = \x\2g(er;p). (3.6)
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Thus the ratio of g to the Euclidean norm is a measure of the angle-dependence
of the surface tension.

Now let us formulate the Wulff variational problem for percolation. Given a
continuous curve y: [0, T] ->1R2, it is possible to define the ^-length of y by analogy
to the (Euclidean) arclength JίP(y): Let 0> = (ί0, , tN)9 0 = t0 ^ 11 ^ S tN = T,
denote a partition of [0,T], and let yp = (y(to),...,γ(tN)) be the corresponding
polygonal approximation to y. The 0-length of y at density p is given by

gp(y) = sup gp{y9) = sup X gf(y(ίπ + i ) - y ( U ; p ) (3.7)

We will sometimes omit the subscript p in our notation for the g-length. By
equivalence of the norms, it is clear that gp(y) < oo if and only if <£ (γ) < oo (i.e. γ
rectifϊable). We remind the reader that β is our notation for the set of rectifiable
Jordan curves in R 2 , and s/(γ) denotes the Euclidean area enclosed by y.

Guided by the underlying lattice model, one is led to study the (continuum)
variational problem of minimizing the surface energy subject to the constraint of
enclosing unit area:

Mp)=inϊ {gp(y)\s/(γ) = 1}. (3.8)
ye/

We call w(p) the Wulff constant at density p. It is easy to see that the constraint
stf{y) = 1 may be replaced by the inequality s/(γ) ^ 1 without changing the value
of the functional, i.e.

}. (3.8')
ye/

We note that (3.8) or (3.8') is a problem of the isoperimetric type, but that it
is somewhat more difficult since the length and area of y are measured in
different—though equivalent—norms. However, from this equivalence and the
solution to the (Euclidean) isoperimetric problem, it follows immediately that

(3.9)

Indeed, using the sharper upper bound in Eq. (3.4), one easily obtains the improved
estimate

"(*>)£ 4. (3.9')

What is not so obvious is that there is a minimizer of (3.8) and that this minimizer
is unique in /. This a consequence of the Wulff construction [Wu], and general
existence [Tl ] and uniqueness theorems [T2] due to Taylor, which we state here
only for the case at hand.

Theorem 3.3. Let / be the set of all rectifiable Jordan curves in 1R2, let gp(y) denote
the density-p g-length of the curve y as defined by Eq. (3.7) and Proposition 3.2, let
s/(γ) denote the Euclidean area enclosed by y, and let u>(p) be the Wulff constant
as defined in Eq. (3.8). Then there is a unique curve yw — yw(p)e/ with <srf(yw) = 1
such that
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Furthermore, this curve is given by the Wulff construction, i.e. yw is the boundary of
the Wulff shape (1.4) for the surface tension σ(eθ; p) given in Eq. (3.5).

It will turn out that in order to prove a microscopic Wulff construction for
percolation, we will need somewhat more than Theorem 3.3: In addition, we will
need a stability result which says that if γ is a unit area curve at a Hausdorff
distance η >0 from yw, then \gp(y) — gp(yw)\^ f(η\ where / is a strictly positive
function. In order to establish this, we will first prove that yw is the unique minimizer
of (3.8) over a somewhat larger class than just Jordan curves. See Sect. 5 for more
details.

4. Bounds on the Finite Cluster Distribution

In this section, we establish our principal analytic result: (exponentially) optimal
bounds on the finite cluster distribution for all p > pc, as contained in Theorem 1
of the introduction. Although Theorem 1 is stated in terms of PN(p), here we will
be working with the somewhat more natural tail of the finite cluster distribution,
P*N(P)- I n particular, we will first derive Theorem 1 for P^N(p); then, at the end
of this section, we will use a variant of the subadditivity argument in [KS] to extend
the result to PN(p). The proof of Theorem 1 divides naturally into two parts: upper
bounds and lower bounds. As in previous work on the finite cluster distribution,
the proof of the upper bound is more difficult, although here we obtain sharper
upper bounds than lower bounds.

4.A. The Upper Bound. The results of this subsection is:

Theorem I.A. In the two-dimensional Bernoulli bond percolation model on the square
lattice, for every p> pc and all NeZ+ sufficiently large

^ exp { - ίω(p)σ(p)/y/PM-]y/Nll - ΛΓ 1/4(logN)4]},

where P^ip), σ(p) and ω(p) are the infinite cluster density, surface tension and Wulff
constant, as defined in Eq. (2.3), Proposition 3.1 and Eq. (3.8).

Our strategy for proving Theorem l.A is as follows: If the origin is in a cluster
of size at least N, then there must be some dual ring y surrounding the cluster.
This cluster can be thought of as a "broken off" portion of the infinite cluster;
it therefore should have density roughly P^p) [ADS]. Now there are two
possibilities: either y is large enough to enclose a cluster of the "correct density":
s/(y)>N/PO0; or y encloses an "overdense" cluster: ^(y)<N/Paΰ. In the former
case, we get the desired bound simply by estimating the probability of the ring y,
omitting any estimate on the probability of the cluster itself. Our estimate on the
ring probability is given in Lemma 4.1. In the latter case, we use a large deviations
estimate (Lemma 4.2) to show that an "overdense" cluster is far too costly. We
then combine these lemmas to give a proof of Theorem l.A.

Before obtaining our ring estimate, let us introduce the notion of an m-skeleton
of a (dual) lattice contour y. To this end, let [ / c R 2 denote the unit ball in the
g-noτm {cf. Proposition 3.2):

\}, (4.1)
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and, for meR, let mil denote the m-ball:

mU = {mx\xeU}. (4.2)

Observe that, by the symmetry and convexity properties of g, these sets are convex
and four-fold symmetric. Next, consider the lattice m-ball

Vm = mUnZ2. (4.3)

It follows from the convexity and symmetry of U that HJm is a Z2-connected set.
We denote the external boundary of this set by <3UJm:

3Vm= {xeZ2\JUm\3xfeJUm with | x - x ' | i = 1}, (4.4)

and the union of the set and its boundary by HJW:

Wm = VmudVm. (4.5)

Finally, for x*e(Z*)2, we denote the translation of these sets by the lattice vector
x* by Vm(x*) and <3Um(x*):

Vm(x*)=T*υm9 (4.6a)

dVm(x*)=T"dVm. (4.6b)

It is worth observing that if x*edWm(0*\ then by Proposition 3.2A,

τ^AP)^^σiP)m' (4-7)

Now suppose that y:[0, 7 ] ->IR2 is a self-avoiding (dual) lattice loop encircling
the origin, i.e. that the image of γ is a contour in Bf enclosing 0*. Let t0 = 0 and,
for defmiteness, let us take y(0) = soe(Z*)2 to be the lowest site of γ on the positive
y*-axis. For n ̂  1, we define

}, (4.8a)

sn+1=y(tn+1) (4.8b)

provided that tn + ί exists. Thus sn + 1 is the earliest site of (Z*)2 on y after sn which
is a ^-distance at least m units from sn. We let J = J(m; y) be the largest n such
that ίπ, and hence sM, exists. In other words, the sequence (so,...,Sj) exhausts the
curve y and g(sj — s0) < m. We call the sequence

Sm(y) = (sθ9sί9...9sj9so) (4.9)

the (lattice) m-skeleton of y. It is clear that each contour y has a unique m-skeleton.
On the other hand, a given sequence of (dual) points (sk) represents the m-skeleton
of many distinct contours. We let

y) = (**)} (4 iθ)

denote the collection of all contours with m-skeleton (sk).
Our ring estimate is as follows:

Lemma 4.1. Let ΛoeZ+ and consider the event

M(A0) = {ω\3 an occupied dual ring y surrounding the origin with A(y) ^ Λo}.
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Then for all p> pc and Ao sufficiently large, 3c = c(p) > 0 such that

] ^ exp|^ - Γ1 - C l ^ ] ] .
Proof. We begin with a rather straightforward coarse-grained Peierls estimate
using the notion of an m-skeleton defined above. The subtlety occurs in relating
the result of the Peierls estimate to the area Ao.

First, let Γ^Sk) denote the event that there is a dual contour in Γ™k) (cf. Eq. (4.10)):

f™k) = {ω\3 an occupied dual ring yeΓ™k)}. (4.11)

Obviously, the event Γ^Sk) is contained in the disjoint union of the successive events

Sk,Sk + 1'

Γm c ί * of* o...of* ί4 12}

Hence by the van den Berg-Kesten inequality and (4.7), we have

/ (4.13)

Now given that ffl(A0) has occurred, there must be dual contour y surrounding
the origin with an m-skeleton (sk) of J ^ Jmm(A0) points. For fixed J, let
<9%/;m) denote the collection of all sequences (sk) of J points which form the
m-skeleton of some curve surrounding the origin. Let us determine the size \ίf(J\ m)\
of ^(J m). First, it follows from the definition of an m-skeleton that given a
particular point sk, the number of possible "target points" is | 3UJ, which is easily
bounded above by κxm with e.g. κx < 8π. Hence, for fixed initial point s0, the
number of m-skeletons is less than (/qm)*7. Furthermore, it is clear that s0 cannot
have y*-coordinate exceeding ^y/ϊmJ < mJ. Thus

^ m J O q m ) 7 . (4.14)

We have

aμo)= u υ nk).
Thus, by subadditivity of the measure and the bounds (4.13) and (4.14):

^ Σ mJ(κιm)Je-σmJ

^ κ2m
Jmine~σmJmin (4.16)

for m sufficiently large. Here κ2 — κ2{p) < oo.
Now we must determine Jmin(A0). To this end, let (sk) be the m-skeleton of

some dual contour which, if occupied, would contribute to the event &(A0). Let
yiSk) denote the unique (continuum) polygonal curve with the sequence of vertices
(sk), in order. In general, γ(Sk) will not be self-avoiding, although it will be the union
of a finite number of self-avoiding polygons, and possibly also degenerate polygons.
Let us denote by fi/(y(sie)) the area of the union of these polygons. It follows from
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the variational principle (cf. Eq. (3.8)) and concavity of the square root that

(4.Π)

Roughly speaking, we would like to bound g(y{Sk)) from above by Jm, and bound
<^(y{Sk)) from below by Ao. However, technically, neither of these bounds is quite
correct.

First, Jm is actually a lower bound on g{y(Sk)) since the lattice points of <3Um

are a ^-distance greater than m from the origin. However, this is easily rectified
by noting that dVm c U m + 1 . Then, taking into account that Sj may be separated
by as much a s m + 1 from s0, we have

g(γ{Sk))ύ(m+l){J+l). (4.18)

Next, we note that the area of any curve yeΓ™k) can differ from ^(y{Sk)) by at
most the area of (J + 1) m-balls:

Since the g-norm is equivalent to the Euclidean norm, we may write | U J ^ κ3(p)m2,
where 0 < κ3(p) < oo. Then, if y "contributes" to the event ffl(A0), we have s/(y) ^ Λo,
so that (4.19) implies

))^A0-κ3(J+\)m2. (4.20)

Thus, by Eqs. (4.17), (4.18) and (4.20), J m i n satisfies

(m + l)(Jmin + 1) £ «>(p)y/A0-κ3(Jmin+l)m2. (4.21)

Using y/l —x ̂  1 — x for 0 < x < 1, (4.21) implies

(4.22)J m i n ^ u , ( p ) κ A
m + 1

for some 0 < κ4(p) < oo. This, together with (4.16), gives us a bound on
in terms of m. Now, however, we can choose m to optimize (4.16) subject to the
constraint (4.22). A nearly optimal solution occurs when we take m = AQ/4, from
which the statement of the lemma follows. •

The previous lemma provides our basic estimate for the case in which the ring
encloses area s/(y) > N/P^. Next, we attend to the case in which the ring encloses
area j^(y)<N/Po0. To this end, we denote by ^<n(ω) the set of sites in the
configuration ω which belong to clusters of size no larger than n:

^ ( ω ) - {xeZ2\C(x;ω) ^ *}, (4.23)

and, for any finite set A c=Z2, we denote by f<n(A) the fraction of sites in A
belonging to clusters no larger than n:

Δ^A. (4.24)

Note that, by translation invariance, i3<« = E(/^π). The following lemma shows
the deviation of/^M(^) from Pύn.
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Lemma 4.2. Let neΈ + , n ^ 2, and A c Z 2 , \A\ < oo. Then for every εe(0,1),

where cx = 18 and c2 = 1/324.

Proof. Let So denote the 3n x 3π square So = {(x 1 ,x 2 ) e ^ 2 l^ = x i ' x 2 = 3rc} and
consider the set of translations of S0:Sy= T3ny(S0) which disjointly tile the
lattice—i.e. consider the translations Sy with y = (mί,m2\ mί and m2 integers. (See
Fig. 1.)

We further divide each Sy into nine smaller (n x n) squares, S*1], S{*\..., Sy

9] thereby
forming nine disjoint sublattices. Observe that if ueS[

y

k] and veSfϊ (y φ y') then the
events C(u) ^ n and C(v) ^ n are independent.

Let A czZ2, \A\ < oo. For Sι

y

k]nA ψ 0 , consider the random variables

and define

Observe that

while

= πmx\S[k]nA\.

(4.25)

(4.26)

(4.27)

(4.28)

Fig. 1. A disjoint tiling of the lattice
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(provided that n ^ 2). We have

= |S™nΛ|E[V™] = Psn\S™nA\2.

Thus

or

^ (i)(4«2) IS?1 n XI = B21 S'"1 n Λ |,

(4.29)

(4.30)

(4.31)

Take εe(0,1). Now it is clear that whenever \f^n(A)-P^n\ ^ε (or equivalently
when IΣy,k(V^] - P<n\Sf]nA\)\>ε\A\), then on at least one of the nine sublattices,
the "excess" is larger than %ε\A\:

\f<n(A) - Pύn\ ^ ε=>3/c such that (4.32)

Now, according to a lemma of Bernstein (see e.g. [B]), if Zι,Z2,...,ZR are
independent random variables satisfying

(4.33)

then

max \Zj\^b and £ Var (Z, ) ̂  Rs2,

Substituting the estimates (4.28) and (4.31) into Bernstein's inequality (and using

/ )9 we have

(4.35)

where we have used ε < 1 to facilitate the calculations. Summing over all fe, we
obtain the desired result. •

Corollary. Let AαΈ2, | 4 | < o o . Suppose p>pc and consider the Bernoulli

configurations at density p restricted to the set A. Let N be an integer with

P<x>(p)\A\ < N < \A\ and define P>N\A(p) to be the probability that on the set A there
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is a connected cluster of size at least as large as N. Define K = κ(p, N,A)>0 by

PO0(p)\A\=(l-κ)N,

and, for neΈ+

9 define Δn by

Suppose Δn <κ/(ί— K) and n<N. Then

S CX exp |̂  - c2

 {-

where cx and c2 are defined in the statement of Lemma 4.2.

Proof. Let AaΈ2, \A\<co. If (in some configuration) the set A contains a
connected cluster of size at least as large as N, then the volume fraction of remaining
sites in A is no more than

N P
1 - — = 1 - - ^ - . (4.36)

\A\ l - / c

Thus for n < N9 a cluster of size N could only emerge if

f^n{A)^\-^-. (4.37)

Evidently

The statement in the corollary follows directly from (4.38) and from Lemma 4.2.

•
We will now establish our upper bound.

Proof of Theorem LA. Take p > pc9 and suppose that the origin belongs to a finite
cluster. Then the origin is surrounded by an occupied ring of dual bonds.
Furthermore, exploiting the exponential decay of the dual connectivity function,
w.p.l there is a finite outermost occupied dual ring encircling the origin.3 Let us
enumerate all dual lattice rings about the origin: rα, α = 1,2,..., and define the event

rα = {ω\ra is the outermost occupied dual ring surrounding the origin}. (4.39)

It is important to observe that given the event rα, the statistical behavior of the
configurations in Int (rα) is identical to that of the unconditional measure restricted

3 In d > 2, the analogous statement may fail due to a possible condensation of closed filaments of
dual (d- l)-cells. See [CC1, Sect. 3] for further discussion



22 K. Alexander, J. T. Chayes and L. Chayes

to Int (rα). Finally, we will denote by Rs the event

Rs= U '«• ( 4 4 ° )

Let us define S(κ) = (N/P^l - K) and

κ* = K*(N) = iV-1/4(logΛΓ)4. (4.41)

Obviously, the event {N ^ |C(0)| < 00} may be (disjointly) decomposed according
to whether the outermost occupied dual ring surrounding the origin encloses area
greater than or less than S(κ*). In the former case, we omit any estimate on the
probability of the cluster itself, and simply use Lemma 4.1 to obtain the upper
bound:

11 I I 1

S iexp { - l«to)Φ)/y/PJfi}yftV ~ iV" 1/4(logN)4]} (4.42)

for N sufficiently large. In deriving (4.42), we have used the fact that, for N large

enough, the leading correction in Lemma 4.1 is dominated by the difference between

y/\ — K* and 1 — /c*.
We now focus our attention on the "smaller" rings—i.e. rings enclosing area

less that S(κ*). Let K < K* be any number such that S(κ) is an integer. Given the
event KS(K), the configuration inside must now struggle to produce a connected
cluster at least as large as JV. An estimate on the probability of this is the exact
topic of the corollary to Lemma 4.2; namely

^ f ^ y l (4.43)

where n is any integer smaller than N. Let us choose n to satisfy

Δn^κ. (4.44)

Using the known upper bound on P g π (Eq. (1.3)), this can be accomplished without
violating n ̂  JV (or K ̂  K*) by choosing

(4.45)

for some huge constant H, provided N is large enough to ensure JV»(logJV)2.
Thus we have, for JV large enough,

P[JV ^ |C(0)| < oo|/?S(K)] ^ Cίe-φMN (4.46a)
with

φ(κ) = (const.) ( K \ 1 ) . (4.46b)
\{logκ)2(l-κ)J

Obviously the worst case is K = K*, for which we get

P[JV ^ C(0)| < oo |RS ( K )] ^ c, exp [ - (constJ^JVOog N) 4 ] . (4.47)
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Since there are only of the order of N possible values of K such that S(κ) is an
integer, we can multiply the right-hand side (4.47) by N to bound the probabilities
of the "small ring" cases. For N large enough, the result is smaller than the
right-hand side of Eq. (4.42), which establishes the desired result. •

4.B. The Lower Bound. The result of this subsection is:

Theorem l.B. In the two-dimensional Bernoulli bond percolation model on the square
lattice, for every p> pc

_ ^ _ ^(P)σ{p)

iV-oo V

where P^p), σ(p) and t&(p) are the infinite cluster density, surface tension and Wulff
constant, as defined in Eq. (2.3), Proposition 3.1 and Eq. (3.8).

Our strategy for proving the lower bound on P^N is straightforward: We will
first explicitly construct an approximate (lattice) Wulff curve of occupied dual
bonds at essentially the right probability. We will then demonstrate that with
probability of order unity (more precisely P^p)) the origin belongs to a cluster
at least as large as N. To simplify the final proof, and for later reference, we will
start by establishing the following auxiliary result concerning the event rα (cf. Eq.
(4.39)).

Lemma 4.3. Suppose p > pc. Let ε e R + and MεZ*. For M large enough 3<5(ε) > 0

such that, with probability exceeding exp [ — (1 + e)σ(p)a>(p)^fM~\, the event fa occurs

for some ra which lies entirely outside a (convex) shape enclosing area exceeding

[1 + (5]M.

Proof. We divide R 2 into square unit cells centered at the sites of (Z*)2; to avoid
(zero-probability) possible ambiguities, we suppose that each cell includes its upper
and right-hand boundaries, as well as its lower right-hand corner, but no other
portion of its boundary. Then each point in R 2 belongs to a unique cell (or site
of (Z*)2), and, for u, i e R 2 , we may define

θ(u, v) = P(th"e site of u is connected to the site of v
by a path of occupied dual bonds). (4.48)

Note that we have suppressed the /?-dependence in our notation for θ(u, v). Although
θ(u, v) is not strictly translation invariant, it is approximately so. For example, one
may easily obtain

(1 - p)2θ(0, u-v)^ θ(u, v) ̂  — L — 0(0, u - i?). (4.49)
(1 - P)

Using (4.49), it is straightforward to show that if r e R and t e R 2 , then

φ ) ,4.50)

Of somewhat more relevance is the "half-space" version of θ(μ, v). Let u, t e R 2 .
The line passing through u and v divides R 2 into two half-spaces, the "upper"
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one of which contains x 2 = + °° (or, in case of a vertical line, xx = + oo).
We define θ(u,v) to be the probability that u and υ are connected by a path of
occupied dual bonds which travels exclusively via sites whose cells have non-zero
intersection with the upper half-space relative to u and v. We define θ(u,v)
analogously in terms of dual connections in the lower half-space. It is not terribly
difficult to show that

^ ^ ) ( ^ ^ 1 ) σφ). (4.51)

Indeed, e.g. for v with rational coordinates, the existence of some limit no smaller
than σg(v) follows from subadditivity. That this limit is σg(v) may be established
by considering the restriction of the connectivity events to one-dimensional regions
of finite width; this provides a decreasing sequence of rates which converge to
σg(v) as the width of the regions increases. Any one of these rates may be used as
an upper bound on the rate for the half-space connectivity. The extension to
irrational coordinates follows immediately from convexity. (See e.g. [CC1] for
arguments of this sort.)

Let yw denote the Wulff curve centered at the origin. (See Theorem 3.3 for a
definition of yw.) We will parameterize yw by ίe[0,T], Let 0> = (to,...,tN\
0 = to^tι^' 'StN=T denote a partition of [0,7], and denote by y£f] the
(convex) polygonal curve obtained by joining the points y(tj) and y(tj+ x) by straight
line segments. As the partition becomes more refined, we get

(4.52a)
and

\P (4.52b)

Consider the curve γ*^ which is γ Jf] (linearly) rescaled by j2/(s/(γ\?\l +<a%[f ])])

This curve encloses area

(4.53)

its g-length is

(4.54)

if the partition is sufficiently refined. Now let us again focus on the lattice. By the

Harris-FKG inequality, a curve of occupied dual bonds which encircles the origin

and (save for the vertices) stays out of the polygon y^n scaled up linearly by ^/M

can be produced with a probability exceeding

Π ΘijMyZ{*\tϊ,sft*yl{*%+^ ( 4 5 5 )
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where Θ{ —) denotes θ( —) or θ( —) as appropriate. At the expense of an additional
finite (M-independent) factor, one can actually ensure that the curve stays
completely outside the polygon. Then, using the existence of the limit in (4.51) and
the bound (4.54), it follows that for M sufficiently large, the M-independent factor
times the estimate in Eq. (4.55) exceeds exp[ —(1 + ε)σ(p)e#(p)y/M], which is the
desired result. •

We will now prove our lower bound on P^N.

Proof of Theorem l.B. Let p > pc9 εe(0,1) and NeZ+. Then by Lemma 4.3, for N
sufficiently large, with probability exceeding exp[ - (1 + ε)σ^λ//V/P^J, the event
rα occurs for some rα lying outside a convex shape which contains more than
(1 + δ)(N/P^) sites. By Lemma 4.1, it is clear that we will not significantly degrade
our estimate by assuming also that <stf(ra) < (const)ΛΓ, for some sufficiently large
constant. Recalling that the measure for those bonds with both endpoints in
Int(rα) is unconditioned, let us now consider the behavior of Bernoulli
configurations restricted to Int(rα).

We will first partition the sites of Int(rα) into two (deterministic) sets. To this
end, let n » 1 be an integer with n small compared to the linear dimensions of rα

(e.g. we may regard n as a small power of N\ and let D > 1 be a constant of order
unity. We write Int(rα) = Aa(n)vAc

a(ή), where Aa(ή) consists of those sites in Int(rα)
which are a distance greater than 2Dn from rα. For any Bernoulli configuration
in rα, the sites in Aa(ή) may be further partitioned into two disjoint categories
depending on the size of the cluster to which they belong: each xeAΛ(n) has either

(1) |C(x) |^n;or
(2) |C(x)|>n.
Let us first show that category (1) does not exhaust too many of the sites of

Aa(ή). Indeed, by Lemma 4.2

Pσs.(Λ(Ό) -Pi* ZiδPJ ϊ c, exp( - C202p2^2

A'in)iy (4.56)

In particular, if n is a small power of N9 and N is sufficiently large, then |Aα(n)|
exceeds (1 + $δ)(N/PJ. Using the fact that P^nS 1 -P^ and taking <5<£, it
follows that, with (conditional) probability tending rapidly to one, more than
(1 +!<5)N sites belong to category (2).

Next, we claim that, with probability tending rapidly to one with N, all of the
sites of category (2) belong to a single cluster. Indeed, let us suppose that two sites
in category (2) belong to distinct clusters. Since, by definition, both of these sites
are further than 2Dn from rα, and both belong to clusters of size exceeding n, then
(for appropriate choice of D) there must be a dual interface in Int(rα) of linear
extent exceeding On. However, the probability of such an interface is less than
(const)N2β"Dn<τ, which tends rapidly to zero with N.

Now we note that the absence of a dual interface is positively correlated (in
the sense of FKG) with the event {fύn(Aa(n))-P^n<^P00}. Thus with
(conditional) probability rapidly approaching one, more than (1 + %δ)N belong to
a single cluster. Furthermore, given the pair of events discussed above, it is not
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difficult to see that the origin belongs to this cluster (as does any site in ΛΛ(n))
with probability not smaller than P^ip).

The simultaneous occurrence of an ra of the appropriate type, and the three
events discussed above, produces the event oo > |C(0)| ^ JV; all of this occurs
with probability exceeding (const)exp(-(l + 2ε)σ^ χ /N/P 0 0 ], with the constant
uniform in N. This establishes Theorem l.B. •

4.C. The Combined Bound. Putting together the results of this section, we have:

Theorem Γ. In the two-dimensional Bernoulli bond percolation model on the square
lattice, for every p> pc

Remark. We have no intuition about the nature of the convergence of

- log P^N(P)/*JN to MpMpVyJPσoip)—we d o n ° t e v e n k n o w t h e s i s n o f t h e

correction. Of course, the derivation in the proof of Theorem l.A provides a lower
bound on the difference. Similarly, if we had good (though not necessarily optimal)
lower bounds on τ$*x* which were uniform in direction, these could be used to
obtain an upper bound on the difference. We consider the nature of these
corrections to be an important open problem.

For the time being, we will have to make due with the tautology:

Corollary. 3ε(N)^ \W{p)σ(p)^l^/PjJ)^ log P^{p) I ̂ fN\ > 0 such that β(Λ0JO.
Explicitly, ViV,

Ϊ expf - [1 - e(N)]\^β^]M (4.57)
V u/pj)J /

The reader may recall that Theorem 1 of the Introduction was expressed in
terms of the actual finite cluster distribution PN(p). Obviously, since PN{p) ^ P^N(P)>
(4.57) automatically implies an upper bound on PN(p). In [KS], a subadditivity
argument was presented which shows that upper and lower bounds of the form

e-b(PwN o n p^N(p) a i S o give lower bounds of this form on PN(p). Here, however,
we need a slight refinement of the Kunz and Souillard estimate to ensure that we
do not degrade the constant ^(p)σ(p)/f^/ P ̂ (p). This is provided in the following:

Proposition 4.4. Suppose that PN{p) is known to obey the bound

with b(p) positive. Suppose also that there exists a positive, finite constant a(p), and
positive function ε(N) with ε(JV)|O such that P^N{p) satisfies

e-[l+ ε(N)]a(p)VN <p> (p)<e~
ll
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Then either ε(N)^O(N + 3/2) or there are positive, finite constants kx(p) and k2(p)
such that

PN(P) ^

Proof. As in the [KS] proof, the key is the subadditivity relation:

p p

M ~ N M'
(4.58)

Let us choose δ(N) — Dε(N\ with D a constant of order unity to be determined
later. By the upper and lower bounds on P^N(p\ we have

£ ( ()) P^N^ e ~ α ( p ) U + ε * ί N ) ] [ 1 " W ) ] 1 / 2 V * - e - " ( * ) [ 1 - W ] ^ , (4.59)

where
ε*(N) = ε(N(l-δ(N))). (4.60)

By monotonicity ofε(N), we may replace ε(Λf) in the second term on the right-hand
side of (4.59) with ε*(N). Then, choosing the constant D so that

- δ(N)V/2 < 1 - ε(ΛΓ) - |(3(iV), (4.61)

Eq. (4.59) implies

^ ^ ^ (4.62)

Noting that P^N{1 -δ(N))~ P^N represents the sum oϊδ(N)N terms, let us define
M* by

P^w = nmx{PN_M |0 ^ M ^ <5(7V)7V}, (4.63)

so that (4.62) gives

^ p ^ (4.64)

By (4.64) and the subadditivity relation (4.58), we have

PN* {COnSte-°^PM.. (4.65)

Thus, using the known lower bound

PM* ^ e-*"^ ^ e-*pWmN9 (4.66)

we finally obtain

p ^ (COPSt) -a(p)y/N\ι+(b(p)ia(p))V3iN)] (4 67)
N - δ(N)N3/2 '

Recalling that δ(N) = O(ε(N)\ this is the desired result. Note that, although the
leading exponential decay rate has been preserved, this lower bound on PN has a
larger correction to the leading rate than does the lower bound on P>N. •
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Noting that we may always take ε(N) ^ ΛΓ~3/2 in the Corollary to Theorem Γ,
the lower bound of Theorem 1 now follows from Theorem Γ, Proposition 4.4
and the nonoptimal lower bound (1.3) on PN.

5. A Microscopic Wulff Construction

In this section, we give our first formulation of the Wulff construction for
two-dimensional percolation, as contained in Theorem 2 of the Introduction:
Namely, we condition on the (unlikely) event N ^ |C(0)| < oo, and show that with
probability tending to one as JV tends to infinity, an interface surrounding the
origin is arbitrarily close, in distance measured in units of ^/ΪV, to some translate
of the Wulff shape scaled by y/N/P^. An alternative formulation, in terms of a
"microcanonical ensemble," is given in Sect. 6.

Not surprisingly, in order to prove the microscopic Wulff construction, we
require a stability result for the Wulff minimum: Namely, if γ encloses unit area
and if p(yw, y)^η>0, then the value of the surface energy functional for y differs
from the minimum by a strictly positive function f(η). Were this not the case, then
the cluster could assume a shape which differs substantially from the Wulff shape
at essentially no cost. Two points are worth noting: (1) Although our stability
result is sufficient for our purposes, it is far from optimal—see the Remark following
the proof of Theorem 5.2. (2) Given the uniqueness of the minimizer, this stability
may seem obvious; however, it actually fails for d > 2. This suggests that one must
formulate another, less stringent notion of the "difference between two contours"
in order to prove a higher-dimensional microscopic Wulff construction.

This section is organized as follows: The proof of stability is given in Sub-
sect. 5.A; the Wulff construction (i.e. the proof of Theorem 2) is given in
Subsect. 5.B.

5.A. Stability of the Wulff Minimum. As explained above, the principal result of
this subsection (Theorem 5.2) is that there exists a strictly positive function, f(η\
such that if y is any acceptable unit area contour satisfying p(yw,y) ^η>09 then
g(y) ̂  u>(p) + f(η). The strategy of our proof is to consider a variant of the standard
Wulff variational problem (cf. Eq. (3.8)) with the additional constraint p(yw,y) ^ η,
and to show: (1) an actual minimizer exists for this modified problem; and (2) this
minimizer is not yw. By uniqueness (Theorem 3.3), one would then expect that this
minimizer, not being γw, must have a surface energy strictly larger than ιo{p\
Unfortunately, it is conceivable—particularly for large η—that the new minimizer
will be found among a larger class than the rectifiable Jordan curves /, so that
Theorem 3.3 could not be applied. Thus we must first extend Theorem 3.3, i.e.
extend the analysis of the standard (unconstrained) Wulff variational problem, to
a larger class of curves.

Let us define the appropriate "larger class." We remind the reader that Jordan
curves are closed and non-self-intersecting. Now let jf ZJ / denote the set of all
rectifiable closed curves in R 2 , i.e. Jf\f are the rectifiable closed curves which do
self-intersect. In order to formulate a Wulff variational problem over jf, we must
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generalize the notion of the "area enclosed" by a contour. For yeJf, we define

s/(y) = inf {s/(Γ)\y <= Int(Γ)} = inf M Γ ) | y c Int(Γ)}, (5.1)

where, as usual, for JΓG,/, Λ/(/") is simply the Euclidean area enclosed by Γ. For
polygonal paths, this definition agrees with that given above Eq. (4.17). The first
step in our proof of stability is to show that, given a chance to vary over JΓ, the
standard Wulff variational problem still has the unique minimizer γw.

Proposition 5.1. Let / be the set of all rectifiable Jordan curves in R 2 , let JΓ be
the set of all rectifiable closed curves in R 2 , let gp(γ) denote the density-p g-length
of the curve y as defined by Eq. (3.7) and Proposition 3.2, let s/(γ) denote the area
enclosed by y as defined in Eq. (5.7), and let u>(p) be the Wulff constant as defined
in Eq. (3.8). Consider the variational problem

Then w*(p) = *&(p\ and, in particular, the unique minimizer of this variational problem
is the Wulff curve yw = y w(p), as defined in Theorem 3.3.

Proof. It suffices to show that if γeJf\f and s/(y) ^ 1, then there is a y'eβ with
s/(γ') ^ 1 such that g(y') < g(y). Actually, we will prove the somewhat stronger
statement that the minimizer is a convex contour in J.

We begin by extending the notion of convexity to curves in Jf \ / . Suppose
that yeJf is parameterized by ίe[0, Γ]. Then we can define the convex hull of y,
H(y\ in the usual fashion:

H(y) = {xeR 2 |x = λy(t,) + (1 - λ)y(t2);0 g λ ^ 1,0 ̂  tx <, t2 ^ T}. (5.2)

We say that the curve yeCf\f is convex if each for Γef such that y cz lnt(Γ),

we also have H(y) cz lnt(Γ). Obviously when ye/, this is the usual notion of

convexity.
Our strategy is to divide Jf \ / into two sets: convex and non-convex curves.

For curves in the latter (and easier) class, we will show that there is a convex curve
in / which has the same #-length as the original curve, but encloses more area.
For curves in the former class, we will show that there is a (convex) curve in /
which encloses the same area as the original curve, but has a shorter gr-length.

For yeJf \ / (or ye/ not convex), let us define the curve yH via

yH = dH(y). (5.3)

It is obvious that yH is rectifiable, since its length is bounded above by the smallest
circle which circumscribes the convex set H(y). Thus yH is a convex contour in /.
We will show that the contour yH, perhaps modified by a scale factor, will provide
a better variational candidate than the original y.

We first show that

(5.4)

Indeed, let us parameterize the curve yH by se[0, S]. Let si9s2,..., sk be a partition
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of [0, S] for which Σ^giy^s^ — yH(si+i)) is a n approximation to the gr-length of yH.
We claim that, without loss of generality, we may choose the times st in such a
way that the points {yH(Si)} are extreme points of yH. For example, if s, does not
correspond to an extreme point of yH, denote by sv and s r the earliest time after
and latest time before st—using cyclic boundary conditions if necessary—such
that yH(Si>) and yH(sr) are extreme points of yH. Obviously this is a refinement of
the original partition; however, it is seen that this approximation to the g-length
is identical to that resulting from the partition in which all times between sv and
s r , including sf, are removed.

Now observe that, by the definition of yH9 all extreme points of yH are on the
contour y itself. Thus, by the reasoning of the previous paragraph, we may take
the points yH(Si) to correspond to times tj(i), not necessarily unique, which form a
partition of [0, T] for the original contour y. Of course, these times will not, in
general, fall in order on the contour y. Thus, a favorable comparison of the
approximations to g(yH) and g(y) from the partitions (s, ) and (ί,), i.e. a proof of the
inequality

Σ β(yπ(Si) - yH(si+1)) ύ Σ girth) - y(tj+ x)), (5.5)
i j

amounts to showing that the shortest g-length contour which touches all the
vertices of a convex polygon passes through those vertices in order. The proof of
this (which is done graphically) is elementary and identical to that for the Euclidean
case; for completeness, it has been included in the appendix (Proposition A.I).
Clearly, Eq. (5.5) establishes the inequality (5.4).

Now suppose that yeJf is not convex. Then it is easy to see that

Indeed, if y is not convex, we may find a non-extreme point xeγH and a disk of
radius a > 0 about x which is disjoint from y. Half this disk belongs to the interior
of yH, and hence

s/(yH) ^ £#(y) + ^na2. (5.7)

We may now rescale the curve yH by y/^{y)/^(yH) and call the new curve / . Then

<*/(/) = s/(y% (5.8)

while by Eq. (5.4)

g(Y) = g(yH)^ \^K < g(yH) < g{y\ (5.9)

This establishes that the minimizer is convex.
Now we need only consider those contours yectif\f which are convex, i.e.

yH c y. We will further divide this into two cases: either yH and γ are identical, or
γH is a strict subset of y. In either case, given our definition of the area, it is clear that

If the sets yH and y are identical, that is yH([0,5]) = 7([0,T]), then the



Geometry of Finite Clusters in 2d Percolation 31

assumption yeJt\/ necessarily implies a continuum of double points. In
this case, it is quite easy to establish that g(y)>g(yH) If t n e entire curve is
double covered, then g(y) ̂  2g(yH). Otherwise, assume without loss of
generality that y(0) is not double covered, let tt denote the earliest time
for which y(tx) is double covered, and let t2 > î be the earliest time for
which y(tί) = y(t2). For te(tut2\ it is seen that

g(y)^g(yH) + 2g(y(t1)-y(t))9 (5.11)

which, together with (5.10), establishes the desired result.
Finally, consider the case in which 3xeγ such that xφyH. Let us denote

by a > 0 the g-distance between x and yH:

a = min g(x — y). (5.12)
yeγH

Although the inequality

2a (5.13)

is intuitively clear, we have been unable to find a straightforward proof. A
proof of (5.13) which relies on a #-based Hausdorff measure of the sets γ
and yH has been relegated to the appendix (Proposition A.2). Obviously,
(5.10) and (5.13) imply the desired result, and complete the proof. •

We can now prove the necessary stability of the variational minimum.

Theorem 5.2. Let J f be the set of all rectίfiable closed curves in R 2 , let gp(y)
denote the density-p g-length of the curve y as defined by Eq. (3.7) and
Proposition 3.2, let srf(y) denote the area enclosed by y as defined in Eq. (5.1\
let w(p) be the Wulff constant as defined in Eq. (3.8), and let yw = yw(p) be
the Wulff curve as given in Theorem 3.3. Consider the variational problem

γeJΓ

Then for all p > pc, fp is a strictly positive function.

Proof. Let (yn\n= 1,2,...) denote a minimizing sequence of contours in
JΓ. Without loss of generality, we may assume that each yn is translated
so as to minimize its Hausdorff distance from some fixed yw, i.e.
P(y» 7w) = ^ H O V yw\ where the Hausdorff distance DH is defined in Eq. (1.9).
Also without loss of generality, we may assume that the lengths of these
curves are bounded: | y J < M < oo; hence the yn may be parameterized by
ίe[0,1], where t is proportional to the arclength, i.e. γn:[0,1]->R 2.

It follows from the above properties that (yn) is a family of uniformly
bounded equicontinuous functions on [0,1]. Hence, by the Ascoli theorem,
there is a subsequence—here again denoted by (yn)—which converges uni-
formly to some y*eJf. According to Proposition 5.1, it suffices to show that y*
is an actual minimizer of this modified Wulff problem and that y* Φ yw.

First, observe that p(γ*9 yw) ^ η (and hence y* Φ yw), since otherwise the
uniform convergence would imply that the constraint was violated at some
finite n.
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Next, let tu...,tk be a partition of the unit interval, which provides an
approximation to g{y*). Observing that, for each 7,

7n(tj)^y*(tj), (5.14)

it is readily established that

(5.15)

Finally, let Γ e/ be a Jordan curve for which

7*c=Int(Γ), (5.16)

and which thus provides an approximation to s/(y*). Since all the contours
γn live on some finite ball B, it is clear that only finitely many of them have
points in the (compact) set B\lnt(Γ). Using this, it is easy to verify that

sf(γ*)^]imsf(γj*l. (5.17)
H-+00

Equations (5.15) and (5.17) show that γ* has all the required properties; thus,
it is indeed a minimizer. •

Remark. Given the variational stability proved above, one is tempted to suspect
that a stronger statement is true. In particular, a perturbative ("second variational")
calculation—based on the fact that the Wulff curve is an extremum—suggests that

f(η) = O(η2). (5.18)

With additional hypotheses on the function g, such results should be
straightforward to establish; we suspect that (5.18) holds in the general case. A
strong stability statement of this sort would represent the first (and easiest) step
in obtaining concrete estimates on various convergence rates which appear in this
work only as existential quantities.

In any case, for future reference, we note that for small η,

f(η)£*η, (5.19)

with, say, α < 10. Equation (5.19) is easily verified by using a trial Wulff shape
with a "spike" of length ocη.

5.B. The Wulff Construction. We now establish the Wulff construction for the
Bernoulli system conditioned on the event N ^ | C ( 0 ) | < oo. Theorem 5.3, below,
gives the result mentioned in Eq. (1.11); Theorem 2 of the Introduction then follows
quite easily from Theorem 5.3.

Theorem 5.3. Consider the two-dimensional Bernoulli bond percolation model on the
square lattice with p>pc, and condition on the event N ̂  |C(0)| < oo. Then there
exists a function η(N) = η(N p), with η{N)lO monotonίcally as JVf oo, such that, with
conditional probability tending rapidly to one with N, there is an occupied circuit of
dual bonds, y, encircling the origin satisfying
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Proof. Take p > pc and suppose that the origin belongs to a finite cluster of size
at least N. Then (cf. Eq. (4.39)) the event rα occurs for some ring rα. Roughly
speaking, there are only three possibilities for the ring rα: (i) it may enclose
inadequate area to properly support a cluster of size JV; or (ii) it may enclose an
area sufficient to support |C(0)| ^ N, but be of an unfavorable shape; or (iii) (most
probably) under rescaling, it may actually be close to the Wulff shape. To deal
with the second—and most troublesome—possibility, we will employ the
variational stability derived in Theorem 5.2. In order that this can be best exploited,
the correct scale for the comparison shape is not necessarily y/N/P^, but rather
the scale of the ring itself. Ultimately, the system will select a ring of the proper size.

In order to quantify the above discussion, let us assume that N is large, and
recall the definitions of κ*(N) and ε(N) from Eq. (4.41) and the corollary at the
end of Sect. 4. Let f(η) = fp(η) be the "stability function" given in Theorem 5.2,
and define η = η(N) = η(N; p) to be the smallest possible number for which

(5.20)

The three possibilities for the event fΛ are:

i) ra encloses area smaller than [1 — K^N^N/P^,

ii) ra encloses area exceeding [1 - K^N^N/P^ but ρ(rjy/s/(ra),γw)> η,

iii) rα encloses area exceeding [1 — κ:*(N)]N/F00 and p(rjyjs/(r^9 γw) ^ η.

Case (i) has been discussed in the proof of Theorem l.A. Under these

circumstances, the event |C(0)|^JV occurs with probability not larger than

exp[ - O ^ O o g N ) 4 ) ] (cf. Eq. (4.47)).
We will handle case (ii) by a variant of the argument used in the proof

of Lemma 4.1: We will bound from above the probability of observing an rα

satisfying the conditions of case (ii) by summing over all possible m-skeletons of
such curves. First, we observe that if γ and / prefixed contours, then

where DH is the (untranslated) Hausdorff distance. Thus, if m is not large compared
with η times the typical length scale of the rings rα, then the m-skeletons of these
rings will also have a reasonable separation from the Wulff minimizers.

Let us follow the reasoning of Eqs. (4.11)—(4.22). If a given m-skeleton takes J
steps, the cost is at least e~σJm. This quantity (multiplied by the insignificant
combinatorial factor mJ(8πm)J) must be summed over the allowed range of J.
Although this necessarily means that the smallest term dominates, let us start by
summing away J > J*, where J* is the least integer satisfying

(5.22)

not surprisingly, this tail is negligible relative to P^N. Thus, we must perform the
summation

X e-σmJ(mJ)(Sπm)J, (5.23)

where Jmin is determined with the help of the variational principle. The sum in
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(5.23)—which again is essentially the first term—will provide our bound on case

Next we derive a lower bound on J m i n . Let us suppose that hm = hm(ra) is the
m-skeleton of some lattice curve rα in category (ii). Now, according to Eq. (4.18),
the ^-length of an m-skeleton of J steps satisfies

(5.24)

Thus it suffices to obtain a lower bound on g{hm). We consider two cases:

(a) s/(hj>s/(rj
(b) ^(ΛJ^W.

By (4.20), in the second (and more difficult) case, we can replace condition (b) by
(b') ^(r α ) - (const)Jm2 S ^(hm) g sf(rj.

In both cases, we will use the condition

,ϊw ^ (5.25)

First let us attend to case (b'), which will require more stringent conditions on
m. By (5.25) and the observation (5.21), we have

(5.26)7w )έη-'

Although the Hausdorf distance between rα and its m-skeleton cannot exceed m,
this distance is not quite the quantity appearing on the right-hand side of Eq. (5.26).
However,

DH
h/{hj yMO Wfi

-DH

/#j
-hm,re

sτkί 2m + Jm M ϋ 1

)
(5.27)

Now using the lower bound on <tf{hm) from condition (b% together with the facts

j/(rα) ^ [1 - fc*(N)]ΛΓ/P00 and Jm g 2^^/N/P^, we can bound the right-hand side

of Eq. (5.27) by Δm/y/jtfir^, where Δ > 2 is a constant of order unity. Thus we

obtain

Recalling that
which satisfies

scales like

(5-28)

let us choose m to be the largest integer

(5.29)
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with v a (small) constant of order unity to be determined later. In any case, by
(5.19), we may easily choose v small enough to ensure

Λn (5.30)

so that (5.28)-(5.3O) imply:

/ hm \ j

p( ?yw I ̂  ity. (5.31)

Then by the variational principle and the stability Theorem 5.2, we have

g(hm) ^ *>{l + ffa))y/sf(hj * u>(\ + /(^))V^(O ~ (const)Jm2. (5.32)

Now suppose instead that stf(hm) > <srf(rΛ) (i.e. case (a)). Then (5.25) and the
observation (5.21) give

u \ / u \
(5.33)

Here we can simply use the fact that the Hausdorff distance between a curve and
its m-skeleton is bounded by 2m to obtain

Δ m - ' (5.34)

where the final inequality follows from (5.29) and (5.30) and the fact that Δ>2.
Since £/(hm) > j/(rα), the curve in the first argument of p in (5.34) has more than
unit area. Thus here the variational inequality and the stability Theorem 5.2 directly
imply that

g{hm) > a>{\ + ffaVy/rfΰ). (5.35)

Evidently case (a) gives a stronger bound on g(hm) than does case (b'); thus we can
use (5.32) in both cases.

By (5.24), (5.32) and the category (ii) condition: s/(rj £ [1 - K^N^N/P^ the
minimum J satisfies

μ m i n + ί)(m + 1) £ ^(1 -f f(±η)) -£- [1 - κ*(N)l - (const) J m i n m 2 . (5.36)

Next, one can use the bounds (5.22), (5.30) and (5.20) to translate (5.36) into an
inequality concerning mJmin alone. (See the analogous manipulations in Eqs.
(4.21)-(4.22)). It is then straightforward to demonstrate that if a sufficiently small
v is selected in Eq. (5.30), then, for N large enough, the sum in (5.23) is bounded
above by

^exp[ - σ ^ y j V / P J l + f{\η)){\ - κ*(N))l, (5.37)

so that (for N sufficiently large) the probability of observing case (ii) is no more
than twice this amount.
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Using the worst case scenario (4.57) for lower bounds on P^N(p\ it is seen

that the conditional probability of case (ii) does not exceed exp[ — (const)(κ*(JV)v/JV)],

which tends rapidly to zero. As discussed earlier, the conditional probability of

case (i) is far smaller than this. Thus the only reasonable prospect is case (iii),

which is a subset of the event described in the statement of this theorem. •

As a corollary to the above theorem, we obtain Theorem 2 of the Introduction:

Proof of Theorem 2. We must produce a function η'(N\ tending monotonically to
zero with N, such that

ΓT .
(5.38)

To this end, let N" be chosen so that

2C1ORN"

l l 4 , _ v , - . , - • 2β(JV)), (5.39)

where the constant c is given in Lemma 4.1, and let us define η" via

N" = N{\+η"). (5.40)

(For example, (5.39) and (5.40) are satisfied if we choose η" = (const)(ΛΓ" m log N + ε(JV))
with a sufficiently large constant.) It follows from Eq. (5.39), Lemma 4.1 and
Eq. (4.57) that

P[rα, s/{rj > ΛΓ'/P^ \ N ^ C(0) < oo] (5.41)

is negligibly small for N sufficiently large. From this, and the proof of Theorem 5.3,
we see that essentially the only rα's which contribute to the event {N ̂  C(0) < oo}
are those for which the ring ra satisfies:

p(-γ*=,yw)<η (5.42a)

and

l-κ*(Λ0< PcoS/^<l+η". (5.42b)

~V N
However, for such rings, obvious scaling properties and the observation (5.21) imply

ύ [1 + η'Ί ίη + (κ*(Λ0 + η") diam(yj]. (5.43)

The result follows by defining η' via the right-handside of Eq. (5.43). •
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6. A Single Droplet Theorem

In this section, we give a second formulation of the Wulff construction, as contained
in Theorem 3 of the Introduction. Recall that in Sect. 5 we conditioned on the
event N ̂  |C(0)| < oo. Here we focus on a somewhat different set of (unusual)
circumstances which result in the formation of a Wulff shape: We consider a large
square, ΛL9 centered at the origin:

AL = {(xl9x2)eE2\-L/2£xl9x2£+L/2} (6.1)

and examine the configurations in which ΛL has an atypically low infinite cluster
density. In particular, we will examine the configurations FL(λ) in which the infinite
cluster density in A L is depleted by a volume fraction λ:

Our principal result (Theorem 3) is that, under such circumstances, with probability
tending to one as L tends to infinity, the system develops a large dual contour
which (1) encloses area roughly λ|ΛL |; (2) is approximately of the Wulff shape,
measured in units of the linear dimension of the contour; and (3) contains a single
large droplet of roughly λPdj))\ΛL\ sites.

In order to prove Theorem 3, we must first estimate the probability of the
event FL(λ) on which we are conditioning. This is a large deviations estimate,
which is given in Theorem 6.1. Since the physically relevant case is
0 < λ < λc = [diam(yj] ~2, we restrict our large deviations estimate to these values
of λ. However, it is also possible to obtain estimates for λe\_λC91]; see the Remark
following the statement of Theorem 6.1. Once the large deviations estimate has
been established, the proof of Theorem 3 closely parallels the proofs of various
theorems in Sects. 4 and 5; therefore, we omit many of the repetitive details.

The large deviations estimate is:

Theorem 6.1. Consider the two-dimensional Bernoulli bond percolation model on the
square lattice with p > pc. Let FL(λ) be the event defined in Eq. (6.2) and take
0 < λ < λc = [dianφ J ] ~ 2. Then

limj-logPp[FL(A)]=-

where σ(p) and a>(p) are the surface tension and Wulff constant, as defined in
Proposition 3.1 and Eq. (3.8).

Remark. It is easy to see that

(6.3)

so that the restriction in this theorem is no worse than λe(09j). Since our λ is
analogous to the 2α in the Ising system studied in £MS] and [DKS] (see discussion
in the Introduction), our restriction is equivalent to the Ising restriction αe(0,£).

The reason for the restriction λ < λc = [diam(yw)]~2 is clear: As we will show,
if λ < λc, then ΛL absorbs the excess sites in finite clusters by forming a single
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droplet bounded by the curve y/λLyw(p); the surface energy of this curve is

y/?Xσ(p)t6>(p). On the other hand, if λ > λc9 then the curve y/λLγw(p) will leak out

of the box; at this point, it is more efficient for the system to absorb the excess

sites in a (single) droplet bounded by a curve which is not simply a scaled yw, but

which does fit entirely within AL. Thus, for any λe(0,1), we can define y/λ&>λ(p) to

be the minimum ^-length of a curve within the unit square enclosing area λ. It is

then possible to show that Theorem 6.1 holds with a>{p) replaced by wλ(p). However,

since the case λ > λc is not relevant to the Wulff construction, we do not include

the more general result here.

Proof of Theorem 6.1. We must produce upper and lower bounds on P[FL(Λ)].
We begin with the lower bounds. Our strategy here is (1) to show that with a
lower bound of the desired type, there is a single large contour in ΛL containing
roughly λ\ΛL\ sites; and (2) to show that outside this contour, the fraction of sites
in the infinite cluster does not deviate significantly from P^.

Let us first estimate the probability of a contour containing approximately
λ|ΛL | sites. As in the proof of Theorem l.A, we will enumerate all dual rings
surrounding the origin: rα, α = 1,2, Now, however, rather than considering
outermost occupied rings, we define:

rα = {ω\ra is the innermost occupied dual ring surrounding the origin}. (6.4)

By a variant of the argument used in the proof of Lemma 4.3, it is not difficult

to show that for εe!R+, 3δ'(ε)^jδ(jε) such that for N large, the probability of

observing the event r^ with s/(ra)^[\ + <5'(ε)]ΛΓ is larger than e x p [ - ( l + ε)σ(/?)

w(p)y/N~\. Indeed, first using Lemma 4.3, one produces the event rβ (cf. Eq. (4.39))

for rβ outside some convex polygonal approximation, £ to yw of area exceeding

(1 + δ(^ε))N. As in the proof of Theorem l.B, we may take s/(rβ) < (const)Λf, for

some sufficiently large constant, without significantly altering the probabilistic

estimate. Then, for some n which is itself large, but only on the order of logΛf, one

ensures that with probability tending to one (as e~0{n)\ no dual site which is inside

the polygon ζ and a distance further than n from it belongs to a dual path of

linear extent as large as n. This easily gives the event r\_ for some rα with

s/{ra) ^ [(1 + δ)N - (const)χ/Λf log Λf] at a cost no larger than (const) exp[ - (1 4- | ε)

σ(p)v/ΪV]. The desired statement is now seen to hold for all N large enough.

Applying the above result with N = λL2, we see that if λ < λc, and L is large

enough, then with probability exceeding

exp[ - (1 + ε)7Iσ(pMp)L] (6.5)

the event r^_ occurs for some rα with | I n t ( r J n / t L | ^ (1 + δ')λ\ΛL\.
Next, we must show that in ΛL\Int(rα), the infinite cluster density does not

exceed P^ by more than enough to compensate for the depletion of the infinite
cluster density within rα. To this end, we observe that if ra is the innermost circuit
surrounding the polygon £ here it is the region outside rΛ that is unconditioned.
Thus we can apply the reasoning of previous theorems to show that, with
probability tending rapidly to one, the infinite cluster in /lL\Int(rα) will not be
dense enough to prevent FL(λ) from occurring. Explicitly, we pick n of the order
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of logL, and note that, for any c, the event {fύn(ΛL\lnt(ra))-P^n>c} is positively
correlated (in the sense of Harris-FKG) with the event that rα is the innermost
such circuit. Then, using Lemma 4.2, it can be shown that with probability tending
to one at least as fast as exp[ — (const)(<5'2|ΛL|/n2)], enough of the remaining sites
belong to clusters smaller than n2 to produce the event FL(λ). This completes the
proof of the lower bound.

Now let us establish the upper bound on P[FL(/l)]. We begin with the
observation, mentioned earlier, that in any configuration ω, any site which does
not belong to the infinite cluster is, w.p. 1, surrounded by a finite contour of dual
bonds. Let us denote by Γ(ω) the collection of outermost contours in ω whose
interiors have relatively large intersection with the box ΛL:

Γ(ω) = { y i ( ω ) , . . . , y ^

and γj is the outermost dual contour

surrounding some point in AL). (6.6)

In the above D is a large constant to be specified later. Let κ*(L) be the function
defined in Eq. (4.41), and define the event

j (6.7)

From the estimates of Lemma 4.2, it should be plausible that unless Q occurs, not
enough volume has been isolated in large clusters to permit FL(λ) to occur with
any reasonable probability.

In order to explicitly prove the above statement, let us first pause to consider
the following percolation-type problem. Let B a TL1 be any collection of sites. We
will focus on those configurations Ω(BC) of bonds with both endpoints in Bc. The
sites xeBc of any such configuration fall into three disjoint categories:

(1) |C(x)| = oo;
(2) \C(x)\ < oo and C(x)ndB Φ 0 ;
(3) |C(x) |<oo and C(x)ndB = 0.
We say that a site x in category (3) is in a "truly finite cluster," in the sense that
C(x) is unchanged by altering the status of any bond emanating from B (i.e. any
bond with one endpoint in B). Now take A <=2?c, n an integer, and α < 1, and
consider the event:

{/*<„( A) ^ α} = {ωeβ(J3c)|the fraction of sites in A belonging to truly finite

clusters of size no larger that n exceeds α}. (6.8)

Although the problem of directly estimating P p [ Ω{BC)] \_f®n{A) ^ α] may seem formi-
dable, it is obvious that this is bounded by the probability of [f^n{A) ^ α} in the
usual percolation problem:

To see Eq. (6.9), one need only observe that a Bernoulli configuration on the full
lattice can be constructed in a two-step process: first draw a Bernoulli configuration
in Ω{BC\ and then independently draw a Bernoulli configuration on the remaining
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lattice. If the event {f®n(A)^oc} occurs in the first step of the process, then (by
definition) the additional bonds cannot decrease the fraction of sites in clusters
smaller than n.

Let us now consider the event Qc. Denote by Γj any collection of dual contours
such that the event ΓJ = {ω\ Γ(ω) = Γj} implies the event Qc. Letting ί(Γj) denote
the set of sites inside the contours of Γj9 it is seen that we may describe the
configurations outside JL(Γj) as a / ^ ( Γ ^ - p e r c o l a t i o n process subject to the
two constraints:
(α) There are no large contours in ΛL outside the contours of Γj (where "large"

is specified by the condition in Eq. (6.6)).
(β) All sites in dlL(Γj) are connected to infinity (outside TL(Γj)).
The second constraint follows from the fact that Γ(ω) is a set of outermost contours.
We denote the events in conditions (α) and (β) by α, and βj9 respectively. Thus if
we define Ξj to be the event that the contours of Γj are actually formed, we may
write:

ΓJ = ΞjnoCjnβj. (6.10)

It is worth observing that the events Ξj and α^n/?,. are independent, and that both
otj and βj are FKG positive events.

Now observe that, given the event ΓJ, the only possible mechanism for FL(λ)
to occur is that the fraction of sites belonging to small clusters (i.e. clusters whose
intersection with ΛL is less than (DlogL)2) far exceeds its typical value. Let us
denote by A} the sites of ΛL\JL(Γj) a distance further than (DlogL)2 from dλL.
We claim that if ωeΓJ, the event FL(λ) will not occur in ω unless, in that
part of ω belonging to fl(L(Γ/), the event {f^D)]ogL)Mj)^ 1 -^oo + ^oo**}
occurs.

The above statement can be verified as follows: Each site in Aj either belongs
to the infinite cluster or is in a cluster whose intersection with ΛL is smaller than
(D log L)2. Note that, by the definition of Aj, any site in the second category is in
a cluster whose total size is actually smaller than (DlogL)2. According to the
condition FL(λ\ there cannot be more than (1 - λ)PO0 \ΛL\ sites in the first category.
Thus we find

fϊiDituMj)* 1 " ( I -λ)P00\ΛL\/\Ajl (6.11)

On the other hand, any site in ΛL\Aj is either a distance (DlogL)2 from the
boundary—which accounts for fewer than (4L)(DlogL)2 sites—or is sealed in a
large contour—which accounts for fewer than |ΛL | [λ —2(1 - Λ,)/c*(L2)] sites.
Evidently, if ωeFL(λ)nΓJ,

\Aj\*\ΛL\ll-lλ-2(l-λ)κ*(L2)]-4(DlogL)2/L]

(6.12)

For L sufficiently large, Eqs. (6.11) and (6.12) imply that the desired event occurs.
Now recall categories (1), (2) and (3), defined earlier in the context of a general

percolation problem on a "depleted" lattice. It should be observed that because
the event ΓJ includes the event βj (which connects all sites in dlL(Γj) to infinity),
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there is no category (2) in this system—i.e. all finite clusters are truly finite. It is
thus clear that the events

nnifsvum&iAj)* 1 -^oo +^00**} (6.13a)

and

t 1 - Poo + P«K* }

f 1 ~ P β + P***} (6.13b)

are equivalent. We note that the event Ξi is independent from the other three
events on the right-hand side of (6.13b), and that {/f ( D l o g L )2(Λj)^ 1-P^ + P^κ*}
is FKG negative, while, as previously mentioned, ccjnβj is FKG positive. Thus,
by the Harris-FKG inequality, we have

f i D l o g L ) Mj) ^ 1 - ôo + Poo**]. (6.14)

Summing over all (and observing that the events Γf partition Q% we can use
(6.9) and Lemma 4.2 to conclude that the probability of observing FL(λ) in Qc is
negligibly small relative to the anticipated upper bound.

We can therefore obtain an upper bound on Pp[FL(/l)] simply by estimating
the probability of the event Q. We start by recalling the upper bound on P [ ^ ( A 0 ) ]
of Lemma 4.1. It is easy to see that (if Ao is not terribly small) this upper bound is
log convex and monotone, i.e. for x large enough,

g ^ (6.15)

is concave and monotone. Indeed, since u(x) is asymptotically just a square root, it
is clear that for x large enough

u(x)-xu\x)^u{x). (6.16)

As we will see later, it is the concavity of the function u which forces individual
clusters of moderate size to coalesce into a single large cluster.

We again divide things up according to which large outer contours are present.
Explicitly, we denote by Γj any collection of dual contours such that the event
ΓAj= {ω\Γ(ω) = Γj} implies the event β:

(6.17)
j

However, this time we need only estimate the probability of observing the rings
alone:

(6.18)
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To estimate this, we consider the event:

Bk(N) = {ω13k + 1 disjoint occupied dual rings r 0,.. ., rk9

none of which are contained in one another, with

\Int(rj)nΛL\ ^{DlogL)2 and £ |Int(r^nΛJ = ΛΓ}. (6.19)
j

It is not terribly difficult to see that

Σ P[β*(ΛΓ)] = Σ P [ S , ] , (6.20)

where

kmax(N) = [ΛΓ/(D log L ) 2 ] - l , (6.21)
and

JV0 = \ΛL\iλ - 2(1 - λ)κ*{L2)-} = λ |Λ L | ( l - κ*μ)) (6.22)

is the minimum enclosed area consistent with the event Q.
Let us define α, = l l n t ^ n / l j and recall the definition (6.15) of the function

M. By the van den Berg-Kesten inequality and Lemma 4.1, we have

^ Σ \ΛL\" +

where |y l L | k + 1 accounts for all possible placements of the rings. Now, by mono-
tonicity and concavity of w, it is clear that the sum in the argument of the exponent
in (6.23) is maximized by putting as much mass as possible in a single ring. Thus,
using Nk+1 as an (over)estimate of the number of ways to partition ΛΓ, we have

P[**(Λ0] ύ Nk+ί\ΛL\k+1 exp {- [ii(ΛΓ - fc(Z)logL)2) + M φ l o g L ) 2 ) ] } , (6.24)

where we have tacitly assumed ΛΓ^(/c + l)(DlogL)2. We degrade the estimate
further by saying N£\ΛL\9 and thus (N\ΛL\)k+1 ^ |Λ L |V k l o g L . Permitting k to
assume continuous values in the allowed range, let us attempt to minimize (the
negative of) the function in the exponent in (6.24). The derivative of this function
with respect to k is

- (D log Lfu\N - k(D log L)2) + u((D log L)2) - 4 log L. (6.25)

However, u! is decreasing (by convexity) and N — k(D log L)2 ^(DlogL) 2 . Thus,
using (6.16), this derivative is bounded below by

u((D log L)2) - (D log L)2u'{{D log L)2) - 4 log L ^ |M((Z> log L)2) - 4 log L > 0,

(6.26)

provided that D has been chosen large enough. Thus the worst case occurs for
k = 0, for which we have

P[J3k(JV)] ^ (const)L4exp {- u(N)}. (6.27)

Since for each N, there are only of order L allowed values of k, we may freely sum
(6.20) first over /c, then over N^.N0 to obtain an upper bound of the stated
form. •
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We can now establish the single droplet result:

Proof of Theorem 3. Take p > pc and condition on the event FL(λ). Then according
to the statement of Theorem 3, we must find functions φL(λ% ζL(λ) and μL(λ) tending
monotonically to zero as Lfoo, such that, with conditional probability tending
rapidly to one with L, there is an occupied circuit of dual bonds, y, in ΛL satisfying

(a) J*(y)^[l-φL(λ)lλ\ΛL\9

(c) Int(y) contains a connected cluster of size exceeding Poo(p)[l -

We first establish property (a). To this end, we note that by Theorem 6.1, there
exists a sequence φL(λ) = φL(λ;p) with φL[0 as L |oo satisfying

exp(- [1 + J
(6.28)

Let us now define another positive monotone sequence, φL(λ) = φL(λ; p\ with φL JO
as L] oo satisfying

φL(λ) ^ 2max tyL(λ), /c*μ)}, (6.29)

where fcJ(A) was defined in Eq. (6.22). We claim that any such function φL(λ)
satisfies (^).

To prove the above claim, we first note that, according to the arguments in
the proof of Theorem 6.1, the condition FL(λ) means that we may restrict attention
to configurations in Bk{N) for N0^NS\ΛL\ (cf. Eqs.(6.19) and (6.22)). Let us
estimate the probability that Bk(N) occurs, but that we do not have a ring enclosing
sufficient area to imply the result (^), i.e. consider the event:

(&yNtk = {ωeBk(N)\all occupied dual rings r satisfy

\lnt(r)nΛL\^(l-φL)λ\ΛL\}. (6.30)

As in the bound on P(Bk(N)) in Theorem 6.1, P [ ( ^ J c a n b e estimated using
the van den Berg-Kesten inequality, Lemma 4.1 and concavity of the function u.
Now, however, since the event {a)c

Nk imposes a maximum ring size, concavity
implies that the optimal configurations will have the maximum number
m = m(N)eΈ+ of large rings—as large as the constraint permits—to absorb most
of the area N. There will then be a single ring of intermediate scale, containing
as much additional area as possible. The remaining k — m rings will have interiors
as small as permitted. This translates into the estimate

n(aYN,klύNk + 1\ΛL\k + 1exp{-lmu((l-φL)λ\ΛLtt

+ u(N-m(l-φL)λ\ΛL\-(k-m)(DlogL)2)l}. (6.31)

Summing over k then N9 it is found that any excess of N or k over the minimum
allowed values is unnecessarily costly; essentially the entire sum is contained in
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the terms N = N0 (and thus m = 1) and k = 1 (cf. Eqs. (6.24)-(6.27)):

c ] ^ Σ

. (6.32)

Examining the definitions (6.15), (6.22) and (6.29) of u(x\ κl and φL, it is seen that
P[(^) c ] is very small relative to P[FL(A)]. This establishes the first claim.

Results (6) and (c) can now be taken over from previous derivations. Given
the existence of the circuit y, as sf(γ)-χχ>, the estimates of Theorem 5.3 which
demonstrate that "case (ii)" is highly unlikely relative to "case (iii)" can be applied
directly. Indeed, we need only construct our "i;" (here denoted by ζL(λ)) and φL(λ),
and then use an identical argument. Now, given the existence of this ring, there
must be an ample unconditioned region of a fairly regular shape (i.e. convex),
providing us with an analogue of Lemma 4.3. Translating mutatis mutandis the
proof of Theorem l.B, one can show that, within this region, there is a large cluster
of the stated specifications. •

Appendix

Here we provide proofs of a few "obvious" geometrical facts which were used in
our proof of stability of the Wulff minimum (Theorem 5.2).

A.I. Uncrossing of Polygons

Proposition A.I. Let vl9...,vkeJI^2 denote the vertices (extreme points) of a convex
polygon. We assume that the vertices are labeled in (cyclic) order, i.e. the curve γ{Vj)

composed of the segments joining successive vertices is self-avoiding. Let (v'j) denote
any reordering of the vertices, and yiv,j} the curve passing through the {VJ} in the new
order. Then

g(γ{Vj))ύg(yiv>,), (A.I)

where g is the norm constructed in Proposition 3.2.

Proof. If the curve y^,) is composed only of line segments joining neighbors in the
original ordering (i.e. if y{vΊ is a reparameterization of γ{υ}), then there is nothing to
prove. Otherwise, the curve y(v>j) contains crossing lines: Indeed, suppose that v} is
connected to vj+s with 1 < s < k — 1. Since each vertex belongs to two line segments,
there must be an r<s and an r'>s such that vj+r is connected to vj+r>. By
convexity, the two segments will cross in the interior of the polygon. (See Fig. 2.)

Let X denote the number of crosses in the curve y{vΊ. We claim that there is yet
another ordering, (v'j), with no more than X — 1 crosses such that

g{yw)zg(yw)' ( A 2 )

Indeed, suppose that Vj is connected to vj+s, while Vj+r is connected to vj+r> with
l ^ r < s < r ' ^ f c - l , a s illustrated in Fig. 2. Clearly, we may "uncross" the diagram
in one of two ways: either attach v 3 to vj+r and vj+s to υj+r>, or attach Vj to vj+r>
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V

Fig. 2. Crossing segments

and vj+s to vj+r. Having done so, either way, the result is a collection of line
segments which, by the triangle inequality, have total ̂ -length no longer than g(yivi)).
However, this does not quite establish the conclusion in Eq. (A.2). Indeed, we must
demonstrate that:
(i) the resulting line segments may be assembled into a single closed curve; and

(ii) the uncrossing procedure strictly decreases the number of crosses.
Concerning the first issue, it is seen that before and after the uncrossing, each

vertex is connected to two lines; thus we can still construct closed curves from the
resulting segments. However, this does not preclude the possibility that, by the
uncrossing, we have broken the original curve into two disconnected pieces, i.e.
two sets of vertices with no interconnecting segments. To see that this problem
may be circumvented, let us exhibit the only possible mechanism for disconnecting
the original curve. Suppose that {Vj} can be divided into two sets, A and B, with
AnB = 0 and (say) vj9vj+rsA, while ΌJ+s9ΌJ+r.eB. Now if only the segments
between Vj and vj+s and between vj+r and vj+r, connect the sets A and B in the
original curve y(υΊ, then the curve will split if we use the first choice of how to
uncross. However, before we contemplate such a move, it is worth observing that
since y(υ.s) is a closed curve, it must be the case that vj+s and vJ+r. are the endpoints
of a curve threading through all the other vertices of B. A similar statement holds
for the vertices υj and vj+r. Thus the alternative choice for uncrossing necessarily
implies that the resulting curve will have two lines connecting A to B.

The second issue is dispensed with by means of an elementary convexity
argument. Suppose that we choose to uncross via the first option, so that ΌJ ends
up connected to vj+r. Obviously, this procedure removes the dark cross shown in
Figure A.I. Let us show that it does not introduce any new crosses, except if it
also removes at least a compensating number of crosses from the original curve.
Consider the two "half line segments" starting at Vj and vj+r (before we uncross),
as well as the final segment connecting v} to vj+r. Denote by C the set of vertices
vj+1,...,vj+r_l9 and by D the set ΌJ+r+l9...9ΌJ-1. It is clear, from the convex
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arrangement of the vertices, that any line joining two points in the C group crosses
none of the three line segments under question. On the other hand, it is conceivable
that a segment joining a pair of vertices in the D group touches one or both of
the half segments; it certainly does not touch the line joining Vj and vj+r. In this
case, the number of crosses can only decrease. Finally, if a C vertex is connected
to a D vertex, there is an inevitable single intersection with one of the two half
segments before uncrossing, as well as an inevitable single intersection with the
segment connecting Vj to vj+r after uncrossing. Thus there is no net change in the
number of crosses in this group.

Having verified the statement (A.2), it seen that if the uncrossing procedure is
repeated (no more than) X times, the desired inequality is established. •

A.2. A g-based Hausdorff Measure. There is a classic result which states that if y
is a rectifϊable plane curve of (Euclidean) length ££(y) and μ ( - ) is the standard
one-dimensional Hausdorff measure, then

(A.3)

Furthermore, the inequality in (A.3) is an equality if y is a self-avoiding curve. By
analogy, if μ^(—) is the one-dimensional Hausdorff measure constructed from the
metric g, one would expect

(A.4)

with equality if y is self-avoiding. The derivation of this result involves only minor
modifications of the standard derivation of (A.3). The result is also a consequence
of Theorem 2.10.13 of [F] . Nevertheless, for the sake of completeness, we will
present it as a formal proposition.

Definition A. Let g(x) be defined as in Proposition 3.2 and Uε(x) — {ye1R.2\g(x —
y) < ε}. For A c R 2 , we define

= i J

where the infimum extends over all countable coverings of A by g-balls of radius
less then ε. The μg,ε(A) are clearly monotone in ε, so that

{A) (A.5b)

exists. The function μg( —) is called the one-dimensional g-Hausdorff measure.

Lemma A.2. Let γ: [0, T] -»]R2 be a rectifiable curve. Then

μg(y) ύ g(y)

(where, as usual, we also use y to denote the range of y). Furthermore, if y is
self-avoiding,

μθ(y) = g(y)

Proof. We first show that, in general,

μβ(y). (A.6)
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To this end, take y and denote by (xi,...,xn ( ε )) the sequence of points along y,
with xλ = y(0) and xn(ε) = y(T), such that the 0-length of the portion of y between
X; and xi+1 is equal to 2ε, except for the final pair, xn^1 and xn, which will in
general be separated by a g-length along y of less than 2ε. Then it is clear that y
is covered by the union of balls of g-radius = ε centered at the points (xt). Up to
an additive factor of 3ε, the sum of the diameters of the balls in this cover provides
an upper bound on μβtε(y). We have

gM (A.7)

which establishes (A.6).
It remains to be shown that if g is self-avoiding, then g(y) = μg(y). To this end,

we first establish the intermediate step

.(y)> 0(7(0)- (A.8)

which holds regardless of any stipulations concerning self-avoidance. It is trivial
to show that (A.8) holds if y is a straight line; indeed, in this case, for each
ε> βgM)= d(yΦ) — y{T)) ( = g{y) for a non-retracing straight line). In general, let y
denote any rectifiable curve assumed, with no loss of generality, to have y(0) = 0,
and let Uej(xj)9 j = 1,2,..., N be a collection of #-balls with ε,. < ε and

r = U V*MJ)

For each x e R 2 , consider the level curves

(A.9)

g(x)}, (A.10)

and denote by ss the intersection of CXJ with the line joining 0 (sy(0)) and y(T).
(See Fig. 3.) Finally, denote by L the straight line segment which runs between 0

Fig. 3. A ^-covering of the curve γ
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and y(T). We claim that

Lcz (j Uεj(Sjl (A.11)
7 = 1

from which (A.8) follows immediately. Indeed, for any yeL93y*eCy such that
y*eUε.(Xj) for some element) of the covering—in particular, any element of Cyny
is such a point y*. But then

= flf(y-^) (A. 12)

Here the third line follows from the fact that these points lie along level 0-curves,
and the fourth line is a consequence of the fact that y and Sj are connected by the
straight line L. This establishes (A.ll).

Given (A.8) and (A.6), the equality g(y) = μg(y) for self-avoiding curves follows
easily by considering the Hausdorff measure of polygonal approximations to γ. •

Corollary. Let ye^ί\f denote a "convex" curve (as defined in the proof of
Theorem 5.2) and let yH be the boundary of the convex hull ofy: yH = dH(y). IfyH Φ y
in the sense that 3xey such that ming(x — y) = a > 0, then

yeγH

g(y) ^ g{yH) + 2 A

Proof. This corollary basically follows from the fact that γH is self-avoiding and
that the Hausdorff measure is an outer measure. Explicitly, let us assume that
y(0)eγH and denote by tx the first time when γ(tx) = x. We define

t; = i n f { s | s < t x ) y ( s , y n y H = 0 } (A.13a)
and

ίx

+ =suρ{s\s>tx,y(s,tx)nγH = 0}. (A. 13b)
Then

g(y) = g(γφ, t;)) + g{y{t;,Q) + g(γ(tx, φ) + g(γ(t^, T))

U (A. 14)
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