
Commun. Math. Phys. 130, 441^56 (1990) ComiTIUniCaHonS IΓl

Mathematical
Physics

© Springer-Verlag 1990

Anomalies in the One-Dimensional
Anderson Model at Weak Disorder

Massimo Campanino* and Abel Klein**
Department of Mathematics, University of California, Irvine,

Irvine, CA 92717, USA

Abstract. We show that at the special energies E = 2 cos πp/q, the invariant
measure, the Lyapunov exponent, and the density of states can be extended to
zero disorder as C00 functions in the disorder parameter. In particular, we
obtain asymptotic series in the disorder parameter. This gives a rigorous proof
of the existence of the anomalies originally discovered by Kappus and Wegner
and studied by Derrida and Gardner and by Bovier and Klein.

1. Introduction

The one-dimensional Anderson model is given by the random Hamiltonian

H = H0 + λV on Z2(Z),
where

and the F(x), xeZ, are independent identically distributed random variables with
common probability distribution μ. We will write h for the characteristic function
of μ, i.e. h(t) = $e~ίtvdμ(v). The real parameter λ will be called the disorder.

In this article we will always assume that μ has finite moments of all orders
and is not concentrated in a single point; we normalize μ by

Jt*/μ(ι;) = O, \v2dμ{v)=\.

The eigenvalue equation associated with H is

u(n + 1) 4- u(n - 1) = (E - λV{ή))u(n). (1.1)
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we may rewrite (1.1) as a recursion relation for Z(n):

1
= E-λV(n)-

Z(n)'

This relation defines a Markov process. It is a theorem of Fϋrstenberg (e.g., [1])
that, if λ 7*0, for each EeR there exists a unique invariant probability measure
vλE on R, i.e. vλE satisfies

ί / ( # u ( x ) = ί Γ J f( E - λv - -)dva*)]dμ(v) (1.2)
R RLR \ XJ J

for all bounded measurable functions/. In addition, vλE is always a continuous
measure and hence it can be viewed simply as a measure on R. Notice that vλE

is, up to multiplication by a constant, the only signed measure satisfying (1.2)
(see [1]).

The Lyapunov exponent yλ{E) and the integrated density of state Nλ(E) can be
obtained from the invariant measure by (e.g., [1])

γλ{E) = Jlog|x|dvλ£(x), (1.3)
R

oo

Kappus and Wegner [2] discovered that there were problems in the naive
perturbation expansion in λ for the Lyapunov exponent, as proposed by Thouless
[3]. They found that the leading coefficient in λ was wrong at the center of the
band (E = 0), and that the differentiated density of states (ρλ(E) = (d/dE)Nλ(E))
exhibited a discontinuity at that energy. They called this phenomenon an anomaly.

Derrida and Gardner looked at the invariant measure and found anomalies
not only at E = 0 but also at E = ± 1, in the next to the leading coefficient in
Thouless' expansion. They conjectured that such anomalies should occur at all
energies of the form E = 2 cos πp/q.

Bovier and Klein [5] gave a very detailed analysis of these anomalies and
proved Derrida and Gardner's conjecture, at the level of formal perturbation theory.
They showed that, if E = 2 cos πp/q, the naive perturbation expansion for the
invariant measure has a divergent qth term. They also derived a modified
perturbation expansion with finite coefficients of all orders; those differ from the
naive ones only at order ^ q — 2.

In this article we give a rigorous proof of the existence of these anomalies. We
show that the modified weak disorder expansions of Bovier and Klein are
asymptotic to the invariant measure, Lyapunov exponent, and density of states,
in the sense of being the corresponding Taylor series at zero disorder.

2. Statement of Results

If the single site potential probability distribution μ is such that its characteristic
function and its derivative go to zero at infinity, Klein and Speis [6] have shown
that the invariant measure vλE is absolutely continuous. Let φλE be its density.
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Then φλyE(x) ^ 0, J φλ>E{x)dx — h and it follows from (1.2) that it must be the unique
normalized solution of the equation

Following [4,5] we write E = Eo + λ2ε and rewrite (2.1) as

D C1 ί^S O\

, Λ P (β, Γ = (/) α Γ , 1.Z..Z)

where

/ 1 \ 1

are bounded operators on U{R,dx\ SEo being an isometry. We will also write

The properties of SEo are responsible for the appearance of anomalies [4,5].
If - 2 < Eo < 2, we can write Eo = 2 cos πα and, by a change of variables, SEo is
given by the shift of πα on the circle of length π. If α is irrational the equation

SEoφ = φ (2.3)

has a unique normalized solution. But if α is rational, say α = p/q, 0<p<q relatively
prime integers, then Sq

Eo = / and its spectrum consists of the qili roots of unity, each
with infinite multiplicity. In this case we have problems if we try to perturb (2.2)
around λ = 0.

To overcome this difficulty, let us replace [4,5] (2.2) by

= 0, (2.4)

where Eo = 2cosπp/q,0<p<q relatively prime integers, φλ,Eo,ε =

Λλ,£o,ε Jϊ ' y*"*)

with λ Φ 0.
Let Jf = L2(R,(1 + x2)dx). Then Jf is continuously imbedded in Lx(R,dx) and

Dλε and 5 £ o are bounded operators on Jf* with So unitary on Jf. It will be
convenient to consider (2.2) and (2.4) on Jf. Under the assumptions outlined above
φ λ v E eJf for all λ Φθ and EeR [6].

Bovier and Klein showed that we can take the limit as Λ.->0 in (2.5) obtaining
the differential operator

They showed that AλEoε-• Λ0Eoε strongly in Jf on a core for Λo,£o,«> a n (^
Λ0Eoε has zero as an isolated simple eigenvalue. In fact they solved the equation



444 M. Campanino and A. Klein

In JΓ obtaining the unique (normalized by \ψo,E0Λ
χ)^x = 1) solution

<Po,o,ε = Wo,ε(l +x 4 ) " 1 / 2 exp( v /2εarc tan[ v /2x( l - x 2 ) " 1 ] ) , (2.6)

if Eo = 0, and

<Po,E0,e = NEo,ε(x2 - Eox + I ) " 1 exp(/C£oε(4 - E 2 ,)" 1 ' 2

• arctan [(2x - £0)(4 - £ g Γ 1 / 2 ] (2.7)

if Eo Φ 0. Here Λf£o,ε is a normalization constant and KEθt8 is some constant that
can be computed. They defined Hubert spaces

which are just X equipped with an equivalent norm, and showed that A0Eoε is a
self-adjoint operator on Jf£o>ε with discrete spectrum, A0tEθtε ^ 0, with 0 an isolated
simple eigenvalue with eigenvector φ0,Eo%ε.

In addition, Bovier and Klein derived a uniquely defined formal perturbation
series in λ for φλtEo,ε in jf. More precisely, if we formally write

n=onl

it follows from (2.5) that

2 = - έ3έ 3

Bovier and Klein [5] proved that these equations have a unique normalized set
of solutions φ$EθtB in the domain of A0Eoε in XEo,ε and hence in JΓ.

Our main result is

Theorem 2.1. Lei ί/ie 5in^/e site probability distribution μ have finite moments of all
orders, with zero mean and variance one. Suppose its characteristic function h is
0 ( [ ( l + ί 2 Γ α / 2 ] as t-^oo for some α > 0 . Let E0 = 2cosπp/q, with 0<p<q
relatively prime integers, and let εeR. Then the map R3λ-+φλtEθtεeJf is C00.
Moreover, its Taylor series at λ = 0 is given by (2.8) and (2.9).

It follows from [7,6] that the map is C00 on R\{0}. The point of the Theorem
is that the map is C00 at λ = 0 after we extend φλtEo,ε to λ = 0 by (2.6) and (2.7).

It is easy to see that (1.3) and (1.4) express yλ(E) and Nλ(E) as values of continuous
linear functionals on X applied to φλE. Thus we have

Corollary 2.2. Under the above hypotheses the maps λ -*> yλ(E0) and λ -• Nλ(E0)
extend to λ = 0 as C00 functions.

Bovier and Klein [5] showed that the spectrum of Aλtt in Jf is contained in
the set {z; Re z ^ - αx} u {0} for some aγ > 0 and all λ Φ 0 sufficiently small. They
also proved that (Aλε — z)'1 -+(AQε — z ) " 1 strongly in X for R e z > α 2 for some
a2 > 0 . But the proof of Theorem 2.1 requires more. To use perturbation theory
we need to show that (Aλε — z)'1 -+(AOfE — z)~ι strongly in Jf for all z with \z\ = α3,
for some 0 < α 3 <at.
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In the next section we will describe the proof of Theorem 2.1 in the center of
the band (Eo = 0). We start by rewriting (2.2) in the language of [7], so we can use
the technical machinery we had developed. The key lemma is Lemma 3.2, (3.3)
being the crucial estimate. Lemma 3.3 is a simple consequence of Lemma 3.2. The
estimates in Lemmas 3.2 and 3.3 enable us to prove Lemma 3.4.

In Sect. 4 we outline the modifications required for general Eo = 2 cos np/q.

3. The Center of the Band

In [7] we introduced the Hubert spaces

^ o = {/:[0, oo)-C measurable; | | / | | 0 = l |r- 1 / 2/(r 2) | | 2 < oo},

2?n = {/• [0, oo) -• C continuous, / (n — 1)-times differentiable on (0, oo ) with

/ ( π~ 1 ) absolutely continuous with

ll/lli= Σ Σ
m=lfc=0

for n= 1,2,...,and

the L2 norms being in L2([0, co\dr).
We also introduced operators T and R given by

(Tf)(r2)=-2]j0(rs)f'(s2)sds,

where Jn is the Bessel function of order n. We showed that T is unitary on #tn for
n = 1,2,..., R is unitary on ^ for n = 0,1,..., and T = Ron Jf £, so T leaves Jtf^
invariant.

Let βλ(r; E) = h((λ/2)r)eii/2)Er. Then Bλ(E) will denote the operator multiplication

by &(•;£), i.e.,

(Bλ(E)f)(r2) = βλ(r2;E)f(r2).

Notice that, under the hypotheses of Theorem 2.1 (see [7; Lemma 7.1]), Bλ(E) is
a bounded operator in all Jf n, n = 0,1,..., leaving Jf ° invariant.

In [7] we studied the eigenvalue equation

= ξχ.ε (3-1)

Under the hypotheses of Theorem 2.1 we proved that, if λ Φ 0, (3.1) has a unique
solution ξλtEeJf„ normalized by ξλtE(0) = 1, and that 1 is an isolated simple
eigenvalue for £λ(£)Γ in each JίTn. We also proved that Bλ(E)RBλ(E) has spectral
radius less than one in each 3f° by an explicit estimate. It is also proved in [8,6]
that Bλ(E)TBλ(E) is a compact operator in each Jfn.

The eigenvector ξλtE is related to the invariant measure vλ£, and Eq. (3.1) is
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related to Eq. (2.2). Klein and Speis [6] showed that ξλtE is the Fourier transform
of the density φλE of vΛ £, i.e.,

More precisely, let

and consider the real Hubert spaces

Jf' = {geJf g real valued},

where #?\ is equipped with the inner product </i,/ 2>jr' = R e < / 1 , / 2 > j r . Then
3F is an orthogonal map from JΓ' to 3tf\. Moreover [6], Jf' and 3tf\ are
invariant under S0,Dλ(E), and T,Bλ(E), respectively, and

and hence (3.1) is just (2.2), with

We will abuse the notation by writing Aλε for &Aλ#yZ3F~x. Then we have

{Bλ,
Aλ,ε =

0 being an isolated simple eigenvalue, where Bλε = Bλ(λ2ε),ξλtE = ξλtλ2ε.
We will now study the behavior of BλεTfor small λ We assume the hypothesis

of Theorem 2.1.

Lemma 3.1. There exists cί>0 and λo>0 such that

UBx*m*0^0*e-«» (3.2)

for all ε > 0 and λ with \λ\ < λ0.

Proof. By Lemma 3.1 of [7] we have

for any p with 2 < p < oo, where the IF space is Lp([0, oo), dr). If we make the choice
p = c2/λ2 for a sufficiently large constant c2 we get (3.2). •

Lemma 3.2. Let ε > 0 be fixed. Then for any n = 1,2,... ίftere exists α constant Mn

such that

II (WII *W ^ Mne-^™\ (3.3)
for any λ with |Λ| ^ Ax for some λt > 0.
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Proof. By an explicit estimate it is easy to see that for any ε > 0 and any n = 1,2,...,
there exists c3n = c3n(ε)< oo such that

\\BλJ^^ec^λ\ (3.4)

Since T is unitary on all Jfπ the bound of (3.4) also holds for BλεT.
To prove the lemma we apply an interpolation argument similar to the one

used in the proof of Theorem 5.1 in [7]. We introduce a family of operators S(z)
depending on a complex variable z, defined on the strip 0 ^ Rez ^ 1. S(z) is the
operator given by multiplication by the function

where α < y/4. Here y > 0 is such that \h(t)\ <> (1 + t 2 ) ' 7 for all t ̂  0. Notice that
such a y always exists by our hypotheses.

We define K(z) = (S(z)R)\ where k is such that K{\ + iy) is bounded from «?f0
to JfJ+ 1 for all A sufficiently small with a norm uniformly bounded in λ. The
existence of such a fe follows from Theorem 5.1 in [7]).

On the other hand we have

^ 1

for λ sufficiently small, since \h{t)\ ̂  (1 + ί2)"y, (1 + t2)σ ^ (1 + σt2) for 0 < σ ^ 1,
and α < y/4. Thus it follows that

II κ(ίy) ll^o-^o= II (s^)* )* ll^o-^o = x

since Λ is a unitary operator on Jf?0.
We also have that

sup WKMWj,
R e z ^ l

and K(z) depends analytically on z for 0 < Re z < 1 and is continuous in z for
0 ^ Re z ^ 1 as a family of bounded operators from Jfo to Jf0. We can then apply
the Calderon-Lions interpolation theorem (e.g., [9]) to the family K(z) getting

IIWIU^,^,;,^^, (3.5)
where c 4 is some constant independent of λ, for all λ sufficiently small. Here, we
used the notation that when we are interpolating in t between the spaces XQ and
Xγ we denote the interpolating spaces by [X o, Xγ]t. We will also write [XQ, XJJ""1"ι

We now apply again an interpolation argument to the fixed operator K(λ2) =
(eχ2BλfεR)k. We observe that by (3.4)

with c5 = fc(c3w+1 + 1) so that by interpolating between (3.5) and (3.6) we get
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with c 6 the largest of c 4 and c5. Iterating this procedure we get

for m = 1,2,..., so that

But, by Lemma 5.1 (see Appendix A), there exists 0 < c < oo such that

is continuously imbedded into Jf J, the injection being a contraction, so that

|| K(λψin+ί)/λ2] || ̂ ^ o ^ ec*[«n+ 1)/λ2]λ2 S ec\ (3.7)

We can now prove (3.3). Indeed, if; < [ φ + 1)/Λ2]fc + 1, then by (3.4) we have

UB^RyW^o^o^e^K (3.8)

If j ^ [ φ + l)/A2]/c + 1 we can write

_e-(cι/2)jλ2

e(cι/2)λ2(l+lc(n+l)/λ2]k) + c7

ZMe-toW, (3.9)

for some constant M independent of λ. Notice we used (3.2) and (3.7).
Putting together (3.8) and (3.9) we get (3.3) with

Mn = max (M, ec(n+»«>>»+<ι/V). •

Lemma 3.3. For any n = 1,2,..., for all λ Φ 0 sufficiently small and all ε we have:
(i) the spectrum of Aλε restricted to Jf% is contained in {z Rez ^ — c1/2}.

(ϋ)
*;-*ί^A#.β-<"/» (3.10)

for all t ̂  0.
(iii)

(3.11)

ifRez>-cJ2.

Proof, (i) follows form Lemma 3.2. To prove (ii), notice that we have, using
Lemma 3.2, that
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for all A sufficiently small.
Now, if Rez > —cί/29 we can compute the resolvent by

so using (3.11) we get (3.12). •

Lemma3.4. (Aλε — z)~* ->(y4Oε — z)~ ί strongly in Jfπ,n = 1,2,..., as λ-*0,/or any
z SMC/I that zφQ and R e z > — c1/2.

Proof. Bovier and Klein [5] proved that (Λλε — z)~* ->C4Oε ~z)~ι strongly in 2tfx

for R e z > 2 c 3 t l , where c 3 1 is given in (3.4). We give their argument for
completeness. Let feJ^u we have

(Ax* - z)f = A" 2 [(l + A2z) - (B λ , ε T
2 ]/,

so for Rez>0 we get, using (3.4), that \\(Aλft-z)f\\^λ'2[\ +λ2 Rez-β c A 2 ] \\f\\^
with c = 2c3Λ. Thus, if Rez > c we get

for all λ sufficiently small. The desired convergence now follows from the resolvent
equation since Aλε^AOε strongly in Jίf1 on a core for AOε.

Since AOε is a negative self-adjoint operator on Jfx equipped with an equivalent
norm [5], it generates a strongly continuous semigroup etA°-ε in jfx with
lkM°'βlljr -jr < ^ f°Γ a ^ f = ^ f°Γ s o m e constant C < oo. We can then apply the
Trotter-Kato-Neveu Theorem (see [10]) to get that etAχ>ε -• etA°>ε strongly in ^
as λ-+0 for all ί^O, uniformly for t in a compact interval. Moreover, by
Theorem 1.1 in [10] we see that

(B^Γ) 2 *-»«*•- (3.12)

strongly in Jfί as &-• oo, uniformly for ί in compact intervals.
Actually, etA°-e is a strongly continuous uniformly bounded semigroup on each

Jί?n,n= 1,2,.... Indeed, let <^G^fn+2, then the set {(B^εT)2kφ;k= 1,2,...}
is uniformly bounded in J^n+2 by (3.4). But bounded sets of J^n+2

 a r e P r e "
compact in <&„ (see Appendix B). Since we have convergence as fc->oo in jfl9

and convergence in J^n+2 implies convergence in jfx we can conclude that
{Bj^εT)2kφ-+etAo'εφ in 3tfn for each φeJ^n+1' The uniform bound gives the strong
convergence in Jfπ. Similarly one proves the strong continuity of etAo-ε in ̂ fn, and
that

e

tΛλ,e -+e

tAo,e strongly in Jfn. (3.13)

As before, let ξλt8 denote the unique solution of Aλteξλte = 0, normalized by
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ζλ,εΦ)=l- Let Pλε be the corresponding spectral projection (recall 0 is an
algebraically simple eigenvalue of Aλ ε9 all AeR and ε).

By (3.13),

( ^ ε ) ξ o , ε ξ O y ε as *->oo.

We can write

SO

) 2 m kKo* - ξjjj] - (B^-k,eT)2mk(ξo, - ξjfj - 0 (3.14)

in Jfn as fc-κx).

But ξOtε — ξ^εeJίf°, and by Lemma 3.2 we can choose m such that

for all k sufficiently large, so (3.14) implies that ξ^ε^ξOfε *n #Ίι as fc-> oo. Since
the convergence in (3.13) is uniform for t in compact intervals, and so is the bound
obtained from (3.3), it follows that ξλ,ε->ξOtε in Jfn as λ-+0. This implies that
Λu-*Λ),ε in norm as operators in Jfn9 since PλtJ = f(O)ξλ,ε.

It follows from Lemma 3.3 and (3.13) that if Rez > — cJ2 and z φ 0, then z is
in the resolvent of AOε as an operator in Jfn. Indeed, we can write

where the integral converges in norm by (3.11), (3.13) and (3.14), and the fact that
1 - po,ε projects onto Jf £.

Thus, if Rez > - cxβ,zφ0, and / e ^ n , we have

J ^ ^ - ^ ( P λ , ε - P O i i )/Λ

^ - etA°")P0Jdt + J eM^-*'(/ - P
T

^ (3.15)

for any Γ > 0. Given f/ > 0, we first choose λλ > 0 such that if |Λ| < λί9 the first
and the second term on the right-hand side of (3.16) have norm less that η/5 (this
can be done by the norm convergence of the projections plus (3.11)), uniformly in
T > 0. Then we choose T so that the fourth and fifth terms have norm less than
η/5 (use (3.11), notice we have shown it also holds for λ = 0). Finally we choose
0 < λ2 < λi so that for \λ\ < λ2 the third term has norm less than η/5 (use the strong
convergence of the semigroups, which is uniform on compact intervals). This proves
Lemma 3.4. •
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We are now ready to prove Theorem 2.1 for Eo = 0. Let Γ be the circle |z | = cx/4.
It follows from Lemma 3.3 that

^ λ , ε - z Γ ί d z (3.16)

for any λ sufficiently small, and it was shown in the proof of Lemma 3.4 that
Pλtε^>POtε in the norm of operators on Jfn. Recall that

_(Bλ,εT)2-I

where Bλε is multiplication by h((λ/2)r2)em)ελ2r\ Since h is infinitely differentiable
with bounded derivatives, which are 0((1 -I- t2)~a/2) as ί-> oo for some α > 0 [7],
and multiplication by r2 is a bounded operator from Jfn to Jfπ_2 for n ^ 2 [7] it
follows from (3.17) and Lemma 3.4 that the map λ->PλεG£έf(3tf>

n+2(k+i)>^n) *s

fe-times differentiable at λ = 0 for n = 1,2,... and all fe = 0,1, . . . . Since we have

for λ sufficiently small, and ξo,εeJί?n for all n = 1,2,..., it follows that the map
λ-*-ξλεeJ^n is infinitely differentiable at λ = 0 for each n = 1,2,....

Since as above λ^Bλtεe^(Jfn+2(k+i)^n) *s fe-times differentiable at λ = 0 for
n = 1,2,..., and all k = 0,1,.. ., and λ -+ ξλtEeJ^n is infinitely differentiable at λ = 0
for all n = 1,..., it follows that we can differentiate both sides of Eq. (2.4) at λ = 0,
now written as

obtaining Eq. (2.9) rewritten in the space Jfn.
This finishes the proof of Theorem 2.1 when Eo = 0. •

4. The Other Special Energies

We now want to show how to extend the proof of Theorem 2.1, given in the
previous section for the case Eo = 0, to the case Eo = 2 cos πp/q. In this case (2.1)
is rewritten as

where ξλ,£o,ε = ξλ,Eo+ελ2 and TEo = ̂ SEo^~ι = B0(E0)T.
If we try to repeat the proof of Sect. 3 we will notice that we cannot prove the

crucial Lemma 3.2 because (3.4) is no longer true for BλεTEo, since TEo is not
unitary in Jfw. To avoid this problem we must change the norm of the spaces J^n

to make TEo unitary. This can be motivated as follows: recall that SEo is unitary
on Jf£o = L 2 ( R , ( x 2 - £ 0 x + \)dx\ orthogonal on X'Eo, for - 2 < £ O < 2 . Since

x — (2/ϊ)d9 where (df)(r2) = / '(r 2 ), we are led to define equivalent norms on

|| / H2^ £o = Re </(r2), [(1 - (2/i)Eod - 43 2)/](r 2)>, (4.1)

the inner product being in L2([0, oo\rdr). It follows that !F is an orthogonal map
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from JTEO to Jf'ltEo9 and that TEo is orthogonal on Jf'ltEo. Notice that JTίf0 = J^\.
More generally, we let 3fOtEo = J^θ9 and for each n = 1,2,... we define equivalent

norms on the real Hubert space 3tf'n, with the "primed" Hubert spaces being defined
as before, by

, * = R e Σ </(r2)>C(! "(2/0«o3 -4d 2 Γ/](r 2 )> w , (4.2)
wι— 1

<,>m being the inner product in L2([0, oo), r2m~ιdr). We have TEo orthogonal on

Jtn,Eo'

This can be shown as follows. We can rewrite (4.1) as

II / Ilii A = ^ Re <f(φ2), (1 - (2/i)Eod - 4e2)f(φ2))L2^d2φ),

and recall (see [7])

(TEJ)(φ2) = - eWW^^v'dfiφ'2)^ (4.3)

where φ2 = φφ,d = d/dφ2. We also write PEo(x) = 1 - Eox + x 2. If VEo denotes
the transpose of TEo with respect to the real part of the inner product on L2(R2, ά2φ\
the orthogonality of TEo on J^\tEo is equivalent to

^ (4.4)

Notice that for - 2 < Eo < 2 we can find strictly positive finite constants Cl9C2

such that

for all xeR. Thus

^ ^ ^ ^ ^ (4.5)

as operators on L2(R2,d2φ). This expresses the equivalence of the norms in Jf\tE

and 3tf"U0.
Similarly, we rewrite (4.2) as

2 2m 2m
2(R2m,d2mφ)

where

and 5 ~ * = area of unit sphere in R2m.
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For each m = 1,..., n we can write (with the obvious identifications)

TEo=f[TEoJ, (4.6)

each TEoJ being given by (4.3) with respect to the variable ψj (see [11]). It follows
from (4.4) and (4.6) that

with respect to the real part of the inner product in L2(R2m,d2mφ), so TEo is
orthogonal on Jt"ΛtEo.

Similarly, it follows from (4.5) that the norms in ^ , £ o and Jίf"nt0 are equivalent
for - 2 < Eo < 2. One can check that the norms of jf'Λt0 and 3tf"n are also
equivalent.

We now complexify Jtf"n,E0 i n t 0 ^«,Eo ^ follows that TEo is unitary on each
^ n > E o ; and similarly, with REQ = BQ(EQ)R, we have # E o ) ^ ° £ o > with the same
properties as before.

The results of Sect. 3 are still valid, with obvious changes, if we replace T by
TEo and J^n by Jfn,Eo, in case Eo = 2cosπp/q, with 0<p<q relatively prime
integers.

Appendix A

Let X9 Y be Banach spaces and let 0 < t < 1. For U l w e define [X, Y]? by

where IX, 7], is the interpolation space between X and Y at level ί.
If X c Y as sets, X ci* Y means that the injection from X into 7 is continuous.

Lemma 5.1. There exists a constant c such that for every n^.2 and every t > 0

Proof. We first prove the result for n = 2 and then proceed by induction. Let Zs

be the Hubert space

We have Jfo = Z o, and tf\<^-+Z2. The interpolation between the spaces Zs is
explicit (e.g., [9]); so we get that

It follows that, if fc > Iog2/ί so (1 - t)k < 1/2, we have
Similarly, R^o = J^o = ^o and ΛJT§ = J f S ^ ^ So by the same argu-

ment Rl^o^lft^Zx if /c>log2/ί. But then [ J f o ^ ] ? ^ ^ ? since ^ =
{/ /eZi and RfeZ^. This proves (5.1) for n = 1.

Now let us fix n and assume (5.1) to be true for all n ̂  n with the same constant
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c. Then we know that

~\k ~ \

for k^.[cn/t]. It thus suffices to consider the interpolation spaces
Jf?+1]*. Let, as before, (δ/)(r2) = /'(r2). We then have that dJ = jrβ_1-*Zm is a
bounded operator for m= 1,..., ή— 1 and j = 0,..., m, and also that δ 7': Jf?

n-+1->Zπ is
bounded for m = 1,..., n + 1 and = 0,..., m. It follows by interpolation that for
j=0, . . . ,n- l ,d J is a bounded operator from [ ^ _ p ^ + 1 ] f to [Zn_l9ZA+j!t =
zή+ι-w-t)k τ h u s i f ( l - 0 k < l / 2 we have that 3J[^?_1,^

e??+1]f is contained
in Zn- for Ϊ = 0,..., n — 1. Similarly we can proceed in the same way with the operator
R and obtain

In particular, if (1 - t)k < 1/2, we get that

Notice that the spaces Zs are not included into each other, but we used the fact
that the spaces [-#?_!, #?+i]f form a decreasing sequence in k with respect to
inclusion.

We have (see Eq. (3.5) in [7]) that

||r*-1/2(Jl/)(r2)||2 = \\2*r*-l/2dnf(r2)\\2.

Thus we can conclude that, if (1 — t)k < 1/2, then

3 ^ I
l><" n + l-lt

This finishes the proof. •

6. Appendix B

Theorem 6.1. The unit sphere of J^n+2 is percompact in Jfn for n^l.

Proof. For simplicity we will consider the case n= 1. The general case can be
treated in the same way; one only needs to consider a larger number of derivatives.

Let /eJf 3 with | | / | |^ 3 ^ 1. We will establish a series of bounds. First, let r ^ 1.
Then we have

\f(r2)\ = 2 J tf'(t2)dt

/« \l/2 1

ύ\\2r5'2f'{r)\\2^jj-3dtj £ - ^ - ; (6.1)

2]tf"(t2)dt

V / 2 g - ^ - . (6.2)
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For 0 < r < 1 we have
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(6.3)

(6.4)

where C1 ;C2,C3 are finite constants, independent of/.
Now let 0 g Λ, g K2; we define

For m ̂  1

Using

and

we let

ii/iii,
(6.1), (6.2), (6.3)

I/IU

= ii
and

/lll.O.l/-

(6.4) we

1/m

>c'ϊ'
get

dr + C
1/m

% I Πlo,

Il/H2,m.oo

ir\dr^-r

(6.5)

(6.6)

(6.7)

m 7Π

where again the C's denote finite constants.
Let us now consider a sequence fk in the unit ball of Jf3. We will show that

we can extract a subsequence converging in 2f?x.
To do so we will first show that for any m = 1,2,... we can find a subsequence

fki(m) which is Cauchy with respect to the seminorm || || l f 1/mfTO, and we will construct
Λi(m+i) as a subsequence of fkiim).

To do this we apply the Arzela-Ascoli Theorem. Indeed, fk(r2) and fk(r2) are
uniformly bounded and equicontinuous on [l/m,m]. The uniform boundedness
follows from (6.1)-(6.4). The equicontinuity follows from the bounds, valid for /
in the unit sphere of Jf 3 :

2\tf\t)dt

l/2
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Λ
7'(r?)l= 2\tf"{t2)dt

= 2

We can thus define the sequence fki{m) by induction on m. Indeed, by Arzela- Arcoli
we can extract a subsequence / M m + υ oΐfki(m) such that fki(m+υ(r2) and fkiim+υ(r2)
are Cauchy in the sup norm in [1/ro + l,m + 1] and hence Cauchy with respect
to the seminorm || |li,i/<»+i).»+i We then apply the usual diagonalization
procedure obtaining the subsequence fkm(m) that converges with respect to the norm
of jrx by (6.5)-(6.7). Π
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