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Abstract. We show that at the special energies E = 2 cos np/q, the invariant
measure, the Lyapunov exponent, and the density of states can be extended to
zero disorder as C® functions in the disorder parameter. In particular, we
obtain asymptotic series in the disorder parameter. This gives a rigorous proof
of the existence of the anomalies originally discovered by Kappus and Wegner
and studied by Derrida and Gardner and by Bovier and Klein.

1. Introduction
The one-dimensional Anderson model is given by the random Hamiltonian

H=H,+AV on [*Z),
where
(How)(m)=u(n+ 1)+ u(n—1), ueZ,

and the V(x), xeZ, are independent identically distributed random variables with
common probability distribution u. We will write h for the characteristic function
of p, i.e. h(t) = [ e~ " dp(v). The real parameter A will be called the disorder.

In this article we will always assume that u has finite moments of all orders
and is not concentrated in a single point; we normalize u by

fvdu()=0, [viduw)=1.

The eigenvalue equation associated with H is

u(n + 1)+ u(n — 1) = (E — AV(n))u(n). (1.1)
Setting
Z(n)= u(:(ﬁ)l)ek =Ru{ow},
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we may rewrite (1.1) as a recursion relation for Z(n):

1
Z )=E—AV(n)—=——.
(n+1) ™)~ 26
This relation defines a Markov process. It is a theorem of Fiirstenberg (e.g., [1])
that, if 1 #0, for each E€R there exists a unique invariant probability measure
v,e on R, ie. v, ¢ satisfies

1
[ f)dv, 5x) = J[I f(E — v~ ;)dvl,s(x)]du(v) (12)
R RLR
for all bounded measurable functions f. In addition, v, ; is always a continuous
measure and hence it can be viewed simply as a measure on R. Notice that v, ¢
is, up to multiplication by a constant, the only signed measure satisfying (1.2)

(see [1]).
The Lyapunov exponent y,(E) and the integrated density of state N,(E) can be
obtained from the invariant measure by (e.g., [1])

YA(E) = [log|x|dv; g(x), (1.3)
R

N (E)= :)f dv (). (1.4)

Kappus and Wegner [2] discovered that there were problems in the naive
perturbation expansion in A for the Lyapunov exponent, as proposed by Thouless
[3]. They found that the leading coefficient in 4 was wrong at the center of the
band (E =0), and that the differentiated density of states (p,(E) = (d/dE)N ,(E))
exhibited a discontinuity at that energy. They called this phenomenon an anomaly.

Derrida and Gardner looked at the invariant measure and found anomalies
not only at E=0 but also at E= +1, in the next to the leading coefficient in
Thouless’ expansion. They conjectured that such anomalies should occur at all
energies of the form E = 2 cos np/q.

Bovier and Klein [5] gave a very detailed analysis of these anomalies and
proved Derrida and Gardner’s conjecture, at the level of formal perturbation theory.
They showed that, if E =2cosnp/q, the naive perturbation expansion for the
invariant measure has a divergent g™ term. They also derived a modified
perturbation expansion with finite coefficients of all orders; those differ from the
naive ones only at order =g — 2.

In this article we give a rigorous proof of the existence of these anomalies. We
show that the modified weak disorder expansions of Bovier and Klein are
asymptotic to the invariant measure, Lyapunov exponent, and density of states,
in the sense of being the corresponding Taylor series at zero disorder.

2. Statement of Results

If the single site potential probability distribution p is such that its characteristic
function and its derivative go to zero at infinity, Klein and Speis [6] have shown
that the invariant measure v, ; is absolutely continuous. Let ¢, ¢ be its density.
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Then ¢, g(x) 2 0, | @, £(x)dx = 1, and it follows from (1.2) that it must be the unique
normalized solution of the equation
1 \ 1
= du(v).
©4.5(x) ,“PA,E<E =) JE— w7 u(v)
Following [4, 5] we write E = E, + A%¢ and rewrite (2.1) as

@.1)

D; .Sg, 9= @ik 22
where
1 \ 1
Eo—x J(Eo—x)”’

SeNx) =1 (

d , d
D, = jcxp[lva— A sa:ldu(v)
are bounded operators on L'(R,dx), Sg, being an isometry. We will also write
Dy(E)= D}.,E/lz'
The properties of Sy, are responsible for the appearance of anomalies [4,5].
If —2<E,<2, we can write E, =2cosna and, by a change of variables, S, is

given by the shift of 7o on the circle of length 7. If « is irrational the equation
Sg,@ =0 2.3)

has a unique normalized solution. But if a is rational, say a = p/q,0 < p < g relatively
prime integers, then S%, = I and its spectrum consists of the g'* roots of unity, each
with infinite multiplicity. In this case we have problems if we try to perturb (2.2)
around 4 =0.

To overcome this difficulty, let us replace [4,5] (2.2) by

A).,Eo,e (pl,Eo,e = 0’ (24)

where E, = 2cos np/q,0 < p < q relatively prime integers, @, g, . = @, g, + 2. and

a_
Ajkoe= (—D—‘—sz)—l 2.5)
with 4 #0.

Let " = L*(R,(1 + x?)dx). Then X is continuously imbedded in L'(R, dx) and
D;. and S, are bounded operators on ) with S, unitary on . It will be
convenient to consider (2.2) and (2.4) on . Under the assumptions outlined above
@, €A for all 1#0 and EeR [6].

Bovier and Klein showed that we can take the limit as A —0 in (2.5) obtaining
the differential operator

a1 1d? d
— k - e q—k.
Ao Eo.e kz,o SE0<2 iz Cix )SEO

They showed that A4, p ,— Ao g, . strongly in X" on a core for Ay g, and that
Ay g, has zero as an isolated simple eigenvalue. In fact they solved the equation

Ao,E0,:90,E0,: = 0
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In X obtaining the unique (normalized by [ @, g, .(X)dx = 1) solution

©0,0. = No (1 +x%)71/2 exp(\/fa arctan [ﬁx(l —-x3)"1)), (2.6)
if Eo=0, and
Po,Eo,e = NEo,e(x2 — Eox +1)"exp(Kg,e(4 — E3)~1?
- arctan [(2x — Eq)(4 — E2)~1/2] @7

if Ey #0. Here N, , is a normalization constant and K, , is some constant that
can be computed. They defined Hilbert spaces

'%/'Eo,a = Lz(R’ (pO,Eo.a(x)_ 1dx)9
which are just /" equipped with an equivalent norm, and showed that 4, ¢, , is a
self-adjoint operator on X, , with discrete spectrum, A, g, . < 0, with 0 an isolated
simple eigenvalue with eigenvector ¢ g, ..
In addition, Bovier and Klein derived a uniquely defined formal perturbation
series in A for ¢, g, . in A". More precisely, if we formally write

DiEoe = Z ‘Po JEo,e (2.8)

yLd
n!

it follows from (2.5) that

n - L d .
<2>AO,E0,5¢{),E02,L = —kZ (k)l:dl" (D1,:Sg,)* :L - ‘Pg E:)e (29)

Bovier and Klein [5] proved that these equations have a unique normalized set
of solutions ¢{;, , in the domain of 4, g, , in g, , and hence in X".
Our main result is

Theorem 2.1. Let the single site probability distribution p have finite moments of all
orders, with zero mean and variance one. Suppose its characteristic function h is
O([(1+t*>)~*2] as t—oo for some a>0. Let E,=2cosnp/q, with 0<p<gq
relatively prime integers, and let ¢eR. Then the map Ra3A—- ¢, €X is C®.
Moreover, its Taylor series at =0 is given by (2.8) and (2.9).

It follows from [7,6] that the map is C* on R\{0}. The point of the Theorem
is that the map is C® at 1 =0 after we extend ¢, g, . to 4 =0 by (2.6) and (2.7).

It is easy to see that (1.3) and (1.4) express y,(E) and N ,(E) as values of continuous
linear functionals on %" applied to ¢, ;. Thus we have

Corollary 2.2. Under the above hypotheses the maps A—7v,(Ey) and A — N, (E,)
extend to A=0 as C® functions.

Bovier and Klein [5] showed that the spectrum of 4,, in )" is contained in
the set {z;Rez < —a, } U {0} for some a; > 0 and all 1 # 0 sufficiently small. They
also proved that (4,,—2z)"' —(4,,—z)" ! strongly in X for Rez > a, for some
a, > 0. But the proof of Theorem 2.1 requires more. To use perturbation theory
we need to show that (4, , —z) ™' = (4,, — z)~ ! strongly in )" for all z with |z| = a;,
for some 0 <a; <a,.
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In the next section we will describe the proof of Theorem 2.1 in the center of
the band (E, = 0). We start by rewriting (2.2) in the language of [7], so we can use
the technical machinery we had developed. The key lemma is Lemma 3.2, (3.3)
being the crucial estimate. Lemma 3.3 is a simple consequence of Lemma 3.2. The
estimates in Lemmas 3.2 and 3.3 enable us to prove Lemma 3.4.

In Sect. 4 we outline the modifications required for general E, = 2 cos np/q.

3. The Center of the Band
In [7] we introduced the Hilbert spaces
#o={/:[0, 0)— C measurable; | flo = lr~""2f(r*)l|, < oo},
H#,={f:[0, 0)— C continuous, f (n — 1)-times differentiable on (0, oo ) with
f®~1 absolutely continuous with

n m

1%, =2 | 212 f 0 |3 < oo}

m=1k=
forn=1,2,...,and
Hy=Hy, H={feH,;f0)=0}, n=12,...,

the L? norms being in L%([0, c0), dr).
We also introduced operators T and R given by

(TA)#?) = —2 [ Jo(rs)f(?)sds,
0

RAE) =r | J_(r9)f(s2)ds,
0

where J, is the Bessel function of order n. We showed that T is unitary on 3¢, for
n=1,2,...,Ris unitary on #% forn=0,1,...,and T = R on #?, so T leaves #°°
invariant.

Let B,(r; E) = h((4/2)r)e"/?Er, Then B,(E) will denote the operator multiplication

by B,(; E), ie.,
(BAE))(r?) = B,(r%; E) ().

Notice that, under the hypotheses of Theorem 2.1 (see [7; Lemma 7.1]), B,(E) is
a bounded operator in all #,, n=0,1,..., leaving 5#? invariant.
In [7] we studied the eigenvalue equation

By(E)TE56= Sk (.1

Under the hypotheses of Theorem 2.1 we proved that, if A #0, (3.1) has a unique
solution &, cesf, normalized by £, ;(0)=1, and that 1 is an isolated simple
eigenvalue for B,(E)T in each 5#,. We also proved that B,(E)RB,(E) has spectral
radius less than one in each #°0 by an explicit estimate. It is also proved in [8, 6]
that B,(E)TB,(E) is a compact operator in each J,.

The eigenvector ¢,  is related to the invariant measure v, z, and Eq. (3.1) is
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related to Eq. (2.2). Klein and Speis [6] showed that £, ¢ is the Fourier transform
of the density ¢, z of v, , ie.,

Eaplr 2) = I e(ilz)rzxfpx,s(x)dx-

More precisely, let

(F9r?) = Je¥Pr=g(x)dx,

Nz
and consider the real Hilbert spaces
A"’ ={geN;g real valued},
o'y ={feHy; f(0)eR},

where 3¢} is equipped with the inner product {f,, f,),, =Re{f1, f2) 4, Then
& is an orthogonal map from X" to s#,. Moreover [6], ' and J#', are
invariant under S,, D,(E), and T, B,(E), respectively, and

T=FS,F !,
B,(E)= FD,(E)F 1,
and hence (3.1) is just (2.2), with
= 4\/7?9-‘/’1,1:-
We will abuse the notation by writing A4, , for 4, , % ~'. Then we have
_ (BT -1
=

0 being an isolated simple eigenvalue, where B, , = B;(1%), &, , = &; 22,
We will now study the behavior of B; . T for small A. We assume the hypothesis
of Theorem 2.1.

Lemma 3.1. There exists ¢, >0 and Ay >0 such that

1B T) lyase, S €% 3.2)
for all e >0 and 2 with |1] < 4,.
Proof. By Lemma 3.1 of [7] we have

A).,s ’ A}.,eél,z = 09

2

(10295 y T

&)

for any p with 2 < p < oo, where the I? space is L([0, o0), dr). If we make the choice
p = c,/A? for a sufficiently large constant ¢, we get (3.2). [

p

Lemma 3.2. Let ¢ > 0 be fixed. Then for any n=1,2,... there exists a constant M,
such that

1(BaeRY Il 2 0 < M~ €1/23%2, (3.3)
for any A with |A| £ 4, for some A, > 0.
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Proof. By an explicit estimate it is easy to see that forany e >0andanyn=1,2,...,
there exists c;3 , = ¢3 ,(€) < 00 such that

IBicll g, e, < €73 (3.4)

Since T is unitary on all 5, the bound of (3.4) also holds for B, ,T.

To prove the lemma we apply an interpolation argument similar to the one
used in the proof of Theorem 5.1 in [7]. We introduce a family of operators S(z)
depending on a complex variable z, defined on the strip 0 < Rez < 1. §(z) is the
operator given by multiplication by the function

ez2 h ( '% r2 ) e(i/2)elzr2 (1 +r4 )a(iz - z),

where « < y/4. Here y > 0 is such that |h(t)| < (1 + ¢2)"7 for all ¢t 2 0. Notice that
such a y always exists by our hypotheses.

We define K(z) = (S(z)R)*, where k is such that K(1 + iy) is bounded from #,
to #2,, for all A sufficiently small with a norm uniformly bounded in A. The
existence of such a k follows from Theorem 5.1 in [7]).

On the other hand we have
h(%r’)(l + 4y

for A sufficiently small, since |h(t)| S(1+t3)7", 1 +t3)°<(1+at?)for 0<a <1,
and o < y/4. Thus it follows that
IKG@Y) gy, = ISRV g, < 1

since R is a unitary operator on .
We also have that

=1

. —_yp2
| S@iy) ”"fo-’xo Se Y sup
r20

sup [ K(2)ll -0, < ©
O0<Rez=<1
and K(z) depends analytically on z for 0 <Rez <1 and is continuous in z for
0<Rez <1 as a family of bounded operators from #, to 5#,. We can then apply
the Calderon-Lions interpolation theorem (e.g., [9]) to the family K(z) getting

1KG2) gy 0, 10 S €7 (3.5)

where c, is some constant independent of 4, for all A sufficiently small. Here, we
used the notation that when we are interpolating in ¢ between the spaces X, and
X, we denote the interpolating spaces by [ X o, X, J,. We will also write [ X4, X, J"*?
for [[XO, Xl];"’ Xl]t'
We now apply again an interpolation argument to the fixed operator K(4%) =
(e*’ B, ,R)*. We observe that by (3.4)
IK(A?) 2, - p0,, S €% (3.6)

with cs = k(c; .+, + 1) so that by interpolating between (3.5) and (3.6) we get

2 A2
IK@A*)I (Ko, + 1 12— [Ho, 0 115 see
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with cg the largest of ¢, and cs. Iterating this procedure we get

2 A2
I1K(4%) "[J"Ov-”;?+1]T2"[~’Vos-”2+1]:1"2“ e

form=1,2,..., so that
| K( /12)1’ ”J"o—'[xo,t’gﬂliz < eI,
But, by Lemma 5.1 (see Appendix A), there exists 0 < ¢ < oo such that
[”0’ ’}fr?'f- l]l}‘c§”+ /3%

is continuously imbedded into 9, the injection being a contraction, so that
K@)t DI, g0 < foletnt DRI < 7, (3.7)

We can now prove (3.3). Indeed, if j < [c(n + 1)/A2]k + 1, then by (3.4) we have
I(B1,eRY 2. 0 < €237, (38)
If j=[c(n+ 1)/A%]k + 1 we can write

I(B.eRY Il 49260 < |(B1,RY Il s, - 0
j— 2
S (By Ry T DA e | (B R DA o

é e—(c;/l)lz(j— 1 —[c(n+1)/A2]k) +c7

= o~ (€1/2)i2% 4€1/2)A3(1 +[e(n+ 1)/ A2 )+
< Me™©/23%) (3.9)
for some constant M independent of 1. Notice we used (3.2) and (3.7).
Putting together (3.8) and (3.9) we get (3.3) with
M,, = max (M’ et 1)(c;,,.+c1/2)). O

Lemma 3.3. For any n=1,2,..., for all A # 0 sufficiently small and all ¢ we have:
(i) the spectrum of A, restricted to H# is contained in {z;Rez < —c,/2}.
(ii)
el o e < My (3.10)
for all t = 0.
(iii)
. -1
H(Ape =2 g0yt < M,.(Rez +%) @3.11)

if Rez> —c¢,/2.
Proof. (i) follows form Lemma 3.2. To prove (ii), notice that we have, using
Lemma 3.2, that

A 122 A2XB, ,R)?
e 4] o, o = €73 | X1 o o

é Z ]l<_> A ”(B).,zR)Zj";r’,?_.xg
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)

ty .
> e—t/lz—_’cllz
ji=0] A.

M
M. -
M

IIA

|
i

n€
=(c1/2)t
R

IA

for all 4 sufficiently small.
Now, if Rez > — ¢, /2, we can compute the resolvent by

e o]
(A1, —2)" 1= — [ e dt,
V]

so using (3.11) we get (3.12). O

Lemma 34. (4;,—2) "' (A, —2)" " strongly in #,,n=1,2,..., as A—0, for any
z such that z#0 and Rez> —c¢,/2.

Proof. Bovier and Klein [5] proved that (4, , — z) "' —(A4,, — 2) "' strongly in J#,
for Rez>2c;,, where c;, is given in (3.4). We give their argument for
completeness. Let fes#;, we have

(A= 2)f =A72[(1 + A22) = (B, T*1S,

so for Rez>0 we get, using (3.4), that [|(4;,—2)f |l », 2A72[1+42Rez—e*]| S| »,
with ¢ = 2¢; ;. Thus, if Rez > ¢ we get

"(Aj,,c_z)_l "y S, éz(ReZ‘-C)_l
1 1

for all A sufficiently small. The desired convergence now follows from the resolvent
equation since A; ,— A4, . strongly in 5, on a core for A, ,.

Since A4, , is a negative self-adjoint operator on J#, equipped with an equivalent
norm [5], it generates a strongly continuous semigroup e'*°¢ in #, with
[| "o || o, < C for all t 20 for some constant C < co. We can then apply the
Trotter-Kato—Neveu Theorem (see [10]) to get that e+ — "% strongly in J#,
as A—0 for all t =0, uniformly for ¢t in a compact interval. Moreover, by

Theorem 1.1 in [10] we see that
(B \/,/—k,eT)z" — goe (3.12)

strongly in J#; as k — oo, uniformly for ¢ in compact intervals.

Actually, "o« is a strongly continuous uniformly bounded semigroup on each
Hp,n=12,.... Indeed, let peH,,,, then the set {(B ;z,T)*¢p;k=1.2,...}
is uniformly bounded in ,,, by (3.4). But bounded sets of ,,, are pre-
compact in 5, (see Appendix B). Since we have convergence as k— oo in J#;,
and convergence in J,,, implies convergence in #; we can conclude that
(B . TV @ — €< in #, for each pe H#, . ,. The uniform bound gives the strong
convergence in J,. Similarly one proves the strong continuity of "0« in 5#,, and
that

e'*1e 5 g0 strongly in . (3.13)

As before, let &, , denote the unique solution of A4, ., =0, normalized by



450 M. Campanino and A. Klein

£,:00=1. Let P,, be the corresponding spectral projection (recall 0 is an
algebraically simple eigenvalue of A, ,, all AeR and ).
By (3.13),

A
(B\/t/_k,cT)zm"éo,e_’em o.céo,z as k— oo.

We can write

B s TV*™ 0.0 = & fije + B /i TV ™ (8o, — € Jiiceh

SO

[0, — € ] — B i T ™ (Co.e — & jiie) =0 (3.14)

in 5, as k— oo.
But ¢, ,— ¢ \/,/—k,zex’,‘,’, and by Lemma 3.2 we can choose m such that

1B /e TV ™ o0 <3

for all k sufficiently large, so (3.14) implies that ¢ ke Co,c In H#, as k— oo. Since
the convergence in (3.13) is uniform for ¢ in compact intervals, and so is the bound
obtained from (3.3), it follows that £, ,— &, , in 3, as A—0. This implies that
P,.— P, in norm as operators in ,, since P, ,f = f(0)¢, ..

It follows from Lemma 3.3 and (3.13) that if Rez > —¢,/2 and z # 0, then z is
in the resolvent of 4, , as an operator in J,. Indeed, we can write

(Ao, —2) ' =—z"'Py  + | €0ee™ (I — P, )dt,
0

where the integral converges in norm by (3.11), (3.13) and (3.14), and the fact that
I — P, projects onto #2.
Thus, if Rez> —¢,/2,2+#0, and fes,, we have

(Al,e - Z)— lf - (AO,z - Z)_ 1f

1 T -
=-Po.—Pi)f + g e (Py,— Po ) fdt

Oty

(€% —e"0)Po  fdt + [ e P, ) fdt
+ [ eoce™ (I = Py ) fdt 3.13)
T

for any T > 0. Given >0, we first choose 4, >0 such that if |A| <4,, the first
and the second term on the right-hand side of (3.16) have norm less that #/5 (this
can be done by the norm convergence of the projections plus (3.11)), uniformly in
T > 0. Then we choose T so that the fourth and fifth terms have norm less than
1/5 (use (3.11), notice we have shown it also holds for 1 =0). Finally we choose
0 < A, < 4, so that for | 4] < 4, the third term has norm less than #/5 (use the strong
convergence of the semigroups, which is uniform on compact intervals). This proves
Lemma 34. O
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We are now ready to prove Theorem 2.1 for E, = 0. Let I" be the circle |z| = ¢, /4.
It follows from Lemma 3.3 that

1
P=— [(A,,—2)" )
he =5 ; (s —2)"'dz (3.16)
for any A sufficiently small, and it was shown in the proof of Lemma 3.4 that
P, .— P, in the norm of operators on 5,. Recall that
(BT —1
A=

where B, , is multiplication by h((1/2)r?)e®/?#'r*  Since h is infinitely differentiable
with bounded derivatives, which are O((1 + t2)~*?) as t — oo for some a > 0 [7],
and multiplication by r? is a bounded operator from #, to #,_, for n>2 [7] it
follows from (3.17) and Lemma 3.4 that the map AP, € L(#, . 24+1) H#,) 1S
k-times differentiable at 1 =0 for n=1,2,... and all k=0,1,... . Since we have

é).,e = Pl,eéo,e

for A sufficiently small, and &, €, for all n=1,2,..., it follows that the map
A—¢&, €5, is infinitely differentiable at 1 =0 for each n=1,2,....

Since as above A — B; .€ £(H, 3+ 1)» ) 18 k-times differentiable at 2 = 0 for
n=12,...,and all k=0,1,..., and 1> ¢, ., is infinitely differentiable at 1 =0
for all n=1,..., it follows that we can differentiate both sides of Eq. (2.4) at A =0,
now written as

Aﬂ.,eél,e =0,

obtaining Eq. (2.9) rewritten in the space .
This finishes the proof of Theorem 2.1 when E;=0. [

4. The Other Special Energies

We now want to show how to extend the proof of Theorem 2.1, given in the
previous section for the case E, =0, to the case E, =2 cosnp/q. In this case (2.1)
is rewritten as

B).,e TEQ&A,EO,E = él,Eo,e’

where &; g, .= &1 po+ei2 and Tg, = F S F ~1 = By(E,)T.

If we try to repeat the proof of Sect. 3 we will notice that we cannot prove the
crucial Lemma 3.2 because (3.4) is no longer true for B, T, since T, is not
unitary in J#,. To avoid this problem we must change the norm of the spaces 5,
to make Ty, unitary. This can be motivated as follows: recall that Sg, is unitary
on X, =L*R,(x* — Eox + 1)dx), orthogonal on X'y, for —2 < E,<2. Since
FxF ' =(2/i)0, where (0f)(r?) = f'(r?), we are led to define equivalent norms on
H'| by

1 1%, ., = Re{f(r?), [(1 — (2/)Eod — 46*) £1(r*)), (4.1)

the inner product being in L2([0, o0), rdr). It follows that & is an orthogonal map
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from A'g, to #’| g, and that Ty is orthogonal on #"] g . Notice that J# , = #;.

More generally, we let 5, g, = #, and foreachn = 1,2,... we define equivalent
norms on the real Hilbert space 5, with the “primed” Hilbert spaces being defined
as before, by

I£11%, ,, =Re ».21 Sr?),[(0 = (2/DEo0 — 40*)"f1(r*) Do, 4.2

{,>m being the inner product in L*([0, o), r*™~*dr). We have Ty, orthogonal on

n,Eo*
This can be shown as follows. We can rewrite (4.1) as

1
I 1% = 7 Relf (@), (1 — (2/)Ed — 40*) f(9*)) 22 a2y

and recall (see [7])
dZ (P/

(Teo))g?) = — D507 feiv o o () =, @3)

where ¢? = ¢ ¢,0 =03/0¢p*. We also write Pg(x)=1— Eox + x% If T§, denotes
the transpose of T, with respect to the real part of the inner product on I*(R?,d?¢),
the orthogonality of T, on " g, is equivalent to

2
T“EOPEo(?a)TEo =PEO(%6). (4.4)
Notice that for — 2 < E, < 2 we can find strictly positive finite constants C,,C,

such that
C,Py(x) = PEg(x) S C,Py(x)

C1P0<§6)§PEO<%6)§C2P0<%6> 4.5)

as operators on [?(R2,d%¢). This expresses the equivalence of the norms in ¢ g,
and & o.
Similarly, we rewrite (4.2) as

112, = 3 S...Re<f(¢’),[ 11 PEO<§aj)f]¢2> s
m=1 j=1 L2R2™ 42m )

for all xeR. Thus

where

® =((P1,---,(PM)GR2"', (Pl,...,(PMGRZ,

0
2 2 2
—_— - —_ ++ ,a,__’

and s, ! = area of unit sphere in R?™.
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For each m=1,...,n we can write (with the obvious identifications)
m
TEo = I—[l TEo,j’ (4.6)
j=

each Ty ; being given by (4.3) with respect to the variable ¢; (see [11]). It follows
from (4.4) and (4.6) that
m 2 m 2
’I"Eo l-.[ PE0<_~aj)TEo= l_[ PE0<_‘61')
j=1 1 j=1 1
with respect to the real part of the inner product in I*(R?™,d*"¢), so Tg, is
orthogonal on 5, .

Similarly, it follows from (4.5) that the norms in ¢, ; and 5, , are equivalent
for —2<Ey<2. One can check that the norms of #,, and J#, are also
equivalent.

We now complexify ), g, into #, p,. It follows that Ty, is unitary on each
#,5,; and similarly, with Rg = B,(Eo)R, we have Rp,#, g, with the same
properties as before.

The results of Sect. 3 are still valid, with obvious changes, if we replace T by
Tg, and #, by i, g, in case E,=2cosnp/q, with 0 <p <gq relatively prime
integers.

Appendix A

Let X, Y be Banach spaces and let 0 <t < 1. For k = 1 we define [X, Y] by
[X, Y] =[X,Y],
[X’ Y]f = [[Xa Y]:‘_19 Y]n

where [X, Y], is the interpolation space between X and Y at level ¢.
If X < Y as sets, X —, Y means that the injection from X into Y is continuous.

Lemma 5.1. There exists a constant ¢ such that for every n 22 and every t >0
[0, HpM <, %’2_ 1- (5.1)

Proof. We first prove the result for n =2 and then proceed by induction. Let Z;
be the Hilbert space

Z,={f:[0,00] > C; |7 2f(r?*) |, < o0}.
We have #,=Z,, and #9 —,Z,. The interpolation between the spaces Z; is
explicit (e.g., [9]); so we get that
[#o, %g]f =[Z,, Zz]:‘ = Zz(l —(1 -tk

It follows that, if k > log 2/t so (1 — t)* < 1/2, we have [#,, # 3] = Z,.
Similarly, R#y=#,=Z, and R#9=H#9<,Z,. So by the same argu-
ment R[#,, #9] = Z, if k>1log2/t. But then [#,, #>]* =, H#? since #?° =
{f;feZ, and RfeZ,}. This proves (5.1) for n=1.
Now let us fix 77 and assume (5.1) to be true for all n < 71 with the same constant
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c. Then we know that
(Ko, H g Js [ K0, Hp, Tl

for k=[cn/t]. It thus suffices to consider the interpolation spaces [#7? |,
#7,,]i. Let, as before, (3f)(r*) = f'(r?). We then have that &' =o#, > Z, is a
bounded operator form=1,...,i—1and j=0,...,m, and also that ¢": #,;, | > Z, is

bounded for m=1,...,i+ 1 and j=0,...,m. It follows by interpolation that for
j=0,...,i—1,8’ is a bounded operator from [#°_,,#7, I to [Z,_,Z,, k=
Z,1_yu_y Thus if (1—1)*<1/2 we have that o/[#] ,,5#7,,]¢ is contained
inZ,fori=0,...,an— 1. Similarly we can proceed in the same way with the operator
R and obtain

R[AY ., H#7,,1¢ Ly ggg
In particular, if (1 — t)* < 1/2, we get that
R[”g—l’%g+l] Z,

Notice that the spaces Z are not included into each other, but we used the fact
that the spaces [#° ,,#7, ]¥ form a decreasing sequence in k with respect to
inclusion.

We have (see Eq. (3.5) in [7]) that

I~ 2ROE) N = 127" 2T f () | 2.
Thus we can conclude that, if (1 — t)* < 1/2, then
LR H R T = .
This finishes the proof. [

6. Appendix B
Theorem 6.1. The unit sphere of #,. , is percompact in H#, for n> 1.

Proof. For simplicity we will consider the case n=1. The general case can be
treated in the same way; one only needs to consider a larger number of derivatives.

Let fes#3 with || f| #, = 1. We will establish a series of bounds. First, let r > 1.
Then we have

1102 =’21’ f () dt

<o fra)” N 1)
7)1 = |2 {1 et
© 1/2
g%n4r5/2f"(r’)nz<Lt*dt)/ s (62)
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For 0 <r <1 we have

£ = 'f(l) 2] ef (e

1
§%+ 120727 )]l, | tde < C

1) =‘f’(1)—2ir2tf"(t>dr

1/2
f 1 4r3’2f”(r2)l|z< ) r-ldt)

< Cy(|logr|)'/? + Cy;

where C,, C,, C, are finite constants, independent of f.
Now let 0 < R, < R,; we define

113 Reke = P2 0(Ry <7 <R3
+12r2 ' (r*)x(Ry <r < Rp) |3
For m=1 we let
1A%, = 11 0,tm + 1A ymm + 1SN o
Using (6.1),(6.2),(6.3) and (6.4) we get

1/m

1/m C
If13.01m=Cq | rdr+Cs [ rllogrldr<—>
0 0 m
and
-3 Cs
”f”lmcosc7,"r dr<—2_

where again the C’s denote finite constants.
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(6.3)

6.4)

(6.5)

(6.6)

6.7)

Let us now consider a sequence f; in the unit ball of #;. We will show that

we can extract a subsequence converging in ;.

To do so we will first show that for any m = 1,2,... we can find a subsequence
Siim Which is Cauchy with respect to the seminorm |||,  /m,m> and we will construct

Siim+1) @s a subsequence of f, -

To do this we apply the Arzela—Ascoli Theorem. Indeed, f,(r*) and f(r?) are
uniformly bounded and equicontinuous on [1/m,m]. The uniform boundedness
follows from (6.1)—(6.4). The equicontinuity follows from the bounds, valid for f

in the unit sphere of #5:

£~ f0)I =

2

2
2[tf'(t)dt

7

2
£

1/2
s (I tdt) 12r12 (),

rr41/2
(*3%)"

IIA
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Lf@D)— £l = i2 I: tf"(e%)dt

2
1 2 1/2
<5(Teae) “harnpon,
i

< H(logr; —logr})"~.

We can thus define the sequence f,, ) by induction on m. Indeed, by Arzela—Arcoli
we can extract a subsequence fy,um+ 1) Of fi,em Such that fi o4 1,(r?) and fi 4 1)(r?)
are Cauchy in the sup norm in [1/m + 1,m + 1] and hence Cauchy with respect

to

the seminorm ||y, 1/m+1)m+1- We then apply the usual diagonalization

procedure obtaining the subsequence f ., that converges with respect to the norm
of #, by (6.5)-(6.7). O
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