© Springer-Verlag 1990

Ising Model on the Generalized Bruhat-Tits Tree

Yu. M. Zinoviev

Steklov Mathematical Institute, GSP-1, SU-117333 Moscow, USSR

Abstract. The partition function and the correlation functions of the Ising model on the generalized Bruhat-Tits tree are calculated. We computed also the averages of these correlation functions when the corresponding vertices are attached to the boundary of the generalized Bruhat-Tits tree.

1. Introduction

The Ising model on the Cayley tree turns out to be very interesting [1,2]. The Cayley tree T is manifestly determined to be a connected infinite graph with no loops, each vertex of T being connected with exactly p+1 nearest neighbour vertices by links. If p is a prime number, the Cayley tree is called the Bruhat-Tits tree. The branch B_z is defined to be a connected subtree with the only boundary vertex z of the graph $T \setminus B_z$ in the interior of T. By definition the branch contains no cycles. Let us introduce the generalized Bruhat-Tits tree F_q . It consists of a finite connected graph F_g^R with g independent loops, which is called a *reduced* graph, the branches B_x , $x \in F_g^R$, and each vertex is connected by links with exactly p+1 nearest neighbours (for every link, two endpoints of which are identified with a vertex, we include the vertex itself twice into the number of its nearest neighbours). If the vertex $x \in F_g^R$ has only one nearest neighbour $y \in F_g^R$, $x \neq y$, then p branches B_x and the link [x, y] form the branch B_y . Hence instead of the reduced graph F_g^R we may consider the reduced graph $F_q^R \setminus [x, y]$. From now on F_0^R is merely a single vertex and p+1 branches should be added to this vertex in order to construct the Bruhat-Tits tree $F_0 = T$, for g > 0 each vertex $x \in F_g^R$ has $2 \le n(x) \le p + 1$ nearest neighbours in F_g^R and b(x) = p + 1 - n(x) branches should be added to x in order to construct the generalized Bruhat-Tits tree F_q . Due to [3–5] the Bruhat-Tits tree $T \equiv F_0$ may be interpreted as the coset space $PGL(2, \mathbb{Q}_p)/PGL(2, \mathbb{Z}_p)$, where $PGL(2, \mathbb{K})$ is the group of fractional linear transformations of the projective line $P^1(\mathbb{K})$ over a ring **K** (we deal with the field of p-adic numbers \mathbb{Q}_p and with the ring of the p-adic integers \mathbb{Z}_p). The element of $GL(2,\mathbb{Q}_p)$ is called hyperbolic if it has eigenvalues which p-adic norms are different. A Schottky group Γ_q is a free subgroup of $PGL(2, \mathbb{Q}_p)$ with g generators, all non-unit elements of which are hyperbolic. Usually the generalized Bruhat-Tits tree F_g may be interpreted as a coset space T/Γ_g , where Γ_g is some Schottky group [4–6].

Since the configuration σ takes the values ± 1 the Ising model action may be rewritten in the form

$$\beta \sum\limits_{|x-y|=1} \sigma(x) \sigma(y) = \beta N_1 - \beta/2 \sum\limits_{|x-y|=1} (\sigma(x) - \sigma(y))^2$$
 ,

where N_1 is the total number of the links of the lattice. If σ is allowed to take any real values we obtain the action for \mathbb{R} Ising model

$$S(\phi) = -\beta/2 \sum_{|x-y|=1} (\phi(x) - \phi(y))^2$$

by omitting the unessential term βN_1 and by changing $\sigma \rightarrow \phi$. This model is a lattice version of the free massless field. On the broad class of the lattices including the generalized Bruhat-Tits tree the correlation functions of the \mathbb{R} Ising model with the free boundary conditions may be computed exactly [7]. By using the special average of these correlation functions the multiloop p-adic string amplitudes were calculated for the scattering of N identical tachyons attached to the boundary of the generalized Bruhat-Tits tree [8,9].

In this paper we calculate the partition function and the correlation functions of the Ising model on the generalized Bruhat-Tits tree with the free boundary conditions. We also compute the averages of these correlation functions which are analogous to the *p*-adic string amplitudes.

2. Correlation Functions

In order to find the correlation functions and partition function for the infinite generalized Bruhat-Tits tree F_q we calculate them first on a finite subgraph $K \subset F_q$. A finite subgraph K of the generalized Bruhat-Tits tree F_a may be considered as a finite cell complex. It consists of zero- and one-dimensional cells: vertices and links. Every cell $\pm s_i^q$ is labelled by the integer q=0,1 (dimension) and by the number ± 1 (orientation). The cells with the opposite orientation s^q and $-s^q$ both belong to the lattice K. An integer-valued odd $(c^q(-s_i^q) = -c^q(s_i^q))$ function c^q on the q-dimensional cells is called a q-chain of the complex K. c^q can be regarded as a formal sum $\sum m_i s_i^q$, where the integers $m_i = c^q(s_i^q)$. A set of q-chains is an Abelian group: $c^q + c^{\prime q} = \sum_i (m_i + m_i') s_i^q$. It is denoted by $C^q(K, \mathbb{Z})$. It is possible to introduce the inner product on $C^q(K, \mathbb{Z})$: $\langle c^q, c'^q \rangle = \sum m_i m_i'$. We define the boundary operator ∂ on $C^q(K, \mathbb{Z})$ by $\partial s^0 = 0$ and $\partial [x_i, x_j] = x_j - x_i$. By linearity it is easy to extend the boundary operator on $C^q(K, \mathbb{Z})$. We define the coboundary operator ∂^* by the following relations $\partial^* c^1 = 0$ and $\langle \partial^* c^0, c'^1 \rangle = \langle c^0, \partial(c'^1) \rangle$. A kernel $Z_1(K, \mathbb{Z})$ of a homomorphism $\partial: C^1(K, \mathbb{Z}) \to C^0(K, \mathbb{Z})$ is called a group of cycles of the complex K. The image $B_0(K, \mathbb{Z})$ of a homomorphism $\partial: C^1(K, \mathbb{Z}) \to C^0(K, \mathbb{Z})$ is called a group of boundaries of the complex K. The image $B^1(K, \mathbb{Z})$ of a homomorphism $\partial^*: C^0(K, \mathbb{Z}) \to C^1(K, \mathbb{Z})$ is called a group of coboundaries of the complex K.

A homomorphism of $C^q(K, \mathbb{Z})$ into the Abelian group $\mathbb{Z}_2 = \{\pm 1\}$ (Don't confuse with 2-adic integers) is a q-chain of the complex K with coefficients in \mathbb{Z}_2 . A set of all these homomorphisms is an Abelian group which is denoted by $C^q(K, \mathbb{Z}_2)$. Each homomorphism $h^q \in C^q(K, \mathbb{Z}_2)$ is defined by its values on the q-chains $1 \cdot s_i^q \in C^q(K, \mathbb{Z})$ i.e. on the cells s_i^q . Thus h^q is an \mathbb{Z}_2 -valued function on the q-dimensional cells of K. On $C^q(K, \mathbb{Z}_2)$ we introduce the boundary and coboundary operators: $\partial h^1(c^0) = h^1(\partial^*c^0)$ and $\partial^*h^0(c^1) = h^0(\partial c^1)$. For example $\partial^*h^0([x, y]) = h^0(x)h^0(y)$, because of $\sigma^{-1} = \sigma$ for $\sigma = \pm 1$. The group of cycles $\mathbb{Z}_1(K, \mathbb{Z}_2)$, the groups of boundaries $B_0(K, \mathbb{Z}_2)$ and coboundaries $B^1(K, \mathbb{Z}_2)$ are defined in an

obvious way. The group \mathbb{Z}_2 is selfdual: if $\sigma_1, \sigma_2 = \pm 1$, then

$$\langle \sigma_1 | \sigma_2 \rangle = \sigma_1^{J(\sigma_2)} = \sigma_2^{J(\sigma_1)},$$
 (2.1)

where $J(\sigma) = 1/2(1-\sigma)$. Analogously, if $c_1^q, c_2^q \in C^q(K, \mathbb{Z}_2)$ then

$$\langle c_1^q | c_2^q \rangle = \prod_{s,q \in K} \langle c_1^q(s_i^q) | c_2^q(s_i^q) \rangle, \qquad (2.2)$$

where multiplication runs over all positively oriented links of the lattice K.

Let us consider the Ising model on the lattice K. A configuration is a chain $\sigma^0 \in C^0(K, \mathbb{Z}_2)$, i.e. a function on the vertices of K taking the values ± 1 . The Ising model action may be rewritten as

$$S(\sigma^0) = \beta \sum_{s^1 \in K} \partial^* \sigma^0(s^1_i), \qquad (2.3)$$

where the summing runs over all positively oriented links of the lattice K. The partition function is

$$Z_k = 2^{-N_0} \sum_{\sigma^0 \in C^0(K, \mathbb{Z}_2)} e^{S(\sigma^0)},$$
 (2.4)

where N_0 is the total number of the vertices of the lattice K. The correlation function has the form

$$W_{K}(\chi^{0}) = Z_{K}^{-1} 2^{-N_{0}} \sum_{\sigma^{0} \in C^{0}(K, \mathbb{Z}_{2})} \langle \chi^{0} | \sigma^{0} \rangle e^{S(\sigma^{0})},$$
 (2.5)

where the chain $\chi^0 \in C^0(K, \mathbb{Z}_2)$ takes the value -1 at the vertices $x_1, ..., x_m$ and takes the value 1 otherwise. Thus the definition (2.2) implies $\langle \chi^0 | \sigma^0 \rangle = \sigma^0(x_1) ... \sigma^0(x_m)$.

By Lemma 1 of [10] the correlation function $W_{\rm K}(\chi^0)$ isn't zero only for boundaries $\chi^0=\partial\chi^1$ and

$$W_{K}(\partial \chi^{1}) = Z_{K}^{-1} |B^{1}(K, \mathbb{Z}_{2})|^{-1} \sum_{\phi^{1} \in B^{1}(K, \mathbb{Z}_{2})} \langle \chi^{1} | \phi^{1} \rangle \exp \left\{ \beta \sum_{s_{i}^{1} \in K} \phi^{1}(s_{i}^{1}) \right\}, \quad (2.6)$$

where $|B^1(K, \mathbb{Z}_2)|$ is the order of the finite group of the coboundaries $B^1(K, \mathbb{Z}_2)$. By using the Fourier transformation on the group $B^1(K, \mathbb{Z}_2)$ we obtain due to Proposition 1 of [10]

$$W_{K}(\partial \chi^{1}) = Z_{K}^{-1}(\operatorname{ch} \beta)^{N_{1}} \sum_{\xi^{1} \in Z_{1}(K, \mathbb{Z}_{2})} \exp \left\{ -2\beta * \sum_{s_{i}^{1} \in K} J(\chi^{1}(s_{i}^{1})\xi^{1}(s_{i}^{1})) \right\}, \qquad (2.7)$$

where $J(\sigma) = 1/2(1-\sigma)$ and the number β^* is given by the following equation: $e^{-2\beta^*} = \operatorname{th} \beta$.

Let K be a finite connected subgraph of the generalized Bruhat-Tits tree F_g . Let K contain also the reduced graph F_g^R . The cell complex K is torsion free. Hence

$$\partial \chi^{1}(s_{k}^{0}) = \exp\{i\pi(\partial c^{1})(s_{k}^{0})\},\$$

$$\xi^{1}(s_{k}^{1}) = \exp\{i\pi\zeta^{1}(s_{k}^{1})\},\$$
(2.8)

where $c^1 \in C^1(K, \mathbb{Z})$ and $\zeta^1 \in Z_1(K, \mathbb{Z})$. Since the graph K is connected any chain ∂c^1 may be presented as $\partial \left(\sum_{i=1}^N m_i \kappa_{c_i, x_i}\right)$, where κ_{c_i, x_i} is some path from the arbitrary fixed vertex $c \in F_q^R$ to the vertex x_i and the integers m_i satisfy the condition $\sum m_i = 0$. (By

definition the path κ_{c,x_i} is the sum of the different links connecting two vertices c and x_i .) In view of the first relation (2.8) it is possible to add to the chain ∂c^1 any chain $c^0 = \sum n_i s_i^0$ with even integers n_i . Hence we may consider all $m_i = 1$ and $N = \sum m_i = 0 \pmod{2}$, i.e. N is even. Since the graph K contains the reduced graph F_g^R and any branch has no loops each cycle $\zeta^1 \in Z_1(K, \mathbb{Z})$ has the form $\zeta^1 = \sum_{i=1}^g m_i z_i$ where the loops $z_1, ..., z_g$ form the basis of the group of cycles $Z_1(F_g^R, \mathbb{Z})$. It is possible to choose the basis in this way thus $z_k(s_i^1) = 0$, ± 1 for any link s_i^1 and k = 1, ..., g. In view of the second relation (2.8) we may consider all $m_i = 0, 1$. Thus the relation (2.8) may be rewritten as

$$\partial \chi^{1}(s_{k}^{0}) = \partial \left(e^{i\pi \sum_{1}^{2N} \kappa_{c, x_{j}}} \right) (s_{k}^{0}) = e^{i\pi \sum_{1}^{2N} \delta_{x_{j}, s_{k}^{0}}}$$

$$\xi^{1}(s_{k}^{1}) = \left(e^{i\pi \sum_{1}^{2} \varepsilon_{j} z_{j}} \right) (s_{k}^{1}),$$
(2.9)

where the numbers $\varepsilon_i = 0, 1$.

It is easy to verify the following formula:

$$1/2\left(1 - e^{\frac{i\pi_{1}^{n}\Sigma_{k_{k}}}{i}}\right) = \sum_{q=1}^{n} (-2)^{q-1} \sum_{\substack{k_{1} < \ldots < k_{q} \\ k_{i} = 1}}^{n} \varepsilon_{k_{1}} \ldots \varepsilon_{k_{q}}, \tag{2.10}$$

where the numbers $\varepsilon_k = 0, 1$.

In view of the formula (2.10) the substitution of the relations (2.9) into Eq. (2.7) yields for the correlation function

$$W_{K}\left(e^{i\pi\sum_{j=1}^{2N}\delta_{x_{j},\cdot}}\right) = Z_{K}^{-1}(\operatorname{ch}\beta)^{N_{1}}$$

$$\times \sum_{\epsilon_{1},...,\epsilon_{g}=0}^{1} \exp\left\{-2\beta^{*}\left[\sum_{m=1}^{2N}(-2)^{m-1}\sum_{k_{1}<...< k_{m}}^{2N}\left\langle\kappa_{c,x_{k_{1}}},...,\kappa_{c,x_{k_{m}}}\right\rangle\right.\right.$$

$$+ \sum_{n=1}^{g}(-2)^{n-1}\sum_{l_{1}<...< l_{n}}^{g}\left\langle\epsilon_{l_{1}}z_{l_{1}},...,\epsilon_{l_{n}}z_{l_{n}}\right\rangle$$

$$+ \sum_{m=1}^{2N}\sum_{n=1}^{g}(-2)^{m+n-1}\sum_{k_{1}<...< k_{m}}^{2N}\sum_{l_{1}<...< k_{m}}^{g}\left\langle\kappa_{c,x_{k_{1}}},...,\kappa_{c,x_{k_{m}}},..$$

and for the partition function

$$Z_K = (\operatorname{ch} \beta)^{N_1} \sum_{\epsilon_1, \dots, \epsilon_g = 0}^{1} \exp \left\{ -2\beta^* \sum_{n=1}^{g} (-2)^{n-1} \sum_{l_1 < \dots < l_n}^{g} \left\langle \epsilon_{l_1} z_{l_1}, \dots, \epsilon_{l_n} z_{l_n} \right\rangle \right\} (2.12)$$

Here for the chains $c_1^1, ..., c_k^1 \in C^1(K, \mathbb{Z}), k=1,2,...$, we introduced the product

$$\langle c_1^1, ..., c_k^1 \rangle = \sum_{s_i^1 \in K} (c_1^1(s_i^1) ... c_k^1(s_i^1)).$$
 (2.13)

For the Bruhat-Tits tree $T=F_0$ the formula (2.12) gives the partition function calculated in the paper [1].

If the vertices $x_1, ..., x_{2N}$ are fixed, the limit $K \to F_g$ for the correlation function (2.11) is obtained by omitting the multiplier $(\operatorname{ch} \beta)^{N_1}$ in the formulas (2.11) and (2.12). We denote this limit by

$$W\left(e^{i\pi\sum\limits_{j=1}^{2N}\delta_{x_j},\cdot\right)}.$$

3. Averages

Our aim now will be to compute the correlation functions with the vertices attached to the boundary of the generalized Bruhat-Tits tree.

If a vertex $x_i \notin F_g^R$ then by the definition of the graph F_g there exists the unique vertex $x^R \in F_g^R$ such that the path

$$\kappa_{c,x} = \kappa_{c,x^R} + \kappa_{x^R,x},\tag{3.1}$$

where the path κ_{c,x^R} belongs to the reduced graph F_g^R and the unique path $\kappa_{x^R,x}$ lies in the branch B_{x^R} . Any half-infinite path (without returns) in B_{x^R} starting at an vertex x^R we call a $ray \ x^R \to x$. The set of all rays will be called the boundary ∂F_g of F_g . On ∂F_g we introduce the basis of open sets ∂B_x , where $x \in F_g \setminus F_g^R$, and ∂B_x consists of all rays having infinite intersection with the branch B_x . The measure μ_0 on ∂F_g is defined by the following relation:

$$\mu_0(\partial B_x) = p^{-\langle \kappa_x R_{,x} \rangle}. \tag{3.2}$$

The relation

$$|x^R \to x, y^R \to y|_p = p^{-\langle x^R \to x, y^R \to y \rangle}$$
 (3.3)

defines the distance on ∂F_q .

The reduced graph F_0^R is merely a single vertex c. The boundary ∂F_0 can be naturally identified with p-adic projective line $P^1(\mathbb{Q}_p)$ [4, 5] with the measure related to the Haar measure dx on \mathbb{Q}_p by the following relations:

$$d\mu_0(c \to x) = dx, \quad |x|_p \le 1, d\mu_0(c \to x) = dx/|x|_p^2, \quad |x|_p > 1,$$
(3.4)

where $|\cdot|_p$ is the standard p-adic norm on \mathbb{Q}_p , and the distance (3.3) on $P^1(\mathbb{Q}_p)$ is defined by its restriction on \mathbb{Q}_p :

$$|c \to x, c \to y|_p = |x - y|_p, \quad |x|_p \le 1, \quad |y|_p \le 1;$$

$$|c \to x, c \to y|_p = |x^{-1} - y^{-1}|_p, \quad |x|_p > 1, \quad |y|_p > 1;$$

$$|c \to x, c \to y|_p = 1, \quad \text{otherwise}.$$
(3.5)

We call the vertex $x^R \in F_g^R$ external if x^R is the end of $b(x^R) > 0$ branches in F_g . For g > 0 by definition of the reduced graph an external vertex $x^R \in F_g^R$ defines $b(x^R)$

 $(0 < b(x^R) \le p-1)$ branches. Then the ray $x^R \to x$ starting at the external vertex $x^R \in F_g^R$ may be identified with the *p*-adic integer number $x \in \mathbb{Z}_p$ in the form

$$x = a_0 + a_1 p + a_2 p^2 + \dots, (3.6)$$

where $0 \le a_0 \le b(x^R) - 1$ and $0 \le a_i \le p - 1$ for i > 0. We denote the set of these numbers as $\mathbb{Z}_p[a_0 < b(x^R)]$. Thus for g > 0,

$$\partial F_g \cong \bigcup_{\substack{x^R \in F_g^R \\ h(x^R) \ge 0}} \mathbb{Z}_p[a_0 < b(x^R)]. \tag{3.7}$$

It is easy to verify that under this correspondence

$$|x^{R} \to x, y^{R} \to y|_{p} = (|x - y|_{p})^{\delta_{x}^{R}, y^{R}},$$
 (3.8)

$$d\mu_0(x^R \to x) = dx. \tag{3.9}$$

The distance between k rays $x_1^R \rightarrow x_1, ..., x_k^R \rightarrow x_k$ is defined similarly to the definition (3.3)

$$|x_1^R \to x_1, ..., x_k^R \to x_k|_p = p^{-\langle x_1^R \to x_1, ..., x_k^R \to x_k \rangle}$$
 (3.10)

The definition of the generalized Bruhat-Tits tree F_g and the relations (3.3), (3.10) imply

$$|x_1^R \to x_1, \dots, x_k^R \to x_k|_p = \left(\max_{i, j=1, \dots, k} |x_i^R \to x_i, x_j^R \to x_j|_p\right)^{\delta_{x_1^R, x_2^R} \dots \delta_{x_1^R, x_k^R}}.$$
 (3.11)

We call the boundary ∂K of the graph K the set of all vertices from $K \in F_g$ which have among the nearest neighbours the vertices from $F_g \setminus K$. Let $f_1(x^R \to x), \ldots, f_{2N}(x^R \to x)$ be the positive continuous functions summable with the measure $d\mu_0(x^R \to x)$ on ∂F_g defined by the relation (3.2). We introduce the average

$$A_{2N}(f_1, ..., f_{2N}) = \lim_{\substack{K_j \to F_g \\ j=1, ..., 2N}} \sum_{\{x_j \in \partial K_j\}} W\left(e^{i\pi} \sum_{j=1}^{2N} \delta_{x_j}, \cdot\right) \prod_{j=1}^{2N} \overline{f_j}(x_j), \qquad (3.12)$$

where

$$\overline{f}_{j}(x_{j}) = (\mu_{0}(\partial B_{x_{j}}))^{-1} \int_{\partial B_{x,i}} d\mu_{0}(x^{R} \to x) f_{j}(x^{R} \to x).$$
 (3.13)

If all graphs $K_j = K$ and all functions $f_j(x^R \to x) = 1$ the average $A_{2N}(1, ..., 1)$ is the straightforward analogue of the *p*-adic string amplitude [8, 9].

We find the limit (3.12) for the special sequence of graphs $\{K_1\}$ such that

$$\partial K_l = \{x \in F_a | \langle \kappa_{xR} \rangle = l, x \in B_{xR}, x^R \in F_a^R, b(x^R) > 0\}.$$

We suppose also that the supports of the functions $f_i(x^R \to x)$ and $f_j(x^R \to x)$ don't intersect for $i \neq j$.

For g = 0 the relations (2.11), (2.12), (3.2) and (3.12), (3.13) imply

$$\begin{split} A_{2N}(f_1,...,f_{2N}) &= \lim_{l \to \infty} \exp \left\{ 2Nl(\ln p - 2\beta^*) \right\} \\ &\times \sum_{\{x_j \in \partial K_l\}} \left(\prod_{j=1}^{2N} \int_{\partial B_{x_j}} d\mu_0(c \to x) f_j(c \to x) \right) \\ &\times \exp \left\{ -2\beta^* \sum_{m=2}^{2N} (-2)^{m-1} \sum_{k_1 < ... < k_m}^{2N} \langle \kappa_{c,x_{k_1}},...,\kappa_{c,x_{k_m}} \rangle \right\}. \end{split}$$
(3.14)

Since the supports of the functions $f_i(x^R \to x)$ and $f_j(x^R \to x)$ don't intersect for $i \neq j$ the last sum in (3.14) absolutely converges as $l \to \infty$ to

$$\int_{P^{1}(\mathbb{Q}_{p})^{\times 2N}} f_{1}(x_{1}) d\mu_{0}(x_{1}) \dots f_{2N}(x_{2N}) d\mu_{0}(x_{2N}) \times \prod_{m=2}^{2N} \prod_{k_{1} < \dots, < k_{m}}^{2N} \left(\max_{i, j=1, \dots, m} |x_{k_{i}}, x_{k_{j}}|_{p} \right)^{(-2)^{m-1} 2\beta * (\ln p)^{-1}}.$$
(3.15)

Here we use the relations (3.3), (3.10), (3.11) and we denote by $d\mu_0(x)$ the measure given by the right-hand sides of the relations (3.4). The distance $|x,y|_p$ is given by the right-hand sides of the relations (3.5). We use also the correspondence $\partial F_0 \cong P^1(\mathbb{Q}_p)$ [4,5] and replace the functions $f_i(c \to x)$ simply by $f_i(x)$.

It follows now from (3.14) that

$$A_{2N}(f_1, ..., f_{2N}) = \begin{cases} 0, & 2\beta^* > \ln p \\ \infty, & 2\beta^* < \ln p \end{cases}$$
 (3.16)

If

$$2\beta^* = \ln p \tag{3.17}$$

inserting (3.15) into the right-hand side of (3.14) we obtain the non-trivial limit

$$A_{2N}(f_1, ..., f_{2N}) = \int_{P^1(\mathbb{Q}_p)^{\times 2N}} f_1(x_1) d\mu_0(x_1) ... f_{2N}(x_{2N}) d\mu_0(x_{2N})$$

$$\times \prod_{m=2}^{2N} \prod_{k_1 < ... < k_m}^{2N} \left(\max_{i, j=1, ..., m} |x_{k_i}, x_{k_j}|_p \right)^{(-2)^{m-1}}.$$
(3.18)

Here we considered the simplest case when the supports of the different functions $f_i(x)$ on $P^1(\mathbb{Q}_p)$ don't intersect. In order to extend the formula (3.18) to the general case it is necessary to study the convergence of the integral (3.18).

Let us consider the generalized Bruhat-Tits tree F_g with g > 0. By using the relations (2.11), (2.12), the decomposition (3.1) and the formulas (3.7)–(3.11) we obtain the relation (3.16). If β^* satisfies the condition (3.17) we have the non-trivial limit

$$A_{2N}(f_{1},...,f_{2N}) = \sum_{\substack{\{x_{i}^{R}\} \in F_{g}^{R} \\ b(x^{R}) > 0}} W\left(e^{i\pi \sum_{j=1}^{K} \delta_{x_{j}^{R},\cdot}}\right)$$

$$\times \int_{\mathbb{Z}_{p}[a_{0} < b(x_{1}^{R})]} f_{1}(x_{1}^{R} \to x_{1}) dx_{1} \dots \int_{\mathbb{Z}_{p}[a_{0} < b(x_{2N}^{R})]} f_{2N}(x_{2N}^{R} \to x_{2N}) dx_{2N}$$

$$\times \prod_{m=2}^{2N} \prod_{k_{1} < k_{m}} \left(\max_{i,j=1,...,m} |x_{k_{i}} - x_{k_{j}}|_{p}\right)^{(-2)^{m-1} \delta_{x_{k_{1}}^{R}, x_{k_{2}}^{R} \dots \delta_{x_{k_{1}}^{R}, x_{k_{m}}^{R}}}, \qquad (3.19)$$

where the correlation function

$$W\left(e^{i\pi\sum\limits_{j=1}^{2N}\delta_{x_{j}^{R},\cdot}}\right)$$

is given by the equations (2.11), (2.12) with the omitted multiplier $(\operatorname{ch} \beta)^{N_1}$. The proof of the formula (3.19) is exactly analogous to the case g = 0. To extend the formula (3.19) to the case when the supports of the functions $f_1(x^R \to x)$ intersect one needs to study the convergence of the integral (3.19).

References

1. Eggarter, T.P.: Cayley trees, the Ising problem, and the thermodynamic limit. Phys. Rev. B 9, 2989–2992 (1974)

- 2. Müller-Hartmann, E., Zittartz, J.: New type of phase transition. Phys. Rev. Lett. 33, 893–897 (1974)
- Bruhat, F., Tits, J.: Groupes reductifs sur un corps local. I. Données radicielles valuées. Publ. Math. IHES 41, 5-251 (1972)
- 4. Serre, J.P.: Trees. Berlin, Heidelberg, New York: Springer 1980
- 5. Manin, Yu.I.: p-Adic automorphic functions. Sovr. Probl. Mat. 3, 5-92. Moscow: VINITI 1974 (in Russian)
- 6. Gerritzen, L., van der Put, M.: Schottky groups and Mumford curves. Lecture Notes in Math. vol. 817. Berlin, Heidelberg, New York: Springer 1980
- 7. Zinoviev, Yu.M.: Lattice R-gauge theories. Theor. Math. Phys. 49, No. 2 (1981)
- 8. Zabrodin, A.V.: Non-archimedean strings and Bruhat-Tits trees. Commun. Math. Phys. 123, 463–483 (1989)
- 9. Chekhov, L.O., Mironov, A.D., Zabrodin, A.V.: Multiloop calculations in p-adic string theory and Bruhat-Tits trees. Commun. Math. Phys. 125, 675-711 (1989)
- Zinoviev, Yu.M.: Duality in the Abelian lattice theories. Theor. Math. Phys. 43, 481-490 (1980)

Communicated by Ya. G. Sinai

Received November 11, 1989