
Communications ίn
Commun. Math. Phys. 130, 157-184 (1990) Mathematical

Physics
© Springer-Verlag 1990

Semi-Global Solutions of Einstein Equations,
Minkowskian Near Past Infinity
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Abstract. On a universe homeomorphic to Vτ=] — oo, Γ[xlR3, we prove the
existence of solutions of Einstein equations, minkowskian near past infinity, if
the sources are small enough for some norms. We prove that some of these
solutions verify at least the positivity condition ("Weak energy condition") on
some domains homeomorphic to Vτ.

Introduction

In this paper we prove the existence of solutions of Einstein equations with sources
in a universe homeomorphic to Fτ = ] — oo, T[x.R3, such that hypersurfaces
{t}xR* are spacelike and curves ] — oo,T[x{x} are timelike, without any
hypothesis of symmetry. We assume only the hypothesis of sources tending to 0, if
f-» — oo, and "small" enough, for some norms, we shall define.

Such solutions represent universes with creation of matter and the question
arises, whether they may possess physical meaning, particularly whether they may
verify the positivity conditions. Concerning the condition TtβXaXβ'^Q for any
timelike vector field XΆ, where TΛβ is the stress-energy tensor, that is the "weak
energy condition" of Hawking and Ellis [1 1], we prove the existence of a solution,
which verifies this positivity condition.

However, if the natural frame of Vτ = ~] — oo, T[xIR3 is minkowskian as
ί-> — oo, that is gα/?(t, x)-*Y]φ as ί-^ — oo, where ηΛβ is the minkowskian metric, it is
dubious that we can obtain solutions verifying the positivity condition on the
whole of Vτ.

We prove only the existence of solutions verifying the positivity condition on
domains D, which, in a natural frame minkowskian as ί-> — oo, are defined by:

or in a domain D which is a union of such domains, spatially bounded for each
value of ί. But considering their topology and causal structure, such domains are
isomorphic to a Vτ.
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Do our solutions verify also the "dominant energy condition" of Hawking and
Ellis? The answer is no! It can be said that their decay as ί-» — oo is too great in
order that such a condition can be verified.

The starting point of this paper is the thesis of Noutchegueme [1-4], who
proves the existence of semi-global solutions of Einstein equations minkowskian
near past infinity. This work was improved by Cagnac, Choquet-Bruhat, and
Noutchegueme, who can prove the same results with not so strong conditions on
the data [5].

However, the solutions were such that gaβ — ηaβ were square integrable
functions on the space like hypersurfaces {t}xR3; therefore they could only have a
null ADM-mass and could not verify the positivity condition. After that, we proved
the existence of solutions gΛβ such that gaβ — ηΛβ were locally square integrable
functions on the space-like hypersurfaces, cancelling this difficulty. This was the
object of two short notes ([6,7]).

In this paper we give the first complete proof of the solutions in spaces of locally
square integrable functions and we prove the existence of solutions verifying the
positivity condition.

This paper is divided into three parts:

I. Choice of unknowns and equations
II. Solution of the equations

III. Positivity condition for the solutions.

I. Choice of Unknowns and Equations

A. The Problem. Einstein equations with harmonic coordinates and conservation
equations can be written:

-hλμdλμg«β + h^(g)Vg® ?g = QΛβ, α, β, λ, μ = 0, . . ., 3 , (I.I)

IWMg^lHO, (1.2)

gaβ is the metric tensor,
Qaβ = TΛβ-$gaβT^ Taβ is the stress-energy tensor,

means a sum of terms

where the h$v'Q<r\g) are analytic functions of gλμ in the neighbourhood of gλμ = ηλμ.
(We shall also use this notation with vector functions other than g).
I V is the covariant derivative defined by g.

We are seeking functions (gφ ρaβ) on VT, verifying

(I.I) and (1.2) such that gΛβ-+ηΛβ when t-> — oo.

Conversely, if functions (gaβ, ρ^β) on Vτ verify (I.I) and (1.2) they define a solution of
Einstein equations with sources if the natural coordinates of Vτ are harmonic for g.
That is, if g verifies the gauge conditions:

O. (1.3)
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(Γ*β are the coefficients of the connexion defined by g); when we have obtained
solutions (gφgzβ) of (1.1,1.2), we must consider whether gaβ verifies (1.3).

B. Choice of the Unknowns. If we assume given the ρίj(ίj=l, 2, 3) and the gφ we
can prove that the system (1.2) is a hyperbolic system for the unknowns ρ°α

However this system becomes "almost" an hyperbolic symmetric system, and,
therefore, is easier to study if we do not take as unknowns the components of ρ in
the natural frame of FΓ, but the components of ρ in a moving orthonormal frame

Hence we proceed among the following lines: In place of the tensor g, we take
as unknowns an orthonormal moving frame e = (e*A), such that e*A-+δΛ

A as ί-> — oo. g
is linked with e by:

g«β = eϊeB

βηAB, (1.4)

where (eA) is the inverse matrix of (e*A).
The equations (1.2) can be written:

Hence, putting ρ°A = VA, ρu = φlj, and considering that the coefficients yc

AB of the
connection are linear in dλe

A with coefficients, which are products of some eA and
e\, we obtain

where the fA can be written

fA = k(e)Ve® V+ k(e)Ve®φ + k(e)Vφ ,

k(e\ analytic functions of the eA, in a neighbourhood of eA = δA.
Considering (1.4), Eqs. (I.I) are written

-ϊgλμ(e)ηAB(eB

βdλμe
A + eAdλ(ίef) + h'Λβ(e)Ve® Ve = ρaβ , (1.6)

where the h'Λβ are symmetric in α, β.
We impose on the ea

A the gauge conditions:

eB

β - e$d^) = 0 . (T.7)

Then, Eq. (1.6) become:

eA + h'Λβ(e) Ve®Ve = ρα, . (1.8)

Conversely, if eA verify (1.8), the fact that h'Λβ and ρΛβ are symmetric in α, β implies
that the gauge conditions (1.7) are satisfied.

The system (1.8) is equivalent to the following system, obtained by linear
combinations:

= ρ^cη
AC . (1.9)
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We choose as unknowns:
A-A

~

The components φlj= eu are assumed given.
Finally, we obtained the following system of equations for the unknowns

V=(VA):

L(u)V=f(u,V,φ) {' )

L(u) is the differential matrix operator defined by the left-hand side of (1.5),

l(u,V,φ) = k(u)V+k(u)φ, (1.11)

f(u, V,φ) = k(u)Vu® V+ k(u)Fu®φ + k(u)Vφ . (1.12)

gλμ(u\ h(u\ and the functions k(u) are analytic functions of u^ in the neighbourhood
of UA = 0. A solution (u, V) of (1. 10) will define a solution of Einstein equations, if the
gauge conditions (1.3) are satisfied by the solution.

II. Solution of Equations

Notations and Results.
Fτ = ]-oo,T|>R3,

α = 0,...,3, ί = x°, * = (*'), i=l,...,3,

w = (w^) = u1 (with a unique index for simplification) ,

dlλlu*
Dλu'=dχλo Qχλ3, where A = (A0, ...,A3), |A| = A 0+ ... +

y |DV|2V/2, if
=i

l l ^ w l l o = Γί I^M|2
\Ωt

If ί = l, we write simply \Vu\ = \V^u\, \\Vu\\ Ωt = \\V^u\\Ωt.
If u,ϋ,w are vector functions, k(w)t;(x)w means a vector function, whose

components are sums of terms kfa^w8. k(u) may represent different functions at
each use of this symbol, even in the same line. Similarly, C will represent dif-
ferent constants.

Domains Q. There exists an ε0 > 0 such that \u\ = Sup [i/l < ε0, implies: gα/J(w)3αj? is a
/

regularly hyperbolic operator and gα/?(w), hΛβ(u) in (1.10) and the k(w) in (1.11), (1.12)
are analytic functions for |w|<ε0.

Then, there exists a y>l, such that, if |«|<β0, the characteristic cones of
gΛβ(u)dΛβ are contained in the cone |x| <γt. For each TeR and αe^3, we define a
domain ί2(7^α) by:

; a) = {(ί, x) e R4\t < T and |x - a\ < 1 + y(T- 1)} .
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Each domain, for any T and α, will be called "a domain Ω". We have

Vτ= U Q(T,a).
aeR3

So chosen, the domains Ω are Causal domains for gΛβ(u)dΛβ if \u\<ε0. We put:

Vίe]-oo,T[,

The Ω/s are balls in R3 with a radius greater than 1, in such a way that the
inequalities of Sobolev can be verified with the same constants in all the Ωt(T, a).

Function Spaces and Norms. For any domain Ω, we define

C°°(Ω) = {/6CCO(Ω); there exists ί0 such that /=0 if ί^ί0} >

Ek(Ω) is the closure of C°°(Ω) in the norm

.
ί<T i =

We put qΩ,3 = qΩ.

E(Ω) = j/e E3(β) and qΩ(f) = ̂ (/) + ί (T- ί + 1)
C -00

/ 3 \ -)

xsup Σ IIF'/II^ Λ < + o o > .
t < ί \ i = 0 / J

and §*(/) = qΩ(f) + Ess Sup l|P4/||βt< + o o .

jSf(Ω)=< /measurable on Ω and pΩ(f)= U^~i

On cSf (Ω), we shall use also the norm

pfl(/)= ί jσ-ί+i)3ll/L t+ Σ (τ-t+\γ-k\\vkf\\Ω\dt.
-ex) I fc=l J

=</ measurable on Ω and pΩ(f)=

£fe(Ω), £(Ω), E*(Ω), JS?(Ω), J^(Ω) are Banach spaces, C°°(Ω) is dense in

The Main Theorem. There exist constants r0 and r such that if for a domain Ω,
pΩ(φ)<r, the system (1.10) has a unique solution (u, V) in this domain Ω, such that

q%(u)<r0 and VeE3(Ω). (*)

This solution satisfies the gauge conditions (1.3) and defines a solution of Einstein
equations with sources, minkowskian near past infinity.
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Corollary. // D is a union of domains £2's, and if, for each of these ί2's, pΩ(φ) < f.
The system (1.10) has a unique solution (w, V) in D verifying (*) for each of these

Ω's.
This solution defines a solution of Einstein equations with sources, minkowskian

near past infinity.
This corollary can be applied to Vτ = (J Ω(T,a) if pΩ(φ)<f for all Ω(T,a\

aeR3. αe*3

II.A. The System

ί. Basic Inequalities for (II. A. 1)

Proposition 1. Let u e CCO(Ω) be a solution of (II. A.I) such that \u\ < ε0. Then u verifies
for t<T the inequalities:

a) IIPκ||βt^Φι(Λ,,β) ί Hβl loA'
— oo

b) W2u\\Ωt^Φ2(Pu,Ω) } Wβ\\Ωdτ,
— oo

- oo

t

ς|\ ||P4iίil ^Φ (P 'M N ) f {(t

where Φ, (i = 1,2, 3,4) are continuous and increasing functions of:

Λ,,n= ί Sup|Pu|Λ;Mu,β = Sup|FM|;NB,Ω = Sup|P2

-00 Ωt Ω Ω

Proof. Multiply (II. A.I) by d0u and integrate the equality over

where ί0 is such that w = 0 for t^t0. Stokes' formula yields:

ί g°°(do")2 -g^udju)^ nte^u)2 +gijd0udju) dS
F I 2.

+ d0udiUdjgij - - diUdjUd0g
ίj > dτdx,

where (nα) is the unit outward normal to the boundary F oϊA, and dS the measure
element on F. F is made of 3 parts:

F! on τ = t\ F2 on τ = ί0J ^3 on the "lateral boundary" of Ω.
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to

«t |F1

F3

IF,

We have f =0.
F2

The hypothesis |w|<ε0 implies that there exists a constant C>0 such that:

ί =
Ω,

Now on F3 we have dS = — , and in the left-hand side of (*) the integral over F3 can
be written as: n°

1 = ί ~2 \ (βow)2 ~ g*βnanβ - - gij(n0diU - n fd0u) (n0djU - Πjd0u) > dx .
F3 nQ ( L L }

But F3 is spatial; so we have gaβnΛnβ^O. On the other hand, the form gijXiXj is
negative definite. This implies 7^0. We then deduce from (*) the inequality:

(*+)
ί0 Ωτ [α, λ,μ

Now by chain rule, we have:

yλμ

Since the -—f are bounded, we deduce from (**), using Schwarz' inequality:

and GronwalΓs lemma yields:

UF«llo^SexpΓy J Sup|Ftt|dil- f ||β||D,dτ.
Δ | _ ^ - c » Ω t J - o o

This proves the inequality a).
We obtain the inequalities b), c), d) by the same method applied on equations

deduced from (II. A.I) by successive derivations up to order 3 with respect to xλ.
This ends the proof of Proposition 1.

Our next purpose is to deduce from these inequalities, some other inequalities
with absolute constants.
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Proposition 2. Given arbitrary positive constants M0, JV0, there exists a number r > 0
such that, if ρ satisfies the condition:

T
ί

(II.A.3)

Then, if ueC^Ω) and verifies (II.A.1):

1°) We have:

2°) There exists K0>0 such that u verifies the inequalities:

(«) \\u\\Ωt^K0 f (ί-τ)||ρ||0τdτ,
— 00

(β) l|Fu||Ωt^κ0 ί l l e l l o / f r ,
— oo

(Y) ||F2M||Ωt^ίCo ί \\rQ\\a dτ,
— oo

(δ) ||F3w||Ωt^0 } {(ί-τ+l)||Pρ||0τ+||P2ρ||0τ}dτ,
— oo

(ε) ||P4u||Ωt^0 ί {(t-τ + l)2||Fρ||Ωτ + (t-τ)||F2ρ||Ωτ+||F3

— oo

Proof. There exists a Sobolev constant C>0 such that:

(II.A.4)

Ω,
Σ |

i=2

Suppose we have:

(1) P«β<ε 0 > Mu

This will imply, using Proposition 1:

rfe.0^CVl(e0,M0,tfo) ί {llβL t + (Γ-ί+l)||Fρ||0t+||F2ρ|| l ϊ t}dί,
— oo

(2) { Pu>Ω^Ctp2(ε0,M0,]V0) J {(T-t)\\ρ\\Ωt + (T-t+l}2\\Fρ\\Ωt

One then chooses r in such a way that condition (II. A.2) implies that the right-hand
sides in (2) be respectively less than M'0 < M0, ε'0 < ε0, JV'0 < JV0.

Under these conditions, (1) implies:

(3) Pu,Ω<ε'0, NaιΩ<JV'0.

But when T-+ —oo, (3) is verified, since ueC^(Ω). Now PUjβ, MUιΩ, NuιΩ are
continuous functions of T. So the fact that (1)=>(3) shows that (PU,Ω,MU<Ω,NU<Ω)
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cannot go outside the connected domain of R3 defined by (3). This proves (II.A.3).
The inequalities (II.A.4) are direct consequences of a), b), c), d) Proposition 1. This
ends the proof of Proposition 2.

Note. In all the following, r will always stand for this number in (II.A.2).

Propositions. 1°) // |u|<ε0, Pu,β<β0>
 v^El(Ω), and \V2v\ is locally square

ίntegrable, then if a/ x ̂g*β(u)d2

aβv = ρ,

v verifies the inequalities (II.A.4), (α) and (β).

2°) Moreover, if MMjΩ<M0, NU>Ω<N0 and if veE3(Ω) with \V*v\ locally square
integrable, then v verifies the inequalities (II.A.4), (γ) and (δ).

Proof. Is straightforward the proof of Proposition 1. One just has to distinguish
between what depends on gaβ and what depends on v.

2. Solutions of (II. A. 1)

Theorem 1. Vρ e C^(Ω) satisfying (II.A.2), (II. A. 1) has a unique solution u in C°°(Ω).
This solution verifies (II.A.3) and (II.A.4).

Proof. It is based on Leray-Dionne Results [8-9], and is similar to the proof given
in [3], Sect. Ill, Proposition III. For the existence of the solution, ρ is then replaced
by QΦΩ> where ρ6C°°(F4

τ) and ρ|β = ρ, while φΩ is a suitable truncating function.
Unicity is obtained using GronwalΓs Lemma.

Theorem 2 [Existence and unicity of Solutions in £3(Ώ)]. Let B(r)
)^r} andρeB(r). Then

has, in the sense of distributions, a unique solution u in E3(Ω) such that:

Pu,Ω<ε0. (II.A.5)

2°) This solution has the following properties:
u has 4th derivatives, in the sense of distributions, which are, for almost every

t e] — oo, T[, locally square integrable and:

ί < T

|u|<e0; |FM|<M0;

Htillo^Ko (f-τ)lk?Mτ
- oo

|| Full 0.^Xo ί
— oo

ί

— oo

u||Ωt^K0 J {ί-

(II.A.8)
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Remark. (II.A.6) and (II.A.8) imply

\\rlu\\at<KQr9 i = 0,l, ..,4.

Proof. Due to the density of C°°(Ώ) in j£?β, one approaches ρ by a sequence
feJCB(r)nCf (Ω). The solutions un of (II.A.l) given by Theorem 1 verify

g"β(un)d2

aβ(un - um) = ρn-ρm + [g>J - g^iij] δα>m .

We apply Proposition 3, 2°) tov = un — um and we use the fact that pΩ(ρn) < r to show
that (MΠ) is a Cauchy sequence in the Banach space E3(Ω), which converges to a
weak solution w of (II.A.l).

The inequality (II.A.4) (ε) verified by un and ρn implies that

(1) SupSup||FX||Ωt^X0r.
n t<T

Now, in a similar way to [3], Sect. VI, Lemma 3, one shows that the space:

βo(Ω)= ί/ measurable on Ω, ||/||Qo = EssSup ||/| |Λ t<ool.
1 *<τ J

is the dual of the Banach space:

r T ]
F0(0)= 1g measurable on 0,||g||Fo= J | |g|| f l tώ<oo>.

I -oo J

(II.A.6) is then a consequence of (1) and of the weak compacity of balls in Q0(Ω).
(II.A.8) is obtained from inequalities (II.A.4) (α) to (δ), on un and ρn, using the
limiting process. (II.A.7) is a consequence of (II.A.8) and the construction of r.
Unicity is obtained from Proposition 3, 1°).

B. The System L(u) V=f(u, V, φ). We assume that u and φ are given and u verifies
(II.A.5, 7, 9).

1. Estimates for the Solutions V. We first assume V and φ in C^(Ω\ null for t rgί0

and satisfying

From (II.B.l) we deduce:

If we write the derivatives in the natural frame of Fτ, we obtain

30 [i( °̂)2 + Σ (VJ)2 + fe°(w)F® F] + dfytV* + fcl'(w)F(8) F)
j

=f°V° + X 2/JFJ + k(u)Vu® V® F, (II.B.2)
j

where the k\ύ) are some e*A — δ*A. Therefore they verify estimates:

. (Π.B.3)
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We integrate (II.B.2) on Ωn{ί0^τ^ί}; we obtain:

ί K Γέ(F°)2 + Σ (VJ)2 + kQ(u)V® V~\ + ̂ [F0 V1 + k\u}V® V}\ dS
F\ I J J J

ί

= \dτ J f/0F°
tθ Oτ l J J

As in part Π.A, F = F1uF2uJF3; and J = J = 0,
F2 βto

J = J(^(F0)2 + Σ(Fj)2 + /c0

Fi Ωt J

Considering (II.B.3) we have

|J k°(u)V®Vdx ^CSup|ιι| ||F||έ t^CSup|ιι|4 J
\Ωt Ωt Ωt Ωτ

Therefore we can choose ε0 such that

On F3, we have n0 = y(l +72)~1/2, I^N^+y2)"1- Hence:

I^Fί^^FY+^Σ^Σίή2, for α>0.

Choosing α = 2(l +y2)1/2, we have:

Since y>l, there exists C>0 such that:

+n ίF°F ί>C|F|2.

Considering (II.B.3), we can choose ε0 such that

\u\ <ε0 => \n^(u)V^V\ < C\V\2 .

Then, we have J > 0.
F3

Finally, considering the form (I.I 2) of the functions / and | Vu\ < M0? we obtain

Considering (II.A.5), GronwalΓs lemma implies:

\\V\\ot^C } (\\Φ\\Ωτ+\\Vφ\\Q)dτ. (
— oo

Remark. The same reasoning shows that, if u verifies (II.A.5) the solutions F of
L(u)V=g, have the estimate

Ωt^C \\g\\Ωdτ. (II.B.5)
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2. Estimates for the Derivatives of V. Deriving the Eqs. (II.B.l), we obtain, if |α| = i
(=1,2,3)

k=l

Proceeding as in 1), we obtain

\\rΎ\\2

Ωt^\dτ f f Σ (ffirV0 + 2^0*7*} + k(u}VuViV®ViV\dx.
to Ω τ { |α |=i\ j J j

Considering (1.12), H(1) can be written as:

) = k(ύ)Vu® VV® VV+ \_(k(u)Vu® Vu + k(ύ)V2u}® V

Then, we have:

\\?kφ\\2

Ω .
t = 0

Gronwall's lemma leads to an estimate

and the estimate (II.B.4), leads to:

(ί-τ
-oo

Estimates for ||l72F||βt and ||P3F||Ωt are obtained with the same process.
Some terms are tricky to estimate in J H(2)dx or in j H(3}dx:

Ωτ Ωτ

Σ \\Vku\\Ωτ Σ l
k=3 k=0

£C ; \\vkv\\Ωτ,
k = 0

4tt||Ωι Σ \\VkV\\Ωτ

Finally, we obtain the estimates, for ΐ = 0, ...,3

i f i + l

IIPFII^^C J (ί-τ + iy||0||βτ+ Σ (ί-τ
-oo I k = l
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3. Solutions. Starting from the results of Leray-Dionne [8, 9], with the estimates
(II.B.7), we obtain

Lemma II.B. // φ verifies:

k=l

and if u verifies (II.A.5, 7, 9), the system (II.B.l) has a unique solution Fe E3(Ω). This
solution verifies the estimates (II.B.7).

C. The Coupled System (1. 10). In order to solve (1. 10), we consider the system

$Zλμ(u)dλflu = - h(v)Vv® Vυ + t(v, V, φ) , (II.C.l)

\L(Ό)V=f(Ό9V9φ).

In order to apply the results of parts II.A and II.B to (II.C.l) and (II.C.2), we must
choose v in a function-space such that h(v)Vv®Vve£?(Ω}.

We must also obtain u in the same function space, where we choose v, in such a
way that we can iterate and show that the application v\-^u is contractant in
some function space.

That leads us to introduce the norms qΩ, q%, and pΩ (cf. § "function spaces and
norms" at the beginning of part II). We shall choose υ in £*(Ω) and show that v ι-> u
is a contractant for the norm qΩ.

Lemma II.C.l. // pΩ(ρ)<r, and u verifies gaβ(u)daβu = ρ, then

«£(«)< CpΩ(ρ)<Cr. (II.C.4)

// ρ1 and ρ2 verify (II.C.3), then

q^-u^Cp^-ρ2). (Π.C.5)

Proof of (II.C.4). Considering (II.A.8), it is sufficient to show that

J (T-t + ί)Sup(i ||F'«||0.
>U<Cp0(<?)

-oo τ^f \i = 0 /

Now, we have:

Supf Σ II^
τ^ί \i = 0

Hence:

f (T-ί+l)Sup( Σ
-oo τ<ί \i = 0

+ (T-t+l)2||F2ρ||Ωt}Λ. q.e.d.

Proof o/(Π.C.5). u^ — u2 verifies the system

where ρ = ρ' + ρ", with
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and we can follow the same kind of reasoning as in part II.A, Theorem 2; so we
find:

Jjl^("ι-u2)^

(II.C.6)
Then we have:

T / 3
J (T-ί + l)Sup

-oo

3
<g j (T-ί + 1)3 _

-oo I k = 0

+ (T-ί+l)2 | |P2(ρ ι-ρ2)i|βiΛ. (II.C.7)

Inequalities (II.C.6) and (II.C.7) imply (II.C.5).

Lemma II.C.2. Vr0>0, there exists C1(r0)>0, such that C1(r0)->0 when r0->0, and

Ήfc) < ro => PΩ(h(vWv® Vv) < C^r^q^v),

Vr0>0, there exists C2(r0)>0, such that C2(r0)^0 when r0->0, and

Proo/ o/ (II.C.8). We show on some terms of pΩ, how the estimates are done.
For instance, there is the term

Since

V(h(υ)Vυ®Vv) = k(v)Fv3 + k(v)Vυ® V2v ,

(we write Vv* = Vv®Vυ®Vv\ we must estimate:

A= ] (T-t + \}*\\k(v)Vv®V2v\\Ωτdτ^C } (T-τ + l)3Sup||7ι;| \\V2v\\Ωdτ,
— oo — oo Ωτ

} (T-τ + l)Sup|Fι;|||F2»||0τdτfj(T-ί
-oo βτ \τ

^C J (T-t + ί)dt j (T-τ + l)Sup|Fι;|||F2ί;||Ωτίίτ
— oo — oo Ωτ

+ C ] (T-τ + l)SuP|Fί;|||F2t;||Ω^τ,
-oo Ωτ

T T

^C J (Γ-ί+l)SupSup|Γι?|Λ J (Γ-τ + 1) \\V2v\\Ωdτ
— oo τ < ί Ωτ — oo

+ Sup|Ft;| J (Γ-f
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Hence, considering Sobolev's estimates, A ̂  qΩ(v)qΩ(v). Another instance: there is
the term: τ

J (T-t + ί)\\r^h(υ)rυ®rυ)\\atdt9
— 00

V\h(v)Vv® Vυ) = k(v)Vv® V4υ + k(v)V2v® V3v + k(v)Vv2® V*v

4- k(υ)Vv® V2v® V2v 4- k(v)Vv*® V2v + k(v)Vv5 .

We must estimate for instance

A = } (T-τ + \}\\k(υ)Vυ®V4v\\Ωdτ^C } (Γ-τ + l)Sup|Fι>| \\V*υ\\Ωdτ,
— oo — oo Ωτ

^^CEssSup||F4ι;||Ωτ J (T-τ + 1) Σ \\^v\\
τ<T -oo k=l

Proof of (II.C.9). We can write

Since, h being an analytic function, we can write

where k(v^υ2) is an analytic function of vί and t>2 i
n the neighbourhood of (0,0).

The continuation of the proof is through estimates similar to the proof of II.C.8.

Lemma II.C.3. 1. // v verifies (II.A.5, 7, 9) and if L(v)V=f(v, V, φ\ ifpΩ(Φ)< + oo,
then,

PΩ(V)<CpΩ(φ).

2. // v1 and v2 verify (II.A.5, 7, 9), if pΩ(φ)< + oo, and if

UvJV^nυ^φ),

L(v2)V2=f(v2,V2,φ),

then

Ph(V, - V2) ̂

Proof of (II.C.IO). It is a consequence of Lemma II.B and estimates Π.B.7.

Proof of (II.C.ll). V1-V2 verifies the system L(v1)(V1-V2) = g, where

' = (k(vl)F(vi — v2) + k(v^ v2) (vv — v^

(fi)^! — v2) + k(vly v2) (v1 — v2

(v1.> v2) (v1 — v2)® Vφ .
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Following the same process as in part II.B, we find

\\V,-V2\\Ω^C \ \\g'\\Ωdτ,
— oo

therefore

and considering (II.B.7) verified by V29

Σ \\ήv,-v2)\\Ω] I (t-τ + l)(\\φ\\Ωτ+\\rφ\\Ωτ)dτ.
/ -oo

Similarly starting from the derivated equations, we find, for / = 0, 1,2,

'K-^llJ J ί(ί-τ + l) i + 1 |l4>lk
/ -co (

2-k\\rkφ\\Ω\dτ. (Π.C12)
k~ 1 )

From (II.C.12), we can deduce (II.C.l 1).
For instance in p\^Vl — V2), we must estimate:

A= } (T

-oo

x J

I \\Vkφ\\Ωdτ](T-t+ί)2(t-τ+ί)4-kSup Σ
k=l -oo τ τ^ί \i =

+ C f ||ψ||0
i = 0

-t + l)Sup(|; ll^i-βzίllo,k=l -oo -oo τ^ί \/ =

+ C } (T-τ + inφ\\Ωdτ ] (Γ-t+l)Sup(Σ W^-v^dt,

Lemma Π.C.4. There exist constants r0 and f such that if pΩ(φ) < f,
l if 4β(^)<ro? the system (II.C.l) (ILC.2), has a unique solution (w, V) such that
q%(u)<r0 and Fe£3(Ω).
2. The application vt-^uso defined in F = {v e £*(Ω), q$υ) < r0} is contractant in F
with the topology induced by E(Ω).
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Proof of 1). We set ρ= -h(v)Vv®Vv + l(v,V,
From Lemmas II.C.2 and II.C.3, we can deduce, if q

Then we can determine r'0 and fί such that

<$(*0<r'o and

Then we can apply to (II.C.l) Theorem 2 and Lemma II.C.l. (II.C.l) has a unique
solution u such that

qftμ) < KpΩ(Q) ^ K[_C,(r^qΩ(v) + CpΩ(φ)-\ .

Then we determine rJ^rO and α>0 such

TO<rS and ^ψ)<

using the fact that C^FΌ)-^, when r0->0. We set f2 = arfQ.

Proof of 2). From (II.C.5), (II.C.9), and (II.C.l 1), we can deduce an estimate:

qΩ(u, - u2) ̂  qΩ(v, - v2) [KC2(r0) + KCpΩ(φ}\ .

Using the fact that C2(r0)-»0 when r0->0, we can choose r0<Γo and r?gr2> such
that KC2(r0] + KCf<^. q.e.d.

Lemma II.C.5. F = {v eE*(Ω), q%(v)^r0},with the topology induced by E(Ω), is a
complete metric space.

Proof. We use the weak compactness of the balls of

βo(0)= {/ measurable on β|||/||Co = EssSup||/||βt< + ool.t<τ

If vn is a Cauchy sequence in F, for the metric,

d(vp, vq) = qΩ(υp - vq) , Vp converges to v in E(Ω) .

But we can find a subsequence, vp such that V*vp converges weakly in Q0(Ω), to w.
Then we have V*υ = w e Q0(Ω) and q%(v) ̂  r0.

Lemmas II.C.4 and II.C.5 imply the first part of the main theorem.

D. Gauge Conditions. If Eqs. (I.I) and (1.2) are verified, the Φλ of (1.3) verify a system
of equations (cf. [10])

Φλ has the form Φλ = k(u)Ϋu and we can apply to the system (II.D.l) the results of
part Π.A (Proposition 3), then

IIo^Xo ί \\k(u)Vu®VΦ\\Ωdτ.
— oo

Hence

||βt^C J

and GronwalΓs lemma imply ||FΦ||βt = 0, that is φ = 0.
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III. Positivity Conditions for the Solutions

Do the solutions we have determined on Vτ verify the weak positivity condition?
That is,

TΛβXaXβ ^ 0 for all timelike vector fields XΛ. (III.1)

The TΛβ are determined in terms of the data φij and of the solution (gφ VA\
through

TAB = ρAB-±ηABηCDρCD, where ρ°A = VA, ρlj = φlj.

Since as ί-» — oo, gaβ-*ηaβ or ea

A-*δa

A, the conservation equations

are approximately

d<* (Qaβ—2 nΛβ (QOQ—Σ QU\] = o, (πι.2)
and (III.2) can be written

a)

b)
ίj=l,...,3. (III.3)

It is reasonable to think that, near — oo, the VA of the solution of (1.10) determined
by the data φij are close to the VA solution of (III.3) for the same data.

We call the system (III. 3) "approximated equations", and we shall first seek
whether some φlj can be found such that the approximated equations have a
solution VA verifying the positivity condition for the Minkowski metric. After that,
with the φij so determined, we shall seek whether the exact solution, that is the
solution of (1.10), verifies the positivity condition.

A. Approximated Equations

1. Explicit Solution of the Approximated Equations. Through derivation of (III.3a)
by <30 and (III.3b) by dj we obtain:

The fact that F°->0 when ί-> — oo, shows that (III.4) has a unique solution, given
by KirchofFs formula:

Equations (IΠ.3b) can be written:

The fact that FJ->0 when ί-> —oo shows that Vj is uniquely determined by:

VJ(x,t)= } gj{τ,x)dτ.
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Since the positivity condition is expressed through the TAB, linked with the
and the φlj by:

L — φ22 — φ33), and similar formulas for Γ22, T33,

we shall express the TAB in terms of the φu,

(III.5)

with /=-(

Toj(t,x)= J g/τ,x)dτ \ (Ul.6)
— oo

with gj = — djT00 + dj ^Σ φll\ ~Σ dίΦlJ -

T1l = T00 - φ22 - φ33, and similar formulas for T22 and T33.

Tίj = φίj if ΐ Φ J .

Evidently Γ°°, T0j are defined only if the integrals in the right-hand sides are
convergent. But if the φu verify pΩ(φ) < r, VΩ, these integrals are convergent and
define locally integrable T°°, and T°7'.

We put Γ ,

Through changes of variables, we obtain

)= dt J f(t>x-ξ)dζ.

Then

f(t,x-ξ)dξ <

KI< Jr-r4π|£|

L( dr< v/2

i
\f(t,η)\2

\τ-t\^\\f\\Ωt(x).

Hence F(x)Z } -±=\T-tn\\Ωt(x)dt.
-« l/4π

Now pΩ(φ)<ϊ^ J (T-ί + l

T00(ί,x). The proof is similar for T0j(t,x) ).

is then defined and also
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2. Instance of φlj on Vτ Leading to TAB verifying the Positivity Condition. In order
to simplify, we choose T= — 1; so we have T—£ + l = |ί| and
VT=V-^= u Ω(-ι,4

αefl3

Also in order to simplify the solutions, we search φlj with the form:

where φ is a function of the two variables t and r = \x\.
With such a choice of φu, the function / in (III.6) is:

f=—2Aφ (A =dn + δ22 +^33)- (ΠI l)

In order to get T°°^0, which is necessary for the positivity condition, we choose
/^O. When the function f(t,r) is chosen, (III.7) shows that φ is determined by:

22 JL Λ 3J. Λu ψ λ uψ 1

"δrr+ r ~dr~~T'
Hence

,

where C(ί) is an arbitrary function of ί.
From the Kirchhoffs formula (cf. III.6) we see that T°°(ί, r) is determined by:

!ρ, (IIL8)
1* D(t,r)

where D(ί, r) is the domain of the (τ, ρ)-plane defined by

As.
\and | ί—τ—r|gρgί
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The simplest choice for / is

177

/= -A where δQ and m are positive constants.

With such a choice, we have

Hence, φ(t, r) is not a bounded function as r-> -f oo. This is incompatible with the
condition pΩ(φ)<fϊor all domains Ω( — l,α) since, with a domain Ώ( — l,α) such
that the point a tends to infinity we have pβ(</>)-> + oo.

Then we may choose:

where δ, <5', A are given positive functions of t.

Remark. The discontinuity of/ defined by (III.9) and of his derivatives for r = A(t\
is not compatible with the hypotheses of smoothness made on the φlj. But, such a
/ can be approached by smooth functions, e.g. :

δ' --

,~*e ' r*

if r>

if r<A(t)

In order to verify positivity conditions, it is easier to use the / defined by (III.9).
The results will be true for the fε for small enough ε. With / defined by (III.9), we
f m d ( i f α φ 2 a n d α φ 3 ) ;

φ(t,r) =

C(t)--r2 if r^

C(t)-δ-A^^A"X +
{' 4 2(~ — 2}

δ' 1_

~ 2(a-3)(a-2)'r^^

where C(t) is an arbitrary function of t.

(111.10)

if

In order to that φ be bounded as r-> + oo, we must choose α > 2.

δ and δ' can

similarly as

δ and δ' can be chosen as δ(f)= — ̂ -, δ' = ®-. C(t) can be chosen
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The conditions that pΩ(φ) < + oo, for Ω = Ω( — 1, α) will give some lower bounds for
w, m', q; and m, w', g, being chosen, the conditions pΩ(φ) <r will give some upper
bounds for δQ, <5'0, C0.

Posίtίvίty condition in the domain r < A(f). We suppose that the domain r < A(i) is
a union of domains Ω. For instance

or

In such a case the expression of the TAB for r g ̂ 4(ί) does not depend of the exact
choice of A(t) and of δ'(t), since for r^A(t\ the whole of D(t,r) in (III.8) is also
contained in the domain r

r^y\t\, with y > l ;

^γ\t\p, with γ>!,/?>!.

Choosing δ(t)= r-^ , we find:

δo 1
τ°° =

Γ0i(ί,x)=-

T"=-

T«=0 if iφj.

Since Tίj'=0, for iφ;, we have

(111.12)

'XoAΓ, + Σ T"Xf .
ί

Putting ||T° || - fΣ(T0 ΐ)2V/ 2, we have, for all λ>0:
/

Hence, the positivity condition is verified, if in each point we can choose λ such that

That is, if

Considering (III. 12), we have:

and T"-A||T0- | |^0 for i = l,...,3.

|| T- O || 2 < yOO . πrii

r ^ δϋ A(t)

(IH.13)

Mm- 1 *
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τoo
λ

That will be positive if λ >

λ |ί |m-2(m-l)(m-2)

_ 2

3 |ί| '

1 1 r2 λr
lL(t)+ U l m _ 2 \ Λ_ <w_ ^\ ' ^ |£i

r'W||ro ||>-2C(θ+^(^Γτ^Γ2)

1 λ2

m-i; 6(m-l)V

That can be made positive by the choice of C(t), with

1 /m-2VΛ4(t)Y 1

2"υ6(m-l) 2V 3 ) \ t

For instance, if 4(ί) = (y|ί|, we can take:

(ΠL14)

With a choice of C(ί) verifying (III. 15), we have an estimate

In the case A(t) = y\t\, we have k(t) = δ0 °_2, for some fc0>0.

Positivity Condition in the Domain r > A(t). It may be proved, if we choose / as
(ΠL9)asr^ + oo,

liτ°
~T if 2<α<3

if 3<α
r2

[That comes from the term djφ in gj9 cf. (III.6) and (III. 10)]

Tu~K"(t)

( δ δfA2~a \
( i f we choose C(ί)φ τ^2+ 57 ^ in (ΠI.10). J In order that the condition (111.13)

be verified, we must have:

K'2 KK"
~2<--°Γ if 2<α<3

if
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That will be possible only if we choose 2 < α < 4. In such a case, with a convenient
choice of C(t) it can be proved that the positivity condition may be verified.

However, in such a case, we shall have an estimate

TABXAXB>k(t,r)ΣX2

A. (IΠ.16)

With fc(ί, r) < T00(ί, r), that means that fe(ί, r)-»0 as r-> + oo. We shall see that such
an estimate does not allow us to prove that the solution of exact equations verify
also the positivity condition. Therefore we limit ourselves in the search of a
solution in a domain D:r^A(t\ which is also a union of domains Ω, in such a
way that we can apply to D the results we obtained in part II.

Let us give the possible values of m in the simplest case:

: U Ω(-\,a). (111.17)

We have found: [cf. (111.15) and (III.10)]

δ« (- _1^1
^ 1Ήt|2

With such a φ, we have:

In order that pΩ(φ)< + oo, we must choose

. (111.18)

Remark on the Dominant Energy Condition. Does this solution of approximated
equations verify the dominant energy condition? A necessary condition for that is:

. (111.19)

Considering (III. 12), (III. 19) can be verified only if:

-l) \t\ '

that means, in the domain r<y|t|, if:

m < - + 2 < 5 , (since y > 1) .

Comparing with (III. 18), we see that the condition pΩ(φ) < + oo, implies too great a
decay of φ as f -» — oo, in order that the dominant energy condition can be verified.

Remark. Another Kind of Solution. We may also have solutions null for t ̂  t0 and
verifying the positivity condition; taking:

;;;:•
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it can be proved that if we choose the constant b large enough, the positivity
condition is verified and

TABXAXB>kδ0(t-ί0)
m+2ΣX\, with some k>0.

A

B. Positivity Condition for Exact Solutions. Let φlj be functions leading to
solutions of approximated equations verifying the positivity condition on a
domain D which is the union of domains Ω's.

The stress-energy tensor of these solutions of approximated equations will be
called now T0 = (TAB), in order to distinguish it from the stress-energy tensor
T=(TAB) of the exact solution with the same data φlj on D.

We have found solutions such that:

T0

ABXAXB > k(t) Σ X\, for all vector fields XA.
A

We want to show that: TABXAXB ^ 0 for all timelike vector fields XA - (in fact
we shall prove it for all vector fields).

It will be proved, if we show that:

\(TAB - TAB)XAXB\ < TABXAXB. (111.21)
Putting

IT T l — ί^ \TAB τAB\2\l<2

\1~1o\ — (L\1 ~ 1o I >
\AB

(111.21) will be proved if

Sup|Γ-Γ0|<fc(ί), (111.22)
Ωt

for all Ω contained in D.

Estimates for \T- T0\. Let (VA,uA) be the solution of (1.10) with the data φlj. Let
(VA] be the solution of approximated equations (III.3) with the same data φlj.

From the expression of TAB in terms of VA, φlj and that of TAB in terms of
(VA, φlj) [cf. (III.5)], we deduce an estimate

|Γ-T0|^C|F-F0|. (111.23)

Estimates for \ V— F0|. If we express the derivatives in the natural frame, the system
verified by the VA can be written:

d0F° + diV* + kθ(u)FV=f0(u, K Φ), where |/c»| < C\u\,
d F0 + d0V

j + k\u}VV=fj(u, K Φ).

The approximated equations verified by the VA, can be written:

KS=/0(0, V,φ) (since for w = 0, terms in V

2djVg + δ0V& =/j(0, K Φ) disappear in right-hand sides)'

We deduce, that VA — VA verify a system:

- FO°)+dfy* - FOO=gV K Φ) ,
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where gA(u,V,φ)=fA(u,V,φ)-fA(Q, V,φ)-kA(u)VV, and considering the form of
fA [cf. (1.12)], g is of the form:

g(w, v9φ) = k(u)Vu® VV+ k1(u)7V+ k(u)Vu® Vφ + 1^)

with \ki(u)\,\lί(u)\<C\u\. (IΠ.25)

As we have done before, we deduce from (111.24), some estimates:

\\V-V0\\Ωt^ \ \\g\\Ωdτ,
— 00

and considering (111.25), we obtain

\\V-V0\\Ωt£C ί J Σ \rku\\0τ(\\V\\Ωτ+\\φ\\ΩJ
- oo ^fe=

+ Σ Wu\\
k = 0

Similarly with the equations derived from (111.24), we obtain estimates for
W(V-V0)\\Ωt and ||P2(F-F0)|U, and from

Sup|F-F0 |gCΣ \\V'(V-V0)\\Ωc,
Ωt i = 0

we obtain f /- 2

-oo fc =

+ Σ ll^llβ. Σ (\\VkV\\ + \\Vkφ\\Ωτ)\dτ. (ΠL26)
fe=0 fc=0 )

Estimates for \\Vku\\Ωt and ||PfcF||Ωt, (k = 0, ...,3). We have already obtained
estimates of Fin terms of φ (cf. II.B.7). We can also obtain estimates of w in terms of
φ:

u verifies the system:

gaβ(u)dΛβu = ρ , with ρ = - h(u}Vu® Vu + k(u)F+ k(u)φ .

Then, we have

Ωt

Then, from (II.A.8) and GronwalΓs lemma we deduce an estimate:

And considering the estimate of V, we have

\\7u\\^C } (ί-τ + 1) Σ \\rkΦ\\adτ. (III.27)
-oo fc = 0

ί

From the inequality ||ιι||βt^C J ||Fu||Ωτdτ and (111.27) we deduce

2\\0t£C (ί-τ + 1)2 Σ Wφ\\Ωdτ. (111.28)
-oo fe = 0
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With similar proofs, starting from (II.A.7.8) we obtain estimates
1 ( 2 1

\\V2u\\Ωt^C j <(t-τ + l)2\\φ\\Ω + Σ (t-τ + ϊγ~k\\Vkφ\\Ω }dτ, (111.29)
-oo I fc=l J

3 Ί

Ω + Σ (f-τ + l)4~k||P*0||0 f d τ . (111.30)τ k = ι τ j

Estimates for |T-T0| in Terms of φ. From the estimates (111.23, 111.26, II.B.7,
111.27, 28, 29, 30; we can estimate \T— T0| in terms of norms of φ:

Sup|T-T0 |^C J dτ
Ωτ -oo

τ

-oo σ fc=l

Impossibility to conclude on the whole of VT. If as r-> + oo, φ does not tend to 0,
the right-hand side in (111.31) with Ω = Ω(T, a) does not tend to 0 as a tends to infinity
in RA This estimate does not allow us to conclude that the solution of exact
equations verify the positivity condition, since the stress-energy tensor T0 of the
approximated equations verify an inequality such that (III. 16), with fc(ί,r)->0 as

Even, if it was possible to choose C(t) in such a way that φ-»0 as r-> + oo ( cf.

δ δfA2~a\ 1
(11.10) with C(t)= -;A2 + — — 1, φ would tend to 0 at least as -, therefore the

4 2(oc 2) j . r
right-hand side of (111.31) would be at least as —2 as |α|-> + oo, that is the estimate

of |T— T0| would be as —~ as |α|-> + oo. That would not suffice to conclude since
\a\

k(t,r)< Γ°°(ί,r) is at most in —, with α>2 [cf. (III.ll)].

Positivity Condition on a Domain D. D = {r^A(t)} and D is a union of domains Ω.
On such a domain the estimate (111.31) allows to conclude if we make a convenient
choice of δ(t\ A(t\ and C(t\

Let us give only the result in the case of the instance (III. 17). We find

1= uι2m-15 '

We must have

\t\2rn~15 \t\m~2'

That will be verified if

2m — 15>m — 2<^m>13 and

ftp

c
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Conclusion. On a domain D, r^A(t\ which is a union of domains Ω, it is possible to
find data φlj such that the solution of Einstein equations given by the main theorem
of part II, and his corollary verify the positivity condition.

An instance is D = {r^y\t\}

with μ>0 large enough, m> 13 and <50 small enough.

Remark. With the other instance given in (III.20), in the same domain D = {r ̂  y|ί|},
using the same method we find:

Sup|T-T0|^C^(ί-ί0)
2m-3, if ί£ί0.

Ωt

That leads to a solution verifying the positivity condition if m ̂  5 and δ 0 small
enough.
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