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Abstract. On a universe homeomorphic to ¥7=]—co, T[xIR>, we prove the
existence of solutions of Einstein equations, minkowskian near past infinity, if
the sources are small enough for some norms. We prove that some of these
solutions verify at least the positivity condition (“Weak energy condition”) on
some domains homeomorphic to V7.

Introduction

In this paper we prove the existence of solutions of Einstein equations with sources
in a universe homeomorphic to ¥V7=7]-o0, T[xR3, such that hypersurfaces
{t}xR® are spacelike and curves ]—oo, T[x{x} are timelike, without any
hypothesis of symmetry. We assume only the hypothesis of sources tending to 0, if
t— — 00, and “small” enough, for some norms, we shall define.

Such solutions represent universes with creation of matter and the question
arises, whether they may possess physical meaning, particularly whether they may
verify the positivity conditions. Concerning the condition T*X,X ;>0 for any
timelike vector field X,, where T* is the stress-energy tensor, that is the “weak
energy condition” of Hawking and Ellis [11], we prove the existence of a solution,
which verifies this positivity condition.

However, if the natural frame of VT=]—o0, T[xR> is minkowskian as
t— — oo, that is g,4(t, X) 1,4, as t—» — 00, where 7, is the minkowskian metric, it is
dubious that we can obtain solutions verifying the positivity condition on the
whole of V7T,

We prove only the existence of solutions verifying the positivity condition on
domains D, which, in a natural frame minkowskian as t— — co, are defined by:

D={(t,x)eR*|t<T and |x —x,|<A+yT—1)}, y>1}

or in a domain D which is a union of such domains, spatially bounded for each
value of t. But considering their topology and causal structure, such domains are
isomorphic to a V7.
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Do our solutions verify also the “dominant energy condition” of Hawking and
Ellis? The answer is no! It can be said that their decay as t— — oo is too great in
order that such a condition can be verified.

The starting point of this paper is the thesis of Noutchegueme [1-4], who
proves the existence of semi-global solutions of Einstein equations minkowskian
near past infinity. This work was improved by Cagnac, Choquet-Bruhat, and
Noutchegueme, who can prove the same results with not so strong conditions on
the data [5].

However, the solutions were such that g,;—#,; were square integrable
functions on the space like hypersurfaces {¢}xR?; therefore they could only have a
null ADM-mass and could not verify the positivity condition. After that, we proved
the existence of solutions g,, such that g,;—mn,, were locally square integrable
functions on the space-like hypersurfaces, cancelling this difficulty. This was the
object of two short notes ([6,7]).

In this paper we give the first complete proof of the solutions in spaces of locally
square integrable functions and we prove the existence of solutions verifying the
positivity condition.

This paper is divided into three parts:

1. Choice of unknowns and equations
II. Solution of the equations
III. Positivity condition for the solutions.

I. Choice of Unknowns and Equations

A. The Problem. Einstein equations with harmonic coordinates and conservation
equations can be written:

{—%gu%gaﬁh""’(g) Ve®Vg=0op, 0B Au=0,..3, (1)
V(0 —38"0})=0, 12)
8. is the metric tensor,

0up=Tos—38.5T7, T,p is the stress-energy tensor,
h.s(g)Vg®Vg means a sum of terms

hiﬁv’ adt(g)a}.guvaogar >

where the h}5"2"(g) are apalytic fpnctiqns of g,,in the r}eighbourhood of g2, =M
(We shall also use this notation with vector functions other than g).
|V is the covariant derivative defined by g.

We are seeking functions (g,p,0,5) on V7, verifying
(L1) and (L.2) such that g,;—#,, when t— —o0.
Conversely, if functions (g,4, 0,5) on V7 verify (I.1) and (1.2) they define a solution of

Einstein equations with sources if the natural coordinates of V7 are harmonic for g.
That is, if g verifies the gauge conditions:

' =I}e"=0. (1.3)
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(I}; are the coefficients of the connexion defined by g); when we have obtained
solutions (g,g, 8,4) of (I.1,1.2), we must consider whether g, verifies (1.3).

B. Choice of the Unknowns. If we assume given the ¢"(i,j=1,2,3) and the Zap» WE
can prove that the system (1.2) is a hyperbolic system for the unknowns %
(x=0,...,3) (cf. [5]).

However this system becomes “almost” an hyperbolic symmetric system, and,
therefore, is easier to study if we do not take as unknowns the components of ¢ in
the natural frame of V7, but the components of ¢ in a moving orthonormal frame
e=(e%) (4=0,...,3).

Hence we proceed among the following lines: In place of the tensor g, we take
as unknowns an orthonormal moving frame e = (¢%), such that ¢% - % ast— — 0. g
is linked with e by:

gaﬁ = eal?egrlAB > (14)
where (e) is the inverse matrix of (e%).
The equations (I.2) can be written:

|VOQOO_%'1CD|VOQCD+; Ve®'=0, C,D=0,...,3
|VOQOJ+;|VIQIJ+%’1CDIVJQCD=O’ I7J=19253

Hence, putting ¢°4 = V4, o'’ = ¢'’, and considering that the coefficients y$5 of the
connection are linear in ,eZ with coefficients, which are products of some e# and
¢%, we obtain

15 10 1_ £0
{2 oV FOVI=I" o B o), (L5)

10,V 48,V =17,
where the f“ can be written
fA=ke)Ve@V+kie)Ve®p +k(e)W o,

k(e), analytic functions of the e, in a neighbourhood of e = 2.
Considering (1.4), Egs. (I.1) are written

— 38" (eI anle50,,02 + €2 01,00) + Mypl@)Ve®@Ve=0,, (L6)

where the hy; are symmetric in a, B.
We impose on the €% the gauge conditions:

D,y =1 458" (e) (€105 — €50;,€3) =0. (L7
Then, Eq. (L.6) become:
- gl“(e)nmeﬁa A#ef + h;p(e)VeQ‘) Ve=04p- (L3)

Conversely, if e; verify (L8), the fact that h}; and o,, are symmetric in o, f implies
that the gauge conditions (I.7) are satisfied.

The system (1.8) is equivalent to the following system, obtained by linear
combinations:

g* ()06 — M@V, @ V,ebn*C = g, 4elnc. 19
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We choose as unknowns:
wimed—54, VA=,

The components ¢’/ = e’/ are assumed given.
Finally, we obtained the following system of equations for the unknowns
u=(u?) and V=(V4):

{glu(u)a“u_;_ hu)Vu@Vu=Iu, V, $) (L10)

Lw)V=f(u,V,¢)

L(u) is the differential matrix operator defined by the left-hand side of (L.5),
I, V, p)=k(u)V+k(u)o, (L11)
f, V,0)=ku)Vu@V+ku)Vu®@p+kw)Veo. (1.12)

g**(u), h(u), and the functions k(u) are analytic functions of uZ in the neighbourhood
of u=0. A solution (u, V') of (1.10) will define a solution of Einstein equations, if the
gauge conditions (I.3) are satisfied by the solution.

II. Solution of Equations

Notations and Results.
VT=]—o00, T[xR3,

x=@tx)eVT, «=0,...,3, t=x° x=(x), i=1,...,3,
el =(2(x)*)"2,
u=(ud)=u" (with a unique index for simplification),
oMyl
ol oxy

lViu|=< Y .lDlu'P)”Z, if Qc{t}xR3,

I,|A]=i

D*u! where A=(Ag, ..., 43), [A|=Ao+ ... + 45,

IViullg, = ({g |l7iu|2dx)1/2 ,  dx=dx'dx%dx3.

If i=1, we write simply |Pu|=|V'ul, |Vu|g =V u|q,.

If u,u,w are vector functions, k(uyv®w means a vector function, whose
components are sums of terms k(u')v4w®. k(u) may represent different functions at
each use of this symbol, even in the same line. Similarly, C will represent dif-
ferent constants.

Domains Q. There exists an &, >0 such that |u| =Sup [u’| < &y, implies: g**(u)d,, is a
1

regularly hyperbolic operator and g*(u), h,p(u) in (1.10) and the k(u) in (1.11), (1.12)

are analytic functions for |u| <e,.

Then, there exists a y>1, such that, if |u|<g,, the characteristic cones of

g**(u)d,, are contained in the cone |x|<yt. For each Te R and ae R3, we define a
domain Q(T; a) by:

QT a)={(t,x)e R*t<T and |x —a|<1+y(T—1)}.
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Each domain, for any T and a, will be called “a domain Q”. We have
VT= ) QT,a).

aeR3
So chosen, the domains Q are Causal domains for g*(u)d,, if |u| <&,. We put:
Vie]l—oo,T[, Q(T,a)=T,a)n{t}xR>.

The Qs are balls in R® with a radius greater than 1, in such a way that the
inequalities of Sobolev can be verified with the same constants in all the Q(T; a).

Function Spaces and Norms. For any domain €, we define
C2(Q)={fe C>(Q); there exists t, such that f=0if t<t,},
E(Q) is the closure of C®() in the norm

k .
qg,k(f)=§379 .;0 1V e, -
We put qo 3 =4

B)= |7 5@ and dulf) =g+ | (7141
x S,‘i?<i=§o n V"anT) di <+ oo}.
B = {f& B(@) and G1)= ol + EssSup 1P, < + o).
(@)= {f measurable on @ and polf)= | {(T—t+ 011 e

+ ¥ (T—t+1)*7¥ V"f”nt} dt< +oo}.

,,.
11w

On Z(Q), we shall use also the norm
T 2
paf)= | {(T—t+ 1)3||f|!gﬁk;1 (T—t+1)*7¥) V"fllgt} dt.
T
P(Q)= {f measurable on Q and po(f)= | {(T—t+ Dl

+ki (T—t+1)°7K| V"fng} dt< + oo}.

E(Q), EQ), EX(Q), £2(Q), £(Q) are Banach spaces, C*(®) is dense in £(Q).

The Main Theorem. There exist constants r, and ¥ such that if for a domain Q,
DPol@)<F, the system (1.10) has a unique solution (u, V) in this domain Q, such that

dswy<ry, and VeE4Q). *

This solution satisfies the gauge conditions (1.3) and defines a solution of Einstein
equations with sources, minkowskian near past infinity.
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Corollary. If D is a union of domains Q’s, and if, for each of these Q’s, po(P)<F.
The system (1.10) has a unique solution (u, V) in D verifying (*) for each of these
s,
This solution defines a solution of Einstein equations with sources, minkowskian
near past infinity.
This corollary can be applied to V'= ) QT,a) if pa(p)<? for all AT, a),
aeR3. ack?

I1.A. The System
g woZu' =g (ILA.1)
1. Basic Inequalities for (ILA.1)

Proposition 1. Let u e C*(Q) be a solution of (IL.A.1) such that [u| < &q. Then u verifies
for t < T the inequalities:

a) Vil S @,(Pu) | lellads,

b) IV2ul0, S @oPuc) T 1Velade,

) 1PulaSOxPu Mun Nud) § =9 [ela,+17ela )i,
9 1740l S PlPu i Mo Noua) T {(e=7+ 1217l

+(t—1) IV %l +73llg }dr,

where @; (i=1,2,3,4) are continuous and increasing functions of:
T
P, o= [ Sup|Vuldt; M, o=Sup|Vul; N, o=Sup|V?uy|.
- £ 0 Q

Proof. Multiply (I1.A.1) by J,u and integrate the equality over
A=Qn{ty<t<t},

where ¢ is such that u=0 for t<t,. Stokes’ formula yields:
‘J; {’12“0 (8°%0ou)* — gijaiuaju) +n(g%(0ou)* + gijaouaju)} ds (%)
o1
=] {an“ +(0ou)? |:aig0l + 5 a0800]
A

| .
+0udud;g” — 5 o0ud juﬁog”} drdx,
where (n,) is the unit outward normal to the boundary F of A, and dS the measure
element on F. F is made of 3 parts:

F, on t=t; F, on 1=t,; F; on the “lateral boundary” of Q.
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o
Q F
t t A Fy
Fage——"7—> A /NFS
t
0 VF,
%
We have | =0.

F
The hy;zmthesis |u| <&, implies that there exists a constant C>0 such that:
] = [ 38" 00u? g ouodx = ClVul},.

d . . .
Now on F, we have dS = l, and in the left-hand side of (*) the integral over F; can
be written as: "o

1

ng

1 1 ..
I=| {((3014)2 3 gnng— 5g”(n06,~u —n0ou) (nydu— njﬁou)} dx.
F3

But F is spatial; so we have g*’n,n; > 0. On the other hand, the form g"X X is
negative definite. This implies I =0. We then deduce from (*) the inequality:

t
[Vul3,=C [du I{ > <Sup|0ag’“‘l>IVu|2+lQHVu|}dX- ()
o @ |a, A\ 2.

Now by chain rule, we have:

Ap

ekl bounded, we deduce from (**), using Schwarz’ inequality:
u

Since the

t
IVulg,=C J {(Sgp IVuI> IVula, + llelle,l Vulig,} dt

and Gronwall’s lemma yields:

C CT t
IVullg = Eexp[g B Sgpruldt]_I lellg.de.

This proves the inequality a).

We obtain the inequalities b), ), d) by the same method applied on equations
deduced from (IL.A.1) by successive derivations up to order 3 with respect to x*.
This ends the proof of Proposition 1.

Our next purpose is to deduce from these inequalities, some other inequalities
with absolute constants.
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Proposition 2. Given arbitrary positive constants My, N, there exists a number r >0
such that, if ¢ satisfies the condition:

T 3
‘j {(T—t+ Dllellg,+ ._Zl (T—t+1)*7Y V’Qllgt} dt<r. (ILA.2)
Then, if ue C*(Q) and verifies (IL.A.1):
1°) We have:
M, o<My; N, o<Ng; P,o<ey; |ul<é. (ILA.3)
2°) There exists Ko>0 such that u verifies the inequalities:
t
(@) lulo,=Ko [ (t=1)llellodr,
t
B IVullg =Ko § lelladr,
t
() 1V2ulg, <Ko | IVelgdr, (ILA.4)
t
(©) IIV"‘ullgtéKo f {t—1+1)Vello, +17ellg }dz,
® | V4“”Qt<Ko {(t—r+ 1’ IVello,+ =2 172ello,+ 1Vellg }dr.

Proof. There exists a Sobolev constant C >0 such that:
3 . 4 .
SuplPul<C Y. IViulg;  SuplP?ul<C Y. [|Viulq,.
Suppose we have:
9] P, o<ey, M,o,<M,, N,o<N,.

This will imply, using Proposition 1:
M, o= Cy,(e0, Mo, No) j {”Q”Q,""(T t+1)[IVelg,+| VZQ”Qt}dt

) P, o< Cyyleg, Mo, Ny) I {(T—1) IIQI|9,+(T_t+1)2I|VQ“Qt
+HT-1)|l VZQllgt}dt

u!)—'Cw3(80’M0’N0) I {(T t+1)2”VQ“Q¢

HT—t+1)[[V20llg,+ 730l g, }dt .

One then chooses r in such a way that condition (I1.A.2) implies that the right-hand
sides in (2) be respectively less than My <M, g,<&g, No<N,.
Under these conditions, (1) implies:

(3) Mu,Q<M,0, Pu,Q<8/0’ Nu,Q<N/O'

But when T— —o0, (3) is verified, since ue C®(Q). Now P, o, M, o, N, o are
continuous functions of T. So the fact that (1) = (3) shows that (P, o, M, o, N, o)
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cannot go outside the connected domain of R? defined by (3). This proves (ILA.3).
The inequalities (I1.A.4) are direct consequences of a), b), ¢), d) Proposition 1. This
ends the proof of Proposition 2.

Note. In all the following, r will always stand for this number in (ILA.2).

Proposition 3. 1°) If |u|<gy, P, 0<& vEE(Q), and |V*v| is locally square
integrable, then if .
g woiv=o,

v verifies the inequalities (I1.A.4), () and (B).

2°) Moreover, if M, o<Mg, N, o<N, and if ve E5(Q) with |V*v| locally square
integrable, then v verifies the inequalities (IL.A.4), (y) and ().

Proof. Is straightforward the proof of Proposition 1. One just has to distinguish
between what depends on g*¥ and what depends on v.

2. Solutions of (IL.A.1)

Theorem 1. Vg € C*(Q) satisfying (ILA.2), (ILA.1) has a unique solution u in C*(<Q).
This solution verifies (11.A.3) and (IL.A.4).

Proof. It is based on Leray-Dionne Results [8-9], and is similar to the proof given

in [3], Sect. I1I, Proposition III. For the existence of the solution, g is then replaced

by 8¢, where ge C2(V,) and §|, =g, while @, is a suitable truncating function.
Unicity is obtained using Gronwall’s Lemma.

Theorem 2 [Existence and unicity of Solutions in E(Q)]. Let B(r)
={0€ Zolpalo)<r} and g€ B(r). Then

1°) the system I =o'

has, in the sense of distributions, a unique solution u in E4(Q) such that:
P, o<ét. (ILA.S)

2°) This solution has the following properties:
u has 4™ derivatives, in the sense of distributions, which are, for almost every
te]— oo, T[, locally square integrable and:

Ess Sup ||V *ul|o, < Kopal0)- (ILA.6)
t<T
lul<eo; |Vul<Mgy; |V2u|<N,. (ILA.7)
t
lulg, £Ko J (t=7)llolo de

IVulg, <Ko | lloladt
- (ILA.8)
1V2ullo, <Ko § [IVellodr

t

IV3ulg, <Ko | {t=0) Vel +11V?elo,}dr.

—
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Remark. (I1.A.6) and (I1.A.8) imply
IViulg, <Kor, i=0,1,....4. (ILA.9)

Proof. Due to the density of C®(Q) in Z,, one approaches ¢ by a sequence
(0,) C B(r)nC>(Q). The solutions u, of (IL.A.1) given by Theorem 1 verify

gaﬁ(un)azﬂ(un - um) =0n—0m + [gaﬁ(um) - gaﬂ(u”)] agﬂum .

We apply Proposition 3, 2°) to v=u, —u,, and we use the fact that p,(g,) <r to show
that (u,) is a Cauchy sequence in the Banach space E;(£2), which converges to a
weak solution u of (ILA.1).

The inequality (I1.A.4) () verified by u, and g, implies that

n t<

@ Sup Sup [[7*u,]lo, < Kor -
T

Now, in a similar way to [3], Sect. VI, Lemma 3, one shows that the space:

00(Q)= { f measurable on Q, | f]| Q0=Ests<STup I flle,< oo}.

is the dual of the Banach space:
T
Fo(Q)= {g measurable on Q, |gllz,= | lgllgdt< oo}.

(II.A.6) is then a consequence of (1) and of the weak compacity of balls in Q,(£2).
(IL.A.8) is obtained from inequalities (IL.A.4) (o) to (), on u, and g,, using the
limiting process. (ILA.7) is a consequence of (IL.A.8) and the construction of r.
Unicity is obtained from Proposition 3, 1°).

B. The System L(u) V=f(u, V, ¢). We assume that u and ¢ are given and u verifies
(ILA.S5, 7, 9).

1. Estimates for the Solutions V. We first assume V and ¢ in C®(Q), null for t<t¢,
and satisfying

30,V0+ 0,V =1°,
20,V 40,V =17,
From (II.B.1) we deduce:
QoY+ (V] +0VOV)=1 VO T2,
J J

0, V=e23,V). } (ILB.1)

If we write the derivatives in the natural frame of V7, we obtain
Qo BV +T (V)2 +k°w)VRV]+o(VOVi+ kiw)VRV)
J
=fV°+ Y2/ V! +k(u)Vu@ VRV, (ILB.2)
J
where the k*(u) are some e% — 6%. Therefore they verify estimates:

kA @) < Clu|. (ILB.3)
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We integrate (ILB.2) on Qn{t,<t=<t}; we obtain:
| {no [%(V‘))2 +Y (VI +ku)V® V] +n[VOVi+kiu)V® V]} ds
F J

—fdr] [TV KPR VR Y dx.
to Q. J

As in part ILA, F=F,UF,UF3;and | = | =0,

F» Qto

I=] (%(V°)2+;(V")2+k°(u)V® V)dx.

Fy

Considering (II.B.3) we have
[ k°(u)V®Vdx| <CSup|ul |V |3, <CSupuld | GVO)?+(V)Pdx.
2 Q2 2.

2,
Therefore we can choose ¢, such that

[u <&o =>FI1 >5lVI3, -
On F;, we have no=y(1+7%) "2, Y n?=(1+7y?" . Hence:
In,VoVi< %(VO)M- %(Zn?)z (V)?, for a>0.
Choosing a=2(1+7y%)'?, we have:
InVOVI=E(1+9?) 7 2V +(14+97)” 1”;(V'A)Z-
Since y>1, there exists C>0 such that:
no[%(VO)Z +3 (Vi)z] +n,VoVI>CIV|.

Considering (IL.B.3), we can choose ¢, such that
lul <eo = Inki(W)VRV|<C|V|.

Then, we have | >0.
F3

Finally, considering the form (I.12) of the functions f and |V'u| < M, we obtain
iIVllétéCi{S{iprul Vi +1Viell¢la,+1 V¢llg,)}dt-
Considering (I1.A.5), Gronwall’s lemma implies:
Vi =C _Jt"w (pllo.+IVolo)dr. (ILB.4)

Remark. The same reasoning shows that, if u verifies (IL.A.5) the solutions V of
L(u)V=g, have the estimate

IV1a5C ] lglade. (ILB.5)
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2. Estimates for the Derivatives of V. Deriving the Eqs. (IL.B.1), we obtain, if |o| =1
(=1,2,3)

LD*V)=/,

with fA=D*f4+ ¥ Vu@Viti= y,
k=1

Proceeding as in 1), we obtain

lef =i

— H(i)

ViV |3, < fdr f { v (LOD“V°+22fJD“V"> + k(u)VuV've ViV} dx.
to 13 J

Considering (1.12), H) can be written as:
HY=ku)Vu@VVRQVV+ [(k(u)Vu®Vu+ku)V*u)@V
+ (kW)@ Vu@Vu+ ku)Vu)® ¢
+kWVu@Ve + ku)V:¢l1QVV.
Then, we have:

2
J HWdx<C {S};p Pul [PV 15,41V Vel (H Vg, + P I V"d)ll?z,)}-

Gronwall’s lemma leads to an estimate
V10 5C | {IVlat 3, 194610, i
and the estimate (I1.B.4), leads to:
IPVla<C § {(t-r+ ) 3 17 Gla.+ V2¢|19,} dr.  (ILB6)

Estimates for |2V |, and |3V ||,, are obtained with the same process.
Some terms are tricky to estimate in | H®dx or in | H®dx:
2.

Q.

4 1
1172l Vo, S 17l a1 Vg SC X 17ullg, T 174V I,

1
=C ¥ 17V,
k=0

2
7%l 1V llle, < 7 *ull o, Sup{V| < C|| V“uﬂgth 7 Vo,

=0
2
<C Y V'V,
k=0

Finally, we obtain the estimates, for i=0,...,3

. t . i+1 X
I7V)o, <C | {(t—r+1)‘n¢>n9,+k;1(r—r+1)‘“-"nVk«pnn,}dr.(n.Bﬂ)
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3. Solutions. Starting from the results of Leray-Dionne [8, 9], with the estimates
(ILB.7), we obtain

Lemma ILB. If ¢ verifies:

T

4
] {(T— t+ 121l + X (T—t+1)*7¥| V"qﬁug,} dt<+o0,
— k=1
and if u verifies (1L.A.5, 7, 9), the system (IL.B.1) has a unique solution Ve E5(Q). This
solution verifies the estimates (I1.B.7).

C. The Coupled System (1.10). In order to solve (I.10), we consider the system

{g“‘(u)é = —h@WVo@Vo+Iv,V, ), (IL.C.1)
Lo)V=f,V,$). (ILC.2)

In order to apply the results of parts IL.A and ILB to (I1.C.1) and (I1.C.2), we must
choose v in a function-space such that h(v)Vv®Vve £(Q).

We must also obtain u in the same function space, where we choose v, in such a
way that we can iterate and show that the application v+ u is contractant in
some function space.

That leads us to introduce the norms g, §%, and pj (cf. § “function spaces and
norms” at the beginning of part IT). We shall choose v in £*(Q) and show that v — u
is a contractant for the norm gy,

Lemma ILC.1. If py(e)<r, and u verifies g*(u)d,zu =g, then

G5u)<Cpgle)<Cr. (ILC4)
If o' and o* verify (I1.C.3), then
Goluy —u,) <Cphle* —0?). (ILC.5)

Proof of (I1.C.4). Considering (II.A.8), it is sufficient to show that
T

3
[ (T—t+ 1)312)(.;0 [ Viu”{z,) dt <Cpglo).

— ©

Now, we have:

3 t
SE?(-;o I Viullg) <C | {t=z+D(llela.+Vello)+17?elo }dr.

Hence:
T 3 T
_Iw (T—t+1) SE?(-Z‘O | Viu“g,> dt<C _Iw {(T—t+1)(lellg,+ 1Vellg,)

+(T—t+1)*|V?0llg}dt. qed.
Proof of (IL.C.5). u, —u, verifies the system
gaﬂ(ul)aaﬂ(ul —u,)=0,

~I

where §=9"'+¢", with
{él =01—0Q2>»
Q"= (gaﬂ(uz) - gaﬂ(u1))aaﬁuz s
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and we can follow the same kind of reasoning as in part II.A, Theorem 2; so we
find:

3

IRILA —uy)| g =C jw {(t— 7) kio V¥, — 2o+ |l V2o, _Qz)”!),} de.

e (ILC.6)
Then we have:
T 3
J(T—t+1) SgItJ (k;() 17*uy —uz)llg,> dt
T 1
= _Iw {(T—t-l- 1)° k;g V41 —02)lla,
+(T—t+1)2}||72(QI—Q2)]|Qt dt. (IL.C.7)

Inequalities (I1.C.6) and (II.C.7) imply (IL.C.5).
Lemma IL.C.2. Vr; >0, there exists C,(ro) >0, such that C,(r,)—0 when r,—0, and
G(v) <ro = po(h(v)Vv@ V1) < Cy(ro)golv) , (ILC3)
Vro >0, there exists C,(ry)>0, such that C,(r,)—0 when ry—0, and
GEv)<ry and GEvy)<re= pah(v)Vv,@Vv,—h(v)Vv,@V0v,)
S Cy(ro)golv, —1,). (ILC.9)

Proof of (11.C.8). We show on some terms of p,, how the estimates are done.
For instance, there is the term

[ (T=t+ 12 [V HO) @V 6)l 0 dt.

— 0

Since
V(h()V v @ V) =k(v)Vv> + k(@)Vo@ V20,

(we write Vv =Vv®Vv®Vv), we must estimate:
T T
A= [ (T—t+ 1) |k@)Vv@®V?v|odi<C [ (T—t+1)*Sup|Vo| V30| qdt,
— o0 - Qr
T T
AZC | (T—1+1)Sup|Vy| |]Vzv]|91dt<j"(T—t+1)dt+1>,
— Q. T
T t
ASC | (T—t+1)dt | (T—7+1)Sup|Vo||V?v]gdt
—®© —® Q.
T
+C [ (T—t+1)Sup|Vo||V?v]qdr,
— 0 [0
T T
AZC [ (T—t+1)SupSup|Voldt | (T—1+1)[|V?v|qdr
— <t Q. —®

T
+Sup|Vo| [ (T—t+1)||V?v|qdr.

=t
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Hence, considering Sobolev’s estimates, A < §o(v)Gqo(v). Another instance: there is
the term:

T
| (T—t+ )|V )V v@Vv)|gdt,
V3(h(0)V v @ Vv) = k(v)Vv® V40 + k(v)V 20 @ Vv + k(v)V 02 @ V3
+ k()o@ V> v@ Vv +k(v)V 3 @ V0 + k(v)Vv> .

We must estimate for instance

T T
A= | (T—1+1)||k(v)l70®l74v”9td1§c { (T—14+1)Sup|Vy HV“vIIQrdr,
— 00 - -Qz
T 3
AZCEssSup|[V*lg, | (T—141) Y V] odt < CGEv)ga(v).
<T — o0 k=1

Proof of (IL.C.9). We can write

=h(v,) (V(v;—0)® Vv, +V0,@V (v, —1y))
+k(l)1, Uz) (vz —UI)® sz@ VUZ .

Since, h being an analytic function, we can write

h(v,)—h(v,)=k(v,,v,) (v, —v,),

where k(v,,v,) is an analytic function of v, and v, in the neighbourhood of (0, 0).
The continuation of the proof is through estimates similar to the proof of IL.C.8.

Lemma IL.C.3. 1. If v verifies (ILA.5, 7, 9) and if Lw)V=f(v,V, ), if po(¢p) < + o0,
then,
PolV)<Chof). (IL.C.10)
2. If v, and v, verify (ILLA.5, 7, 9), if po(d)< + o0, and if

Lw)Vi=f, V1, 9),
L))V, =f(v,, V2, §),

then
Pa(Vi = V2) = Cho(@)dalv, —v,)- (ILC.11)

Proof of (I1.C.10). It is a consequence of Lemma II.B and estimates I1.B.7.

Proof of (ILC.A1). V,—V, verifies the system L(v,)(V;—V,)=g, where
g=k(v Vv, (V;—V3)+¢,

g =(k(v)V (v, —v,) +k(vy,0,) (v, — )@V 0,)®V,
+ k(v )V (v, —v,) +k(v1,0,) (0, —0,) @V ,)@ P
+k(vy,0,) (v, — V)@V .
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Following the same process as in part I1.B, we find
t
IVi—V2lle.2C | I8l d7,
e o}
therefore

V= Vzllgt<CSup<Z 17wy —v,) ”9) | {IVallg,+19llo, +1Vlg}dr,

and considering (I1.B.7) verified by V,,

(1 I’zllg,écslj?(; (14CA —vz)llg,> _}w t—t+1)dllo, +Vllo)dr.

Similarly starting from the derivated equations, we find, for i=0,1,2,

t

3
ViV =Vl = CSup <i=ZO V(o —%)H:;,) 3 {(t—f+ D" llg,

i+1
+ Y (t—T+1)2 V"¢||Qt}dt. (ILC.12)
k=1

From (II.C.12), we can deduce (IL.C.11).
For instance in pgy(V; —V,), we must estimate:

T
A= [ (T—t+1?|V2(V,—V,) g dt
t 3 )
=C{ dt(T—‘c—i—l)ZSup(Z ”Vl(vl"vz)”sz,)
- t<t \i=0

x i {(t—r+1)3u¢ug,+k§1(t—r+1>4‘kuv"¢ugt}dr,

AsC § }nV"¢Mg,dr§(T—t+1)2(t—r+1)4"‘Sup<._§ nVi(vl—vz)no)dt

+C jw lpllodr | (T-t+1)2(t—r+1)38up< Y IIV'(vl—vz)Ilg,>dt
T
[ (

3 3
AsCy | (T- 1)KVl dr | (T—H'l)SUP( L ||Vi(v1~v2)ugt)dt

+C _Im (T—t+ 1) @l gdr _Iw (T—t+1)Sup <;0 17 (v, —vz)llg,> dt

AZ Cpy(P)galvy —1v,).

Lemma IL.C.4. There exist constants ro and # such that if po(¢p)<F?,

1. if §¥(v)<ry, the system (ILC.1) (ILC.2), has a unique solution (u, V) such that
GEu)<ry and Ve E4(Q).

2. The application vi—u so defined in F = {ve EX(Q), §¥(v)<r,) is contractant in F
with the topology induced by E(Q).
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Proof of 1). We set 9= —h(v)Vv®Vv+ v, V, ¢).
From Lemmas I1.C.2 and I1.C.3, we can deduce, if G§(v) <r,,

Pal@) = Cy(ro)go(v) + Chol9).
Then we can determine r and 7, such that
gsv)<ro and  po(¢)<fy = pgle)<r.

Then we can apply to (I.C.1) Theorem 2 and Lemma II.C.1. (IL.C.1) has a unique
solution u such that

45(u) <Kpol@) £ K[Cy(ro)golv) + Cha(¢)] -
Then we determine rj <r{ and a>0 such that
ga)<ry and  Po(¢) <arg <Fy = ggu)<rg,
using the fact that C,(r,)—0, when ry—0. We set £, =arg,.
Proof of 2). From (IL.C.5), (I1.C.9), and (I1.C.11), we can deduce an estimate:
Goluy —u3) S (v, —v3) [KCy(re) + KCpo(#)] .-

Using the fact that C,(r,)—0 when r,—0, we can choose r, <ry and #<#,, such
that KC,(ro)+ KCf<i. qed.

Lemma ILCS. F={ve EXQ), §%(v)<r,},with the topology induced by E(Q), is a
complete metric space.

Proof. We use the weak compactness of the balls of

0,(Q)= {f measurable on Q| |]f||Qo=}3<s§ Sup | fllg, <+ oo}.

If v, is a Cauchy sequence in F, for the metric,
d(v,,v,)=dolv,—v,), v, converges to v in E(Q).

But we can find a subsequence, v, such that Vv, converges weakly in Q4(2), to w.
Then we have V*v=we Q,(2) and G&(v)<r,.
Lemmas I1.C.4 and IL.C.5 imply the first part of the main theorem.

D. Gauge Conditions. If Egs. (I.1) and (L.2) are verified, the @* of (1.3) verify a system
of equations (cf. [10])
g40,,0* + k(g)Vg@Vd=0. (ILD.1)

@* has the form @*=k(u)/’u and we can apply to the system (I1.D.1) the results of
part ILA (Proposition 3), then

t
IVolo, =Ko | kVu@®V®|qdr.
Hence
t
IV@lg=C | Sup|Vul|[V®llodr,

and Gronwall’s lemma imply ||V ®|,, =0, that is ¢ =0.
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IIL. Positivity Conditions for the Solutions

Do the solutions we have determined on V7T verify the weak positivity condition?
That is,
T*X,X;>0 for all timelike vector fields X,,. (I1L.1)

The T* are determined in terms of the data ¢ and of the solution (g, V),
through
TAB= 4B _LpyaBy oCD  where o%4=VA4, oM =g,

Since as t— — o0, g,;—>1,p OT €4—0%, the conservation equations

[V T8 =V (e*® —31""ncp®) =0
are approximately

0, (Qaﬂ — Lyt (QOO =) Qii)) =0, (I11.2)
and (I11.2) can be written
a) $0,V0+0,Vi= —%ao<z¢ﬁ>,

' Lj=1,...,3. (ITL.3)

It is reasonable to think that, near — oo, the ¥4 of the solution of (1.10) determined
by the data ¢" are close to the ¥ solution of (IIL.3) for the same data.

We call the system (IIL.3) “approximated equations”, and we shall first seek
whether some ¢* can be found such that the approximated equations have a
solution ¥ verifying the positivity condition for the Minkowski metric. After that,
with the ¢” so determined, we shall seek whether the exact solution, that is the
solution of (1.10), verifies the positivity condition.

A. Approximated Equations
1. Explicit Solution of the Approximated Equations. Through derivation of (II1.3a)
by 0, and (II1.3b) by 9; we obtain:

%(aoo—gﬁu> Vo= —%(000 +§a ,-,-> (z qs"f) +3 00" (IIL4)

i

The fact that ¥°—0 when t— — oo, shows that (IIL.4) has a unique solution, given
by Kirchoff's formula:

1
VO(t, x) =Rj3 m2h(t~ |&], x —&E)dE .

Equations (II1.3b) can be written:

: 8 —— >
The fact that /-0 when t— — co shows that ¥/ is uniquely determined by:

Vici)= ] gfex)ds.
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Since the positivity condition is expressed through the T“2, linked with the V4
and the ¢'/ by:

T00=%<V0+Z¢ii>

TOi___ Vi,

T =3(V+ ¢ —$**—¢33), and similar formulas for 722, T33,
TV=¢V if i+

we shall express the T8 in terms of the ¢!/,

(I1L5)

1
T°° —

with f=—(0,,+033)¢"" —(033+0y,)9*> — (0, +0,,)9*°
420,50 +20,307> 4205,
t
T%t,x)= | gfr,x)dr (IIL6)
1 _T00_$22_ 433 and similar formulas for T?? and T33.
Ti=¢ if i+j.

Evidently T°°, T% are defined only if the integrals in the right-hand sides are
convergent. But if the ¢*/ verify Po() <#, VQ, these integrals are convergent and
define locally integrable T°°, and T

(We put
F(x)= j" dr j in ifl —[&l, x—&)d¢&
Through changes of variables, we obtain
T
Fo)= [ dt § o fltx—O)e.
Then
[ o [ x— €d5| ( _d']_>‘/2 [ 1fn)*dn)?
& <T- t4ﬂ|€l 4n \ B, -1 IX—1|° (B(x.T—t) ’ )

S —IT—10"| flow -

ﬁ

Hence F()< | fIT 2 f Loyt

T
Now po(@)<f= [ (T—t+1)*|fllodt<F:F(x) is then defined and also

T°°(t, x). The proof is similar for T, x)).
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2. Instance of ¢*' on VT Leading to T*® verifying the Positivity Condition. In order
to simplify, we choose T=-—1; so we have T-—t+1=|t| and
YT=V-i= |J Q—1,a).

aeR3
Also in order to simplify the solutions, we search ¢’/ with the form:

¢12_¢23 ¢31 _0
{4511 _¢22 ¢33_¢
where ¢ is a function of the two variables ¢ and r=|x]|.
With such a choice of ¢, the function f in (IIL6) is:

f=—'2A¢ (A=511+622+a33). (III.1)

In order to get T°° >0, which is necessary for the positivity condition, we choose
f=0. When the function f(t,r) is chosen, (IIL.7) shows that ¢ is determined by:

2¢ 20¢
wtra T

545

~3f.

Hence 11

=] —Ef(t,@)ezJ@,
4]

#.0=] Lt e+ ),

where C(t) is an arbitrary function of ¢.
From the Kirchhoff’s formula (cf I11.6) we see that T°°(t,r) is determined by:

Tt )= 5~ 5 f (. 0)eddg , (IIL8)
where D(t,r) is the domain of the (r, Q)-plane defined by
Tt
and |t—71—r|ZoSt—1+r

T

t—r - D(t,r)
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The simplest choice for f is

0 ..
f= ltl—?n, where d, and m are positive constants.

With such a choice, we have

M0 =CO- (5t

Hence, ¢(t,r) is not a bounded function as r— + co. This is incompatible with the
condition py(¢) <7 for all domains Q(— 1, a) since, with a domain (—1, a) such
that the point a tends to infinity we have po(¢)— + co.
Then we may choose:
1= ﬁft) it 0sr=dA®, o, (IIL9)
W i 2 A,

where 9,9, A are given positive functions of ¢.

Remark. The discontinuity of f defined by (I11.9) and of his derivatives for r = A(t),
is not compatible with the hypotheses of smoothness made on the ¢*/. But, such a
f can be approached by smooth functions, e.g.:

»O;e_— <5—f—e ’_z)e w if r<A()
p
=9

o -£
e 7L if r2 A
,

In order to verify positivity conditions, it is easier to use the f defined by (I11.9).
The results will be true for the f, for small enough ¢. With f defined by (IIL9), we
find (if a2 and o= 3);

C-2r it r<an),

12
5 2-a 5 5’ 3—-a 1
it )= C(t)—Z 7: 2)+<_ A3+2(:_3)>_ o)
0’ 1 '
T 2—3)@=2) 2 if r=Ae@),

where C(t) is an arbitrary function of ¢.

In order to that ¢ be bounded as r— + oo, we must choose o> 2.

Ifl(')"’ 0= '5 l(:' C(t) can be chosen

similarly as C(t)= |£|g (ITL.11)

0 and ¢’ can be chosen as §(t)=
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The conditions that po(¢) < + 00, for Q= Q(— 1, a) will give some lower bounds for
m, m', q; and m, m', q, being chosen, the conditions p,(¢) <7 will give some upper
bounds for d,, dg, Co.

Positivity condition in the domain r < A(t). We suppose that the domain r < A(t) is
a union of domains Q. For instance

r<ylt], with y>1;
or
r<ylt|’, with y>1,p>1.

In such a case the expression of the T2 for r < A(f) does not depend of the exact
choice of A(t) and of §'(¢), since for r < A(t), the whole of D(t,r) in (IIL8) is also
contained in the domain r < A(t).

Choosing ()= IZ—?”, we find:
1 1
T00= 0
(m—1)(m—2) |¢|" =2’
. 5 i
TO: f,X)=— 0 S
= Sy (I1L12)
i _ 9o 1 do 1* )
T m—D)m—2) "2 + 6 " -2C(t), for i=1,...,3,
Ti=0 if i%j.

Since T =0, for i=j, we have
TAPX X =T X3 425 T®X X, +¥ TX?.

Putting | T° || = (Z(T‘”V)”z, we have, for all 1> 0:

122 T°iXoX.-| S2AXTO (X X)) 2= T | (%X3+/12X?),

T’“’XAXBzX%<T°°— % nT"'u) + Y XHTE =2 TO ).

Hence, the positivity condition is verified, if in each point we can choose 4 such that

1
TO— 2 | T 20 }
and T”—/l||T°‘1|gO for i=1,..,,3

That is, if
[T |2 T T, (IIL.13)

Considering (I11.12), we have:

8 v _ b Al)

= S =) i = 31y P
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H
ence — 1 ” 00 ” - 60 1 1 1 ﬂg
7 ™2 \(m—1)(m—2) A3m—1) |t )’
That will be positive if 1> —3—% /Ilzflt )
K 1 1r? Ar
i 0- — 0 6142 3(m—1 ¢l
TH—ZIT > =2C(0)+ |t|""2<(m_1)(m_2) 6P 3(m—1)|f|)’

) 1
i 0- _ 0
Ti_ AT || > 2aﬂ+nW”<mr4Mm—ﬁ

+1<1_ A )2_1 z
6\t m—1 6(m—1)2)

That can be made positive by the choice of C(t), with

1 m—2\* [ A(t) 1
. IL.14
€<~ S0 1)2( ) ( > i (19
For instance, if A(t)=y|t|, we can take:
O 1 (m-2
=— ith — . 1115
C() TRl with  p> 108( ) ( )
With a choice of C(t) verifying (I11.15), we have an estimate
TABX X > k(t) Y. X75.

In the case A(t)=7y|t|, we have k(t)=0J,———, for some k,>0.

Hm 2

Positivity Condition in the Domain r > A(t). It may be proved, if we choose f as
(1TIL9) as r— + o0, ( )
TOO(t )~ =N

K@) .
—1 if 2<a<3

. r
IT 1~ g
2

if 3<a

[That comes from the term 0;¢ in g, cf. (II1.6) and (IIL.10)]
T%~K"(t)

rA2—a

2Ax—2)

(if we choose C(t)+ §A2+ in (III.lO).) In order that the condition (I11.13)

be verified, we must have:

K2 KK" |

ez <—— if 2<a<3

r r

K12 KK’ as r—>+oo.

— if 3<a

r r*
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That will be possible only if we choose 2 <o < 4. In such a case, with a convenient
choice of C(¢) it can be proved that the positivity condition may be verified.
However, in such a case, we shall have an estimate
TABX X p>k(t,r)Y X%. (I11.16)

With k(t,r) < T°(t, ), that means that k(t,r)—0 as r— + co. We shall see that such
an estimate does not allow us to prove that the solution of exact equations verify
also the positivity condition. Therefore we limit ourselves in the search of a
solution in a domain D:r < A(t), which is also a union of domains €, in such a
way that we can apply to D the results we obtained in part II.

Let us give the possible values of m in the simplest case:

D={r§.y|t|}=' U_ Q-1 (IIL.17)

ajsy-—
We have found: [cf. (II1.15) and (II1.10)]
o 17
P(t,r)= mm(*#* EW)
With such a ¢, we have:
Co Cé
Iplla S =2,  [F*¢lg<—2—.

—— +k__
" 2 "2

In order that po(¢) < + 00, we must choose
m>42. (TI1.18)

Remark on the Dominant Energy Condition. Does this solution of approximated
equations verify the dominant energy condition? A necessary condition for that is:

TOO>|T9%. (ITL.19)
Considering (I111.12), (IT1.19) can be verified only if:

S o Wl
(m—1)(m—2) " 3(m—1) |t|’

that means, in the domain r <y|t|, if:

3 .
m<;+2<5, (since y>1).

Comparing with (I11.18), we see that the condition po(d) < + oo, implies too great a
decay of ¢ as t— — o, in order that the dominant energy condition can be verified.

Remark. Another Kind of Solution. We may also have solutions null for t ¢, and
verifying the positivity condition; taking:

¢={<—’2—b)6o(r—ro)m it 2t

0 if r<t,’ (IIL.20)
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it can be proved that if we choose the constant b large enough, the positivity
condition is verified and

TABX X p>kdo(t—to)" 2y X%, with some k>0.
A

B. Positivity Condition for Exact Solutions. Let ¢'’ be functions leading to
solutions of approximated equations verifying the positivity condition on a
domain D which is the union of domains Q’s.

The stress-energy tensor of these solutions of approximated equations will be
called now T,=(T'®), in order to distinguish it from the stress-energy tensor
T=(T*®) of the exact solution with the same data ¢'/ on D.

We have found solutions such that:

T&'8X X 5> k(t)Y, X3, for all vector fields X ,.
A

We want to show that: T4X ,X ;>0 for all timelike vector fields X , — (in fact
we shall prove it for all vector fields).
Tt will be proved, if we show that:

((T4B — TAB)X X 5| < T&BX X . (I11.21)
Putting
,T—— TO' = <Z ITAB—- TOABIZ)I/Z ,

AB

(II1.21) will be proved if
Sup |T— Tp| <k(t), (I11.22)
o
for all Q contained in D.

Estimates for |T— Tp|. Let (V4,uf) be the solution of (I.10) with the data ¢'/. Let
(Vs") be the solution of approximated equations (II1.3) with the same data ¢'’.
From the expression of Tg'® in terms of V!, "/ and that of T“% in terms of
(V4, ") [cf. (I11.5)], we deduce an estimate
IT—To| SCIV—V,l. (I11.23)

Estimates for |V — V;|. If we express the derivatives in the natural frame, the system
verified by the V4 can be written:

{%00V° +0;Vi+ kW) V=fu,V,¢), where |k*u)<Clu|,
10,V°+ 0,V + KW V=1u, V, ).
The approximated equations verified by the V', can be written:
{%GOVO" +0;Vi{=f°0,V,¢) (since for u=0, terms in V
30;Ve +0,V{=10,V,¢) disappear in right-hand sides)’
We deduce, that V4 —V;! verify a system:
{%ao(VO — V) +o(VI=V5) =g V, $)

%61(1/0 _ VOO) + aO(Vj___ V()’) =gj(u, v, ) > (I11.24)
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where g4(u, V, ) =f4(u, V, p)—f 40, V, p)— k* (u)V'V, and considering the form of
S [cf. (L12)], g is of the form:

g, V,0)=k(u)Vu@VV+k,wVV+kWVu@Ved+1,(uVeo
with |k, (u)|, |I,(w)| < Cly. (111.25)

As we have done before, we deduce from (II1.24), some estimates:

t
1V=Villa S § lglade,

and considering (II1.25), we obtain

t 3
IV=Vollo.=C § {k; I ulo 1V I, + 1 6llo)

2
+ 3 IPulg 7V 1o+ | V¢>||QT)} &,

Similarly with the equations derived from (II1.24), we obtain estimates for
IV(V—=Vo)lg, and [VX(V—V,)lq, and from

2
Sup|V—Vo<C 3 17V~ Vo)l

we obtain . )
Sup|V—-Vl= | {k};O IV ullo (173 V o, + 1730 l10)
3 2
+ 3 IPula, T (7Y + 7 ug,)} dv.  (IL26)

Estimates for |V*ullg, and |V*V|gq, (k=0,...,3). We have already obtained
estimates of V in terms of ¢ (cf. I1.B.7). We can also obtain estimates of u in terms of

¢:

u verifies the system:
o, pu=0, with g=—hWVu®Vu+ku)V+k(u)p.

Then, we have
||QHQt§C<”V”Qt+ Ild)llnﬁsgprul | Vul!g,)-

Then, from (IL.A.8) and Gronwall’s lemma we deduce an estimate:

t
Wule=C | (IVla.+l¢lg)dr.

And considering the estimate of V, we have

t 1
IVullg,C | (t—t+1) Y [V*llgdr. (I11.27)
— 00 k=0
t
From the inequality ||ullo, <C | |Vulqdt and (I11.27) we deduce

t 1
[ullo,<C [ (t—t+1)* Y |Vl qdr. (I11.28)
—w k

=0
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With similar proofs, starting from (IL.A.7.8) we obtain estimates

172l <C | {(t—r+1)2u¢||g,+k§1(t—r+1)3‘k|w"¢||g,}dr, (I11.29)

1V3ullgsC _,tfw {(t—f+ 1)3Il¢llgt+k§1 =+ V"¢Ilgt} dr. (II1.30)

Estimates for |T —Ty| in Terms of ¢. From the estimates (I11.23, I11.26, I1.B.7,
I11.27, 28, 29, 30; we can estimate |T — Ty| in terms of norms of ¢:

Sup|T— Totgc_I"wdr{jw«r—a+1)2u¢ug,,+jl (=0 +17 ¥V $]4,do

x 1 (@=o+1PIdla,+ T (—a+1)*] V"¢>||9,)do}. (L31)

Impossibility to conclude on the whole of V7. If as r— + o0, ¢ does not tend to 0,
the right-hand side in (II1.31) with Q = €X(T, a) does not tend to 0 as a tends to infinity
in R3. This estimate does not allow us to conclude that the solution of exact
equations verify the positivity condition, since the stress-energy tensor T;, of the
approximated equations verify an inequality such that (IIL.16), with k(t,r)—0 as

r— + 0.
Even, if it was possible to choose C(t) in such a way that ¢ -0 asr— + o0 <cf.

I 42 —a 1
(I1.10) with C(t)= ZAZ + %), ¢ would tend to 0 at least as > therefore the
a —

1
right-hand side of (II1.31) would be at least as P as |a|—> + oo, that is the estimate

1 .
of |T— T;| would be as FE as |a|— + oco. That would not suffice to conclude since

1
k(t,r)< T°°t,r) is at most in = with a>2 [cf. (IIL.11)].
Positivity Condition on a Domain D. D= {r < A(t)} and D is a union of domains Q.
On such a domain the estimate (II1.31) allows to conclude if we make a convenient
choice of (), A(t), and C(¢).
Let us give only the result in the case of the instance (II1.17). We find

C.8
- < Y
S}ip'T Tbl= ItlZm—IS'

We must have

ltl2m—15 < Itlm—2'
That will be verified if
2m—15>m—2<m>13 and

Coi<kodg<>6,< %0
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Conclusion. On a domain D, r < A(t), which is a union of domains Q, it is possible to
find data ¢"7 such that the solution of Einstein equations given by the main theorem
of part I1, and his corollary verify the positivity condition.

An instance is D= {r <v|t|}

) 1 r?
11 _ 422 £33 _ 0 Y —
¢ —¢ ¢ lt'm—2< U 12 it|2>

¢12=¢23=¢31 =0
with u>0 large enough, m>13 and J, small enough.

Remark. With the other instance given in (II1.20), in the same domain D = {r <y|t|},
using the same method we find:

Sup |T—To| SCo3(t—to)*™ 2, if tZto.
2

That leads to a solution verifying the positivity condition if m=5 and §, small
enough.
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