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Abstract. Precisely two of the homogeneous spaces that appear as coadjoint
orbits of the group of string reparametrizations, DiffίS1)1, carry in a natural way
the structure of infinite dimensional, holomorphically homogeneous complex
analytic Kahler manifolds. These are N = Diff (S^/RotίS1) and M = Diff^S1)/
MόbίS1). Note that N is a holomorphic disc fiber space over M. Now, M can
be naturally considered as embedded in the classical universal Teichmuller
space T(l), simply by noting that a diffeomorphism of S1 is a quasisymmetric
homeomorphism. T(l) is itself a homomorphically homogeneous complex
Banach manifold. We prove in the first part of the paper that the inclusion of
M in T(l) is complex analytic.

In the latter portion of this paper it is shown that the unique homogeneous
Kahler metric carried by M = Diff(51)/SL(2, R) induces precisely the Weil-
Petersson metric on the Teichmuller space. This is via our identification of M
as a holomorphic submanifold of universal Teichmuller space. Now recall that
every Teichmuller space T(G) of finite or infinite dimension is contained
canonically and holomorphically within T(l). Our computations allow us also
to prove that every T(G\ G any infinite Fuchsian group, projects out of M
transversely. This last assertion is related to the "fractal" nature of G-invariant
quasicircles, and to Mostow rigidity on the line.

Our results thus connect the loop space approach to bosonic string theory
with the sum-over-moduli (Polyakov path integral) approach.

Introduction

Part I: The Complex Structures. The group DiffΐS1) and its universal central
extension, the Virasoro group, occurs in string theory as the sgace^of repara-
metrizations of a closed string. Two coadjoint orbit spaces of Diff (S1), namely,
N = Diff (S^/S1 and M = Diff (S1)/SL(2, R), have occurred in the physics literature

* Current address: Indian Statistical Institute, Bangalore-560059, India
1 The Virasoro group (see Witten [16])
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as critically important because precisely these two carry the structure of infinite
dimensional, holomorphically homogeneous, complex (Kahler) manifolds (Witten
[16]). The complex structures on these spaces are obtained by placing a natural
physics-motivated almost complex structure (arising from Kirillov-Kostant
representation theory) on the appropriate spaces of real vector fields on S1. This
complex structure, arising from "conjugation" of Fourier series, appears, for
example, in Pressley [18].

Now, considering diffeomorphisms of S1 as quasisymmetric homeomorphisms
one can naturally identify M as embedded in the classical universal Teichmύller
space Γ(l). T(l) is a holomorphically homogeneous complex Banach domain from
the famous Ahlfors-Bers theory of the Teichmuller spaces. Our first main result
is that this inclusion of M into T(l) is complex analytic. In fact, M is one leaf of
a holomorphic foliation of T(l). Also, since N is a holomorphic disc fiber space
over M, it seems to us that this naturally and directly connects the string
reparametrization complex manifolds with the complex analytic moduli of Riemann
surfaces. It appears to have been an important question (see, for example, Bowick
[5], Bowick and Rajeev [6]) to relate these reparametrization spaces with the
spaces of moduli of Riemann surfaces because that would connect the loop space
("geometrical quantization") approach to string theory with the path integral
("sum over moduli") approach. Indeed, Γ(l) contains canonically within itself as
complex submanifolds all the Teichmuller spaces of arbitrary Riemann surfaces
or Fuchsian groups. If, therefore, strings are reparametrized using the more general
quasisymmetric homeomorphisms of the circle (rather than only by smooth
diffeomorphisms), then the corresponding SL(2, R) orbit space is the universal
Teichmuller space of Riemann surfaces.

Our method of proof is to show that the almost complex structure obtained
by the physicists (Bowick and Rajeev [6,7]; Bowick and Lahiri [8]) on real vector
fields on S1 modulo the Mόbius vector fields coincides with the almost complex
structure of T(l) at the origin. The holomorphic homogeneity of both M and T(l)
under the action of (right-) translation then implies that the complex structures
are compatible everywhere.

Part II: The Kahler Structures. The infinite dimensional holomorphically homo-
geneous (Frechet) complex manifold M = Dif f(S l )/SL(2, R) is shown in Part I to
be naturally embedded in universal Teichmuller space, T(l), as one leaf of a
holomorphic foliation of T(l). That result showed that these two "universal moduli
spaces" are intimately related. There is a unique (up to a scaling factor) homogeneous
Kahler metric, 0, on M; this metric and its curvature have been studied intensively
by many physicists including Bowick, Rajeev, Lahiri, Zumino, Kirillov (see
[5-8,12,13]). The chief result now is that this canonical metric g produces precisely
the Weil-Petersson Kahler metric on the Teichmuller spaces.2

Let us be more precise. The metric g assigns a hermitian inner product on
smooth real vector fields on the unit circle S1. (S1 is to be thought of as the

2 The Kahler form of the metric g is is precisely the symplectic form that M carries by virtue of being
a coadjoint orbit manifold. See Witten [16] and Kirillov [19]
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boundary of the open unit disk A.) Now, tangent vectors to the Teichmuller space
are represented by Beltrami coefficients on A (modulo the infmitesimally trivial
ones). The vector field on S1 corresponding to a Beltrami coefficient μ is
w[μ](z)(d/dz), zeS1. We are able to express the metric g as a pairing on these
Beltrami coefficients; indeed, the formula is:

-zΓ

2This formula converges (as it must) whenever μ, veLcc(Δ) represent smooth (C
is enough smoothness) vector fields on S1. However, as it stands, (*) must diverge
whenever μ,v represent non-zero tangent vectors to any Teichmuller space
Γ(G)(c= Γ(l)), where G is any infinite Fuchsian group. This implies that each T(G)
sits in T(l) intersecting transversely the leaves of the foliation of T(l) by M and
its Mod (G) translates.

On the other hand, the formula (*} for the canonical metric g can still be used
to recover the Weil-Petersson metric on any of the finite dimensional Teichmuller
spaces Γ(G), (which is where the Weil-Petersson metric is defined classically). This
is accomplished via a simple regulation of the improper integral (*) — as explained
in Sect. II.3. Thus, the unique Kahler structure of Diff (S1)/SL(2, R) really does tie
up with the Weil-Petersson Kahler metric on the Teichmuller spaces in a very
convincing fashion.

The transversality we have mentioned above, of each T(G) with M , relates
intimately to various facts about the relationship of smooth diffeomorphisms to
general quasisymmetric homeomorphisms (on S1). Recall (see Sect. II.2) that the
universal Teichmuller space T(l) can be thought of as the space of all (Mόbius-
normalized) quasidisks. Now, the quasidisks corresponding to the analytic subset
M are precisely the ones with C°° boundaries. Bo wen [4] had proved that the
boundary of any quasidisk corresponding to a (non-origin) point of Γ(G), (where
Δ/G is a compact Riemann surface), must be very non-smooth — indeed "fractal."
These results (discussed in Sect. II.4) are thus compatible with, and shed new light
on, what we have proved in this paper.

Part I: The Complex Structures

LI. The Complex Structure of Diff (S^/S1 and Diff (Sl)/SL(29 R). Let N and M
denote respectively these two orbit spaces. We will think of them as right coset
spaces. Using S1 ^RotίS1) and PSL(2,R) = MόbtS1) to normalize a given C°°
diffeomorphism (by following the given diffeomorphism by a normalizing one) we
can identify N (and M) as those diffeomorphisms of S1 that fix one (respectively,
three) points of S1.

The Lie algebra of the Frechet Lie group Diff (S1) is the algebra of C°° smooth
real vector fields on S1 (see Goodman [10]). The complexification of this Lie
algebra is the Virasoro algebra generated by the Ln = einθ(d/dθ) = izn+ l(d/dz)9 neZ.
(Here z = eiθ.) A tangent vector to N at its origin is a linear combination:

3=ΣθmLm, 3m = S_m, (1)
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where 3 = u(θ)(d/dθ) is the corresponding smooth real vector field on the circle
and the 9m are the Fourier coefficients of u(θ). (The 9k decay faster than any
negative power of k since u(θ) is C°°. See Katznelson [11], p. 24.) For M, at its
origin, a tangent vector will be of the form

θ= X 9mLm, 9m = θ-m. (2)
mφ- 1,0,1

Here one loses the coefficients Θ.l99θ99i because an infinitesimal Mόbius
transformation of A (the unit disc) allows one to normalize precisely these
coefficients. One may also check that the Lie algebra generated by L.l9LQ9Lί is
precisely (the complexification of) s/(2, IR), as would be expected.

The natural almost complex structure J at the origin of these two spaces is then
defined (in each case) by (motivated from representation theory; see Auslander-
Kostant [17]):

Jθ = Σ-isgn(m)SmLm. (3)
m

See Pressley [18], Bowick and Rajeev [7], and Bowick and Lahiri [8]. The formula
(3) is, of course, the classic formula known in the theory of Fourier series as
"conjugation." See, for example, Katznelson [11] Chapter HI. One now follows
[7,8] to define the almost complex structure everywhere on these (right-) coset
spaces by right-translation invariance. As shown in [7] using the rather obvious
involutivity of the (1,0) vector fields this J is seen to be integrable and the right
translations by elements of Diff (S1) act as biholomorphic automorphisms on N
and M . (It is possible to get fairly explicit holomorphic coordinates on N and M
as explained by Bruno Zumino in his July 1988 lectures at the ICTP. See Zumino
[20].)

Remark. We are purposely using right translations and right-invariant objects in
order to finally coincide with the usual version of the theory of Teichmϋller spaces.
It is of course possible, as indicated in the last remark of the next section, to modify
the definition of the Teichmϋller spaces so that the left-invariant theory of the M
and N works compatibly.

1.2. The Universal Teichmύller Space T(l). Let Homeo^S1) denote the group of
quasisymmetric homeomorphisms of the unit circle. These are the ones which allow
some quasiconformal extension into the unit disc/I. By a well-known character-
ization due to Ahlfors (see [1] or [14]) these are the homeomorphisms that alter
cross ratios of "symmetrically placed" points on S ί by a bounded ratio. Now,
Bers' universal Teichmiiller space is

Γ(l) = Homeo^S1)/^, R). (4)

Again, SL(2, R) = Mόb^1) can be thought of as normalizing a homeomorphism
by following it by a Mobius transformation so that the composition fixes + 1, — 1
and —i (say) on S1.

The complex analytic structure of T(l) comes by thinking of it as equivalence
classes of proper Beltrami coefficients on Δ. These Beltrami coefficients comprise
the unit ball LCO(Δ)1 of the complex Banach space L™(A). Given any μ€Lco(Δ)l
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one solves the Beltrami equation

wr- = μwz (5)

to get a quasi conformal self-homeomorphism w = vvμ of 4. The boundary values
of vvμ on S1 (which always exist) is the quasisymmetric homeomorphism of S1

representing the equivalence class [μ] in Γ(l). Thus,

Γ(1) = L°°(4)1/^, (6)

where ~ is the equivalence relation saying μ ~ v if and only if vvμ and wv (normalized
as explained by post-composition with Mobius transformations) have identical
boundary values on S1.

Remark. The way to get vvμ given μ in Δ is explained in Sect. Π.2. Much more
about the Teichmuller spaces will be needed in Part II of this paper—see the
section quoted above.

Bers proved that T(l) inherits the structure of a complex Banach manifold from
the complex structure of the unit ball Lx>(Δ)ί. Namely there is a unique induced
complex structure on Γ(l) such that the quotient projection Φ:Lx>(Δ)l -> T(l)
becomes a holomorphic submersion. For complete proofs see Nag [14].

Notice that T(l) is a group (though not a topological group). In fact, composition
of quasisymmetric homeomorphisms corresponds to the following group law on
Beltrami coefficients (see [14], p. 54-55 and p. 227-228)

λ-μ = Beltrami coefficient of (wλ°wμ)

h _
y'~

Since formula (7) depends holomorphically on λ we see that right translations act
as biholomorphic automorphisms on T(l) (and on Lao(Δ)1).

Remark. If we redefine universal Teichmuller space by associating to μeL°°(Δ)ί

the boundary values of w'1, then the left translations act biholomorphically. The
usual conventions in the physics literature regarding the orbit spaces of Diff (S1)
can then be retained. We prefer to stick to the classical conventions in Teichmuller
space theory.

/.3.M c=_>T(l) is a Holomorphic Inclusion. It is well-known that every diffeo-
morphism of S1 extends to a diffeomorphism of the closed disk ΔuS1. So
diffeomorphisms are certainly quasisymmetric. Consequently, M = Diff (S^/Mόb (S1)
sits canonically inside T(l) = Homeo^S^/MδbtS1).

Theorem I.I. The natural inclusion M cι_> T(l) is holomorphic. M can be thought of
as one leaf of a holomorphic foliation of T(l) by injectively and holomorphically
immersed leaves. (The leaves, which are the cosets of the subgroup M within T(l),
are not closed in T(l).)

Using the holomorphic homogeneity of both M and T(l) under right
translations, one only needs to check the identity of the almost complex structures
at the origin. The first problem is therefore to get a description of the almost
complex structure, J, of Γ(l) at the origin (so as to be able to compare it with the
J of Sect. I.I).



128 S. Nag and A. Verjovsky

Acknowledgement. The pretty description of J on T(l) given in the Proposition
below is essentially an idea of S. Kerckhoff. The idea was explained to the first
author in oral communication by C. J. Earle at Cornell University (1987-88).

A quasisymmetric real vector field on S1, to be thought of as an arbitrary tangent
vector at the origin of Γ(l), is obtained from a one-parameter flow of quasi-
symmetric homeomorphism wίμ, for any μeL00^). The vector field on S1 is then
#= w[μ]<5/dz, where wtμ has the perturbation expansion:

wtμ(z) = z + £vv[μ](z) + o(t\ t -> 0. (8)

The problem is to obtain J9 on S1, where

J9=w[_iμ](z)^9 given S=w[μ](z)^. (9)

(Recall that the complex structure of T(l) is inherited from the complex structure
of the space of μ's, as explained in Sect. 1.2. So J corresponds to sending μ to iμ.)

Proposition. Using θ as coordinate on S1, z = eiθ, we can write 9 = u(θ)(d/dθ\ where
w[μ](z) = izu(z\ zeS1. Then, J9=u*(θ)(d/dθ), where vv[iμ](z) = izu*(z)9 zeS1. The
formula for u* is:

u*(z) = Im (D(z)) + (cz + cz + b) on S1 (10)

for a certain beR, ceC. Here D(z) is a member of the disc algebra A(Δ) (namely,
functions holomorphic in A and continuous on ΔvS1) such that ReD = u on S1.

Remark. Notice that u(z) is simply the magnitude of the vector field 9 at the point
zeS1. Note also that w* is being shown to be essentially the Hubert transform of u.

Proof. The first variation term vv[μ] can actually be explicitly written down (see
[14], or Eq. (24) of Part II here) in the form

where μ is the extension of μ to the whole plane by reflection across S1, as explained

in Part II, Sect. II.2. (Explicitly, μ(l/w) = μ(wXw2/w2) for w in Δ.) Here K(z, 0 is a
certain rational function. The main feature of w[μ] (from which actually formula
(11) can be derived) is that

δvv[μ] = μ a.e. on 4, (here d = d/dz). (12)

See Nag [14] pp. 39-40 and p. 171 for a proof of this critical property. We also
note for later use that formula (11) implies, since μ is L°°, that M(Z) = (vv[μ](z))/iz
(on S1) satisfies a Holder condition (Info) - u(z2)\ ^ c\zί - z2\\ 0 < λ < 1)— in fact
with λ arbitrarily close to 1.

Construct the function

F(z) = w[iμ](z) - ίvv[μ](z), on ΛuS1. (13)

By formula (12) we see that dF = 0 on 4, so F is in the disc algebra A(Δ). Therefore
the critical fact is:

izw*(z) + zu(z) = F(z) onS1, for FeA(Δ). (14)
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It is easy to derive the proposition from formula (14) as follows. Define GeA(Δ)
by F(z) = F(0) + zG(z). Then (14) becomes

ιι(z) + ϊϊι*(z) = G(z) + F(0)z on S1. (15)

We therefore have

w(z) = Re(G(z) + F(0)z) on S1

= Re(G(z) + F(0)z) on S1. (16)

Of course, D(z) = G(z) + F(0)z is also in A(Λ\ and the above calculation shows that
D(z) solves the "holomorphic Dirichlet problem" for the real boundary values u
onS1.

Equation (15) now allows us to relate u* with u as desired:

M*(Z) = Im (G(z) + F(O)z), on S1

= Im (D(z) - F(0)z + F(O)z), on S1

= Im (D(z)) + kz + kz, z = eiθ. (17)

Note that our D(z) must be of the form

(the "Schwarz kernel" formula for the Dirichlet problem). The fact that u in Holder
is well known (see, for example, Gakhov [9]) to guarantee that D is in A(Δ\ and
therefore Im(D(z)) on S1 is well-defined.

The Proposition is fully proved. Π

Remark. Notice that the normalization of wμ (to fix + 1, — 1 and — ϊ) implies that
the vector fields u(θ),u*(θ) must vanish at these three points. The constants b,c
occurring in formula (10) can be related at least partly to the enforcement of this
normalization.

To prove our Theorem we need to show that J and J act identically on the
smooth real vector fields $ of S1. Let, 9 = u(θ)d/dθ, with Fourier expansion

Σ a«eί

n= — oo

ίπβ

Then,

α0 + 2f>πz" (19)
n=l

is in A(Δ) with ReZ) = u on S1 clearly.
By the Proposition we obtain therefore: JS = u*(θ)(d/dθ) where, for certain 6, c,

ιι*(θ) = Im (D(ew)) + (b + ceiθ + ce'w)

n=2 n=2

+ γe'ίβ). (20)
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The β and y get normalized to zero via the SL(2, R) normalization. Thus, comparing
(20) with formula (3) for J, we see that J3 = J& The theorem is proved. Π

Part II: The Kahler Structures

ILL The Kahler Metric g on M . Recall from Sect. I.I that the Lie algebra of the
Frechet Lie group Diff^S1) consists of Vect00 (S1) ( = smooth real vector fields on
S1). The homogeneous space of (right-) cosets M = Diff(S1)/SL(2,R)) has, as its
tangent space at the origin, those smooth real vector fields v which are of the form

v = v(θ">Jΰ= Σ <vLm, !>-„, = 5" (1)
°V meZ-{- 1,0,1}

Here the Lm = eimθ(d/dθ), meZ, generate the complexifϊcation of Vect00 (S1). Note
that:

J. (2)

There exists a unique homogeneous Kahler metric g on M ([6-8]). By
homogeneity, one needs to determine the Kahler form ω only at the origin of M.
The requirement dω = 0 forces (see [7]):

ω([Lm, LJ, Lp) + ω([Ln, Lp], LJ + ω([Lp, LJ, Lπ) = 0. (3)

Also, ω must vanish whenever one of its arguments is L_l9L0 or Lx — since these
vector fields (which generate s/(2, R)) give the zero tangent vector on M. From
these conditions one finds that the only possible homogeneous Kahler form ω is
given at the origin by:

ω(Lm,Lπ) = α(m3-m)<5m,_π, m,neZ- {± 1,0}. (4)

(a is as yet any non-zero complex constant.) Elsewhere on M, of course, ω is
transported by translations. This Kahler form ω is precisely the Kirillov-Kostant
symplectic form that exists on M since M is a coadjoint orbit of Diff^S1). Compare
Witten [16]. Note that the metric exists on each holomorphic leaf of the foliation
of 7(1) by M and its coset-translates.

Remark. Interestingly, the formula (4) has occurred in more than one other context.
Segal ([15], p. 321) in calculating H2 (Vect00 (Sl),C) gets (4), where (3) becomes
interpreted as a cocycle condition. Again, (4) occurs in conformal field theory where
the interpretation of (3) is basically as the Jacobi identity.

Proposition. Let v = ΣvmLm and w = Z"wmLm (of the form (1)) represent two real
tangent vectors to M at the origin. Then the Kahler metric g, whose Kahler form ω
was determined above, assigns the inner product

g(v, w) = - 2ia Re £ umvvjm3 - m) .
|_m = 2 J

(5)

The infinite series in (5) converges absolutely whenever the vector fields v and w are
C3/2+ε on S1 (any ε>0). In particular C2 vector fields produce convergence.

Proof. Recall that the Kahler 2-form ω is related to the corresponding pairing g
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by ω(ϋ, w) = g(v, Jw). So g(υ, w) = — ω(t;, Jw). It is therefore trivial to deduce (5)
from (4). The convergence assertion follows from the fact that the Fourier
coefficients of a Ck+ε function on S1 decay at least as fast as \/nk+ε. (See Katznelson
[11], p. 24-25.) Indeed, apply the Cauchy-Schwarz inequality to (5). Convergence
is guaranteed if {vmm312} and {wmw3/2} are in /2, and this happens when the vector
fields are C3/2+ε smooth. Π

Note: Since we want g(v, v) > 0 we must have α = ib with b > 0.

11.2. The Teichmuller Spaces. We recall the basic facts we need from Teichmuller
theory. See Nag [14] for complete proofs. The section is necessarily a trifle long
since we have to understand the relation between various equivalent definitions
of Teichmuller space.

The universal Teichmuller space, T(l), is a holomorphically homogeneous
complex Banach manifold which contains within itself, as complex submanifolds,
all the Teichmuller spaces T(G), (for arbitrary Fuchsian groups G operating on
A). T(G) parametrizes the various complex structures on the Riemann surface
X = Δ/G. The ball of proper Beltrami differentials, L°(Δ)l9 is fundamental: it is the
open unit ball in the complex Banach space of L°° functions on A. The G-invariant
Beltrami differentials constitute the closed complex subspace:

L°°(G) = {μεL"(Δ):μ(gz)tf(z)/g'(z) = μ(z) a.e. on A for all g in G}. (6)

The unit ball L^(G)r^Lβ(Δ)1 is denoted L00^.
The chief construction is to solve the Beltrami equation

wz- = μwz (7)

for any μeLX)(Δ)l. One needs to look at two solutions of (7), namely,

[w,J: The quasiconformal homeomorphism of C which is μ-conformal (i.e. solves
(7)) in Δ, fixes ± 1 and — i, and keeps A and Δ* ( = exterior of Δ) both invariant.
This wμ is obtained by applying the existence and uniqueness theorem of
Ahlfors-Bers (for (7)) to the Beltrami coefficient which is μ on Δ and extended to

Δ* by reflection (μ(l/z) = ~μ{z)z2/z2 for zeΔ).
[wμ]: The quasiconformal homeomorphism on C which is μ-conformal on Δ and
conformal on Δ* (fixing ± 1 and — i again, say), w" is obtained by applying the
Ahlfors-Bers theorem to the Beltrami coefficient which is μ on A and zero on Δ*.

Now one defines, for any Fuchsian group G including G = {!}, the Teichmuller
space,

Γ(G) = L°°(G)1/^, (8)

where μ ~ v if and only if wμ = vvv on dΔ = S1, which happens if and only if wμ = wv

on 4*uS1. The space T(G) carries uniquely the structure of a complex Banach
manifold induced from the complex structure of the open ball L(X)(G)ί — i.e., such
that the quotient projection

(9)

becomes a holomorphic submersion.
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How does this relate to moduli? If μeLX)(G)1 then wμ conjugates G to another
Fuchsian group

Gμ = wμGw;1. (10)

The equivalence class of μ in Γ(G) represents the Riemann surface Xμ = Δ/Gμ.
Alternatively, one can utilize vvμ to conjugate G to a quasi-Fuchsian group

Gμ = wμG(wμΓi (11)

so that Gμ operates discontinuously on the quasidisks Δμ = wμ(Δ) and its exterior
Δ*μ = wμ(4*). Xμ is represented by Δμ/Gμ (whereas Δ*μ/Gμ is the fixed Riemann
surface Δ*/G — since wμ was conformal on Δ*).

From the wμ picture it is clear that

= jquasisymmetric homeomorphisms of S1 J /
{ compatible with G j / v ;' v ;

Here a homeomorphism / of S1 is called quasisymmetric if it has some quasi-
conformal extension into Δ, and / is compatible with G if /G/~ 1 is again a group
of (restrictions to S1 of) Mόbius transformations. The relation between (8) and (12)
is by associating to μeLGC(G)l the homeomorphism wμ restricted to S1.

Remark. We want to draw attention to the fundamental fact that the moduli of
two-dimensional Riemann surfaces are hereby determined by homeomorphisms
of just the unit circle. Thus reparametrization of the closed string (S1) are
intimately related to moduli of complex structures. Indeed, the holomorphic
embedding of M in T(l) exhibited in Part I is induced simply by the inclusion

Utilizing the wμ picture, one can associate to the Teichmϋller class of μ the
quasidisk Δμ. Consequently:

J quasidisks on the complex sphere 1

(normalized by Mόbius transformations/*

T(G) comprises those quasidisks on which some quasi-Fuchsian conjugate of G
acts discontinuously.

How does one pass back and forth between the descriptions (12) and (13) of
Teichmϋller space? Given a quasisymmetric homeomorphism / on S1, extend it
to any quasiconformal homeomorphism F of ΔvS1. Then, if μ is the Beltrami
coefficient dF/dF of F on Δ, the quasidisk corresponding to / is D = Δμ. D does
not depend on the choice of the extension F.

Conversely, note that wμ and wμ are both μ-conformal on Δ — and consequently
pf* — w^w"1 is a (normalized) Riemann mapping of Δ onto Δμ. It follows that if
a quasidisk D is supplied the corresponding quasisymmetric homeomorphism /
on S 1 is the "welding" homeomorphism:

f = p-l°σ, (14)

where p and σ are respectively the (normalized) Riemann mappings of Δ onto D
and Δ* onto D* ( = exterior of D).
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We recall now Teichmuller's Lemma, which identifies the tangent space to any
T(G) at the origin. The fundamental pairing L°°(G) x Λ2(G)->C between L°°
Beltrami coefficients and integrable holomorphic quadratic differentials for G is
given by

< μ , φ > = f j μφ. (15)
ΔfG

Teichmuller's Lemma. Let Φ:LCC(G)1 -> T(G) be the defining quotient projection (9).
The kernel of the derivative of Φ at 0 is the subspace

N(G)={μeL°°(G):<μ,φ>:=0, for all φeΛ2(G)}. (16)

Consequently, the tangent space at origin of T(G) is L°°(G)/JV(G). Π

We are equipped now to define the Weil-Peter sson (W-P) inner product on
T(G). Given μ,veL"(G) one sets

W-P(μ,v)= JJ x lljίφWdξdη dxdy. (17)
ΔIG Δ (I -zζ)

We want to explain this formula. From Ahlfors [2] one recalls the fundamental map

L°°(G)->β2(G)

given by

vfΠ
(18)

Here B2(G) are all the "Nehari-bounded" holomorphic quadratic differentials for
G (i.e. || φ(z)(l - |z|2)2 IL < oo on Δ). The kernel of (18) is known to be precisely
ΛΓ(G), and consequently the W-P inner product (17) becomes:

W-P(μ,v) = <μ,<p[v]>. (19)

However, <p[v](e/?2(G)) is not necessarily in A2(G) for general Fuchsian group G.
So the W-P formula is usually defined only for the finite dimensional Γ(G) — when
Δ/G is on finite conformal type — because for such G one knows B2(G) = A2(G).
For these G the formula (17), equivalently (19), converges.

II. 3. The Kάhler metric on Diff(S1)/SL(2, R) is Weil-Peter sson. The main program
is to calculate the physicists' Kahler metric on M in terms of Beltrami differentials.
Let μeLco(Δ) represent any tangent vector to Γ(l). The corresponding "quasi-
symmetric" vector field on S1 is v = w[μ](z)(δ/dz) for z = eίθ. Consequently,

έ
Here vi>[μ] is the first variation term in the solution theory of the Beltrami
equation (7):

wtμ(z) = z + ίw[μ](z) 4- o(t\ t -> 0. (21)

Theorem 11.1. Let μ,veL°°(2l) represent two tangent vectors at the origin of Γ(l).
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Then the canonical hermitian inner product g of formula (5) becomes formally:

This integration is convergent whenever μ and v represent (see (20)) at least
C3/2+ε smooth vector fields on S1. (Thus C2 vector fields will certainly produce
convergence.)

Clearly we first need the Fourier coefficients of v(θ) so that we may apply
formula (5). We have

Lemma. μ€U°(Δ) corresponds to the real vector field v(θ)(d/dθ) on S1 as per (20).
The Fourier coefficients ofv(θ) are:

vk = — f f μ(z)zk ~2dx dy, for fc ^ 2 (23)
π Δ

and vk = ̂ Γk for k ̂  — 2.

Proof. The explicit formula for w[μ] is

(C-i)(ζ+i)(ζ + 0

This is the formula of Sect. 1.2.12 of Nag [14] adapated to the disk. Or see formula
(1.9) of Ahlfors [2]. Note that vv[μ] vanishes at ± 1 and — i, as it must by the
normalization enforced on wμ.

In (24) we substitute £ = eiβ and make a straight calculation (in which some
remarkable cancellations occur) to get the Fourier coefficients as desired. Π

Proof of the Theorem. The coefficients vk and wk are determined respectively from
μ and v by the preceding Lemma. To apply formula (5) for the hermitian inner
product on M we calculate

. (25)

We have interchanged order of sum and integral above. This is justified whenever
there is absolute convergence—for example when the vector fields are C3/2+ε as
noted before.

Now,

f (m3-m)x"-2= "* for |x| < 1, (26)
m = 2 0(1 — X)

oo

(as may be seen by differentiating ^xm = (l -x)"1 three times). Using (5), (25),

(26) we get the Theorem. Π
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Remarks. Since the choice of a is at our disposal (up to a positive multiple) we
will henceforth normalize so that the factor outside the integral in (22) becomes
unity. Notice that formula (22) is now precisely the W-P formula (17) for the case
G= {!}, i.e. for universal Teichmϋller space.

Corollary. Let G be any infinite Fuchsian group. Then T(G) intersects M = Diff (S1)/
SL(2, R) transversely. Indeed, every non-null tangent vector to T(G) at the origin,
described by μe(L°°(G) — N(G)) produces a vector field on Sl that cannot be even
C3/2+ε smooth (for any ε > 0). (Thus, w[μ] cannot be C2 on Sl ifμe(L°°(G) - N(G)\
whereas the tangent vectors to M are C°° smooth vector fields.)

Remark. This Corollary is an "infinitesimal form of Mostow rigidity on the line.
See Sect. II.4 below.

Proof. Formula (22) says that

•<?[>], (27)

where φ[v] is defined in Ahlfors' map (18). But JJμφ over any union of
N fundamental regions for G is ]V<μ,<p>, by G-in variance. Therefore, for
μ,ve(L°°(G) — N(G)) formula (22) and (27) must diverge whenever G has infinitely
many elements. All the assertions are now clear. Π

Remark. If μ is a G-invariant Beltrami differential and φ is any (integrable)
holomorphic function on A then the classic Poincare series formula is

φ= f f μ θ2(φ\ (28)

where Θ2(φ) = £ (φ°g)(g')2 (See [14], p.73, p. 174, p.231, etc.)

But if veL°°(G) then <p[v] is already a G-invariant quadratic differential. So the
Poincare series is simply (order of G) x φ, and the divergence of (27) is again
manifest.

In spite of this divergence for T(G) of the metric in formula (22), one can still
recover the W-P metric on every finite dimensional T(G) from this formula. The
ideas is to simply regulate passage to the limit in the improper integral.
For μ, veL°°(G) rewrite (22) as

0(μ,v)= lim 0Γ(μ,v), (29)

where

β,(μ, v) = ff x l l d ξ d η dxdy, (30)

or, equivalently (see Eqs. (19) and (27) above),

φW, (30')

where Dr = Δr = { \z\ ίΞ r}, r < 1, is simply the disk of radius r.
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Theorem II.2. The W-P inner product in any finite dimensional Teichmύller space
Γ(G), for μ,veL°°(G), is related to the canonical inner product g by the formula:

W-P (jι,v) = <7r(μ,v)

W-P(v0,v0)

where v0eL°°(G) — N(G) represents any nonzero tangent vector to T(G) at its origin.

Proof. The group G is finitely generated of the first kind. If a function / on the
hyperbolic unit disk Δ is G-automorphic then it is known that

f J f dA = lim *M x area(4/G), (32)
Jί/G r-

where dA is the hyperbolic area element and Br(x) is the closed hyperbolic ball of
radius r centered at any xεΔ. (In particular, note that the limit involved is
independent of x.) The formula (32) follows from S. J. Patterson's results on the
distribution in Δ of lattice points for G, — this was kindly communicated to the
first author by J. Veiling.

Applying (32) to the automorphic function / = μ(z) φ[v](z)(l — |z|2)2 we see
that theorem immediately. Π

Remark. The idea, of course, is that gr(μ,v) is "essentially" W-P(μ,v) times the
number of copies of a fundamental domain Δ/G sitting inside Δr. Note that the
right-hand-side of (31) is an oo/oo form and LΉospitaΓs rule can be applied to
advantage.

Remark. Since the metric g was Kahler (Sect. II. 1) to start with, this sheds new
light on the Kahlericity of the Weil-Petersson metric. That W-P is Kahler on T(G)
was first shown by Ahlfors in [2]. The negative curvature of W-P also fits in neatly
with the corresponding fact known for g.

Utilising the natural relationship exhibited in formula (31) between the Kahler
metric g on M and the usual Weil-Petersson metrics, one should now be able to
derive the Kahlericity and the negative curvature of W-P from the corresponding
facts for g.

II A. On the Transversality of T(G) with M. The corollary of Theorem II. 1
of the previous section can be prettily interpreted by considering the deep question
of which quasidisks correspond to points of M, and which to points of T(G). We
are now thinking of Teichmϋller space as the set of (normalized) quasidisks — as
explained in Sect. II.2.

Bowen [4] had proved that if G uniformizes a compact Riemann surface, then
every non-origin point of T(G) corresponds to a quasidisk with fractal boundary
(i.e., Hausdorff dimension of the bounding quasicircle is strictly greater than unity).

On the other hand, the quasidisks corresponding to the points of M = Diff (S1)/
SL(2, R) are the ones with C°° boundaries.

In fact, recall from Sect. II.2 the relationship between the two ways (12) and
(13) of considering Teichmuller space. If the quasidisk is smoothly bounded then
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the Riemann mappings p and σ both extend smoothly to the boundaries. Hence,
by formula (14) certainly the C°° quasidisks correspond to points of M. That they
comprise all of M is shown in Kirillov [12] using an idea of Sullivan.

It is also easy to see that a G-compatible /eHomeo^S1) must be non-smooth
(if / is not itself a Mobius transformation). For example, it is known that if / is
compatible with a compact surface group G, and / is C1 at even a single point of
S1, then / must represent the origin of T(G). One idea is to note that fGf~l = Gμ,
and/assumed C1 on the circle, implies, on direct differentiation, that the hyperbolic
marked length spectra of Δ/G and Δ/Gμ are the same. Hence Gμ is not a non-trivial
deformation of G—so that / represents the origin of T(G), as desired. These
assertions are forms of Mostow rigidity on the line. (See Agard [21].)

We thus see that the fact that each T(G) projects transversely out of M is
intimately related to the non-smoothness of the vector fields, or the quasisymmetric
homeomorphisms, or the quasidisks corresponding to the (non-origin) points of
T(G).
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