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Abstract. We study in the small noise limit the behaviour of field trajectories
for the process constructed by the authors in connection with the stochastic
quantization of φ\. Due to the presence of infinite renormalization the usual
large deviation techniques do not apply immediately and a new strategy has
to be developed. We prove some estimates analogous to the Freidlin-Ventzel
inequalities. From these it follows that the field trajectories suitably smeared
in space over a scale r0 behave, when the noise is small, as the projection on
the same scale of a field obeying a regularized stochastic equation with a large
cut-off. However the estimates are not uniform in the cut-off and an interesting
feature of the problem is that the scale over which the field is smeared determines
whether the noise is sufficiently small for the estimates to apply.

0. Preliminaries

There exists a well developed theory of small random perturbations of dynamical
systems evolving in Rn or on some finite dimensional manifold. This goes under
the name of Freidlin-Ventzel theorym as these authors developed several basic
ideas in this domain. Their fundamental estimates turned out to be equivalent to
large fluctuation results of Varadhan[7]. The Freidlin-Ventzel approach was then
extended to stochastic nonlinear partial differential equations of parabolic type in
one space dimension besides time[2]. This extension of the F-V estimates follows
from a careful but otherwise straightforward adaptation of the arguments
developed for the finite dimensional case. The situation is entirely different if the
number of space dimensions D is greater than 1. The prototype of equations we
want to consider is

^ = Δφ-φ-V'(φ) + ε^9 (0.1)
dτ dτ

where dW/dτ is a white noise in all variables. V(φ) is an even polynomial in φ.
These equations may be called stochastic Landau-Ginzburg equations. For D ̂  2
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an equation like (0.1) is meaningless because the white noise makes the non-linear
term V'(φ) meaningless. In view of the connection of such equations with Quantum
Field Theory known as stochastic quantization, it is natural to try a procedure of
renormalization which consists in modifying the non-linear part in such a way
that it becomes a good stochastic variable. However this introduces infinite
subtractions so that even the modified equation cannot be taken literally. In
ref. [3] the following equation closely related to (0.1) was studied (for ε = 1. The
ε of this paper is not to be confused with the parameter ε of [3]. The ε of [3] is
called p in this paper.)

dφ = - -((- A + \γφ + λ(- A + I)'1 +f):φ3:)dt + εdW,

E(W(t9 x)W(t', x)) = min (ί, t')( -Δ + l)~l +p(*> *')• (0-2)

Δ is the Laplacian in D = 2 and p is a sufficiently small positive number, in [I]
p<(l/10) [4]. The space variable is restricted to a compact ΛaR2. :<p3: is the
Wick product defined by

:φ*: = φ3- 3ε2(- Δ + 1)" l(x,x)φ

(0.3)

Since C(x,x) is infinite (0.2) in not a stochastic differential equation in a strong
sense. It can be given a meaning in the following way: we first write it as a formal
integral equation

φ, = Z,-^}ώe-'»-*:-'C'-':rf:, (0.4)
2 o

where Zt is the distribution valued Gaussian process solution of the linear
equation

dZt = - ±C~pZtdt + εdWt. (0.5)

Then it can be shown that a process φt can be constructed such that

Zt = φ, + ±ίdse-t'*-'X:-'cί->:φi: (0.6)
2 o

has the same probability distributions as Zf. This is what probabilists call a weak
solution. To construct φt one regularizes (0.4) by substituting Zt with ZfN, its
projection on the first N vectors of an appropriate orthogonal basis and corres-
pondingly C with CN everywhere including the Wick product (0.3). The regularized
equation has a strong solution φtN and defines a Markovian semigroup

)e^\ (0.7)

where ξtN is the Girsanov exponent

ξ,N=-^l(:ZΪN:,dWsN)-fjds(:Z*N:,C1

N->-:Z*N .) (0.8)
2ε o oεz o

where the scalar products are in L2(Λ).
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Using the methods of constructive field theory it was shown in [I] that there
exists a stochastic variable ξt such that

Eφo(eξ'*)=l μCε-a.e. in φ0, (0.9)

where μc in the gaussian measure of covariance Cε = ε2( — Δ -f 1)~ * = &2C on the
dual Sobolev space H _ ^ . Therefore φt is defined by the equation

Eφo(f(φt)) = Eφo(f(Zt)eξ<«). (0.10)

/ is in L2(dμ) where dμ is the equilibrium measure

dμ = dμcexp(-λ/4ε2 J d2x:φ4:\ (0.11)
\ Λ /

:: is Wick product with respect to the covariance Cε as in (0.3).
In [I] for Λ we chose a square and Dirichlet boundary conditions were imposed.

In this paper we want to make a start in the study of the large deviation problem
for the distribution valued field φt. This consists in studying the behaviour of
typical trajectories for φt when ε -> 0. As a first step in this direction we establish
some analogs of the well known F-V estimates for the field φt. This is a non-trivial
problem. One must first realize that due to the circumstance that φ is a distribution
one can ask meaningful questions only on some regularized version of it, e.g.
<Pg = (Pt*9> where φg is the convolution with an appropriate test function in the
space variables. But the really new problem is given by the fact that φt is not a
strong solution of a stochastic differential equation which is the only case for
which a theory of small stochastic perturbations exists. Therefore one has to devise
new methods to cope with the problem. The approach we shall follow here consists
in showing that the probabilities we are interested in can be approximated by
corresponding probabilities for a truncated process φtN provided N is "sufficiently
large." However N must be finite because we cannot expect uniformity in N in
the estimates. Therefore N must be chosen in some way that is naturally suggested
by the problem. A relevant thing is that the main object in this game, the action
functional for large fluctuations, for sufficiently small ε does not depend on the
renormalization counter term appearing in the Wick product (0.3). To simplify the
discussion instead of studying the trajectories of φtg for arbitrary g we shall consider
(φt)M the projection of φt on the first M vectors of the orthonormal basis. In the
following to simplify the notation we shall denote this projection φtM. No confusion
should arise with the truncated process φtN as N will always denote the cut-off.

We take this opportunity to correct in an appendix to this paper some errors
in [I] which however do not affect in the least its conclusions.

1. The First F-V Estimate

We want an answer to the following question: what is the probability that the
projection φtM of our field on the first M eigenvectors of the operator (—Δ + l)
with Dirichlet boundary conditions on dλ be close in the time interval [0, Γ] to
a preassigned function ft(x) which also lies in the same subspace and is continuous
in ί?
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The initial condition for ft is that ΦoM = /oM» i e ^ coincides with the
projection of the initial condition φ0. For the distance between φtM and ft we can
take the sup norm p(φM, f) = sup | φtM(x) — ft(x) \ . We try to estimate from below,
whenε->0, fe£ jπ

which exists μC£-a.e. in φ0. δ is an arbitrary positive number. Using (0.10) the
above probability can be written

/) < δ) = Eφo(χ(p(ZM9 f) < δ)eξ*~)

= E^(p(ZM9 f) < δ)χ(\ξτ^ -ξTN\< a)e^)

+ Eφo(χ(p(ZM9 f) < δ)χ(\ξτx - ξTN\ > α)^<°), (1.1)

where W and α are for the moment arbitrary but N > M and the latter is fixed.
ξίN is given by (0.8). χ is the indicator function of the event in the argument.

From (1.1) we have

, f ) < δ)χ(\ξTaΰ -ξTN\< a)eξτ«)

^ E 9 0 ( χ ( p ( Z M 9 f ) < δ)χ(\ξτaΰ - ξTN\ < a)e^)e~a.

)<δ)et™)e-°

, /) < δ)χ(\ ξTaΰ - ξTN\ > a)e^)e'a.

)<δ)e^)e-a

ξTN\ > a)e*™)e-Λ. (1.2)

In the first term we substituted φ0 with φON as the other components do not
evolve any more. The first term now can be estimated with the usual F-V techniques
(since it involves the truncated process φtN (see (0.7)) which is a strong solution
of the cut-off stochastic differential equation) and the question is whether we can
choose a and N in such a way that the second term can be made smaller than the
first. It is clear that to make the second term small it is convenient to take both
N and a large. However we have to be careful that the factor e~a does not spoil
the estimate of the first term. Furthermore, since the F-V estimate of the first term
will not be uniform in N we cannot take N too large.

Let us choose a = h1/ε2, where hγ is a small positive number. Given then h2 > 0
the F-V theory gives for the first term for fixed N and ε sufficiently small,

M, f) < δ)e*™) ^ exp - . (1.3)

where I * N ( f ) is defined in the following way. Let

(L4>

Then

/*"(/) = hιf/*(/), /,:/,„ = /„ /O = <PO)V. (1-4')

/, has N modes in its representation. We remark that the Wick product for ε
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sufficiently small does not affect IN(f) since :/3: = /3 — 3ε2CN(x,x)/ is finite and
:/3: > /3. In conclusion the first contribution on the right-hand side of (1.2) is

ε-»0

larger than

with h = /ιx + h2 for ε < ε0(N, £, /ι).
We now estimate the second term. By Schwartz inequality

*9Tgo-ξTN\>a)γ'2.

By adapting (3.11) and (A. 11) of [I] the first factor is bounded for large N by

λ
exp :| + const ε

A

where AN is the eigenvalue corresponding to the highest mode in the development
of ZίN. The second factor is the interesting one. By Chebysheff inequality

17 / / I K K i \ \ ^ ^ . ,,
JB^oixC.ir. ~ ^TN! > a)) ^ - ̂ . - . (1.6)

The difference ξτ — ξTN after performing the stochastic integral is of the form
(see for example (0.18) of [I])

. 2(BTaΰ - BTN), (1.7)
zε oε

where

ATx-ATN = ̂ d2x(:Z4

τ(x):-:Z4

TN(x):)-l-ld2x(:φ (1.8a)
4 Λ ^ Λ

:(Z,3, C-"ZS): - :(ZS

3

N, C^'Z,W):],
o

0

CΛ

N(x, y) means as usual

C*N(x,y)= Σ λ;*Φk(x)Φk(y\
fe=l

where the λk are the eigenvalues of — Δ H- 1 in Λ. Φk are the corresponding
eigenfunctions.

where P^ is the projection on the subspace of the first N vectors of the basis.
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Let us introduce the notation

/i = f d2y(:φ4: - :φ$N:), I2 = f d2y(:Z4: - :Z4

TN:\

I3 = ds[_:(Zl, C'"ZS}: - :(Z3

SN, C^»ZsN):),
0

/4 = J^[(:Zs

3:,C1-":Zs

3:)-(:Z^:Ci-":Z^:)]. (1.9)
0

We have then

We have now the following lemma.

Lemma 1. There exists a Borel set BN c //_ ^Λ) with μc (BN) ^ 1 — (4/Λ,N) such that
for '

1. /^ g

2. EφoI
2

2^cJ(j\)4(lnλNΓλ^-l\ε2)4J, (1.11)

3. E^ί^ ̂  4( j!)4(ln λ^ΓΆ t1 -2"»+ ̂ β2)4^,

4. £φo/^^4(7Ί)6(lnA)VΓA-<2-2''»+1(£

2)6y.

c ami cτ ar^ appropriate constants.

Proof. The proof is similar for the cases 1-4 and we illustrate it for the case 3).
First note

Eφoll^ T2J~l } dsEφo(:(Zl, C-'Z.): - :(Z?W, C^'Z.W):)2A (1.12)
0

Using the fact that μc is the invariant measure for the OU process we have

^ Cj

τ(jl)4(lnλ)mjλ-(1-2ί>)j(ε2)4j. (1.13)

In obtaining the last inequality we have used straightforward Feynman graph
estimates. Now define CjNε the expression in the second line of (1.13). By the
Chebysheff inequality,

3f'Zλ;1. (1.14)

This proves 3. The other cases are proved similary. By optimizing with respect
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to j from (1.6) and the lemma just proved we obtain that for φ0eBN,

(1.15)

for an appropriate choice of C and of the function g(N) with g(N) — > o
N-»oo

We now have to discuss whether (1.15) can be smaller than (1.5) for appropriate
choices of all the parameters involved. We have to be careful in order to avoid
circularity of the argument. Let us analyze first the conditions for the validity of
(1.5). We assume N given once for all and φON satisfying

Sup\φON\<D. (1.16)
xeΛ

Furthermore we assume

I*N(f)<K, (1.17)

which amounts to a restriction on /. Then

M, f) < 5)*<™)<Γfc'"a ^ e-(I"*w+w (U8)

for 0<ε<ε 0 (N,D,K). We omit the obvious dependence of ε0 on δ and h. We
choose ε in (0, ε0) and we keep it fixed in the following. We now have

λ h C ( h2 \1/41
iKx φ^ l + const^Oμ^dnA^)-^-- -i- . (1.19)

We now note that

If :φ%N:d2x\ ^ \Λ\(D4 -h ε2D20(ln λN) -h ε40(ln2 λN)). (1.20)
Then if

2 V / 4 λ
H(ε,N\ (1.21)

where H(ε,N) is an appropriate constant (1.19) will be exponentially smaller (in
1/ε2) than (1.18). It is clear that if for some N and ε (1.21) is not satisfied we can
always increase N and decrease ε in such a way that its validity is implemented.
Therefore we have proved

Theorem 1.1. Given hl9 h, δ, N, D, K satisfying (1.16), (1.17), (1.21) with

(1.22)

for a set of initial conditions φ0 of μc measure greater than

1 μc ( Sup|φO N | >£>) (1-23)
Aft \ jceΛ /

and some h> h.
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It is clear that the third term in (1.23) will be exponentially small for ε small.
Some remarks are in order. The content of this theorem is that once an
approximating truncated process is chosen and ε is so small that large deviation
estimates are applicable to it, there exists a set of initial conditions for which these
estimates are good approximations for the projections of the full process. What
is different from the usual F-V theory is that due to the singular character of the
trajectories of the process φ, the admissible initial conditions depend on ε. In fact
the measures μc are not absolutely continuous one with respect to the other for
different ε.

2. The Second F-V Estimate

In the previous section we have introduced the functional /*N(/), where / is a
function continuous in t and having M modes as far as its x dependence is
concerned. I * N ( f ) is not in general lower semicontinuous but, as discussed by
Freidlin[5], one can always work with a lower semicontinuous version. We then
define

s}9 (2.1)

where / has M modes and /*N(/) is given by (1.4'). We want to study now the
probability of the event {p(φM, 0*N(s)) > δ}. We have

M, Φ*N(s)) > δ)eξτ")

ao - ξTN)

Eφo(χ(p(ZM, Φ*N(s)) > δ)χ(\ξτao - ξTN)

~ ξTN\ > a))1'2. (2.2)

The estimates now follow the same line of reasoning as in the previous section.
The only difference is the estimate of Eφo(e2ξτto) since now the process without
cut-off is involved. It can be seen without difficulty that

(Eφo(e2ξτa°)) ^ e^'if :*X*ι + «rMi (2J)

with Bτ > 0 independent of φ0 for a set of initial conditions of μCg measure greater
than 1 — 4/L^1. Suppose now \\:φ^:d2x\ ^R.

Theorem 2.1. Given hl9 h, δ, N, D as in Theorem 1.1, s < X,

/4

-'-R-ε2Bτ\Λ\ (2.4)
\g(M)/ 8

ε<ε0(N,D,K). Then

M,Φ*N(s))>δ)^e~(s-~h]/ε2 (2.5)
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for a set of initial conditions of μc measure greater than

>, xeΛ

and h<h.

3. Concluding Remarks

If we compare out Theorems (1.1) and (2.1) with the usual F-V estimates one notices
two main differences: a) there is an intrinsic ε-dependence of the admissible initial
conditions; b) the estimates depend on the cut-off N of the auxiliary finite
dimensional process. It is then natural to ask the following questions. Is it possible
on the basis of our approach to reconstruct the main results of the F-V theory,
e.g. to make estimates of the invariant measure? These require a rather detailed
study of exit times and trajectories from domains containing the attractors of the
unperturbed deterministic equations. From our point of view one should work
with the deterministic part of the truncated equation which depends on N and ε
in a nontrivial way.

The second question which spontaneously arises is whether we can do better,
that is whether we can eliminate the explicit dependence on the cut-off of the
auxiliary process. After all it seems reasonable to expect that the ε0 below which
large deviation estimates apply depends in the end only on the scale r0 (that is
M) over which we smear the field.

We also remark that in our discussion the coupling constant λ was kept fixed
(with respect to ε). As it is easily seen this means that we stay out of the phase
transition region where the stochastic equation acquires two effective equilibrium
states. It seems possible to treat also this case, which is physically most interesting,
by introducing suitably rescaled variables and then applying our methods.

Progress in all these directions would be relevant not only in connection with
stochastic quantization. In fact our Landau-Ginzburg equations appear in a great
variety of problems which we may roughly describe as stochastic hydrodynamics.
In particular the scale dependence of large fluctuations is an interesting new
phenomenon relevant for physics as emphasized in [6] where also an extensive
qualitative and numerical analysis of a stochastic Landau-Ginzburg equation was
carried out.

Appendix

Erratum to the authors' paper "On the stochastic quantization of Field theory"
Commun. Math. Phys. 101, 409 (1985), to which we refer for notations.

1. page 416 "Remark on Stochastic integral in (2.7)".

The statement that the integral in (2.8) is a "martingale" is clearly in error as the
integrand has a ί-dependence (pointed out to us by S. K. Mitter whom we thank).
Fortunately the martingale property is unnecessary. Equations (2.9-2.12) which
remain valid (but not (2.13)) together with the easily obtained estimate for
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0 < S < t < T,

E™(\\It-Is\\E)^CT\t-s\2 (2.13)

replacing (2.13), show that It defined in the Ito sense, is a continuous Gaussian
process in E. We also remark that (2.11) written as

is a sum of Ito stochastic integrals (martingales) with deterministic coefficients
converging to It (2.12), but neither I(

t

N} nor the limit It are martingales.

2. page 417. Replace the first sentence of paragraph containing (2.17), "The
stochastic integral •••(l/λll)(l — e~λnt)" as follows:

The stochastic integral on the right-hand side of (2.16) can be written as

where Itn can be identified with Brownian motion βσn(t) with time change
t-+σn(t) = λ~1(eUn— 1), [13]. It is now trivial to check that the above Gaussian
process has the same transition probability (1 -dimensional distribution) as
Brownian motion with time change

3. page 433. There is a typographical error in A. 15 which should read:

μc{M ^ - const (K4ε(lnK)2) - 1} g e~-™««(2-4E)l4^rm/\

4. page 434, Lemma 4 as stated is incorrect. It can be replaced by a somewhat
weaker statement similar to Lemma 1 of Sect. 1 of the present paper. However
this would allow to prove Proposition 2 of the appendix of [I], for a set of initial
conditions of μc measure ^ 1 — α, α arbitrary but strictly larger than zero. In other
words the bound asserted by the proposition would not be uniform in α. To obtain
the bound μc a.e. we can follow a different and simpler approach which allows to
reduce A2 to Al of [I]. Using the notation of paper [I], we have to prove that

o
exp< - JdsM(φs)> )<oo, μc-a.e. in φ. (A.I)

Using Riemann sum approximations for the s-integral above, Fatou's Lemma and
that μc is the invariant measure of the OU process it follows by a standard
calculation that

o
!dμeEφ(exp j - f dsM(φΛ)}} ^ ldμce~λίM^ < oo. (A.2)

By applying now the Fubini theorem from the joint measurability of the integral
on the left-hand side with respect to φ and the OU process, we obtain (A.I). In
this way all the results of [I] on the existence of the weak stochastic dynamics
are true μc a.e. in the initial condition. This approach was given in P. K. Mitter
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in "New perspectives in quantum field theory," M. Asorey et al. (eds.), Singapore:
World Scientific 1986, pp. 181-307.
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