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Abstract. It is shown that the linking number of two surfaces of dimension p
and n - p - 1 in an n dimensional manifold has a natural description in terms
of the two-point function of a simple topological field theory. The two-point
function of a more general theory (whose partition function yields the
Ray-Singer torsion) provides a definition for a generalized linking number.

1. Introduction

The language of quantum field theory provides a natural framework for describing
a variety of results in mathematics. These include the Donaldson invariants of four
manifolds [1], the Floer cohomology groups of three manifolds [1], and the Jones
polynomials of knot theory [2]. The key idea, is all cases, is to construct a field
theory which is independent of a spacetime metric. There are thus no local
excitations and the only observables are topological invariants.

The results mentioned above refer to the topology of low dimensional manifolds.
Although in many respects this is the richest case to consider, it is of interest to
note that there exists a quantum field theoretic description of topological invariants
in higher dimensions as well. In fact, the first topological quantum field theory
[3,4] was constructed (over ten years ago) to reproduce the Ray-Singer analytic
torsion [5]. A basic topological invariant in higher dimensional manifolds is the
linking number of a p and n — p—1 dimensional submanifold. We will show that
this linking number arises naturally from the two-point function of a simple
topological field theory. This theory can be viewed as a special case of the theory
which yields the Ray-Singer torsion. We will also consider this extended theory
and find that the two-point function yields a generalization of the linking number.
This is one example of the new insight that the quantum field theoretic approach
can bring to topology.

We begin by reviewing the definition of the linking number [6]. Let M be
a compact, oriented n dimensional manifold (without boundary). Let U and V
be nonintersecting oriented submanifolds of dimension p and n — p—l. We
assume U and V are homologically trivial, i.e., they are the boundaries of
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surfaces of one higher dimension. Let V = dW. Then U and W will generically
intersect in a finite number of points pt. At each pt the orientations on U and W
can be combined to yield an orientation on M. Define sign (pt) = 1 if the resulting
orientation agrees with the original orientation on M and sign^) = — 1 otherwise.
The linking number of U and V is defined to be

L(U,V)=Σsign(Pi). (1-1)
/

Can the assumption that U and Kare homologically trivial be relaxed? At first
sight this appears likely since the above definition seems to only require that V
be trivial. However it is easy to show that if U is nontrivial, then there are
topologically inequivalent choices of W (all with dW=V) which yield different
answers for the linking number. Mathematically, this is because one can add the
Poincare dual of U to W. To illustrate this, consider the case of M = S2 x S1 x S1.
Let U be a two sphere and T be a torus which intersect at one point p. Let V be
a small circle in T surrounding p. Then one choice of W is the small disk in T
containing p which yields a linking number of one. But another choice of Wis the
complement of the disk in the torus which yields a linking number of zero.

If U and Kare two circles in R3, then there is a well known integral formula
for the linking number due to Gauss:

- (1.2)

where |x — y\ denotes the standard Euclidean distance between x and y. This
formula is easily generalized to surfaces of dimension p and n — p — 1 in Rn by
replacing (4π)~1|^~ yΓ1 by Γ(n/2)l(2n-4)πn/2pl(n-p- l)!]"1!*-^2"11 and
using the nth rank ε tensor (see, e.g., [7]). This generalization also applies to the
linking of surfaces in an arbitrary manifold provided that the surfaces are contained
in a region diffeomorphic to Rn. Since the surfaces must be homologically trivial
one might expect that this includes all surfaces of interest. However this is not the
case. Any surface which is homotopically non-trivial cannot be contained in a
region diffeomorphic to Rn. Some examples of surfaces which are homotopically
non-trivial but homologically trivial are the generators of the first homotopy group
of a homology sphere.1

In Sect. 2 we consider the following topological field theory [8]. Let B be a p
form and C be a n — p— 1 form on an n dimensional manifold M. The action is
simply

S=$B*dC, (1.3)
M

where Λ denotes the wedge product and d denotes the exterior derivative. Since
the integrand is an n form, the integral is well defined without extra structure such

A homology sphere is a manifold with the same homology groups as the sphere
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as a metric or a volume form. Classically, the equations of motion are dB = 0 and
dC = 0. The action is invariant under diffeomorphisms as well as the gauge
transformations B-*B + dv, C -> C -hdw, where v and w are p — 1 and n — p — 2
forms respectively. Thus the space of gauge inequivalent solutions is just the space
of closed forms modulo the exact forms. In other words, it consists of the de Rham
cohomology groups HP(M) x Hn~p~1(M). In ref. [8] canonical quantization was
carried out for theories of this type assuming M = Σ x R. The physical states were
found to be square integrable functions on HP(Σ\

Now let M be compact (without boundary) and let U and V be homologically
trivial surfaces of dimension p and n — p — 1 respectively. Consider the two-point
function

Since the expression inside the expectation value is clearly gauge invariant and
metric independent, the result appears to be a topological invariant of the surfaces
U and V. But one might worry that the measure in the functional integral will
depend on a choice of metric so the result may have anomalous metric dependence.
It turns out that this is not the case. We will show that the right-hand side is in
fact metric independent and equal to i times the linking number of U and V:

0. (1.5)

(The factor of i is a standard field theoretic consequence of the eis weighting.)
The action (1.3) has a natural generalization which we discuss in Sect. 3. Let

G be a Lie group and A a flat G connection on M. Let & be a p form transforming
in a nontrivial representation of G and let # be a n — p — 1 from transforming in
the dual representation. We consider the action

S A = f Λ Λ D « , (1.6)
M

where D denotes the covariant curl: D = d 4- A. Schwarz has shown [3,4] that the
partition function for this theory is precisely the Ray-Singer torsion of M with
the representation of π^M) given by the holonomy of A. In light of Eq. (1.5), it is
of interest to consider the two-point function of this theory. Since & and ^
transform under nontrivial representations of the group G, their integrals over U
and V are not gauge invariant. To obtain a gauge invariant expression, we must
include Wilson lines connecting points of U to V. Thus we are led to consider

u v \ x / /

where P denotes path ordering. This expression now depends not only on U and
V but also on the flat connection A and a family of curves {7} from U to Fused
to define the Wilson lines. Under certain conditions which will be discussed in
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Sect. 3, the functional integral is finite and metric independent. Furthermore, the
dependence on {y} will be shown to reduce to a single curve γ0 from a point of
U to a point of K Expression (1.7) can thus be viewed as providing a definition
of generalized linking number L(C7, V,A,y0). In most cases it can be evaluated to
yield

(1.8)

where the sum is over the points pt of intersection of U and a surface W with
dW = V, and γt are certain closed curves passing through pt which are determined
by y0. If the holonomy is trivial, one recovers the usual linking number (1.1) (times
the dimension of the representation). We will see that the generalized linking
number is also well defined in some cases where the ordinary linking number is not.

2. Linking Number

In this section we will derive Eq. (1.5) relating the two-point function of the
topological field theory (1.3) to the linking number. To do this we will need to
introduce a Riemannian metric and use some results about the eigenforms of the
Laplacian. We therefore begin by reviewing these results.

After introducing a metric on M, one has the Hodge dual * which maps p
forms to n — p forms and satisfies ** = (— \)p(n~p\ There is a natural inner product
on p forms:

<B|B'> = f β Λ * # . (2.1)
M

The adjoint of d is δ = (- iγ**"*1 *d* and satisfies δ2 = 0. The Laplacian on forms
is defined to be Δ = δd + dδ. The zero modes of Δ are called harmonic forms, and
there is one harmonic p form for each nontrivial element of HP(M). The Hodge
decomposition theorem states that the space of all p forms can be decomposed
into the direct sum of three orthogonal subspaces via

B = B° + dφ + δχ9 (2.2)

where B° is harmonic, and φ and χ have rank p — 1 and p + 1 respectively.
Following physicists' terminology, we will refer to dφ and δχ as the longitudinal
and transverse parts of B. Since d2 — 0 and δ2 = 0, the Laplacian leaves each
subspace invariant.

Fix an eigenvalue λ2 of Δ and let Δp denote the space of rank p eigenforms of
the Laplacian with this eigenvalue. Thus every element of Λp satisfies

ΔB = λ2B. (2.3)

By the above remarks, if λ Φ 0, the space Λp decomposes into the direct sum of
the transverse (ΔΎ

p) and longitudinal (Δ^) eigenforms. There are three simple
relations between these eigenforms. First, the Hodge dual maps p forms with
eigenvalue λ2 to n — p forms with the same eigenvalue. So it provides an
isomorphism form Δp to Λ π _ r In particular, this implies that dQtΔp= det4w_p,
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where Δp denotes the Laplacian on p forms. The other two relations are less well
known but equally simple. Let B be an element of Λ£. Set C = δB. Then clearly
δC = 0 and ΔC = δdC = δdδB = λ2C using (2.3). Thus <5 is a map from ΛL

p to Λτ

p_ Γ

Similarly, if B is an element of ΔΎ

p, set C = dB. Then dC = Q and

ΔC = dδC = dδdB = λ2C, so d maps ΔΎ

p to Λ^+ r The above relations imply that
λ~l*d is a linear map from Λ^ to Δ^_p_v But this operator is also invertible.
Indeed, its square is the identity operator (up to a possible sign) on ΛΎ

p. So ΛΊ

p

and Δ^_p_1 are isomorphic. In other words, the values and degeneracies of the
(nonzero) eigenvalues of the Laplacian on transverse p forms and n — p — 1 forms
agree. We will use this fact shortly.

Now consider the two-point function of the topological field theory with action

M

f Γ A RΊ Γ AΓ*~\ RfvΛ/'Ύ ΛiW'S

(2.4)

As we have mentioned, although S is independent of the metric on M, to define
the measure we will need to introduce a metric. As in the discussion above, we
take the metric to be Riemannian. Nevertheless, as indicated in (2.4), we define
the partition function as a functional integral of exp(iS) rather than exp(— S), the
usual prescription when the metric is Riemannian. Since S is not positive definite,
we get a well defined answer only if we use exp(ίS). In ordinary field theories, in
which the lagrangian density includes an overall factor of (det#)1/2, the relation
between the coefficient of S and the signature of the metric can be regarded as
arising from the factor of i that appears in (det g)1/2 when the signature is changed.
The action we are considering contains no such factor (indeed no dependence on
the metric at all), so changing the signature does not change the coefficient oϊS2

To evaluate (2.4), we proceed as follows. We can write the measure for B as

[dB~] = [d£τ][ί/£L][d£°], (2.5)

where BΎ, BL, and B° denote the transverse, longitudinal, and harmonic parts of
BI the measure for C has a similar decomposition. Only the transverse parts of B
and C will contribute when integrated over homologically trivial U and F, so we
need only calculate the two-point function for the transverse parts of the field.
The integrals over the longitudinal and harmonic parts of the field just cancel in
(2.4) and we obtain

Let Bn be a basis of transverse eigenforms of the Laplacian, ΔBn = λ2Bn and δBn = 0,
normalized so that <£„,!£„> = δmn. Set Cn = (- l)n~p~lλ;l*dBn. Then from
the above discussion, Cn are also a basis of normalized transverse eigenforms

We thank Andy Strominger for suggesting this point of view
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of the Laplacian. Expand B = Σ bnBn and C = Σ c

nCn The action is S =

(- l)p(n~p\B\*dCy = ̂ λnbncn. We define the measure to be [d£τ] = Y\dbn and
n n

[dCΊ~\ = Y\dcn. The terms in (2.6) proportional to BmCn for m Φ n are easily seen
n

to vanish. The term proportional to BnCn has a coefficient iλ~l. Thus

<£T(x)CT();)> = i Σ A; ̂ MQ);). (2.7)
n

Now suppose C/ and Kare homologically trivial surfaces in M of dimension p
and n — p—\ respectively. Let V = dW. Then

. τ-ι T — 1 f D f /"• C} Q\: ϊ > Λ I X>π J Cπ. (2.OJ

π C7 K

But dCn = λn*Bn, so

(2.9)

Substituting (2.9) into (2.8) and using J BΎ = j B and J Cτ = J C we get
υ u u v

The sum is over the transverse eigenforms of the Laplacian. However, since the
longitudinal and harmonic eigenforms will not contribute to (2.10), we can extend
the sum to include them, and use completeness:

£ Bn(x)Bn( y) + longitudinal + harmonic = δ(x, y)I, (2. 1 1)
n

where δ(x, y) is an n dimensional delta function and / denotes the identity operator
on p forms. The result is just a sum over the points of intersection with an overall
sign depending on the orientation. This is precisely the linking number (times i).
Thus we have obtained the desired result,

(2.12)

Note that although a metric was chosen to define the functional integral and
appeared in intermediate stages of the calculation through the eigenforms and
eigenvalues of the Laplacian, the final answer is indeed a topological invariant.

For the special case of M = Rn, it is easy to see that (2.8) is equivalent to the
generalized Gauss formula. We first note that, for any manifold, (2.7) is the Green's
function (times i) for *d restricted to transverse forms. In momentum space, this
operator is simply iεj --kp where k is the momentum. The inverse is proportional
to i\k\~2εj- kj. Taking the Fourier transform and integrating over the surfaces
we recover the generalization of (1.2).
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It is interesting that the functional integral which yields I J B J C \ is well
\υ v I

defined under essentially the same conditions that the linking number is well
defined: in both cases one must require that U and V be homologically trivial,
and in neither case is it necessary to assume anything about the cohomology of M
(since the zero modes drop out of the functional integral). The only difference
between the two approaches is that the functional integral may depend on boundary
conditions for B and C if dM φ 0. (The case of R" above is to be viewed as the
limit of Sn as the radius goes to infinity.) It seems likely that there always exist
boundary conditions such that the functional integral yields the linking number,
but we will not explore this issue here. There is no analog of this ambiguity in
the purely topological approach.

If one tries to evaluate the functional integral when U is homologically
nontrivial, then there is always one zero mode B° (corresponding to the chomology
class dual to U) for which J B° Φ 0. The integral over this mode causes the functional

17

integral to diverge. If one simply defines the functional integral by omitting this
zero mode, then the answer is finite but in general metric dependent. This is not
surprising since the specific form of the zero mode depends on the metric, so by
excluding it one has introduced a metric dependence in the functional integral.
However note that the difficulty which arises in the quantum field theory expression
for the linking number when U is nontrivial is quite different from the ambiguity
that arises in the topological definition.

If p is odd and n = 2p -f 1, one can set C = B and consider the abelian
Chern-Simons action S = ^$B Λ dB. In this case, one can choose the eigenforms
to satisfy *dBn = λnBn. The above analysis applies essentially unchanged and one
finds that

/ \
0, (2.13)

where U and V are now both p dimensional surfaces. There is clearly no problem
with self linking if U and V are different surfaces.

3. Generalized Linking Number

Schwarz has considered the following generalization of the topological field theory
discussed in Sect. 2. Let A be a flat connection for a Lie group G, and let $ and
# be forms of rank p and n — p — 1 respectively transforming in nontrivial dual
representations of G. Mathematically, $ and # take values in a flat vector bundle
E over M with connection A. Consider the action SA = j $ Λ D ,̂ where D = d + A

M
is covariant curl. Since A is flat, D2 = 0. The classical field equations are D& = 0
and D<& = 0 and the gauge transformations are ̂  -»B + Dv and <& -» C 4- Dw. So
the space of gauge inequivalent solutions are the cohomology groups of forms
with values in £, HP(M,E) x Hn~p~l(M,E). Schwarz has shown that the partition
function for this theory is equal to the Ray-Singer analytic torsion.
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We wish to consider the two-point function. As before we must introduce a
Riemannian metric to define the functional integral. Many of the results about
ordinary forms used in the last section have natural generalizations to forms taking
values in E. In particular, after introducing a metric on M (and the fibers of £),
we have the Hodge dual * and a natural inner product: <J*|^'> = § & Λ * '̂. The

M
adjoint of D and the Laplacian ΔA are defined as before. The zero modes of ΔA

are in one-to-one correspondence with the nontrivial elements of HP(M, E).
The theory of eigenforms of the Laplacian also carries over to forms taking

values in a flat vector bundle. In particular, we have a Hodge decomposition
theorem analogous to (2.2), completeness of eigenfunctions, and the analog of the
result used in the previous section: the values and degeneracies of the eigenvalues
of the Laplacian on transverse p and n — p — 1 forms agree. Let 3$n denote a
normalized basis of transverse eigenforms of the Laplacian of rank p ana set
y>n = (— l)n~p~ lλ~l *D&n. The evaluation of the two-point function is identical to
the one in Sect. 2 and we obtain

<^τ(x)^τ();)> = i £ λ- X(x)^(y). (3.1)
n

The differences with the theory of Sect. 2 become apparent at the next stage.
In order to extract a gauge invariant quantity, we must now pick not only two
surfaces 17, V, but also a family of curves from U to V. More precisely, for each
point xeU and yeV we pick a homotopy class of curves γ from x to y. We now
introduce a family of Wilson lines and consider

(3.2)

Since the connection is flat, the Wilson line depends only on the homotopy class
of the curves y.

The above expression will in general be metric dependent. In order to avoid
this metric dependence, one must insure that the longitudinal and zero modes do
not contribute inside the integral, so that the restriction to the transverse parts of
the forms in (3.2) can be dropped. (Note that since the action SA only depends on
the transverse parts of the forms, (3.2) with the restriction to transverse forms
removed will diverge if the longitudinal or zero modes contribute.) In Sect. 2, this
was accomplished by requiring that U and V be homologically trivial. In the
present case, there are additional conditions. These arise because the Wilson lines

(y \
Pexpl ] A 1 may not be continuous in x and y. If U contains a closed curve with

ΛΓ \nontrivial holonomy, then as x goes around the curve, Pexpl ] A I will jump
\* /

discontinuously. In this case, JPexpί $A \Dφ ̂  Jd( Pexpί J/4 ]φ 1 = 0 due to
u \χ / v \ \χ / /

delta function contributions from the discontinuity. Thus in order that the
longitudinal modes not contribute, one must insure that the Wilson lines are
continuous in x and y. This leads us to the following definition:
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Definition. A surface U is holonomically trivial if every closed curve on U has trivial
holonomy.

This condition clearly depends on the connection as well as the surface. It should
not be confused with the purely topological conditions of being homotopically
trivial (if U can be continuously shrunk to a point) or homologically trivial (if U
is the boundary of a surface of one higher dimension). However these conditions
are related. If a surface is homotopically trivial, it is always holonomically trivial
(for any flat connection). More generally, if every generator of π^U) is
homotopically trivial in M then U is holonomically trivial.

Thus the longitudinal modes will not contribute if U and V are holonomically
trivial and without boundary. What about the zero modes? These will not
contribute if U and V are both homologically trivial and there exist holonomically
trivial surfaces W and W with dW=V and dW' = U. In this case one can
continuously extend the Wilson lines to all points of W and use the fact that for
every zero mode <g°,

( y \

x /

and similarly for the zero modes of 08.
Given 17 and V satisfying the above conditions one can choose the family of

curves {y} as follows. For simplicity we assume that U and V are path connected.
If not, the following procedure can be applied to each connected component. Pick
a point u0eU and another point ι?0eK Now connect each point of U to MO with
a curve in 17. Since U is holonomically trivial, the answer will be independent of
how these curves are chosen. Similarly, connect each point of V to ι?0. Now pick
a curve y0 connecting MO to t;0. This is the only arbitrariness in the choice of curves.
The two-point function (3.2) will depend on the homotopy class of y0 but only
change by an overall factor when this is changed.

If U and V satisfy the above conditions and the curve y0 is chosen, then the
two-point function

/ /v \ \

(3.4)

is finite and metric independent. It can thus be viewed as a generalization of the
linking number which depends on a flat connection A and a curve y0 in addition
to the two surfaces U and V.

It may appear that the generalized linking number is in fact independent of A
since the expression inside the brackets in Eq. (3.4) depends only on A restricted
to (7, Fand y0, and the conditions on 17 and K require that this restricted connection
be trivial. However this is not the case. The functional integral depends on A
everywhere on M through the action SA. This will become clear when we now
derive an explicit formula for the generalized linking number.

From (3.1) we have:

J&(x)JPexpί μ γβ(y) J = iΣλ~i f #n(x) J P exp f μ WM(y). (3.5)
U V \x / / n U V \x J
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Now let Wbe a holonomically trivial surface with dW=V. Connect all points in
W to v0 with a curve in W. Then

(>>). (3.6)

Substituting into (3.5) we again obtain a sum over the transverse eigenforms of
the Laplacian. Since the longitudinal and harmonic modes do not contribute, we
can extend the sum to include all modes and use completeness. The integral
collapses to a sum over the points pt of intersection of U and W. The curve in the
Wilson line becomes a closed curve passing through pt and the completeness
relation says that only the trace enters. We thus obtain the final result:

L(U, V, A, 7o) = £ sign (Pi) Tr P exp( § A] . (3.7)
i \ yi /

The closed curve yt starts at pί? follows a curve in U to w0, then y0 to t;0, and finally
a curve in Wback to Pi. The holonomy around these curves is uniquely determined.

The above calculation shows that the right-hand side of (3.7) is independent
of the choice of W provided only that W is holonomically trivial and dW= V. In
particular, it is invariant under continuous deformations of W. This can be seen
directly. Under such deformations new points of intersection may arise in pairs,
or pairs of points pt may disappear. Suppose W can be deformed to W, and W
has two new points of intersection p and q of opposite sign. The contributions
from these new points will cancel in (3.7) only if the holonomies agree. The above
construction yields a closed curve through each of these points which differ by a
closed curve γ that starts at p, goes to q along W, and then returns to p via U.
Using only the fact that U and W are holonomically trivial, we cannot conclude
that this closed curve has trivial holonomy. But we also know that W can be
continuously deformed to W. Under this deformation the closed curve γ shrinks
to zero. Since y is homotopically trivial, it is also holonomically trivial and the
two contributions to (3.7) cancel.

An example will help to illustrate the generalized linking number. Figure 1
shows two circles 17 and V in R3 which have ordinary linking number zero. We
now remove the two dotted vertical lines and put on a L/(l) connection with
holonomy eia around one line and e~ia around the other. Then U and Kare both
holonomically trivial and without boundary. Figure 1 also shows a curve y0

connecting a point w0e U to vQeV. Let WbQ the disk shown. It is also holonomically
trivial. There are two points of intersection p and q which occur with opposite
sign. The closed Wilson loop containing p is holonomically trivial but the one
containing q is not. The generalized linking number is thus

L(U,V9A,y0)=l-el". (3.8)

In this example, M has a boundary, but we have previously assumed that
dM = 0 so that the functional integral would not depend on arbitrary boundary
conditions. Fortunately, it is easy to modify this example so that dM = 0. Imagine
slicing Fig. 1 with a family of horizontal planes. Each plane has the topology of
R2 with two points removed. Now add a point at infinity and a handle to connect
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Fig. 1. An example of the generalized linking number is shown. U and V are circles with ordinary
linking number zero. The two verticle lines are removed and a 17(1) connection A (not shown) is added
with holonomy elΛ around one line and e~lΛ around the other. The generalized linking number is
HU,V,A,γ0)=l-eia

the boundaries of the two removed points. The resulting surface has the topology
of a torus T2. Finally, identify the top and bottom surface to obtain T3. We now
have an example of two circles in a three torus with generalized linking number
given by (3.8).

The two-point function (3.4) and hence the generalized linking number is
actually well defined under certain conditions more general than we have discussed
so far. In particular, it can be defined in some cases when the ordinary linking
number can not. For example, suppose HP(M, £) = 0 and Hn~p~l(M, E) = 0 so there
are no zero modes. Then we do not have to require that U and Fbe homologically
trivial. (We must still require that they are holonomically trivial so the longitudinal
modes drop out. Thus it again suffices to pick a single curve γ0 from U to V to
define the Wilson lines.) In the theory of Sect. 2, if there are no zero modes then
all surfaces are homologically trivial. But that is not the case in the presence of a
flat connection.

Consider the example mentioned in the introduction where M = S2 x T2, 17
is a nontrivial two sphere, T is a torus intersecting U at one point p, and V is a
small circle in T surrounding p. If we add a connection with nontrivial holonomy
around both generators of the torus, then there will in general be no zero modes.
Since U and V are holonomically trivial, the generalized linking number is
unambiguously defined. If we choose y0 to be a short curve from the point peί/ to
a point v0eV, then it equals Tr 1, which is the dimension of the representation.



94 G. T. Horowitz and M. Srednicki

This can be seen by letting W be the small disk in T containing p and following
the argument given earlier. If one had instead chosen the complement of the disk
for W, then it would not have been holonomically trivial. The functional integral
would now have a contribution from the discontinuity in the Wilson lines which
exactly compensates for the zero contribution from the usual number.

It is not clear to us what applications the generalized linking number will have.
In light of recent connections between the ordinary linking number and fractional
spin and statistics (see, e.g. [9,7]) potential applications to physics seem promising.
From a purely mathematical standpoint, the fact that the generalized linking
number arises naturally from the same topological field theory that yields the
Ray-Singer torsion, and is a straightforward generalization of the ordinary linking
number, makes it worthy of further study.
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field theory of Sect. 2.
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