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Ergodic Properties of a Kicked Damped Particle
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Abstract. We investigate a class of nonlinear dynamical systems describing the
movement of a particle in a viscous medium under the influence of a kick force.
These systems can be regarded as a generalization of the Langevin approach
to Brownian motion in the sense that the fluctuating force on the particle is
not Gaussian white noise but an arbitrary non-gaussian process generated by
a nonlinear dynamical system. We investigate how certain properties of the
force (periodicity, ergodicity, mixing property) transfer to the velocity of the
particle. Moreover, the relaxation properties of the system are analysed.

1. Introduction

Consider a particle of mass 1 moving under the influence of the kick force

Lτ(t)= Σ ηmδ(t-nτ). (1)
n = 0

τ is the time difference between subsequent kicks (for simplicity we assume that
the impulses are equidistant). ηn is the strength of the kick at time nτ. If the
particle moves in a viscous medium, then in addition a friction force is exerted
on the particle. We assume that this is proportional to the velocity Y(t) of the
particle. Thus the equation of motion is

Ϋ=-yY + Lτ(t), (2)

where y is the viscosity of the liquid. We will keep our considerations as general
as possible and allow Y(t) to take values in Rm. Moreover, we assume that there
is a discrete time dynamical system T:X-* X a Rk and a function /:AΓ-»Rm such
that

(4)
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That is to say, the evolution of the kick strengths is determined by the dynamical
system T on the phase space X and projected onto Rm by the function /.*

The solution Y(t) of Eq. (2) can be presented as

e-^-^yΛ9 n = [t/τ] (5)

([ ]: integer part) where yn is obtained by the recurrence relation

17: x»+ι = Tx» (6)

and λ = e~yτ is a parameter.
Our consideration implies that discrete-time dynamical systems of the form (6)

have a direct "physical" interpretation: yn = Y(nτ) is the velocity of a kicked damped
particle. We assume that the initial velocity yQ is fixed. If we also fix the starting
value x0, the time evolution of the velocity is deterministic for all times. Alter-
natively, x0 can be regarded as a random variable with some probability
distribution μ(x0). Then Lτ(t) is per definitionem a stochastic process and Eq. (2)
is a stochastic differential equation [1,2,3]. In fact, according to Kolmogorov's
existence theorem [3] there exists for any stochastic process (ηn) a phase space X,
a dynamical system T, a map / and a probability measure μ such that ηn =
/(Γ"~1x0). In this sense the stochastic differential equation (2) and the dynamical
system (6) are equivalent. However, we emphasize that Eq. (2) is much more general
than the Langevin equation, because Lτ(t) is not uncorrelated Gaussian white noise
but an arbitrary non-gaussian process uniquely determined by T, / and μ.

It appears to be interesting from both the mathematical and physical point of
view to investigate the properties of dynamical systems of the form (6) in more
detail. For the low dimensional case k = m = 1, special examples have already been
studied by several authors [4-8]. The first were Kaplan and Yorke [4]. The Kaplan
Yorke map is obtained for the special choice Tx = 2x mod 1, /(x) = cos 2πx. Later,
Jensen and Oberman [5] studied the statistical properties of the system
Tx = 2xmod l,/(x) = sin2πx and gave explicit results on correlation functions.
Mayer and Roepstorff [6] investigated the system Tx = 2x2 — l,/(x) = x and
further systems related to it. They proved the ergodicity of the systems, calculated
the expectations of certain observables and pointed out the relation to Smale's
solenoid [7]. Beck and Roepstorff [8] dealt with the limit λ -> 1. They showed that
if T has the so-called φ-mixing property and if / is of bounded variation then the
rescaled trajectory τl>2yn generates the Ornstein-Uhlenbeck process in the scaling
limit τ -> 0. In fact, in this limit case there is an equivalence between the rescaled
system (6) and the Langevin equation. In a recent paper Shimizu replaced the
force Lτ(t) by its time integral version and considered the analogous problem [12].

In this paper we extend the discussion to arbitrary high phase space dimensions
k and m, and analyse the general properties of dynamical systems of the form (6).
The physical motivation for this was pointed out in the introduction. We do not

1 In a physical picture X may be regarded as the 1023-dimensional phase space of all the molecules
in the liquid. Then / projects down onto the velocity space of a single test particle
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choose special examples for T and /, i.e. special kick forces but keep our
considerations as general as possible. That is to say, we only assume that T has
certain properties and then investigate the consequences for the extended system
U determined by Eq. (6). It turns out that the most important properties of the
/c-dimensional system T (existence of stable periodic orbits, ergodicity, mixing
property) directly transfer to the k + m-dimensional system U. That is to say, if
the T-dynamics is periodic (ergodic, mixing) the complete system U has quite
similar properties. A precise formulation is given in terms of Theorems 1-3. From
the physical point of view these theorems describe how the properties of the force
transfer to the velocity of the particle. This can be seen in analogy to the Langevin
theory where it is well known that the statistical properties of the Wiener process
are closely related to those of the Ornstein Uhlenbeck process. Our approach
applies to a much wider class of dynamics generated by non-gaussian correlated
kick forces.

Of special interest is the case of an exponentially mixing Γ-dynamics: We will
show that if T has relaxation time β then the relaxation time of the y- variable of
U is given by ma\(y~1,β). In physical terms this means that the relaxation time
of the particle's velocity is either determined by the inverse of the viscosity y of
the liquid or by the relaxation time of the kick force, depending on which of the
quantities is larger.

2. Stable Periodic Orbits

Firstly, we deal with the case of a periodic kick force. Suppose the dynamical
system T:X^X has a stable periodic orbit. Does the extended system
U(χ> y} = (Tx, λy + /(x)) possess a stable periodic orbit, too? In fact, this is true
for \λ\ < 1. The exact statement is as follows:

Theorem 1. Let \λ\<l and \y0\ < oo. Let f:X-+Rm be continuous and bounded
(|/|<*< oo).
1. Let T have a stable periodic orbit of length L with basin of attraction AaX.
Then U has a stable periodic orbit of length L with the same basin of attraction, i.e.
for x0eA,y0 arbitrary

2. Let T have an exponentially stable orbit, i.e. for xQeA,

XnL + j\<CμΛ 0 < μ < l

(C: constant). Moreover, let f be differ entiable (\f'\ < B < oo) and let μ ̂  \λ\L. Then
for x0eA,y0 arbitrary

\y(n+ι)L+j-ynL+j\<Clμ
n^C2\λ\Ln VneN

(Cf: constants). That is to say, U has an exponentially stable orbit of length L with
the same basin of attraction as T. The approach to the periodic orbit is determined
by max(μ,|/l|L).
3. For μ = \λ\L one has \y(n+1)L+j- ynL+j\ <nC3μ

n.
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Proof. 1) Iteration of (6) yields

Thus

k = 0

nL + j-1 [«/2]L nL + j-1

Splitting the sum £ into two sums Σ and Σ ([]: integer part) we

ϊ

, . [n/2]L+l
obtain

nL + j-ί I"L/2 I
(9)- - — ,

ι-μi ι-μι'

where ε-^0 for n-+ oo provided x0eA. Moreover, from Eq. (7)

L

Combining Eq. (8), (9), (10) we get \y(n + 1}L+j-ynL+j\ ^0 forn->oo.
2) We write

ly ( n + l )L + J-ynL + J | < U r L + J Ί y L - y θ l + Σ W^'1^,
i = 0

where

1)-/(x iL+j_1)|, ;=1,...,L. (12)

Our assumption is |X( ί +i)L + </ — XΪL+J| < Cμf for all j. As / is differentiable and
I /'I < B < oo, the Taylor formula implies

(13)

Thus

t< const μr Σ ίτΐϊϊ
i=o i=o

~ 1 n + 2

= const! - \τ-μ\λ\in~ί}L (14)Vμi L ) \\λ\2L μ] )
for μ / μ|L. Inserting (14) and (10) into (1 1) we get

\y(n+ι)L+j-y«L+j\<Cl\λ\''L + C2μ". (15)

3) Similarly we obtain for μ = \λ\L,

\y(n+nL+j-ynL+j\<C3n\λ\nL. D (16)
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Remark. It is easy to generalize the theorem for functions / that are not
differentiable but only obey a Holder condition of type |/(x 4- w) — /(x)| <
const |w|α, 0 < α < 1. In this case we have to replace μ by μα. The theorem is also
valid for complex mappings T and U and complex λ: The basins of attraction of
T and U coincide.

Let us mention some further interesting consequences of the theorem: Choose
for example for T a 1 -dimensional unimodal map such as Tx = 1 — ax2. As a
consequence of the theorem, the higher dimensional system U shows sub-harmonic
bifurcations at the same parameter values a as the system T, independent of λ.
Both the accumulation point of bifurcations as well as the Feigenbaum constant
δ are the same for both systems. Obviously the parameters a and λ are decoupled.
Notice that for many other systems, for example those of Henon type rather than
of Kaplan Yorke type, the parameters are not decoupled.

The physical interpretation of Theorem 1 can be summarized as follows: if the
long time behaviour of the kick force is periodic, i.e. if T possesses an attractive
periodic orbit of length L, the particle's velocity will also become periodic with
period L. The approach to the periodic orbit is determined by max(|/l|L, μ).

3. Ergodicity

We now deal with the case of an ergodic kick force. A dynamical system T is
called ergodic [9] if the time average of every continuous test function φ exists and
can be presented as an ensemble average:

J φ(x) (17)

(Xj+i = TXJ). Equation (17) must be valid for all starting values x0 up to a set of
nieasure 0. The following theorem describes how the properties of the ergodic
system T transfer to the extended system U(x, y) = (Γx, λy +

Theorem!. Let \λ\<l and \yQ\<oo. Let T:X->XaRk and f:X-+Rm be
n— 1

continuous and bounded. Define functions hn:X-+Rm by hn(x)= £ λn~l~jf(Tjx).
j=o

1. LetT be an ergodic dynamical system with invariant measure μ. Then U is also
ergodic, in the following sense: For continuous and bounded observables g and rceN

lim 1 'Σ g(Xj, yj) = j dμ(X)g(T"x, hn(x)) + Rn
j->oo J j = o

with lim Rn = 0.
n-*oo

2. //, in addition, g is differentiable in the y-variable (\(d/dy)g(x9 y)\ < B < oo) then
Rn = O(\ λ\n\ i.e. the rest term Rn is exponentially small.

Proof. 1) Iteration of (6) yields

yn = λny* + ϊ λ"~ ' -jf(*j) = λny0 + MXO). (18)
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Thus

\yn\ < \y<>\ + - — — sup f(x) < oo. (19)
1 ~~ μi x

Of course also yn+j = λnyj + hn(Xj). Thus for finite n

I j-i i j-i
l™ - X g(χj9yj)= lim - X ^(xj+^^+J

J->oo Λ ; = 0 J-xx) J j = 0

= lim I J£ 0(Γ"x,., λ-^ + MX,))- (20)
j-»oo J j = o

As T and / are continuous, T" and hn are also continuous. Moreover, lim λnyj = 0
π-*oo

as I yj\ is bounded. Due to our assumption g is also continuous. Thus we can write

lim 1 JΣ 0(xj5 yj) = lim 1 Jχ {0(7%, M*;)) + R?}
J->CQ J j = Q /-*QO J j=Q

J->oo
= J dμ(x)g(Tx, MX)) + lim l «i° (21)

with lim R<j> = 0 because of continuity of g. As | Rn \ ̂  sup | R® \ we have lim Rn = 0.
Λ -> oo j n -*• oo

2) If ^ is differentiable with regard to y, we can use Taylor's formula with finite
rest term in (20). In this case

Rn = lim i Jχ λΛ

yj-j-g(Txj9 ξj) (22)
j^oo J j = 0 <^)^

for appropriate £7 . Thus

|ΛJ<μ|-sup|^| A D (23)
j

Remark. If g satisfies a Holder condition | g(x9 y + w) — #(x, y) | < const | w |α,

Again, we would like to illustrate the "physical" meaning of Theorem 2. For
this purpose we choose an observable g that only depends on y. The theorem
implies that if the kick force acting on the particle is ergodic, the particle's velocity
is also ergodic. Moreover, the expectation of any observable g can be calculated
by evaluating §dμ(x)g(Tnx,hn(x)) for H-> oo.

As a simple example let us consider the 2-dimensional dynamical system

U: *^=2*;-1" , (24)
yj+ι = λyj + xj+l

i.e. T(x) = /(x) = 2x2 - 1 (x0eX = [- 1, 1]). The system T is ergodic (even mixing),

the (natural) invariant measure is dμ(x) = (π^/l —x2)~1dx. T is conjugated to a
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Fig. 1. Plot of the curve An(u) = (cos π2"w, £ λn~jcos π2Ju), ue[0,1], n = 6, λ = 0.4
7 = 1
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Fig. 2. Plot of 5000 iterates of the dynamical system (xj+ί,yj+ J = (2x2. - 1,λy. + xj+1), λ = 0.4, for a
single initial value (x0, y0). The first iterates are omitted

Bernoulli shift [10]. Using the formula 2 cos2 β-l=cos2β we can write

(25)

where u is a Lebesgue distributed random variable on [0, 1], The curve

(26)

is the image of the ensemble of initial values after n iterations of the map U. Expect-
1 n

ations of observables g(x, y) can be calculated as J du g(cos π2nu, £ λn~ jcos π2ju)
0 j = l
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for n-»oo. Figure 1 shows An for n = 6, λ = 0.4. The curve coincides with the
strange attractor of the map U up to errors oϊO(\λ\n). In comparison Fig. 2 shows
5000 iterates of a single starting value. Whereas Fig. 1 represents an ensemble
average, the dots in Fig. 2 can be regarded as a time average. Both figures coincide
due to the ergodicity of the system.

4. Mixing Properties

In this section we make an even stronger assumption on the kick force: we assume
it is mixing. A dynamical system Tis called mixing [9] if for all continuous functions

) = 0. (27)
n-+ oo

Here C(J^φ2(n) denotes the correlation function defined by

' (28)
J->oo J j = 0

<φ 1 >=«mVΣφ l (* j ) ί = 1 > 2 >
J-+00 J j = 0

(xj+ ! = TXJ). If for φί9φ2ina. function space D the decay of the correlation function
is exponentially fast, we call T exponentially mixing with respect to D. We now
show how the mixing properties of the mapT transfer to the system

Theorems. Let \λ\<l and \y0\«x>. Let T:X-+X^Rk and f:X^Rm be
continuous and bounded.
1. Let T be mixing. Then U is also mixing, in the following sense: For continuous
and bounded observables gι,g2,

2. Let T be exponentially mixing with respect to a function space D, i.e.

(C: constant) for φl,φ2εD and neN. Moreover, let glyg2 be differ entiable in the
y-variable (1(3/3^1 < B < oo) and assume that g£Γ*,h^eD9 i = 1,2. Then

(Cj! constants). That is to say, the m + k-dίmensional map U is exponentially mixing.
The relaxation time is determined by max(μ, |λ|).

Proof. 1) First of all, Theorem 2 tells us that the averages

J y J ) i = l , 2 (30)
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exist. Without loss of generality we assume that they vanish. For finite neN one has

1 J~i

C^2(")= llm 7 Σ 9l(Xj + n>yj + n)92(Xj>yj)
J-,00 J j=Q

1 J~1

= lim - X 9l(Xj+2n>yj+2n)92(Xj + n,yj + n)
j->oo Λ j=0

= lim ~ 'Σ 0ι(T"xj+Λ, λ"yj+n + hn(Xj+n))g2(T»Xj, λ»yj + hn(Xj)). (31)
J->αo J j = Q

In analogy to the proof of Theorem 2 we can write

C^«(») = C^.w..ϊ(r,.w(n) + l?. (32)

with lim Rn = 0. By assumption the functions gi(Tnx,hn(x)), i= 1,2 continuously
n-> oo

depend on x. Thus the mixing property of T implies

and therefore lim C%]β2(n) = 0.
n-»oo

2) If g f j and ^2

 are differentiable with respect to y we can apply Taylor's formula
to Eq. (31):

g,(Tnxj+n, λ"yj+n + M*;+ „)) = giCrxj+v hn(xj+n)) + λnyj+n—gι(Tnxj+n, ξj)

(g2 analogous). It follows

IC^WI < IC^Γ".M,W(Γ».M(W)| + 2 SUP \yj\'B2'\λ\n + ̂ (I^l2 n) 04)j
As gf ί(T",Λn)eD, i = 1,2 we arrive at

l<C!μn + C2μr. D (35)

Remark. Por Holder continuous observables with |̂ (χ, y + w) — gι(x9 y)\
< const I w|α we get |C<^»| < C,μn + C2\λΓ

Again let us interprete Theorem 3 in a physics-related way: If the kick force
is mixing, the velocity of the particle is also mixing. In case of an exponentially
mixing kick force the approach to equilibrium is determined by either μ or \λ\,
depending on which of the quantities is larger. It is interesting to see how the
relaxation behaviour depends on the class of observables considered: Correlations
for differentiable observables fall off like \λ\n provided μ<\λ\. Because of λ = e~yτ

and t = nτ, we get the relaxation time y"1, which is in fact the relaxation time we
would expect looking at Eq. (2). However, if we choose Holder continuous
observables, the relaxation time is larger, namely (αy)"1 which seems to be
"unphysical." If g is only continuous there may be no exponential decay at all. In
general we karn that relaxation times are intimately related to the properties of
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the corresponding observables [11]. It is a non-trivial problem to decide which
kind of observables a physicist should choose in order to get a relaxation time of
physical significance. Our consideration strongly suggests that differentiable
observables are the right candidates. This coincides with Bowen's definition of
observables [9].
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