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Abstract. Two-dimensional, unitary rational conformal field theory is studied
from the point of view of the representation theory of chiral algebras. Chiral
algebras are equipped with a family of co-multiplications which serve to define
tensor product representations. Chiral vertices arise as Clebsch-Gordan
operators from tensor product representations to irreducible subrepresen-
tations of a chiral algebra. The algebra of chiral vertices is studied and shown to
give rise to representations of the braid groups determined by Yang-Baxter
(braid) matrices. Chiral fusion is analyzed. It is shown that the braid- and fusion
matrices determine invariants of knots and links. Connections between the
representation theories of chiral algebras and of quantum groups are sketched.
Finally, it is shown how the local fields of a conformal field theory can be
reconstructed from the chiral vertices of two chiral algebras.

1. Introduction

In their seminal paper [19], Belavin, Polyakov and Zamolodchikov pointed out
that the existence of infinite-dimensional symmetries in two dimensional con-
formal field theory has far-reaching consequences. In subsequent developments
Friedan, Qiu and Shenker, and Goddard, Kent and Olive, [20] proved crucial
results on the representation theory of Virasoro algebras. These can be applied to
yield a partial classification of all unitary conformal field theories on S2 with
central charge c<l. More precisely, Ref. [20] determines the permissible set of
conformal dimensions and the values of c, but not the operator algebras. In an
attempt at a classification of the c> 1 theories, various groups [21] have proposed
some discrete series related to chiral algebras which are (supersymmetric)
extensions of the Virasoro algebra. In this paper, we suggest a classification of all
unitary, rational, local conformal field theories on the plane in terms of the
representation theory of chiral algebras, and associated linear representations of
the braid groups on S2.

The present paper is the continuation of [1], where it was shown, that under
suitable assumptions (which are typical for rational CFT) a given local, Mόbius-
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covariant quantum field theory on the plane can be continued analytically to C2,
that the field operators φ(z,z), decompose into sums of products of holomorphic
chiral vertices, φ(z), and of their antiholomorphic counterparts. Moreover, the
chiral vertices obey a braid algebra when being continued analytically; i.e., the
analytic continuation of the product φfl(z) φb(w) along a path, y, exchanging z and w
in positive orientation is given by j/y(φfl(z)φb(vv)) = £ Rc^φc(

z)ψJM The matrices
c,d

R determine linear representations of the braid groups on n strings, Ew where
n = 2,3,....

Here, we start by formulating elements of the representation theory of chiral
algebras, which allow for a purely representation theoretic construction of the
holomorphic and antiholomorphic chiral sectors of rational conformal field
theories on S2. Postulating the existence of the β-matrix implies algebraic relations
for its matrix elements; in particular, the conformal dimensions (mod. Έ) are
determined by R. In this representation theoretic approach, the existence of a
chiral operator-product algebra is almost evident, and the corresponding
structure constants are determined by R. Upon combining left and right sectors
into a local CFT on S2, the locality (or, the crossing symmetry) requirement entails
an algebraic equation for the structure constants of the operator-product algebra,
an equation which involves the structure constants and jR and R, (the braid
matrices of antiholomorphic vertices). In this way, the R and # matrices determine
completely the structure of local, unitary, rational conformal field theories on S2.
Similar considerations apply to non-unitary theories.

Apart from partially encoding rational conformal theories, the R matrices
associated with a chiral algebra can be used to construct invariants of oriented
links [12,13]. Furthermore, we conjecture that there is a correspondence between
chiral algebras and quantum groups [22,13], such that the /^-matrices of a chiral
algebra generate the commutant of tensor product representations of a corre-
sponding quantum group, where the deformation parameter, q, of the quantum
group is a root of unity.

Ideas similar to the ones presented in this paper have been developed, in ref.

[5]
This paper is organized as follows. (Holomorphic) chiral algebras, equipped

with an unusual tensor product on representation spaces, are discussed in the next
section. The integers Nίjk, familiar from the theory of rational CFT, receive a
representation theoretic interpretation, since they become the multiplicities in the
tensor product decomposition. This decomposition into irreducible represen-
tations of the chiral algebra gives rise to Clebsch-Gordan coefficients, which in turn
are used, in Sect. 3, to construct the chiral vertex operators φ(z). We assume that
the structure of the chiral algebra is compatible with the existence of ^-matrices
describing the analytic continuation of products of chiral vertices. Examples of
known chiral algebras together with their .R-matrices are given. In Chap. 4, all
those algebraic relations for the ^-matrices are derived which can be obtained by
considering the analytic continuation of products of chiral vertex operators,
assuming the chiral field theory to be defined on S2. In Sect. 5, the existence of
chiral fusion (i.e. of the chiral OPE) on the vacuum, plus a compatibility
assumption, lead to the existence of chiral fusion in general. The fusion constants
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are calculated in terms of K-matrix elements. A combination of braid and fusion
operations on chiral vertices then leads to new identities which are obeyed by R. In
Sect. 6, some of them are employed to compute explicitly the spectral decompo-
sition of the monodromy matrices, R2, and this result allows for a rigorous proof of
Vafa's [4] lemma, which states that in a rational CFT the conformal dimensions, h,
are rational numbers. Chapter 7 contains a brief description of how the R-matrices
can be used to construct link-invariants. The second part of Chap. 7 is devoted to
describing the Vertex-SOS transformation of the R-matrices and thus to suggest a
general connection between the representation theory of chiral algebras and the
one of quantum groups. In Chap. 8 we describe how to combine a holomorphic
and an antiholomorphic chiral field theory into a rational, local CFT on S2. The
locality equation, which determines the operator-product expansion coefficients,
C, in terms of R and R, is derived, and the symmetries of C are computed. It is
shown how, in simple circumstances, one can easily determine C, once one knows
R and R. Some concluding remarks are collected in Sect. 9. In particular, we
suggest a way of reconstructing conformal blocks from the R-matrices of a
quantum group by solving a generalized Riemann-Hilbert problem.

While we were working on the problems discussed in this paper we received
very interesting preprints by Moore and Seiberg [5], Rehren and Schroer [24] and
others where similar problems are addressed. We thank these colleagues for
keeping us informed about their work by sending us their preprints. We have also
been informed by I.G. Frenkel about his forthcoming book with Lepowsky and
Meurman which is likely to contain ideas and results that overlap with ours.
Gervais has pointed out to us that braid matrices also appear in his work with
Neveu [25].

We hope the presentation of our results in this paper will still be useful.

2. Chiral Sectors I: Representations of the Chiral Algebra

We begin by summarizing some elements of the representation theoretic approach
to conformal field theory as sketched in Sect. 5 of Ref. [1]. The presentation in this
and the following chapters is restricted to the holomorphic chiral sector, the
analysis in the case of the antiholomorphic sector being analogous.

In the Euclidean formulation, an abstract local1 chiral algebra j^ is generated
by Mδbius covariant, holomorphic (unbounded) operator-valued fields ψj(z)9

where ze(C, jel. By Mδbius covarίance we mean that for each je/ there is a real
number hj9 and for each wePSL(2,C) (which maps zh-»w(z)) there exists an
automorphism τw on j^, such that

τJ(A B) = τJ(A).τJ(B)9 (2.1)

(2.2)

for all

1 Throughout this paper, we restrict our attention to local chiral algebras. In the case of nonlocal
algebras (cf. [1]), the analysis would be somewhat more cumbersome, but essentially parallels the
one which we follow here
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For the sake of clarity and simplicity we will, later on, consider representations
of efi^ on Hubert spaces only, thus neglecting the possibility of representing the
chiral algebra on spaces of indefinite metric. Thus we require that ^t is a *-algebra,
i.e., by assumption, there is an involution * defined on the index set / such that

2hj

(2.3)

Furthermore, τw is supposed to act as a * automorphism, i.e. for all

τw#μ*), (2.4)

where w* I — 1 : = . . . I notice that if w is given by I , ) e PSL(2, (C), then w* is
\z / w(z)* \ \c aj

fd* c*\\
represented by ( ^ I 1. It is easy to see rhat (2.3) and (2.4) imply that Λ / = Λ p .

The automorphisms τw are assumed to be generated by a field T(z), T* = T, having
conformal dimension hτ — 2, such that the Fourier coefficients Ln of T(z) obey the
following commutation relations for n= —1,0, +1:

, (2.5)

where, for neZ,

Lπ:=-^ f dzT(z)z«+1. (2.6)
2m \z\ = ι

We assume that the identity operator H = l*, which is independent of z and
consequently has ^^ = 0, is contained in j&.

Requiring that j/ is local means that, for arbitrary (z, z') e C2\D2, D2 denoting
the diagonal {(z, z) e C2}, and for all (/', k) ε I x /,

ιp/z)%(zO-%(zOtp/z). (2.7)

We wish to point out that the conformal dimensions, hp must be natural numbers,
as implied by the Mόbius co variance of the fields ψp (2.5), and their statistics, (2.7),
under the condition that some representation theoretic requirements (cf. (2.31)) are
obeyed.

Thus, the chiral algebra sfc is generated by local currents of spin h = 0, 1, 2, . . . .
Since j& is an algebra of local currents it makes sense to define the Fourier
coefficients of ψfa) by

(2.8)

where n e Z, and for all j e I. Taking into account that sfc is a *-algebra, (2.3) yields

(¥>;,«)* = ¥>,-„. (2-9)

Definition. The complex algebra with unit, which is generated by {ψj ,„[/£/, neZ},
and which is spanned by all (formal) polynomials in the generators, is denoted by
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Remark. We note that, in general, there will be polynomial relations on si\ such as
commutation relations which characterize infinite-dimensional Lie algebras
(Virasoro, affine Lie algebras,...), or even non-Lie-algebra type relations (e.g.
Zamolodchikov's spin-3 algebra [2]).

We need to discuss the properties of si in some detail. Because T* equals T, we
get L* = L_Π. From the commutation relations (2.5) we deduce that L0=Lg
generates rotations zh-»eI<τz, σeR, and scale transformations zi— >λz, AeR. Using
(2.8) and (2.5) it is easily verified that

[L0,VjiJ=-nvλ.. (2.10)

Thus, the set of generators G = {ψjtn\jeI9 neZ} is Z-graded, G = G<uG0uG>,
where G< = (J Gπ, G> = (J Gw, and by definition Gm = (j {ψ: m}. From its

nelN+ -weN + j

generators the algebra si inherits the equivalent Z-grading, namely

s/= Θ X,, (2.11)
neZ

where X, is the (C-span of all elements A E si which obey

[L0,4]=-n A . (2.12)

For n = -1,0, +1, (2.5) and (2.8) yield

+ll, (2.13)

and thus if, for some s > |ftr — 1 1, φr> s = 0, then φr> s, = 0, Vs' ̂  — |ΛΓ — 1 1 and similarly
for 5 < — |Λr — 1 1 (assuming /zr ̂  1).

On the linear hull of G we define a family of linear deformation maps
{(5z|ze€*} as follows:

δz : span(C(G)-^span(C(G) ,

«V,.J:= Σ *
k=l-hr

Of course, <5z(φr s):=0, if φr>s=0. For example, we have

<5Z(1)=0,

<5Z(L_ ,) = !,_!,

limδz(v5(.)S)|sέl-*r = Vr,s (2.15)
z-»0

It is important to note that δz is noί α *-endomorphism, since in general (δz(ψr 5))*
Φ^(Vr,J*)

Lemma 1.

a) [L- !, <5z(φr,s)J = - A ^(Vr s) (2.16)

b) e-L-l(2~w>5w( )e+t"1<z">v) = ̂ ( ), (2.17)

c) 5«o5w=β,+w. (2.18)
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Proof.

a) This follows directly from (2.13) and (2.14).
b) Equation (2.17) is the integrated form of (2.16).
c) An easy computation. Π

In the statement as well as during the proof of Lemma 1 we have been careless
about the allowed range of the points z and w. This is easily repaired, since δz is
defined for 0 < \z\ < oo.

These deformation maps are now employed in order to endow si with the
structure resembling that of a Hopf algebra. We introduce a family of comultipli-
cations {Az:s/-*sf®s/\ze<C*}9 defined by

when acting on generators. It is a basic assumption of this approach to conformal
field theory that Δz can be extended consistently to a morphism of algebras
(although not a *-morphism). I.e. we assume that

(2.20)
t = l

is a definition which is consistent with the relations obeyed by elements of si. Here,
AI is some monomial in the generators. Clearly, Δz(a- A) = oί- ΔZ(A\ for αeC,
which follows from the linearity of δz and from (2.20). It is a fact that (2.20) is
consistent for all known chiral local algebras of conformal field theory, e.g.
Virasoro algebras, affine Lie algebras,.... It is important to point out that if there
is a relation

n

obeyed in s/9 then, since J2(l) = i®t,

n

i = l

Therefore, the morphisms Az map si into some subalgebra, AZ(A\ of si® si, where
the values of the central extensions of ΔZ(A) equal the values of the central
extensions in the second factor of si®si.

In general, we have not checked and thus assume that

ker(Jz) = 0, VzeC*. (2.23)

It is easy to see that we get the commutative diagram,

ΔZ _>* si® si ^\®ΔV

which states that (ĵ , {Az}) is some modification of a Hopf algebra.
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We remark that (j/,z!0), <5ί being the algebra generated by {ψr Js^l — hr}, is
indeed a Hopf algebra, which is a triviality in view of (2.15) and (2.20) (extended to
z = 0).

From the point of view of two-dimensional unitary conformal field theory we
are interested in irreducible, unitary, positive-energy representations, ρk, of <$/ on
separable Hubert spaces Jtfk. More precisely, ρk is supposed to obey the following
requirements:

(a) ρk is unitary, i.e. ρk(A*) = (ρk(A))*, for all
(b) ρk is covariant, i.e. ρk(τw(A))=Uk(w)ρk(A)Uk(w)~ί, where the representation,
Uk(w\ of the Mόbius transformation is supposed to be defined on some ρk(^)-
in variant domain which is dense in ̂ , if w is sufficiently close to the identity in

(c) positive-energy: Rotations through an angle σ are represented by a unitary
operator C7fc(σ) = exp(iLoσ), where Lk

0 = ρk(L0) is an (unbounded) selfadjoint,
positive-semidefinite operator on 3^k.
(d) The spectrum of L0 on ^ffc, specfc(L0), is pure point.

Remark. It would have been sufficient to demand (d) and to replace (c) with a milder
version, in which one postulates that Lk

0 be bounded from below [1],
As a rule, we will refrain from worrying much about domain problems. Such

problems are likely to occur, since the representation ρk will in general be a
*-morphism from si into unbounded operators on fflk. We thus assume that all the
operators considered, as well as products of them, make sense and have a dense
domain of definition.

A vector v e J^k, v Φ 0, is said to be ^/-invariant (or, for simplicity, just invariant),
iff

ρfeK> = 0, V«>0. (2.24)

The postulates (c) and (d) then imply that a vector in 34fk is invariant if and only if it
is a lowest weight vector for Lk

0. It is easy to verify this statement, having in mind
that each nonzero vector in 34fk is a cyclic vector (because ρk is an irreducible
representation on a Hubert space). We define

. (2.25)

Part (d) and the locality of ̂  tell us that

specfc(L0)c{#fe + N}. (2.26)

Let L be a finite index set, where k e L means that ρk is an irreducible, unitary,
positive-energy representation of d on some separable Hubert space ̂  We
assume that {j»ffc|keL} is closed under (x), in the sense that for alljeL, keL,

Nijk

Jfj ® Jfk - Θ Θ ̂  . (2.27)
z i e L α = 1

This requires some explanation. First of all, the tensor product J^ ® Jj?k is defined
2

to be the standard tensor product of Hubert spaces, but with a non-standard
action of the chiral algebra on it. Namely, the label z indicates that the tensor



8 G. Felder, J. Frόhlich, and G. Keller

product space is subjected to Δz(jtf); and, correspondingly, the right-hand side of
(2.27) stands for the decomposition of ^®3^k into irreducible components for
Δz(sf). The integers Nyk = 0, 1,2, ... count the finite multiplicity of J^ in ̂ ®^k\
and, a priori, Nίjk might depend on z. However, we will show that the integers Nijk

do not depend on z, but it is convenient to postpone the proof a bit. Finally, " ~ " in
(2.27) indicates that <#} ® 3tfk may contain subspaces carrying non-decomposable

z

representations which are not included on the right-hand side, [12].
If follows from a remark made earlier (cf. (2.22)) that if (2.27) holds, then, if

3?E£# stands for any central element ̂  in si and if ρm(<2?) = 1 ̂ m, (2.27) implies
ark=ar/β>,Vj,α.

Examples. Important examples for a chiral algebra and index sets L, which satisfy
(2.27), are: j?/ = Virasoro algebra, and L labels the unitary representations with

central charge c=l -- - - — , i.e. L=L(m), w = 3,4, .... jtf = sύk(2), and L(fc)
m(m-\- 1)

contains precisely those unitary representations of jtf whose spin, 7, obeys

In analogy to (2.27), a n-fold tensor product Jf^®^®...®^ will be
considered as a representation space for j/C^®...®^, by embedding ji
canonically by

(1® ...
n-2 n-3

n

in ® jj. We indicate this by writing jf i t ® ̂ 2 ® ... ® J^n.
1 Z! Z2 Z n _ ι

Let <£ be an index set L which fulfills one more postulate: There is precisely one
index, say 1, in Jίf, such that Jf^ contains a Mόbius invariant vector; and

this vector is unique (up to normalization, of course) . (2.28)

We normalize this vector such that it has norm 1, and call it Ω. Because of the
commutation relations of the Mόbius generators

[Lj,LiJ = (n-m)LU+m, (2.29)

for π, m = — 1, 0, + 1, and because Li. l = (Lj)*, we conclude that L^Ω = 0. Since LQ
is supposed to be positive semidefinite, and since the eigenspace corresponding to
inf spec^LoJ^O is 1 -dimensional, the remarks which follow (2.24) show that Ω is
the unique invariant vector in jf lβ

Assume that Ω is separating for j^, i.e., for all zΦw,

0 o Vr = 0. (2.30)

Corollary.

/z,eN, /orα/ί re/ . (2.31)

Proo/. By the assumption above, the function <ί2,t/;r*(w)t/;r(z)Ω> exists, and it is
determined fully by scale and translation covariance. It is proportional to
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(w— z)~2/>r, and the locality condition (2.7) implies that hreZ. Finally, the vector
ψjyfyΩeJtfΊ has conformal weight h = hr (by (2.5)), and the non-negativity of Lj>
leads to (2.31). Π

For the purpose of developing a general theory of rational conformal field
theories, it is advantageous to impose some further "regularity" conditions on the
vacuum Ω and on the chiral algebra. We summarize the whole structure in the

Definition. A pair (Λ/, JSP), consisting of a local, Mόbius co variant *-algebra and an
index set & is called rational, if

(a) j3/o is generated by G0; and φrj0^ = 0, if fcrφO. (2.32)

(b) Jίf is a finite index set, such that (2.27), (2.28), and (2.30) hold true. (2.33)

(c) Adjoίntness: For each fcejS? 3ljje&, such that Nlkjή=0.

We write j = fc*, and impose JV l k k* = 1 . (2.34)

(d) Selection rules: For all 6 Jδf, j φ 1 : JV^ Ξ> 1 .

Furthermore, if, for iΦl, Na ιΦθ, then H££N. (2.35)

Rewαr/cs.

1. The property (2.30) of Ω implies, that v>r(z) = const H, iffft r = 0.

Proo/ L0(tpr(0)ί2) = 0 means that we can rescale ψr such that ψr(0)Ω = Ω. The two-
point function <ί2,(tpr*(z) — l)(tpr(w) — 1)Ω> is independent of z and w, since hr=Q.
But for w->0, it simply vanishes, thus it is identically zero, and (2.30) yields the
claim. Π

Therefore, (2.32) takes into account all nontrivial generators ψr(z).

2. We will show later on that, in fact, the mapping *, which is introduced in (2.34),
is an involution on t£, and t£ 3 1 = 1*.
3. The associativity of the tensor product ̂  (x) $?m ® ̂  entails the equation -

w

Σ NijkNhml = £ NwiNvfr. Towards the end of the next chapter we will require
k kf

that, among others, 3C 3 (x) ̂  ̂  ̂  ® Ĵ }, which certainly means that Nijk = Nikj.
z z

Taken together, we then have £ NίjkNklm = ̂  Nίlk>NkΊm, which will have some
important consequences. fe k'
4. Notice that if J^t is inequivalent to Jίj, for / Φy, then the selection rule A/^ ̂  1 (/
Φ 1) is automatically fulfilled (c.f. also the proof of Lemma 4).

Examples. The most studied and well known prototypes for rational pairs (jaf, jSf )
are again: j/ = Virasoro algebra, J5? = J5f(m); «s/ = sώk(2), ̂  = J5f(fc).

The multiplicities Nίt/A. have become quite popular in the large group of people
who work on the classification and analysis of rational conformal field theory (c.f.,
e.g., [3-5]), although their proper definition remained somewhat murky. Ideas
similar to ours have been developed in the last reference of [5].
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3. Chiral Sectors II: Construction of Chiral Vertices

Consider a rational pair (j/, &\ The tensor product decomposition (2.27) gives
rise to projections P1jk(z\ and their matrix elements, the Clebsch-Gordan
coefficients of j?/, provide a means for the definition of the holomorphic chiral
vertex operators.

We define Pfjk(l) to be the unique projection, α = l, ...9NijΊf9

^*i, (3.1)

which satisfies

,4), (3.2)

for all A e s$. Here and in the sequel we will often use somewhat sloppy notation in
equations such as (3.2), which, in principle, should be written as ρ^A) Pfjk(l)

Proposition 2.

a) P«jk(z] = P?.fc(l) (**-'<*- "® 1) , (3.3)

for z in some neighbourhood, *ε(l), of 1; ε<l.

b) ^N0-k(z) = 0, zeC*. (3.4)

c) Fljk(z) is, in general, unbounded.

Proof.

a) Since Δz is a morphism, it is enough to verify (3.3) if Δz acts on a generator φr s.
Referring to (2.17), we have, by (3.2),

Thus, P^z) : = Pyi) (eL- 1<z~ "(g)!) maps ̂  ® Jfk^-^ ® Jfk-*^(α), because ̂
z 1

is irreducible; and it is nonzero iffP? fc(l) is nonzero, and it commutes with the
action of s/.
b) The relation (3.3) implies that in a neighbourhood of 1 Nijk(z) is constant.
However, there is nothing special about z = l, and a relation analogous to (3.3)
holds in the vicinity of every weC*. This gives (3.4).
c) For example, since L_ x is not bounded, (3.3) shows that in general Pfjk(z) is not
bounded either. Π
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Definition. On some domain dense in ̂  ® 3ίfk, assumed to be independent of
2

), we define the chίral vertex operators, φ*jk(z,ξ\

to be the linear operators which are given by

<£;, φfcz, ξ)ξk> : = <£„ Pΐjk(z)ξ®ξky , (3.6)

where £, e ,#5, and
The results of Sect. 2 lead to

Proposition 3.

a) [Vr,s,φ^(z,ξ)]=^(z^z(φr>s)ξ). (3.7)

b) lL_ί>φ^(z,ξ) ] = ~φ^(Z,ξ). (3.8)

c) ρ/Lo) ί = A4 ξ => [L0, ̂ z, ί)] = + Λ4 φfcz, ξ) . (3.9)

d) βj(Ln)ξ = δnι0 hξ ξ, for n^

IJ \ dz IJ

e) "£ a« <PUz> )=0 o flα=0, Vα. (3.11)

a) By definition, ψft Sφ1jk(z, ξ) ξk = ψr> sP}jk(z) (ξ ® £*), for z e ̂ ε(l ), and ξ (g) ξfc in some
dense domain of J^ ® .̂ Therefore, this equals
which in turn gives

b) Consider: <ξί9φ^z9ξ)ξhy^ <ξ<?\ P?jk(l) (eL-^~^®\] (ξ®ξk»

= <£.«>, P^(z) (L_ ̂ ® {»)>, which, by (3.7), is identical to <&, [L_ 1? φ^z, ξ)] ξk>.
c) .If ^ is an eigenstate of L0 with eigenvalue hξ, then δz(L0)ξ =

gives, by application of (3.7) and (3.8) the announced result.
d) In this case, ξ is a so-called primary state, and since δz(Ln)ξ = zn+lL_lξ
+ zw(n + l)L0£, (3.10) follows easily. φfjk(z,ξ) is a primary field.
e) Assume that the contrary was true, i.e. that there is a nontrivial linear
combination of φ^ fc's, Nijk^.l9 such that their sum vanishes. Then there is a
nontrivial linear combination, with

for all ξ\a\ξ,ξk. This, however, means that P f̂e(z) = 0, Vα, contradicting the
assumption that Λ/^ feΦθ. Π

We have thus learned that infinitesimally, i.e. for z e %(1), the chiral vertices are
scaling fields, i.e. they are translation and, if ξ is chosen appropriately, scale
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covariant. We now define φϊjk(z, ξ)9 for z e C*, by analytic continuation. This can be
done easily, and in a manner which gives a z-independent domain of definition. For
ze^ε(l), and ξi9 ξ9 and ξk eigenstates of L0, we have, by (3.9),

<ίf, φ?.k(z, ξ)ξhy = zH>-H>-H*z\ξb φ? k(l, ξ)ξky , (3.12)

where the integer n depends on ξ, ξί9 ξk. Thus, formula (3.12) permits a
(multivalued) extension of <£f, φfjk(z, ξ)ξky from ^ε(l) to (C*. And, by linearity, this
defines a (multivalued) analytic continuation of φyk(z, ξ) to C*, which preserves
(3.7H3.H).

(j/, J£?) is a rational pair. This enables us to relate vectors in ̂  to chiral
vertices, as z->0.

Lemma 4.

a) Nm=δn. (3.13)

b) Nyι=*y. (3-14)

c) lim(φJ.J.1(z,OΩ) = vjV1 ^ (3.15)
z-»0

where vjjl is a normalization constant, v^ΦO.

Proof.

a) Clearly, Jz(Lw)(ί2(8>Ω) = 0, for π = 0, ±1. Thus, ^(g)^ contains a Mόbius
invariant state, and this is compatible with (2.27) and (2.28), ifiNlll^l. (2.34) gives
N l l t = 1, meaning that 1 = 1*. Next, suppose that φjn(z)Φθ. Thus there are L0-
eigenstates t?7 , t^ = invariant vector in J f7 , and ξ, ξ' such that <t;7 , φ^ ±(z9 ξ) ξry φ 0. ξ'
can be reached from Ω by a polynomial in the generators, and since φ"n(z, ξ) is
linear in ξ, this nonvanishing matrix element can be written as

Here, for each i, pf(z) is a polynomial in z, z ~ 1

9 and i /i) and ξ(i) are invariant vectors
in Jf) and some eigenvectors of L0 in Jtf^, respectively. Since L_1β = L+1ϋj(i) = 0,
<ι?/iX φ"ι ι(z, ί(0)Ω> is independent of z. But this matrix element is proportional to
zHj ~ hξ(i\ therefore it is zero, or Hj = hξ(iy Since at least one of these matrix elements
must, by hypothesis, be nonzero, Hj=hξ(ί}, for some i. Thus, #/eN, and the
selection rule (2.35) yields AΓju=0, i fy 'φl.
b) Let Vj be an invariant vector in ̂ j. As z->0, we have Δz(ψr >s) (Vj®Ω)-*ψrtSVj®Ω9

if we remember (2.32), for s ̂  0. We conclude that the selection rule Jjfj C Jfj ® 3C\ is
natural. z

Now consider the decomposition of J0j(χ) J î ® 2?v. Assume that ^-(x)^
M z w z

= θ ^-(m)> M > 1 , where multiplicities can appear. The associativity of the tensor
m = l

product means that

φ Jfί(m), but also = φ ( m )®^Λ= Φ
m= 1 m= 1
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Therefore N = M; thus, for each m, j^(m) ® Jί^ = Jfm,. Since

7 e {/(m)}: <#} (g) ̂  = .#},, but, since .#} (g) ̂  3 .#}, we finally find, for all; and all z:

3^ /O\ '$? __ ί̂7 /"2 I £\

z

c) By (3.14), there is only one field φjn(z9 ξ): Njn = 1. Let {5J|n e N, a = 1,2,3,...}
be a basis of vectors in the eigenspace of ρ/L0) with eigenvalue Hj + n. Since
lim (δz(ψr s)) = ψr s, for s ̂  1 — hr, and because /ιr ̂  1 (apart from the identity
z-» 0

operator), and ψrf0Ω = Q, for /v^l, we get

lim {L0(φ, 1(z, 53Φ} =(#/ + Ό φ//ι(0,5SΩ;
z-^O

and if Aξa

n = ̂  (^4)^5^ f°r ^ E ̂ o (which, by (2.32), is generated by {\pft 0}), we have
b

lim {^(φ. . ̂ z, 53Ω)} = X (^(^(0,5j)O.

Thus, the vector </>7-yi(0, ̂ )Ω transforms under J2/0 precisely as ζa

n, and therefore is
proportional to it (because j/0 acts irreducibly on spanc{^}). φ^ ι(0, ξ) is linear in
ξ, so the constant of proportionality does not depend on ξ. Last, if this constant
were zero, lim <57 , φ^ 1(z,ξ)Ω> = 0, for all 57 , ξ, which contradicts Njjl = i. Π

In order to get rid of the normalization constants v^1? we consider a specific
"gauge", i.e. we change the normalization of φjjί9 such that

v^ι = l . (3.17)

Lemma 5. φ^z, Ω) is α primary field. It commutes with the action of jtf, if hr ̂  1,

Proo/

This follows from (2.32). Also, — φ"nι{z9 Ω) = 0. Q
αz

We wish to generalize this behaviour of φ]u(z, Ω) for the cases where there are
higher spin currents. We then assume

δz(ψrs)Ω = Q, fora l l r , s . (3.19)

We will see later on that φcjii = δίj φjlp i.e. Njίi = δij. Equation (3.18), or, more
generally, the requirement (3.19) entail

φjlj(z,Ω) = vjlj Pj, (3.20)

where the constant v^ is readily gauged to 1, and P, is the orthogonal projection
from the aural Hilbert space

τ#> . /TS -ι#? c\ Λ Ί \
=/Γ <g .— ξp &ti ^j.Zlj

onto Jf;.
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We introduce the conformal blocks, i.e. the n-point correlation functions of the
holomorphic chiral vertices:

flfo:;;; fro, ξ, z) : = <Ω, p^ ,̂ ̂ ) . . . φ£_ 1Jnln(zn, ξn)Ωy , (3.22)

z = (z l 5. .., zj,ξ = (^1,...,^,α = (α1,...,αj, and clearly i0 = iπ = l. In (3.22), we take
l zιl > l zzl > - - - > |zn|, and the vertices φ%_ ijkίk(zk, ξk) are defined on — π < argzfe < π
by analytic continuation from 1 to zk. In order to simplify our arguments, one
might assume that

φl7fc(UM-L° (3.23)

is a bounded operator, for λ > 1. Under this condition the holomorphic conformal
blocks "exist" as single-valued analytic functions on

Xn

>:{z6Cr t | |z1 |>...>|zJ,-π<argzJ.<π}. (3.24)

We used quotation marks since, again, domain problems, which affect ξ, are not
dealt with. The statement is rigorously true at least when all ξk, 1 ̂  h ̂  n, are finite
linear combinations of eigenvectors of L0 (supposed to be in the domain of
definition of φf£_Ml).

Under certain conditions we can prove that the conformal blocks are linearly
independent analytic functions. The next lemmas are meant to prepare the
grounds for Proposition 9, where this fact is stated with more precision.

Lemma 6. For each vector ξke^fk there is at least one vector ξ/eJ^ , ξj = ξj(i9aι)9

which fulfills

(3.25)

Proof. Assume that the contrary were true. Then there exist some ξk e 2tfk and (α, i),
such that P?jfc(l)ΦO, and Pf/k(l)(ξ}®ίJk) = 0, for all ξ'j. But then, P?7 fe(l)(^Θφr,Λ)
= Vr.^^l)K}®ω)-^k(l)(5ι(Vr.β)ί}®ω=0, thus P?j»(l)(3®a)=0, for all
ξk, ξ'j. This contradicts the assumption that P?7fc(l)φO. Π

It will be proved in Sect. 4 that Nljj*=l. Let us accept this for the moment.
Then we may drop the index α from φί^ *. We have

Lemma 7.

a) Let Vj* be an invariant vector in 2tfp. Then there is ξjβJ^j, such that

b) Assume, that φ^^z^ξ) and φj*j*ι(w,η) are quasi-primary, and
^Ω9φljj4z9ξ)φj^ί(w,η)Ωy + 0. Then Hj = Hj* + n, nεZ.
c) If v^^ is invariant and α given, there is ξe^fj and v k e j t f k , vk invariant, with

The proof is easy and will not be reported here. Next, we prove the following easy
lemma.
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Lemma 8. There is a sequence ξ, such that

if j,i,α are given, and <jC_1</fcίfcφO, Vfc.

Proof. Suppose the lemma is false. Then 0 = <Ω, φ\l

hil(zl9 ξι)... φ*£_ ljnι (zw ξn)AΩy,
where A is any polynomial in ψr s, s^O, and for all ξ. Π

Corollary. For fixed j, there is ξ with

B\(a, ξ, z) = 0 ̂  φ£_ χ jVk = 0 , /or some fe . (3.26)

Combining the previous results we conclude the following proposition.

Proposition 9. Assume, that Nijke{Q,i}9 and that the selection rules (2.35) are
augmented by the requirement, that Nijk^Q => NiΊk = Q, if (Ht — Hif)eZ. Then,
keeping j fixed, and if ξ is as in (3.26), all (not a priori vanishing) conformal blocks

, z) are nonzero and linearly independent analytic functions.

Proof. The remaining part of the proof has been established in Ref. [1]. Π

Remark. As (3.12) clearly shows, for general Nijk, Proposition 9 is false.
A different kind of linear independence applies to products of chiral vertices.

This is what we are going to discuss next.
We take it for granted, that on K> all the products φ^j^z^ •) . . . φf^_ ίjnin (zn, •),

i, j, and α arbitrary, are densely defined multilinear, operator-valued holomorphic
functions. In particular, this is assumed to hold for their vacuum expectation
values.

Proposition 10. Keeping j, i0, in and n fixed, the nonzero products
{^?o!/iii(zi' ') (P&-unίn(zH' ' )} are ^^ Ĵ7 independent. Equivalently, for given k,

fi):£ or, (3.27)

Proof. As usual, the proof is formal in the sense that domain problems are
neglected. In the case of the two-point block we have, by (3.15),
αJ » <Ω,φ1jj»(z,ξ)^/> = 0, V(ξ,ξf). This implies Oy* = 0. The 3-point block gives

Σαα.<Ω,φuχ2)£)<4w(w,OΓ>=0, V(ξ,ξ',ξ") Since ^(w, O£" = ί%(w)
α

(ξ'®ξ"), we can always prepare a linear combination £ bβ

μ ξ'μ® ζ"μ = vβ, defined by

P^kl(vβ} = δ^β PΪ*kl(vβ}. Because Jfy * £ closure {P^(ι/)|any vβ}9 and since

0= Σ bβ

μ
μ

= aβ - <

we get (3.27).
For (w ̂  4)-point blocks, the proof is analogous. Π

In principle, scale and translation covariance permit us to continue analyti-
cally the rc-point blocks #{(α, ξ, z) from K> to Mn, Mn = {ze <C"|z = (zl9 . . ., zn) and zi
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Φ zj9 for i φj}. The resulting functions are single- valued on the universal covering,
Mn, of Mπ, but in general multi-valued on Mn [1]. In order to describe more
precisely this analytic continuation we address the 4-point blocks. They are
translation-invariant and, for suitable arguments ξ, also scale-covariant multi-
linear functional on 2ίFh (x) . . . ®«#}4. Since they are linearly independent (by (3.27)),
we might impose the constraint that they form a basis in the linear space of all
quadrilinear, translation and scale co variant functionals on 3tfh® ...® 3?JΛ. This
constraint is rather powerful, and it allows for a proof of formula (3.28) below.
However, this completeness assumption is considerably stronger than assuming
directly the validity of Eq. (3.28). Because (3.28) is what we really aim at we assume:

As an operator equation on some domain dense in ̂ j®J^(χ) J^m, and for z Φ w,
the analytic continuation along the paths y ±, «s/±5 of the product φfjk(z, )φkιm(w, •)
is given by

Xw,ί/)), (3.28)
y,δ,k'

for all ξj9 ξlf The paths γ+ are depicted in Fig. 1.

Fig. 1 r+

The braid matrices R+(ijlm) and R~(ίjlm) are C-number matrices, independent of
ξj and ξt.

It is evident from Proposition 10, that the matrices R±(ίjlm) may be considered
as linear mappings from a linear space Wiljm into Wijlm9 which have, respectively, the

dimensions ξ Nilk, - Nk,jm and £ Nijk NWm.

We finish this chapter with a definition.

Definition. A triple (j/, &, ̂ ) is called rational, if

a) («s/, ̂ f) is rational.
b) Ω obeys (3.19).
c) The R±(ijlm) matrices, indicated by R, satisfy (3.28).

Examples. The only fully worked out example of a rational triple is the unitary
discrete series: j/ = Virasoro algebra, £? = &(m). The explicit calculation of the
R±-matrices was performed by a Coulomb gas representation of the minimal
models [6]. Another example is the sύk(2) current algebra [7-9]. In Ref. [9], the
existence of the ^-matrices has been proved, and the spin-1/2 ^-matrices
R( 1/2 1/2 •) have been computed.

4. Chiral Sectors III: Braid Group on S2

The aim of the present section is to derive some of the consequences of Eq. (3.28),
i.e. of the existence of the braid matrices, which stem exclusively from considering
the analytic continuation of n-point blocks. In particular, the multiplicities Nίjk
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will be shown to form a set of commuting matrices, and a relation between the
conformal dimensions Ht and the braid matrices will emerge.

Upon requiring that the n-point blocks are defined over S2, we will see that the
braid matrices obey a very peculiar relation, which, at this stage of the
development, might seem to be independent, and not already implied by (3.28).

To begin with, we prove

Lemma 11.

9 (4.1)

. (4.2)

Proof. The general method to prove relations such as (4.1) consists of performing
the analytic continuation of n-point blocks (or monomials in vertex operators)
from (zt, ...,zπ) = z to (zσ(1), ...,zσ(n)) = zσ, where σ is an element of the symmetric
group on n letters, Sn. The analytic continuation is performed along two different,
but isotopic paths in M„. There is an isomorphism between such paths in Mn on
one hand, and braids with n strings on E2 [10] on the other hand. Namely, two
paths in Mn are isotopic if and only if the same is true for the corresponding braids.
Usually, we will talk about paths, but will picture them as "coloured" braids.

The linear independence of the products φfjk(z, )<Pfcίm(w> •)> zφ w, (cf. 3.27), and
the fact that the paths γ^ and y2 i

n Fig. 2 are isotopic to the trivial path yield

'φl^, Oφί-i M 0

path braid path braid

Fig. 2 71 72

which is fulfilled iff (4.1) is obeyed.
Similarly, j/n leads to the remaining half of Lemma 11. Π

Next, since R+(ijlm)R~(iljm) = l and R+(iljm)R~(ijlm) = l, we get

); (4.3)

and (4.2) follows from (4.1), and vice-versa.
We now introduce a graphical notation of equations, such as (4.1) and (4.2), in

terms of "coloured" braids. To this end we identify φ*jk with the string of Fig. 3, and
in this language there is a 1 — 1 correspondence between (4.1), (4.2) and the
Reidemeister moves of Fig. 4,

Fig. 3 <P?jk~i\k
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We define the matrices Nj by

(4.4)

>kk" i

δkk"

Fig. 4 j I

and their "transposed" Nj are given by

Proposition 12.

a) Nm --

b) [NJ9N

d) Nj =

Proof.

NllJ=δlJ.

m

m

j I

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

a) We just recalled Eq. (3.14), for completeness.
b) This is the master relation. It follows from (4.3):

ΛW = Σ NijkNklm = dim(Wijlm) = dim(Wίljm) = J NίftJVk^ = NtNj. (4.10)

c) Consider (4.10), and put m— 1. Using (4.6) we get Nijk = Nikj'9 put k= 1, and we
have (4.8). In particular, we see that since Nυj* = Nw, (j*)* =j, and thus *'.!£-*$£
is an involution.
d) Consider (4.10), and put /=!. We get Nίjj*Njnm = NimNl*jm. By assumption
(2.34), Nljj, = Nll^ = ί9 for all; and /, thus

Njn^N^. (4.11)

We have now Nijk = N^k9 since *2 = 1? and therefore Nijk = Nk*ji*. Π

With regard to the matrices NJ9 the simplest case is the one in which all Nj are
matrices over the set {0,1}. Recently, matrices over the natural numbers have been
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classified in [11]. There is an A-D-E classification of all matrices over {0,1} with
euclidean operator norm smaller than 2. Indeed, these norms must equal

2 cos - , q = 2,3,....
W

Example. Assume that j* =j, for all; e £*. Also, \J?\ = n, i.e. 1,2,..., n e £?. We know
from (4.8) that N1 =diag(l,..., 1) is the n x n unit matrix. We suppose that the
representation J^2 obeys su(2) spin^ selection rules, i.e.

(4.12)

Thus, || JV21| =2 cos I -I, and its eigenvalues are A,—2 cos I -I,

j = ί,...,n. The components of the eigenvector Vj are vjk = sin(k -). The

Γ
/ 1

0

\

1

0

1

0

0

1

0

1

0

1

0

0

0

1

1

\

1

o/

matrices N1,...,Nn are symmetric and commute, thus can be diagonalized
simultaneously. Therefore, all

and since we know that (Nl)lj = δlj, and because also the orthogonal transforma-
tion which makes all Nl simultaneously diagonal is known, we can calculate the
eigenvalues λf, and thus get Nl9 V/. We obtain

sin -
klπ

4"=
/=!,...,«,

sin
kπ

n+T

From this result the selection rules of one half of the chiral sector in the minimal
models, or those of sΰπ_1(2), follows:

min{i-f j- l ,2n

0 (4.13)

If Nijke{Q, 1}, then some braid matrices can easily be calculated by hand.
Suppose, that φijk(z, -)^0. Then <ξ ί 9 Ψij k (z ,ζ^φ k k ι (Q,ξ k )Ωy φO, for some vectors
ξt e J^ , ξj e J ̂  , and ξk ε ffl^ which are eigenstates of L0. This matrix element equals
(cf. (3.12)) zHi-HJ-Hk zn (ξi,φijk(l,ξj)ξk), and thus, analytically continuing in
anti-clockwise orientation z->0 and 0->z along y, we get
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We can always rescale the chiral vertex φijk, or φikp such that for the above triple of
vectors ξb ξp ξk

j)ξk> (4.14)

In this gauge, we have

Lemma 13.

a) R^jHy^e^^-^-^. (4.15)

b) R±(ί/lm)i l=l, if ΛΓy^ΦO. (4.16)

Proo/

a) We notice that the existence of a matrix R(ijlm) implies that (4.14) must remain
true for any other triple of vectors which are eigenstates of L0 and for which the
matrix element is nonzero.
b) (4.16) is obviously correct for any Nijh9 since

φmίm(z,Ω)^t (cf. (3.20)), i.e.

^(ylm)^..,. D (4.17)

The proof of Lemma 1 3 parallels the one of

Lemma 13'.
a) Σ*±(P)ffΛ±(Φl)S' = ̂  β±2πl(H'"^"lϊl), (4.150

b) R*(yiπi& = δ.,t. (4.16')

We notice that (4.15') does not depend on a specific normalization of the vertices.
The conformal blocks transform, for ξ which are quasiprimary vectors,

covariantly under the action of the Mόbius group, which is the automorphism
group of S2. It is thus natural that we wish to interpret the theory under
consideration as a theory, which is defined over the 2-sphere. In other words, S2 is
identified with Cu { oo } by some conformal mapping / : S2 -» Cu { oo } , and we think
of a n-point block £j(α,ξ,z), z = (zl9 ...,zn)5 as a function on S2, symbolized by
(n + 1) punctures /~ 1(z1), . . ., /" 1(zll), /" 1(oo). /" 1(oo) must be included because
although the n-point block can be continued analytically to Mn, the point at
infinity is, in general, not a point of holomorphy for the conformal blocks. The
analytic continuation of the conformal blocks, which is determined by R±(ijlm\
must be consistent with the geometry of the surface on which the analytic
continuation is performed. It will become handy to define the phases

DΪk: = e+2πi(H>-HJ-Hkϊ. (4.18)

Proposition 14. The braid matrices satisfy

a) R+(ijlm)R-(iljm) = t\WιJlm . (4.19)

b) The Yang-Baxter-equation (YBE):

Σ Λ+(ί/M£^
k't*',β',β"

?R+(gnWffi . (4.20)
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c) The theory is defined over S2, iff

Σ κ+(#m£^
k'a'β'

Proof.

a) Equation (4.19) is Lemma 11.
b) The YBE expresses the associativity of analytic continuation: the paths yl and
y2 in Fig. 5 are isotopic. The linear independence of (the nonvanishing) products
<PΪjk(z> )<Pkim(w> )φymnP(u, •), or, rather, of φ^(z9 ')φί ' Ίm>(w, )φy

m'jp(u, •), finally
gives (4.20).

Fig. 5 71 7a

c) When we consider n-point blocks on the sphere, we have to impose the
consistency condition that the paths y and / in Fig. 6 (path picture) and Fig. 7
(braid picture) are isotopic, where xj = f~1(zj) and xαQ=f~1(oo).

Fig. 6

Fig. 7
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Without loss of generality we may evaluate the analytic continuation of n-point
blocks whose arguments ξ are eigenstates of L0 (since these form a basis in
^Ί®...® «#}„), and we are allowed to assume that e.g. |z1|>|z2|>...>|zn|. The
analytic continuation of the n-point blocks in z l5 along /, is performed by letting

z l -> oo , replacing zί = — , w ! -» w t e ~ 2πί, and going back to the original position of
wι

*1

Starting with n = 2, we obtain a special case of (4.21):

R+(l7*yl)f/?+(l7ri)j.=i>ι>, (4.22)

which follows also from (4.15').
Next, the 3-point block yields

ZR+<pikl^+V*kii% = Duf.ZR-(ljiKfaR-(iijk)g. (4.23)
y «

With the help of (4.15') we find

Σ R-(ljίkφβR-(ίijk)%' = δw - Dϊjv, (4.24)

again a special case of Eq. (4.21).
Let us pause for a moment. If Nijke{ΰ, 1}, then we can partially fix the

normalization of the vertices by demanding (4.14). However, (4.14) does not fix all
the normalizations completely; and Eq. (4.24) suggests - and in fact we could have
verified it directly along with the computation of (4.15) - that (4.14) leaves us the
freedom to gauge the chiral vertices, such that (4.15) is true and also

R±(ίjbri$ = e±i«H »-H' -H». (4.25)

Finally, the consistency equation which derives from the 4-point block can be
brought to a simple form, upon using (4.23). Namely, we get

'' (Σ R+(Vimi^.
V y

β Σ K+0'**lfi«+0'*Wl)&" (4.26)

Combining (4.26) with (4.15') gives precisely (4.21).
Simple algebra shows that (4.26) is responsible for the fact that there is no new

relation stemming from the n-point blocks, for n ̂  5. Π

Define generators TQ,T I ? . . .,τ n_ 1 ? which act on the n-point blocks as follows.
For ι = l,.. .,ιι — l,

τ,(B:(.,.,z)): = <fl + 1(JB:(.,.,z)), (4.27)

where j/Vι ί+ί stands for the analytic continuation along the path γiίi+ί, which by
definition interchanges z, and zi+ί in anticlockwise orientation, and which keeps
fixed zl9 . . ., z f _ 19 zi+ 2, ., zn. Thus, in a more formal notation, τt is represented by a
braid matrix:

+ i® 1® ®V (4 28)



Structure of Unitary Conformal Field Theory 23

Similarly,

+ 1g)lg)... (g)1 t (4.29)
ί - 1 n - i - 1

The generator τ\ is defined to be the diagonal matrix

Tg«Q,plw^i, ) . 0»: = Dw (Ω,φltiJizι9 )-O>; (4.30)

or, more formally,

τg = Jr®l® . ®1.. (4.31)
π- 1

In this writing, we can reformulate (4.19H4.21) as follows.

Proposition 15. The chiral field theory ίs defined over S2, iff the braid matrices
provide us with a linear representation of the modified braid groups Bn + ι(S2), which
are defined by the generators TO, τ l 5 T2, . . . ,τ w _ 1 ? and the relations:

a) the usual braid relations on Έ2:

τ ί τ j = τjτi> K-7'l^2

*&+ 1*1 = 11 + Mi+i (4.32)

b) the extra relations from S2:

. τ M _ 2 (τ π _ 1 ) 2 τ / J _ 2 . . . τ 2 τ 1 =τg. (4.33)

Let us remind the reader once more that the very existence of the braid matrices
R±(ijlm) implies that they obey (4.32), but that, so far, (4.33) looks like an additional
constraint imposed upon them.

Sometimes, symmetries may relate {φijk} and {φkj*i}9

 an^ this entails a set of
symmetries of the braid matrices. First, recall that £ NίjkNklm = £ Nilk.Nk>jm. Put

k k'

m=j*9 l = i, and we have £ NijkNkjti= X Niik>NkΊr. For any i and; the right-hand

side is nonzero (since k' = 1 gives a nonvanishing contribution), and thus there is at
least one k with Nijk φ 0 and Nkj*t Φ 0. Assume that for all (ί,;, k) Nίjk = Nk^ /which

means, in particular, that Σ Nίίk>NkΊJ* = sum of squares^. Assume that there is an
k> J

antilinear, z-dependent map C(z):Jί?j->30'j*9 and a normalization of the chiral
vertices such, that

(φlJk(z, ξ))* = φfa C(z)ξ . (4.34)

Clearly, C(z) must satisfy

C(z)δHψrJ = δlltJ(Ψr. -s)C(z). (4.35)
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For Virasoro algebras and J fj* = Jf), at least the leading terms oΐ C(z) are easily
calculated:

C(z) = z*-2^r<,^> + ..., (4.36)

where Vj is the primary vector in Jtifj.

Lemma 16. Under the hypothesis (4.34), ί/ie brαirf matrices exhibit the symmetries

(R+(ijlm)k

kΛγ')* = R-(ml*j*ίf$Λ'. (4.37)

We know already, and we have actually used several times, that the chiral
vertices are gauge dependent. I.e., we can rescale

(4-38)

where λfjke(C. So far, we have chosen a specific gauge only for φjjί and φ^ (cf.
Sect. 3), if Nijk is arbitrary; and in the case Nijk e {0,1}, we can choose a gauge also
for φijk, such that (4.15) and (4.25) hold true.

It is easy to check

Lemma 17. The braid relations (4.19)-(4 21) are gauge invariant under

tfllk' ' ^k'jnt

Remark. Lemma 17 then says that (4.19H4.21) do not depend on the normali-
zation chosen for some vertices; as should be clear already from the derivation of
these formulae.

5. Chiral Sectors IV: Chiral Fusion

The main purpose of this chapter is to show that the chiral vertices φ"jk(z, •) and
Φfcίm(w>')can be fused. A common interpretation of this fusion is that it represents a
short-distance expansion of the product φ? fc(z, )φfeίm(w, •), as z->w. This short-
distance expansion is a Laurent series in (z —w) around z = w, and the coefficients
are operator-valued functions which are evaluated at some point close to z and w,
e.g. at z, or w, or i(z + w). It turns out to be most convenient to choose i(z +w),
because this allows a treatment which is manifestly symmetric in z and w.

As usual, the operator product expansion should be valid whenever inserted
into a correlation function, and thus it is natural to expect that the radius of
convergence of this infinite series is no larger than the minimum of all distances 2

z ~f~ w
where the points zi9 ί = 3,...,n, denote the locations of the (n — 2)

2
remaining chiral vertex operators in the n-point block. Chiral fusion may also be
interpreted as a decomposition of the tensor product Jf)(x)Jfj, subject to the
restrictions that Jt?kCJ#Ί®J'lfm and J^CJf}®^, and also jf?rCJίPj®J(fϊ and j f t

First, we will study the chiral fusion on the vacuum Ω. Afterwards, the general
case will be analyzed.
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Consider the vector φ*jk(z, )φkkί(w, )Ω in 3tfy. Since the vacuum is translation

w — z
invariant, it equals eL-l2(z+w}φ*jk Ω. Inserting a com-

2 ' J ™κi \ 2
plete orthonormal set of vectors, ^f, of Jίfi9 and using the normalization (3.17), we
get chiral fusion on the vacuum

, )O = Σ

z —w w —z
Ω

)]O. (5.1)

As announced, (5.1) is a power series in (z —w), with i(z + w) fixed.
Next, we wish to investigate the operator product <p?jk(z, ) φ&m(w, ). We do this

by computing φ? fc(z, )φlJy>9 -Km, where £m is an arbitrary vector in Jfm. By (3.17),
<Pmmi(0>£m)Ω = £m The idea is, now, to "shift" the pair φ*iίk(z9 )φβ

klm(w, •) in
φ?7 k(z, )φkίm(w» )φmmi(0, ̂ m)^to the right, in order to make it act on the vacuum
Ω; we may then employ the chiral fusion (5.1). Commuting back through
φmml(0,^m) we will have obtained chiral fusion in its general, symmetric form.

Note that

^ΓXKfrk Xm(w, )Φm«ι(0,ί JO)

-φfaz, )φβ

klm(w, )φ»»ι(0,ξJO, (5.2)

where γ is any path. We apply (5.2) for a path γ as indicated in Fig. 8 or in Fig. 9.

Fig. 8 Fig. 9 m

We discuss in detail the analytic continuation in the case where γ is given by Fig. 8;
the case of Fig. 9 is similar. Using (5.1) and the summation convention, we have

v, )<P*mi(0,£JO)

β"; , (5.3)

In writing Eq. (5.3) we have assumed, implicitly, that the short-distance expansion

in (5.3) makes sense for

that

w w
. Furthermore, it is a fundamental assumption

the fused vector φ?mk'(z, £J[<pk'k'i(w50; /Γ; , )]Ω can be continued analytically
along any path ZH->J/(Z), wι->ja/(w), Oι->j2/(0), as long as |j/(z) —|(j/(w) +j/(0))|
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|. Moreover, in these cases the analytic continuation of
this vector is given by the analytic continuation of

ψ?nk,(z, ξm), φvvι , f# and η», φ^ , • φm - , • Ω. (5.4)

Therefore, the analytic continuation of this vector can again be calculated with the
help of braid matrices. This can be understood as follows. The analytic
continuation
j^y-ι along y" 1 is split up into a sequence of paths whose union is isotopic to
y-ι ;y"1='y1uy2u'y3(seeFig. 10). «δ/yι(w) = y and £/γι(Q) = x, such that |z|>|y| and
y= — x, which is always possible since |z|>0.

Io

W

71 72

y'
.x'

•o
>• w

Fig. 10 /3

Also, jtfy2 has to obey the restriction that ^n(x) does not circle around £#j2(y\
because otherwise y ~ 1 would not be isotopic to yiU^^s We have \(κ' + y') = z,
and in the end we get

if j\z — w| < \\z + vv|. For this range of z and w, and upon defining the fusion matrix

£:= Σ Λ+(Wml)%Λ+(»jmO^"R-(ίmrl)3;, (5.6)
a',βf

the combination of (5.2), (5.3), and (5.6) yields

)φ&»(w, •)«»= Σ

We remind the reader of the fact that the fusion process could have been performed
by the use of the path in Fig. 9, too. This would amount to exchanging all " — " by
" + " and vice- versa, in (5.8). We collect our results in

Proposition 18. Chiral vertex operators can be fused; i.e.

Φy*(^ )φίim(w, )= Σ ίT^CφU^w Γ;.,.)],
r,γ,β"

whenever inserted into a n-point block.
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The fusion matrices, F, are determined by the braid matrices,

$&= Σ Λ+(Wml)%R+(ymQ^:f (5.9)

(5.10)

We introduce a graphical notation, in order to accommodate braiding and
fusion in one picture. The fusion of φyfc(z, •) and φ^w, •) is symbolized in Fig. 11,
neatly reflecting the symmetry in z and w. On the other hand, the contents of (5.9)
and (5.10) is displayed in Fig. 12.

We define the restricted group of gauge transformations to be the group of all
rescalings φ"jkι-»Λ? k φ? k, which obey

λjn = l, Y/eJS?. (5.11)

Thus, the normalization (3.17) is preserved by the restricted gauge transforma-
tions. During the calculation of (5.8) we have always employed the gauge (3.17),
and so we obtain

Lemma 19.

a) Under a restricted gauge transformation the fusion matrix transforms as

.
..f'aβyμ AQ'fc ^klm

ijklmr ± ijklmr Λ y Λ μ
Airm ' Λrjl

(5.12)

b) If (3.17) is not imposed, formulae (5.9) and (5.10) are supplemented by vιn and vrrl

in such a way that (5.12) holds true for an arbitrary gauge transformation.
c) Taken together, Eqs. (5.9) and (5.10) imply (4.21); i.e. the chiral field theory is
automatically defined over the two-sphere.

Fig. 11

i m

k

Fig. 12

r m

m
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It is remarkable that the existence of braid matrices, plus the compatibility
assumption (5.4), mean that the theory is really defined over S2.

Apart from the pure braid relations of Chap. 4, new relations for the braid
matrices can be derived by examining the consequences of chiral fusion. Such
relations are obtained by considering the effect of the combined action of R
(analytic continuation) and F (chiral fusion) on products of holomorphic chiral
vertices, always keeping in mind the domain of validity of the short distance
expansion.

Proposition 20.

a) The R matrices obey

Σ R±(yM^''F^'fSr=ΣR±('i^F& (5-13)
k'β β' g

b) In the notation (5.19), the braid matrices satisfy

Σ , M±(ybn^'^:jSr=D^ F$£,. (5.14)

c) Σ ^(WwpJb^iun^ (5-15)
m',μ,v,ρ δ

Proof. It may be helpful to first write down the explicit form of [_φ]rm(z, w; β"; , •)].
We have

/ \

ίφlm(z,w;β"ι , 0]=ΣφM^,>/ίΊ
N \ 2 J

(5.16)

a) Consider the analytic continuation of the product φfjk(z, )φfc/m(w> •) along the
path γ in Fig. 13. For z and w sufficiently close together, we may either fuse the two
fields before or after the analytic continuation, and the two expressions thus
obtained must agree. The first alternative gives

Fig. 13

'z + w
1 fiΊclmr Σ, Ψίrm [

r,y?β" N \ 2

^N ,Λσ

, ))= Σ

η?, ψ°rlj , • Ψm , • β , (5.17)

while the second alternative yields

= Σ

• Σ 9L , ^ ̂  , - φm , • Ω . (5.18)

A little thought shows that (5.17) = (5.18) iff the relation (5.13) is fulfilled.
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In our pictorial language of fused braids, the equality (5.17) = (5.18), or its
algebraic counterpart (5.13), have a very simple representation at least if
Nijke{Q9l}. This is shown in Fig. 14, where we have chosen the gauge (4.14).

i I k' } m =±(Drjl)
1/2 m

Fig. 14

b) Let us iterate once the analytic continuation which led to (5.17) and (5.18). We
obtain again a gauge independent algebraic equation, which is necessary and
sufficient. Denoting by M±(ijlm)kΛβ"β" the monodromy matrix

we find

k'a'β'

)kaβ ijk "imr ijklmr

(5.19)

(5.20)

c) The proof of (5.15) parallels the one of Proposition 18. Anyway, we will offer
some comments. Choose points z, w, u which are sufficiently close together, and
which obey \z — w| < |z — u + w — z|, |w — u| < |w — z + u — z|. We wish to compute the
braid-fusion relation which is depicted in Fig. 15.

Fig. 15

On the one hand, we first fuse φa

ijk(z, ')φkιm(w, •)> and choose a path y = /u/' as
in Fig. 16 in order to continue analytically the power series [φfrm(z,w;

• X

Fig. 16
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) = Σ
r, δ, β"

On the other hand, if we continue analytically before fusing, we have, because
the product φaφβφy is analytic at all non-coincidence points, and because γ clearly
is isotopic to /" in Fig: 17,

Fig. 17

z

u

z> )VUP> )̂ >, •))= Σ
m',μ, v,δ'

Q,k',y',β",r

F°krj£prφϊnk.(z, )ίφΐ,rp(W,u;β", , •)]. (5.22)

A comparison of (5.21) and (5.22) gives (5.15), as a necessary and sufficient
condition. Π

The analysis of the associativity of chiral fusion appears to be less rewarding.
What is not difficult is to realize, that the associativity constrains the possible

4-point blocks. This is briefly explained now. In the domain |z — w| < |w — u + z — u\9

|w — w|<|w — z + w — z| it is legitimate to perform the fusion processes which are
sketched in Fig. 18.

Fig. 18

It is useful to note that chiral fusion can be described in various equivalent
ways. Skipping all "superfluous" indices, we have e.g. φ(z, -)φ(w, )Ω= £ φ(w, ηN)

(ηN, φ(z — w, ) φ(0, ) Ω> and assuming compatibility of chiral fusion (in this form)
with analytic continuation we arrive at

φ(z, ) -w, )<p(0,

The F-matrix here is exactly the same as the F-matrix in the symmetric fusion; it is
given by (5.9). It appears to be most economic to discuss the associativity of chiral
fusion in this "asymmetric" presentation.
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It is easily checked that asymmetric fusion gives

• </7f, φljr(z-u, )φϊln(w-u, .)φmί(0, )Ω> , (5.23)

= Σ FffiLFϊXά, φU", *ιS) <»;», φUw-u, »/?)$w(o, -)Ω>
(5.24)

Therefore, (5.23) = (5.24) for each ε = ε', s = i>, and ηt=η^ separately. Since
ψs

v

on(0,^)φnnι(M-w, )=ΣR+(sanl)"ni:'φ^a(u-w, )φaaί(ϋ,η^), and if η% is an
v"

invariant vector ξs9 we find (in a sloppy notation)

Σ FklmnprFijkrps < 4> Pijrfc ~ «, ' ) Ψrln(^ ~ U, ' ) φm i (0,
r, v,μ

= Σ JWF iamnpsΛ
+(sαnl)« <4, <>- w, )</(z-w, )<»ιιι(0,

α, v", ρ

Thus, the associativity connects the 4-point blocks <£s,φSJ>(X ')<Prin(y> ')
φml(Q, )β> and <<LφSMfl(0, O^j/fe O^MI^ )Ω>

We have found a set of algebraic equations which are satisfied by the braid
matrices. We are interested in finding out whether they are interrelated and
whether they are complete. By definition they would be complete if any combined
action of R and F on any rc-point block does not give new, independent algebraic
relations.

With regard to the first problem, a heuristic argument involving braids
suggests to compare the YBE to Eq. (5.13). Indeed, it is an easy exercise in algebra
to check, that if we project the YBE, (4.20), from the right to the vacuum, i.e. setting
p : = 1 in (4.20), and if we apply the definition of the fusion matrix, (5.9), we obtain
precisely Eq. (5.13). Next, it is also evident that (4.2) follows from (4.1). We have
already shown that the extra braid relation on S2, (4.21), is a consequence of the
existence of chiral fusion (5.9), (5.10). Last, (5.14) is just the square of (5.13), by using
(4.15'); and the ^"-version of (5.13)-(5.15) follows easily from the T^-version by
taking inverses.

We have thus obtained

Lemma 21. The braid and fusion relations follow algebraically from

a) ^M+Λ,i+l=l '

k) ^i,i+l^i+l,i+2^t,i+l — -fr i+l , i + 2^i,i+l R i + l , i + 2

C) ^i,i+l^i,i+l ~^i+l, i + 2*M,i+l^i+l,ί + 2

(The notation is as in Proposition 1 5, and the writing of the fusion matrix has been
adjusted to that succinct notation.)

Let us turn our attention to the question of completeness. There is a 1 — 1
correspondence between the combined action of analytic continuation and fusion
on a n-point block and its representation in terms of a (fused) coloured braid. If two
such actions are isotopic they result in an equation relating braid and fusion
matrices. Isotopy means that one (fused) braid can be deformed such as to yield the
other braid. The deformation process can be broken down into (generalized)
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Reidemeister-moves. These basic constituents of any deformation are displayed in
Figs. 18,19. However, we recognize immediately that, apart from the associativity
of chiral fusion (Fig. 19a), all moves are already encoded by the equations of
Lemma 21. We get

Fig. 18

Fig. 19a

, etc

Proposition 22.

a) The equations in Lemma 21, and
b) the associativity equation for chiral fusion are complete, in the sense that no
other consistency relations are generated by the combined action of analytic
continuation and chiral fusion on n-point blocks.

This result has also been proven in ref. [5].
We wish to point out that, in general, the consistency relation stemming from

two isotopic coloured braids can be written down immediately, using the rule that

ijklmr (5.25)

The braid-fusion relation (5.15) has important applications in a theory where
there is an index, say 2, e Jέ?, such that for all; e J£? there is a m^ 2 with <#}C tf?m.
Then the knowledge of all R( In •) and #(...1) seems to be sufficient to compute
the whole set of braid matrices. Actually, we claim that it is enough to know
R( 22 ), R(... 1), in order for a cleverly chosen fusion scheme to provide us with all
the braid matrices. This conjecture has been verified explicitly for the case of the
minimal models in [6].
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6. Chiral Sectors V: Spectrum of the Braid Matrices

For a given set of indices ijlm we define the vectors v(ijlm)rμv with components
v(ijlm)rΆ by

* : = F*^r. (6.1)

The number of these vectors is £ Nίrm - Nrjb which, by (4.7) and (4.8), equals
r

Σ NίmrNrjl= £ NijkNklm = dim(Wijlnά. Using definition (5.9) of the F-matrices and
r k

the fact that the braid matrices are invertible, it is not hard to verify that the vectors
v(ίjlm)rμv are linearly independent. Now consider Eq. (5.14). It reads, e.g. for " + ",

v = D-jl v(ijlm)rμv , (6.2)

thus yielding an eigenvalue equation for the monodromy matrices M+ and M~.
Since M+(ijlm) is a dim(Wίjlm) x dim(Wίjlrn) square matrix, we get

Lemma 23. The monodromy matrix M+(ίjlm) has the spectral decomposition

M+(ijlm)=ΣPr'^jlί (6.3)
r

where Pr projects onto the (Nimr Nrjl)-dimensίonal eigenspace corresponding to the
eigenvalue D~jt. The fusion vectors v(ίjlm)rμv span the image of Pr.

This result has important applications. Consider Eq. (4.21):

Σ R +Wm)lV'Dk-jmR+(iljm)k

k:^r = δkk,,δm,,δββ,, Drjk . (6.4)
k'a'β'

Since we know the spectral decomposition of M+, one way to extract explicit
information from (6.3) and (6.4) is to take the determinant of Eq. (6.4). We obtain

det(M+((/M) - π (^Jm)NilsNsjrn= Π (DΰPY»*»»".
s p

Taking into account (6.3), this can be rewritten as an equation among the
conformal dimensions, Hφ as follows:

Σ Hr(NijrNrlm + NilrNrjm + NimrNrβ)
r

= (Hi + Hj + Ht + Hm) (I NiJkNklm\ + n , (6.5)

where neZ is an arbitrary integer.
Considering the determinant of Eq. (6.4) is inspired by Ref. [4], and, indeed, the

resulting equation (6.5) coincides with Eq. (7) of Ref. [4]! In other words, we
simply need to repeat the steps in Ref. [4] in order to prove that all conformal
dimensions, Hq9 are rational numbers. Anyhow, for the convenience of the reader
we will review the proof of this statement. We introduce some notation:
dijlm: = dim(%, J, di: = dim. Equation (4.6H4.9) mean that dijlm = diljm = dimjb and
d^ 1. In equation (6.5) we put i =j = m, and i* = I. In the known models of rational
conformal field theory one finds always that HI = H^. At present we do not know
whether this is already implied by the property of a triple (jtf, &, $) to be rational.
So let us assume that H~H^ Vί. From (6.5) we get

4 dr ̂  - Σ Hr(2NiίrNrίi* + Nu*φNriί) = 0 mod 1,
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which is a matrix equation

where the matrix M has matrix elements

^kr = ~ 2NkkrNrkk* — Nkk*rNrkk , if r Φ k ,

and where H = (H^...,H^ is the vector of the conformal dimensions associated
with ^,...,^6^, n = \&\.

It follows that

Σ MU, (6-6)
r φ f c

because

It has been observed in Ref. [4] that property (6.6) of Jί implies, that M cannot
have a trivial eigenvalue, thus Jί is invertible. Since M has integral entries, Jί~ 1 is
a matrix over Q, therefore ^~1(Omodl) = H yields

Proposition 24. Let (stf, «£?, ̂ ) be a rational triple. If

H^H^Jorall ie£>, then tf^Q. (6.7)

It would be interesting to explore the full power of Eq. (6.5). In particular, there
must be a strong relation between the possible set of conformal dimensions and the
fusion rules Nijk.

An immediate consequence of Proposition 24 is:

Corollary. All monodromies M±(ijlm) have the property that

Af±(ί/ίm)-=l|Hryim, (6.8)

for some n e N.

7. Some Relations with Link Invariants and Quantum Groups

7.1. Link Invariants. In this subsection we intend to indicate briefly how the
structural equations which connect the # and F matrices of the holomorphic chiral
sector of a conformal field theory can be used for the purpose of constructing link
invariants. A more detailed presentation appears in [12]. Motivated by the
representation theory of quantum groups, a similar approach has been proposed
in [13].

A (n-component) link in R3 consists of n non-intersecting and non-
selfϊntersecting closed curves in R3. If n = l, it is called a knot. Two links are
equivalent iff they can be deformed continously into each other. We can fix a plane
in R3 and project the links onto it. Two links are equivalent iff their projections are
equivalent, and the continuous deformations (transferred to the projections) can
be viewed as a sequence of those moves which are shown in Fig. 21. These moves
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obviously have much in common with the generalized Reidemeister moves on a
(fused) braid. A link invariant is a functional on the set of links, depending only on
the equivalence classes of links.

Fig. 21a

n

,etc

For more information on the theory of knots and links the reader is referred to
Refs. [10,14].

We construct a functional, /(L, OJ)J e £?, on the set, L, of oriented links in R3

which possess the orientation 0. (A link is oriented, if each of its strings is so; when
drawing pictures, the orientation is indicated by arrows.) The invariant /(L, 0,y) is
defined relative to a fixed projection plane, S, in 1R3, a fixed, distinguished
direction, e, on S, and an index i e &. The corresponding quantity /(L, OJ; 5, e, ί)
can be shown to be independent of S, e, and z, and because this functional depends
but on the equivalence class of the projected oriented links, what is thus obtained is
an invariant of oriented links.

We choose a plane, S, in R3 and a unit vector ee S which determines the fixed
direction. The projection, Ls, of an oriented link, L, on S obtains a marking as
follows: a point on Ls is marked by if the tangent vector to Ls at this point is
orthogonal to e (see Fig. 22). Such a marked graph is similar to a vacuum to
vacuum Feynman diagram, where Λ"*"̂  an(^ V^_V denote pair
annihilation and creation, respectively.
Purely for reasons of notational simplicity let us consider a chiral field theory with
the properties

a) Nijke{0,ί}9

b) v<lί = l,

c) j = Λ V / e J S ? . (7.1)

Part b) implies that R±(-1 ) = ̂ ±( 1 0 = 1-
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Fig. 22

Next, the braid-fusion relation R±(ίβm)kk,Fk,lίlk,1=R+(kΊjk)im FmίWml, which
can be deduced from (5.15), shows that if for some /, fc', i the fusion matrix element
Fk'iuk ι =°> then>for all k,j,m, R*(k'ljk)imFmlklmί=Q. In particular, FH1H1 =0. This,
however, would mean that ^cιn(φlll(z,ξn)φlll(z — \,χn)) = Q, for all z, where the

R

coefficients an represent any linear combination of vectors ξn, χn such that

Σan(φrιι&ξn) <Pifi(-2,Xn)β) = 0 for all rφl. Therefore, FUίllί cannot possibly
n

vanish, and we see that

d) the numbers Fk>mk ι are nonzero (if they are defined at all). (7.2)

Now, the link invariant 7(L, OJ) = /(L, OJ; S, e, ί) is constructed as described in
the sequel.

Take the marked diagram Ls, and transform it into a marked, coloured graph
by assigning the index j to its lines, arbitrary labels kb kt E j£f, to its bounded
surfaces and the index / to its unique unbounded surface (cf. Fig. 23).

Fig. 23

To the building blocks of Ls we assign R- and F-matrix elements as listed below:

(7.3)

(7.3')
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k / \kX
m './'V"

j i ' i J

(7.4)

K/ \ k'
m

1

i j j j

β| ft^ fk^ = Λ k > ι ^F.
J J ' J J

(7.4')

(7.5)

(7.6)

The rules (7.3)-(7.6) and the properties (7.1H7-2), together with the structure
equations for R and F, make it possible to check the relations (summation over
internal indices is understood, and eis taken to be |):

(7.7)

k' V I

J J J

j J i

m

(7.8)

(7.9)

(7.10)
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(7.11)

(7.12)

For example, the braid-fusion relation which is relevant to prove (7.8) is Eq. (5.13):

ΣR+(lJJl)kk FιJkΊn =(W2JW

The identities (7.7)-(7.12) imply that, for instance,

Finally, the link invariant I(L, 0,j) is defined by

I(L,0,j;S,e,i):= £ Π(D1/2R)±ΠF±ί, (7.13)

where in this symbolic notation the right-hand side of (7.13) I V K \ Ί n s t h e sum over all
possible configurations of internal indices, {fcz}, of the product of all D1/2 β-matrix
elements (arising from crossings) and of all F-matrix elements (stemming from
fusion or pair creation).

As mentioned earlier, it is not difficult to prove that (7.13) does not depend on i,
and the same can be shown for eand S. Furthermore, (7.13) is obviously invariant
under all gauge transformations which respect (7.1).

7.2. On Vertex-SOS, Quantum Groups, etc. Suppose that we are given a Hopf
algebra, j/, with comultiplication J:«a/->j2/(g)j^, and a countable set of
irreducible representations of si on the representation spaces Vb i e /. Assume that,
for given j, fc, the multiplicity, Nijk, Nijk<co, of the representation ί in the tensor
product representation j®/c, is non-zero only for a finite set of indices i.
Furthermore we assume that there are linear operators Rjk: Vj® Vk-+ Vk® Vj which
commute with jtf: A (A)Rjk = RjkA (A). To simplify the notation in the following, we
assume now that Nijk£{0,1}.
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Associated to the tensor product decomposition there are projections (which
are unique up to a multiplicative constant) Pijk: Vj® Vk-+ V 2, which are character-
ized by the commutation property APίjk = PijkΔ(A\ for all A e si. This implies that
PikjRjk = μijk - Pijk, where μ^eC. Similar considerations apply to the linear space
of those projections which realize the tensor product decomposition Vj®Vt® Vm

->Vi. Such projections, denoted by Ptjim, obey APijlm = Pίjlm(Δ®\)Δ(A\ Aestf.
Obviously, {PijkPklm\keI} and {P^P^JR^IWel} and {PirmPrjl\re7} form
three different bases in the space of projections PίjΊm. Therefore, there are linear
dependences

PijkPkim&ij® 1) = Σ r(ijlm)kk,Pίlk,PkΊm, (7.14)
k'

PίjkPklm=Σfijklm,PirmPrβ, (7-15)
r

which define the Vertex->SOS transformation of the ^-matrix: l^(x)l^r(i/7m)kk,,
and the "fusion" of projections in (7.15). Assuming the Vs, sel, to be separable
Hubert spaces, we can rewrite (7.14) and (7.15) in terms of vertex operators φijk

which are defined by <xf, φijk(Xj)Xk): = <*;, Pijk(Xj®*&)>> where xs e Vs. We obtain

Φίjk®Φkim(Rij{xι®Xj)) = Σ r(vl™)kk'Φiik'(xi)Φk'jm(Xj), (7.16)

/ \ / \ ιτ-\ /» Γ-\ / \ / / \ \ /•« A fj\

Φijk\xj)Ψklm\Xl) = LJijklmr λu Ψirrn^N^ \^NrJ ΦrjΛXj)Xl/ ' (' '* ')
r Nr

where {xNr£ Vr} is an orthonormal basis of Vr. It is not hard to check that these r-
and /-matrices obey the algebraic relations of the R+- and F-matrices which were
derived in Sects. 4 and 5.

There are known examples of Hopf algebras si with universal β-matrix: the
quantum deformations, Uq(g), of the universal enveloping algebra of affϊne or
classical Lie-algebras g [13, 22]. As the deformation parameter, q, approaches the
rational points on the unit circle, the representation theory for Uq(g) becomes
rather intricate and in fact has not been solved so far. One expects, however, that a
careful examination of this problem shows that there are only a finite number of
(finite-dimensional) irreducible representations. Thus, if qm = 1, the representation
theory of rational chiral algebras (as discussed in Sect. 2) is likely to parallel the
representation theory for Uq(g). In particular, we conjecture that the sύk(n)-WZW

theory corresponds to Uq(sl(n)\ q = ek+n.
We are thus led to conjecture that there is a 1 — 1 correspondence among chiral

algebras and quantum groups, the SOS-form of the quantum group K-matrix,
r(ίjlm)kk>, being equal to R+(ijlm)kk>. In particular, the multiplicities Nijk for the
chiral algebra equal those of some quantum group.

Let us mention that the Vertex-SOS transformation of quantum group
^-matrices has been studied also in Ref. [23].

In the remainder of this section we show that the above conjecture (on the
relation between rational conformal field theories and quantum groups) and the
Vertex-SOS transformation of the quantum group ^-matrices permit the cons-

2 Notice that we do not mean that the tensor product F, (x) Vk is completely reducible in terms of Vs,
set
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truction of new vertex operators, Vjf(z, , •), whose commutation relations are
described by the Vertex-version of the R-matrices.3

Thus, we assume that for a given RCFTh with vertex operators4 φijk(z, •) and
corresponding Λ-matrices R+(ijlm)kp and multiplicities Nίjke{0,1} there is a
quantum group, Uq9 with vertex operators ψίjk( -), with SOS .R-matrices r(ίjlm)kp

= R+(ίjlm)kp and which has the same Nijk. Assume that we can find coefficients
Dg'k'eC, i,j, k, /',/, k'el, such that (cf. (8.10))

Σ K+(y/m)fe,ir (*y/W)fcV . (7.18)
k,k'

We note that (cf. Sect. 8) if j = /*, Vy'e/, and if there is a gauge such that R+(ijlm)kp

= R+(mlji)kp, then a solution of (7.18) is given by

^f^M Ar ^uvuπΓ' (7-19)

We notice also that (7.19) is indeed a solution for the minimal models and for sύk(2)
current-algebra, K>ι b t //j and xe Vr, where Vr is the quantum group represen-
tation corresponding to jfcj,, we define

Vjr(z,& x): = Σ D&ΓφyΛz,£) W^ M. (7.20)
ii'
kk'

Computing the statistics of the vertices Vjr, we get (γ is a path exchanging z and
w in positive orientation)

= Σ (Σ βίji'k'^w!^ )<PWm(w, •),
"" \ f e /

mm'
pfe'

which, using (7.18), equals

— V /V J? ~*~(i'l'i'm'\ in f . ^m ( .\\Γϊi'l'P'Γ)P'J'm'sn (τ . WΛ (\ΛJ Λ
— L (L A \llJm)p'k'Ψi'j'k'\ )ψk'l'm'\ ))Uilp Upjm Ψilp\z> )Ψpjm\W'> ') -

ii' \k'
mm'

Since R+ =r, the Vertex-SOS transformation (7.16) can be applied. This gives

= Σ β£ppf^£mW^^
if

PP'
mm'

The result is written most easily using an orthonormal basis e{®el

β e Vy®VΓ. We
find

yd

where \ & ό&p^ R r e? ($^)^^ ^ — (R / 1

3 The construction of the operators Vjf is rather similar to the construction of local fields in terms
of a holomorphic and an antiholomorphic chiral field theory
4 In order to keep the notation as simple as possible we assume here that the multiplicities Nijk are
either zero or one
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8. Conformal Field Theory of Local Bose Fields over S2

Suppose that we are given two rational chiral field theories, (j/,JSf,^) and
(ja?, J?, &) for short. We wish to combine them, or rather their chiral vertices, in
such a way that they provide us with a set of relatively local bose fields over S2. This
combination process, called local fusion, is not some a priori and uniquely
prescribed method, but rather we propose one specific approach which is
motivated by the holomorphic factorization properties which a conformal field
theory should exhibit. Let us add that two chiral sectors can successfully be
subjected to this kind of local fusion iff their braid matrices obey the algebraic
relation (8.10). For example, if for some e JS? there is noje^ with (H/— #/)eZ,
then this local fusion is impossible. It is an important, but as yet unsolved, problem
to give explicit criteria which would guarantee that (j/, JS?, <%) and (j/, J ,̂ $) can
be fused.

Let z and z be independent complex variables, z e C, z e (C. The chiral vertices,
</>?jfc(z, •)> of the holomorphic chiral sector (j/, J£f, J*), and those of the anti-
holomorphic sector (jaf, <£?, Jl), i.e. φf^(z, •)> are combined into local fields,
according to the Ansatz:

•)• (8.1)
ί , ί , k , k , β , β

Let us explain the meaning of this definition. First, the fields φj(zz, - ) = φfj(zz9 - )
are operator- valued fields on S2 x S2, which furnish maps

The objects C(ff$ΐ$ are (C-number coefficients which determine the bilinear
combination of the chiral vertices. The index α on φ* is meant to distinguish among
linearly independent local fields, i.e. we require that
the fusion coefficients C(jjap\ p = l, ...,n, encode fields which satisfy

Σ λpφγ(zz9 ) = 0 o Ap = 0, Vp. (8.3)
p=l

Clearly, the maximal number of linearly independent combinations φ*9 for fixed J,
is finite.

Finally, postulating bose field locality says that on the Euclidean section of S2

x S2, i. e. at the points (z, z = z*) e S2 x S2, the fields 0} form a set of relatively local
bose fields.

It should be stressed that requiring this trivial commutation relation among all
the fields φ* does not indicate a limit beyond which one cannot reach using this
formalism. In fact, any representation of the braid group other than the trivial one
would have been wonderful, too, apart from the calculational complications which
we had wanted to evade.

Let us take a break for a moment and think about the question what the
"physical" Hubert space is. By definition, this is the Hubert space, ̂  which is
associated to the local conformal field theory (j/(g)j?, C). If the fusion of the chiral
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sectors is sufficiently uncomplicated then it is easy to describe $ explicitly. For,
supposing that

a) per index J = 0,J) there is at most one local field;
b) for each field φj the fusion coefficients C(j[/)j} and C(jj)\j* are nonzero; (8.4)
c) let & be the index set of the local fields, thus here <£ C 3? x S.

If C(/)lfc Φ 0, then (i, T) e & and (/c, k) e £;
then the domain of definition (as well as the range) of the local fields is

J^:= 0 (^j®3ty. (8.5)

Clearly, J^C(^®^), Jlim limφj(zz9ξξ)Ω\ξe^fp

Also, φj maps 2? into 2tf, and the two point function
<Ω, </>j*(zz, )0j(ww, )Ω> is nontrivial. Most notably, two local sectors J^ (χ)J^
and Jtfj®^ are orthogonal iff there are corresponding, linearly independent fields
φj and φj which generate them as φt: ̂ ®3#Ί-^J^®^, φj\3ffλ®^f\->J£}®J^ .
We conclude this discussion by noting that among the examples, where the
structure (8.4) is present, are the (Ap,-l9 4p_ι) and (D2ρ+l, 4p_ι) series of the
Cappelli-Itzykson-Zuber classification of modular invariant minimal models [15].

In general, (8.4) is not fulfilled. The reconstruction of $ in these cases proceeds
by an application of Osterwalder-Schrader reconstruction. We choose a basis of
L0-eigenstates, ξ*, in J^ , and put z = z*. On the space, ̂ 19 of finite sequences of
Schwartz test functions over the unit disk one defines the non-negative inner
product

</,£>ι := Σ Σ I Π d2zt Π d2w7 Gμ,v(z,w)./μ(z)*gv(w). (8.6)
«,m μ,v i= 1 j= 1

Here G (7 w}=Sfhai(7 7* ^NJI^JI\ ώΛn( \O ώβί(w vu* ^iΛ^'Λ φβ™( \O\Π.CIC, \Jμ<v^/ι, ψVj — \ψj1^Z|Z j, (yj^^j^)... ψjnv -/β*5 *r J iV^l ̂ 1? S^ Sii /••• ̂ /mv •/"/?

and μ = (μl5 ...,μπ), v = (v1?..., vj, where μ t =(Jl9 α l 5 N^, N7l),..., V i =(/ l5 j8 l9 Nίl?

JV-J,.... The test functions /μ(z) = /μ(z1? ...,zn) and gv(w) have support in
(DifXdiagonal and (DJ^diagonal, D^unit disk. Finally, /eJ^ stands for a
sequence of test functions f = (fμ(1)9 /μ(2),...), where apart from a finite number of
them all the /μ(k) are zero.

Denoting by Λ^ the space of zero norm vectors in /^ one is led to define

(8.7)

There is an action of the chiral algebras stf®stf on J^ defined by

ι : - Σ Σ J Gί.?̂  w) Λ(z)*gv(w) , (8.8)
n,m μ,v

where G^^(z,W) = <^(...)...Ω, A®Aφ^(...)...Ωy. In particular, L_ lgv(w)

= ~ Σ ^— «v(w); and the vectors g-gv (with v = (J, α, ̂  W3), and ξp and φ
j = l OWj

invariant vectors) are invariant if gv(w) = (5(2)(w, 0) gv(w). We have not worked out
all the details, but it is expected that

&^ Θ (JKΦJK). (8.9)
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After this digression we resume the discussion of the general properties of a
local conformal field theory over S2. We prove

Proposition 25. Locality (as bose fields) is equivalent to the following equation for
the fusion coefficients:

> _ Σ ^+(yM^^Ίpnf5

fllCOία)Ll

v'C(/Γ)?)S. (8.10)
kk, γγ,δδ

Proof. Take euclidean points z,z = z* and w,w = w*, and consider the analytic
continuation of φj(zz, )ψ£(ww, •) along the euclidean path yE which exchanges z
and w in anticlockwise orientation (Fig. 24). Requiring bose field locality is
equivalent

Fig. 24 7E

to demand that j/y(</>}(zz, )φβ

L(ww, -)) = φβ

L(zz, )φj(ww9 •)- Writing out the former
and latter operator products in terms of chiral vertices we see that (8.10) is the
necessary and sufficient condition to guarantee locality. Π

If we iterate (8.10) once, we obtain the eigenvalue equation

t;(Jα, Lβ, im) = ι;(Jα, Lβ, im) (M + (ijlm)® M ~ (ΊJΐm)) , (8.1 1)

where the vectors *;(Jα, Lβ, im) have components

v(J*, Lβ, im)i*i = Cm%C(Uβγp™ . (8.12)

We assume henceforth that

05Φθ=>e(jEΓα^ΪΦθ. (8.13)

(The reverse of (8.13) is, of course, always true.)
Now putting m = l, m=\ in (8.10) reveals that

γj

In particular, if 0}ΦO and 0LΦO, then C(/7" )l]>0 iff C(/Γ )|/ = 0.
Equation (8.14) has an important application. Namely, it allows us to

formulate the short-distance expansion among the local fields in a transparent
way. This is what we are going to show next.

Take two local fields, φΛj and φβ

L. Writing them in terms of the chiral
constituents, and employing chiral fusion, yields

V V
L } λ,

ίmrγσ j kμv
Ίfhrγσ [kμv

' [>irm(*> vv; σ, , •)] [<3 τ̂m(^ w; σ, - , -)] .
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If we now remember the definition of the chiral fusion matrix in terms of the braid
matrix, i.e. Eq. (5.9), and if we apply (8.14), what we end up with is

Σ WfiW (8-15)
kμv
kμv

where the structure constant of the operator product expansion (OPE) is given by

C(1TK\11

C(jja, ITβ, rfef. = C(ff^ ™, (8.16)

The OPE thus has the form, ε = ε(r, f),

Equation (8.14) also provides us with the symmetry

C(jja, iTβ, rfεf, = £R +(iljl)%R~(πjϊ^C(lTβjra, r«)» . (8.18)
QQ

In order to derive all the symmetries of the OPE coefficients it is quite useful to
state the assumption

O. (8.19)

In analogy to (8.14) we thus get

*β, (8.20)
γγ

which links C(/*7*α)ίm ' and C(l*T*$£. Repeating those steps which led to (8.18),
but now using (8.20) instead of (8.14), gives the remaining symmetry relations of the
OPE coefficients. For example,

C(/*/"*α*, iTβ, r*f*β*K= Σ R+(ij*rlffR-(if*fTE*
yj

C(rfε,lTβ,jfaγy. (8.21)

We summarize our results in

Proposition 26. On the set of local fields there is an operator product expansion,
written down in (8.17). The OPE coefficients C(jja., ITβ, rrε)* enjoy the symmetries
(8.18) and (8.21).
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If we restrict our attention (momentarily) to the case) =/*,/=/*, then it is easy
to come up with the constraint

(Hj-Hj)εZ. (8.23)

The validity of (8.23) can be verified using (8.10), (8.13), and (8.19).
The local fields should be independent of normalization of the chiral vertices.

The definition (8.1) then implies that under a gauge transformation

The formula (8.16) clearly shows that the OPE coefficient is gauge variant.
Notice also that (8.16) was derived in the gauge (3.17). We can easily overcome this
weakness by multiplying the right-hand side of (8.16) with normalization constants
of the participating chiral vertices. For example, C(ϊΐβ)\{ would be turned into
(C(ίϊβ)\l vln - vjjj), and so on.

The point is now that in simple circumstances the symmetries (8.18) and (8.21),
combined with (8.10), allow us to compute the OPE coefficients explicitly. This
happens if we consider chiral theories with Nijke{Q9 1}, JV^e {0, 1}, and if j=j*9

9 and J=7*, VjeJ^. We look for a solution of (8.10) which obeys

a) per index pair (/', J) there is at most one local field;
b) given j, at most one7is used to construct a local field. (8.25)

To simplify things we normalize the local fields by requiring

(£(7)IKwvι jj) - (CO/f v^vjjiH 1 . (8.26)

(This normalization is equivalent to the conventional normalization of primary
fields in the case where jtf ^ 3 = Virasoro algebra. For, in this special case, and if ξj
and ξj are the normed primary vectors of ̂  and J#j9 respectively, one usually
requires <Q,^(zz,^£7)^w^ If we define
v1jj: = ^Ω,φ1jj(

/\.9ξj)ξjy9 this normalization of the local fields leads to (8.26).)
Rewriting (8.10) by pulling R+ to the left-hand side, and setting p = ί9 p = ί,

gives

Upon using the symmetries (8.21) and (8.18), and remembering that (Hj—
the definition of the OPE coefficients, (8.16), and the normalization (8.26) yield the
gauge invariant OPE coefficients

Vt (8.27)

where v stands for a quotient of normalization constants vίjk9 viiί9 ..., such as to
render the right-hand side of (8.27) invariant under rescalings of the chiral vertices.

For the left-right-symmetric minimal models the structure constants of the
OPE have been calculated explicitly by Dotsenko and Fateev [16] by investigat-
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ing the monodromy behaviour of the 4-point correlation functions. Later on,
Eq. (8.27) was used in [6] to rederive these results in a way which, in our
understanding, is conceptually preferable.

Using results of Ref. [16], Fateev and Zamolodchikov [18] computed the
structure constants for the left-right-symmetric swk(2)-theories.

In Sect. 7.1, link invariants have been constructed upon using the following
rules:

(8.28)

where we assumed vm l m = 1J ==/*, and Nijk e {0,1}. This seems to be in rather sharp
contrast to the rules which we formulated (for left-right-symmetric minimal
models) in the second Ref. of [6]:

(8.29)

Let us explain why (8.29) and (8.28) are equivalent. By definition, the rule (8.29)
applies to left-right-symmetric theories with vm l m = l, j=j*9 JVyte{0,1}, and
C(iTjJl kK) = δ-nδjjδ%kC(n,jj, kk\ and it is valid in that gauge for the braid matrices
in which R+(abcd)ef = R+(dcba)ef, which, by construction, exists at least for the
minimal models [6], In such a left-right-symmetric theory, the fusion coefficients
C(UJj, kk) can be interpreted to serve the purpose of projecting ̂  out of ̂ ® Jf),
which is also the purpose oΐFijkjiί. This is the representation theoretic motivation
to iterate the braid-fusion equation (5.15) with r = l and v f l lβ = l, which yields

R+(ίjlm)kpFilpliίFpjmjpl = R+(ίljm)pkFijkjilFklmlkί. (8.30)

Comparing (8.30) with the locality equation (8.10), taking into account the
symmetry of #, shows that a solution is

C(iiJj,kk) = (FijkjnΓ
l (8.31)

There does not seem to exist a general method to deduce the value of the central
extensions of the chiral algebras «B/ and j?, once one is given a set of R- and
Λ-matrices which satisfy the polynomial Eqs. (4.19)-(4 21), (5.13)-(5.15) and the
locality Eq. (8.10). However, if we make the additional assumption that the chiral
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field theories (Λ?, S, $) and (j/, & , ̂ ) are consistent also on the torus, then it is
shown in Ref. [4] that the representation of the mapping class group on the
characters Ύrj(qL°~c/24)J e J£?, relates the conformal dimensions Hpje<&, and the
central extension, c, of the holomorphic Virasoro algebra. In particular, c is a
rational number, and the method just sketched allows for a determination of c
mod 4.

If we stick to theories on S2, then at least if j/ = Virasoro algebra the
knowledge of the 4-point block (ξi9 φuι(ξ» z)φljr(ξp w)fj*> is sufficient to compute
the value of c (ξk is the unique primary vector in J^k). Indeed, if we write

= Via : = 1, and if <Ω, φ^ξp w)^> : = w~2 H >, assuming

then the above 4-point block equals w~2Hj ( 1 -- HflA^-} + 0 ( ( — ) ) ).
\ c J\zJ \\zj ))

Therefore, knowing the leading terms of the expansion of the 4-ρoint block as
Z-+00 and — π<argw<π gives immediately the value of c.

9. Reconstruction of Chiral Field Theories from Quantum Groups

The logic developed so far is: given suitable representations of a chiral algebra
whose vertices transform under a linear representation of the braid group when
being continued analytically, what can be said about the structure of the chiral
field theory? Specifically, what kind of algebraic relations are obeyed by R, and can
these relations be deduced from the representation theory of some quantum group
(via a generalized Vertex-SOS transformation)?

But we may also reverse our point of view: We assume to be given a family of
K-matrices which come, for example, from the representation theory of a quantum
group, satisfying the algebraic equations of Sects. 4 and 5. Does there exist a chiral
algebra and corresponding chiral vertices which reproduce the given .R-matrices?

The answer, a solution of a generalized Riemann-Hilbert problem, is not
known in general. However, there are some hints in the mathematical literature
[17] that trying to solve this problem may not be a completely hopeless task. In
fact, if the monodromy matrices M+(ijlm) are sufficiently close to the identity then,
according to Ref. [17], there is at least one (trivial) flat vector bundle over
<CII\{z|zί = z/, for some 1=1=7} whose monodromies are the given M±. Also, the
connection 1 -form Ω can be chosen to be Ω = Y d(log(zί — z,)) Ωii9 where Ωti

l^i<j^n

are z-independent C-number matrices.
Unfortunately, it is not obvious at all whether this candidate theory is

satisfactory in the sense that the "conformal blocks" (i.e. the solutions to the
parallel transport equation) have the required conformal properties; plus ad-
ditional transformation properties which would make them transform under the
action of a chiral algebra jtf which could be associated to the given monodromy
matrices. For example, assume that there is a horizontal section /(z) which

" fdw\hi *
transforms covariantly under Mobiustransformationsz^i-^w^): Π -r-M /(w)

i=ι \dzj
= /(z). If we apply the parallel transport equation on this transformation law we
find that a) translations and dilatations give no constraints at all, b) infinitesimal
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special conformal transformations are consistent with the form of the connection
Ω iff, for each i, 1^/^n, (V Ωil\f(z)=—2hi>f(z). Here we defined, for />/,
Ωtj-Ωj, v*'
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