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Abstract. This paper studies the vacuum overlap order parameter proposed
by Fredenhagen and Marcu in the case of the compact U(l) gauge model
with the Wilson action coupled to a Higgs field with fixed length \φ\ = 1.
The existence of two distinct phases in D space-time dimensions (D > 4) is
established.

1. Introduction

Gauge theories on the lattice are an important branch of research of Quantum
Field Theory. They offer many advantages for theoretical and numerical studies,
especially since they provide one of the few known consistent non-strictly pertur-
bative methods of regularization of gauge theories. Their most important quality
reveals in the analysis and understanding of non-perturbative phenomena, like
the Higgs mechanism, the problem of confinement and that of triviality of some
four dimensional models involving scalar (Higgs) fields. They have also been
used as a starting point to the construction of gauge models on a continuous
space-time.

The question we treat here is related to that of the existence of charged states
in lattice gauge theories, in particular in models with scalar fields coupled to
gauge fields.

In a study of the Z(2)-Higgs model [1] Fredenhagen and Marcu were able to
construct in the Coulomb region of its phase diagram, for the first time, charged
sectors of the associated quantum system (see also [12]). As a consequence of
their analysis, these authors proposed a non-local order parameter to distinguish
phases in lattice gauge theories coupled to matter fields. This order parameter,
frequently named after his authors or donoted "Voop" (for "vacuum ovelap order
parameter"), essentially measures the limit value of projections on the vacuum of
a suitably constructed sequence of normalized dipole states with bounded energy.
Its particular importance, in contrast to other order parameters used in lattice
gauge theories, resides in its direct physical interpretation and particularly in its
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sensitivity for models involving matter fields. We will not enter into details about
its motivation here, preferring to refer the interested reader to the references [3, 1,
2, 4]. This order parameter has also been object of intensive numerical analysis by
many groups and showed to be quite useful for the study of the phase structure
of gauge models through numerical simulations (see f.i. [16] and other references
therein).

Using this order parameter we will show the existence of two distinguished
phases in the phase diagram of the compact U(l) model with Higgs fields with
a Wilson action in at least four space-time dimensions, which we interpret as a
Higgs-confinement phase and a Coulomb phase respectively. This result confirms
the expected picture (see [6]). We note that the existence of the Coulomb phase
has already been established by Kondo in [5]. Our method is strongly based on
[1], where this order parameter was analysed in the case of the Έ(2) gauge Higgs
model.

We have to mention here the many analytical studies performed in the
non-compact version of this model which also provided an almost complete
understanding of the structure of its phase diagram (see [7] for a review).

1.1. Description of the Model

We describe now briefly the model we will consider (see also [15]). We fix a
d + 1-dimensional (d > 1) lattice L = Έd+ι. We call L1 the set of all positively
oriented bonds on L and L2 the set of all positively oriented plaquettes (the same
notation will be extended to sub-sets of L). We represent the points of L by
coordinates (x°, x), x E L1, the zero direction being the euclidean time direction.
We attach to each bond b € L a gauge field U(b) = eiθ{b) with - π < θ(b) < π, and
to each x G L a scalar field with fixed length φ(x) = eιτ^x\ with —π < τ(x) < π.

For A c L, \Λ\ > oo we define the action SA as

SΛ '= -h Σ tcos(0(P)) + ® ~ ft Σ tc°s(-δτ (6) + θ(b)) + c] (1)
peΛ2 peΛ1

with dτ(b) = τ(x2,ί>) — τixub), where X2,2» xi,b a r e the two extremal points of
b with (x2,b)b > (xi,b)b where {x^bΫ is the component of xf^, i = 1, 2 in the
direction defined by the positive sense of b, where

(2)
bep

where (p | b) = ±1 is the relative orientation of b in p and where and k and c are
constants. The coupling constants βg and βh are real and positive.

At finite volume, the expectation value of local gauge invariant observables is
defined by

(A)A := ZJ1 J[dτ]A[dθ]ΛiA(τ, (3)

where [dτ]Λ = Π dτ(χ) a n d ldθ]^ = Π dθΦ\ w i t h WΛ = 1.
xeΛ beΛ1
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We pass to the so-called unitary gauge by defining

u(b) = θ(b)-dτ(b),

and the expectation value becomes

(Ah
π

:=Z? J[du]ΛlA(u)e-s\

with

SΛ := -βg Σ [cos(κ(p)) + k] - h Σ [COS(M(&» + c].

peΛ1

(4)

(5)

(6)

We will extend the notation above and denote, for any finite B cz L1,

Λι]a = Π du(b).
beB

For each fixed observable A the thermodynamical limit is defined by

(A) :=lϊm(A)Λ,
Λ\L

(7)

under suitable sequences and defines a translation invariant state in the algebra
of observables which we call the vacuum state.

We call T^ζ} the set of bounds of L1 contained in the line segment joining

the points (c, b) and (α, b).
For all r G N, r > 1 we define the sets

1 ' T ( Γ ' Q ) Ui -(^Q) U (r,0) (r,0)
i i
U

(-r,Q)(-r,Q) i
-r^rJc1) /

and
isr .-

( 0 Q ) u l ( r S u (9)

where ic1 is the unit vector (0, 1, 0, . . ., 0). we define also SNr which is obtained
by reflecting Nr on the hyperplane x° = 0. See Fig. 1.

Fig. 1

The sets Mr, Nr, and 9Nr will be considered to be positively (clockwise)
oriented. We define

uMr := ^ ( M Γ | 6 ) M ( 6 ) , (10)
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and
uNr := Σ(Nr\b)u(b),

beNr

(Mr I b) = ±1 being the relative orientation of b in M r, etc.
We will then consider the order parameter ρVoop given by

ρ V O O p : =

where

(Π)

(12)

(13)

Our interest is to study the behavior of ρVOOp in different regions of the (βg, βh)-
phase diagram, whose expected phase structure in four or more space-time
dimensions is described in Fig. 2. The region I is the Higgs-confinement phase
and the region II is the Coulomb phase. Our results were established on regions
L and IL.

Fig. 2

Ic

1.2. The Coulomb Phase

First we show the existence of a phase where ρVOOp is identically zero. The
existence of this phase was first established in [5]. We present a new proof of this
fact1.

According to well known correlation inequalities (see [10, 13]), which unfor-
tunately do not hold for non-abelian Higgs models, we have for the hole phase
diagram

and
(14)

(15)

But (eiUNή(oo, βh) is equal to the two point function {φ{ϋ)φ{2rxι))xγ {βh) of
the X7-model which, for βh small enough, has the bound

(φ(0)φ(2rxi))xγ(βh) < Cie-m^)2r, (16)

1 The argument is already contained in [1]. I am indebted to K. Fredenhagen who presented it to
me in this form
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where c\ is a constant and m(βh) > 0 is the mass-gap of the model and is, for βh
small, of the form m(βh) = —c2ln(βh/βo) + f(βh) for constants c2 and βo, where
f{βh) is analytical.

Beyond this for d + 1 > 4 we have for βg large enough [8, 9]

(eίu"ή(βg,0)>c3e-^)r. (17)

So, for d + 1 > 4, βg large enough and βh small enough we get

{lli2miβh)-«iβs»\ (18)

and since for βh small 2m(βh) > on(βg) we get ρVOOp = 0 for a region as region
IIC in Fig. 2. Actually [8] also established that lim a(βg) = 0, and so region IIC

/?g-KX)

extends up to the critical point on the line βg = oo .

In order to study ρvoop in the conίinement-Higgs phase we will construct a

polymer expansion for (elUMr) and (elUNr) and a cluster expansion for ρvoop and

study its region of convergence in the (βg, /?/,)-phase diagram.

2. The Polymer Expansion

Let A be one of the sets M r, Nr or #iVr, for some fixed r e N. In order to motivate
this expansion we note that for βg = 0 one has simply

(19)

with

Cn(βh) :=In(βh)/Io(βh), (20)

where In(x) := (2π)~1 / excosθ cos(nθ)dθ, n e N, are the modified Bessel func-
— π

tions, and so ρVOOp = 1 for βg =®> βh=h 0
We have for Λ 1 => ,4,

Π p ( 2 1 )
beΛ1 J

with

We call d0> the set of all bonds of & a A2. We choose c so that

/ dueβhCOSU+c = 1. We get

)Λ =
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which may be written as

i _ } ( π eβh cos u(b)) Γ i{A\b')u{b')Λ

Σ /[*w Π kw^yr Π fcίosr Πρp(M(p))

(24)
Now we define connectivity relations for plaquettes in Λ2. Two plaquettes

are said to be connected if they have at least one common bond. So 0* a A2

may be decomposed into a sum of connected sets of plaquettes called polymers :
^ = Σ Ίu where £ denotes disjoint union.

We can then factorise (24) in terms of activities associated to each polymer y:

Σ Π HΆ{y)

*— , (25)

Π w(y)
uu yer

where G^d is the set of all sets of compatible polymers contained in A (see
Appendix) and

eβh cos u(b) "I Γ ei(A\c)u(c)'

iceAndγ LKHnj J pey

for y φ 0, with ^ ( 0 ) = 1. Above 5y is the set of all bonds belonging to plaquettes
in y.

As we describe in Sect. 3 our interest is to develop a cluster expansion for
(25). We need, as described in the Appendix, an upper bound for

\\μc\\ := max s u p | ^ ( y ) | 1 / l y l , (27)
AE{Mr,Nr,Φ} yηkQ

where \y\ is the cardinality of 7, i.e., in this case the number of plaquettes in y.
We develop now a Fourier expansion of the factors eβhCOSU^/2πIo(βh) and

Qp(u{p)) found in (26). We write

Qviuip)) = Σ dmp(βg)eim^/2π (28)

with dm(βg) : = / du{eβ*cosu+k - ί)eimu and
— π

eβh cos«(6)/2πIo(βh) = £ Cnb(βhV
nbΦ)72π (29)

nbeΈ

with Cn(βh) as in (20).
Note that Cn(x) = C_n(x), C0(x) = 1 and Cn < lVn G Z. Beyond this

lim Cn(x) = 1 and for n Φ 0, CΛ(0) = 0.
x->oo

Defining
f (A\b) if be A,

k(a, b):=< . (30)
I 0 otherwise
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we get, using (28) and (29),

Σ Π ̂ r Π C<
{mp}pey Per bedy

where
f Σ (P\b)mp if bedγ,

(d*M)b := <̂  P^,pey (32)
[ 0 otherwise

To simplify the notation we define

; ) . (33)

In order to get a good control of the convergence region of the corresponding
cluster expansion (see below) for arbitrarily small, but strictly positive values of
βh we have to be especially careful (in the case Λ^Φ) with the factor Cι(βh)~^Andy^
occurring in (31). This factor could damage the desired bound (71) for (27). The
strategy to follow is to compensate this factor at least partially by suitably chosen
factors Cj{A,y,b){βh) occurring in each term in the sum in (31).

2.1. The Region of Convergence

First we needed some definitions. For r fixed we define the sequences of oriented

hyperplanes {Sβ}£Lr and {Rb}ΪJ by

Sa := {x e R d + 1 , x° = a + 1/2}, (34)

Rh := {x e ΊR.d+\ x1 = b + 1/2}. (35)

We denote by d*Sa (respectively d*Rb) the set of all bonds of L1 which are
intercepted by Sa(Rb) and call, for b e d*Sa, (Sa I b) the orientation of b relative
to S [correspondingly for b' e d*Rb we define (Rb \ b')].

For a given polymer γ and for given Sa (respectively Rb) as above we consider
the set dyΓ\d*Sa (respectively dγΠd*Rt). Two bonds b\, bι G dyΓιd*Sa (respectively
G dy Π d*Rb) are called connected if there exists p £ y such that bγ e dp and
b2 e dp. Call {(Sa, y; 0}f=i (respectively {(Rby; j)}f=ι) the set of all connected
components ofdyΠδ*Sa (dyΓ)d*Rb) by the connectivity relation above. Of course

dγnd*Sa = Σ(Sa, y; 0 (dγnd*Rb = Σ(Rb, γ; j)).
ί = l V y = l '

Define

Vr

a:={d*SaΠVrnA},

Hh

r :={d*RbΠHrnA},

(36)

(37)

with

y — T(r,Q) , . τ{-r,2rxι)

zi . _ τ(r,2rxι) . . τ(-r,0)
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If for a given a (respectively b), \Vr

a\ = 2 (respectively \H*\ = 2) we call the
two elements of Vr

a (respectively of H^) y-associated if both belong to the same
connected component (Sa, y; i) for some i [respectively (JR&, y; j) for some j].

We will denote by Tr the set of all y-associated bonds of the set A and define
Cγ := Tr Π Vr, CH := Γr Π # r .

We also define

Dv :=[(dyΠA)\Tr]ΠVr, (40)

DH :=[(dynA)\Tr]nHr9 (41)

In words Cγ (CE) is the set of y-associated vertical (horizontal) bonds and Dv

(DH) are the vertical (horizontal) elements on which are not y-associated to
another element of dy Π A.

Clearly dy Π A = Cγ + C# + Dv -f D//, where + denotes disjoint union.
To find a majorization for |μyi(y)|1//|yl we will make use of the following three

lemmas.

Lemma 2.1. For any fixed polymer y and for Cγ and CH as defined above (depen-
ding on y) we have

\y\>\Cv+CH\r-. (42)

Proof. If \Cγ + CH\ = 0 the relation is trivial. If not we argue as follows. First
note that |C#|, \Cγ\ < 4r. By pure geometrical reasoning we find the bound

(43)

If \CV\ or \CH\ = 0 the relation (42) follows immediately. Otherwise (43) says
that

\y\ >r\CH + Cγ\ - -\CH + Cv\

1

"4

--\CH + CV\[ ^/Λ\ , ) = | C F + C # | - . • (44)

Lemma 2.2. For each given set of integers {mp}peγ there exists for each b G Dγ +
DH a corresponding bond fm(b) e dy (the subindex m indicates the dependence on
{mp}pey) wiίfc fm{V) φ fm{b) for b' φ b, V', b € Dv + DH, so that j(a, y, fm(b)) is
an odd number for all b € Dv + DH.

Proof Assuming that for some a and i, (Sa, y i) φ 0, we have

(Sa\b)(d;m)b = O. (45)
be(Sa,y;i)
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This follows from

Σ
sa,yJ)

=

peγ

Σ
pBb,pey

Σ
,δpΠ(Sa,'

(P\1 b) (Sa |

nip

£0 bed

b)mv

Σ
Pn(Sa,y;i)

b)(Sa\b) = O,
peγ, dpΠ(Sa,y i)̂ =0 bedpΓ){Sa, y i)

since for any p ey,

(47)

Consider without loss of generality b € Dv and let Sa be so that b e (SQ9 y\ 0
for some i. (note that (Sfl, 7; i) Π ,4 = fo). Then we have

( ( 3 > ) y + fc(Λ 6')) = *(Λ &) = ±1 (48)
b'e(Sa,y;i)

So there is at least one odd number in

{{d*m)v + fc(Λ b')9 b' e (Sa, y ί)} , (49)

and so, for each set of integers {mp}pG}, we may choose a bond /m(ft) e (Sα, y i)
satisfying desired condition. Injectivity is obvious. D

Lemma 2.3. For x ^ O and n odd

Cn(x)

Cι(x)
1. (50)

Proof. First Cn(x)/Ci(x) = In(x)/I\{x). The modified Bessel functions satisfy the
recursion relations:

ίπ_i(x) - Iπ +i(x) - —In{x) > 0, (51)

which implies that /n+i(x)//«-i(x) < 1 and the lemma follows directly. D

Now we complete the majorization for ^ | 1 / l y l . We write, using | ,4ndy| =
\CH + CV\ + \DH+DV\,

-I y j γτdmp(βg)\

" ' (52)

ceSy\Dfm J
where I>/m := {fm(b), b € Dv +DH) with / m given as is Lemma 2.2 (Dfm depends
on {mp}p€γ). Using Cn(x) < 1 and Lemma 2.3 we get for /?>, =f 0:

I meTL π J
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Choosing the constant k in (6) so that do(βg) > 0, a possible choice being
k = βg (for m φ 0, dm(βg) > 0 is automatically true), we get

(54)

where the second inequality follows from Lemma 2.1. We conclude the existence
of the bound

(55)

According to the Appendix the convergence condition for the cluster expan-
sion associated to our polymer expansion is, for fixed r:

(56)

The corresponding regions are shown in Fig. 3 for two values of r.

Fig. 3 2.
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The convergence regions increase for increasing r and converge asymptotically
to

{(βg,βh):βg<βgύ,βhφ0}, (57)

where/?go

According to the results of [14], valid for systems like the one we are conside-
ring here, there is an analytical connection between the "confinement region" of
the phase diagram (characterized by small values of βg) and the "Higgs region"
(characterized by large values of βg and βh) for the expectation value of local
observables. For this reason we should expect that the convergence of the cluster
expansion extends to the Higgs region as well. Using the methods of [14], taking
now k = — βg in (22) and using the simple bound \ΛΓ\dy\/\y\ <2 (for γ φ 0 and
r > 1), one gets

h (58)

for any ε > 0, provided βh > fε(βg), where fε(βg) : IR+ -> 1R+ is a monotonically
increasing unbounded function of βg, depending on ε. This shows that for each
βg and for βh sufficiently large, condition (71) is satisfied and the convergence
region for the cluster expansion may be extended from (57) to the full region Ic of
the (βg, j3/ι)-phase diagram shown in Fig. 2: this holds in two or more space-time
dimensions.
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3. The Cluster Expansion

At this point we return to expression (13) and (25), and writing

/ iιiNr\2 Io^
uNr\ //?iu3Nr\ ί^Q\

\t' IΛ — \ c I Λ\^ ιΛ \jy)

(which holds if 9Λ = A), we have at finite volume

Σ ΠmivAί Σ I

Σ Π μiiλy)) ( Σ Π
ad / \ ad

and taking the logarithm we write, according to the Appendix

\n({emNr)2

Λ/{elUMr)A) = Σ C Γ it^^r + Λiv r ~ l*ΓMr ~ μΓφ) (61)
ΓeGΛ

(for the notation see the Appendix), where we assumed (56)-(58).
Relation (61) warrants the existence of the thermodynamical limit

iuMr \ Λ _ V^ / Γ j _ Γ _ Γ _ Γ \ (fry}

where G = GL. Now we study the lim lnρvoop Following Fredenhagen and Marcu

[1] one establish by simple geometrical reasoning that the right-hand side of (62)

is equal to
n . \ "* _ (if _|_ if if if \ (f\'X\

ΓeJr

where Jr := {Γ e G : Γ <* Nr and Γ e G : Γ <* 9Nr}, where Γ ^ A means
3y e Γ : dy Π A φ 0. One sees easily too that for any 5 e N,

(64)

where the last inequality follows from (72), K being a constant.
This last result implies that {#r}reN is a Cauchy sequence and that lnρ$2op

converges and so
(65)

J] S\cΓ\ max \μAf <rκ(]pl) ,

This holds in the convergence region Ic of Fig. 2.

4. Appendix

In this appendix we fix some notations and remember some basic results on
polymer and cluster expansions. For a review see [11, 10] or [1], appendix A.I.
Our notation is essentially the same as [1].

For the two polymer expansions we treated in the last sections the compati-
bility relation between polymers is the following: two polymers y, yf are called
compatible (y ~ / ) iff dy Π dyf = 0 and incompatible (γ ^ / ) otherwise. We
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denote by G^ the set of all polymers contained in A <= L and by G^d the set of
all sets of compatible polymers (both G^ and G^d contain the empty set).

A multi-index Γ is a function Gf —• N and we denote by GΛ the set of all
such functions. Two multi-indices Γ, Γ' are said to be incompatible (Γ ^ Γf) if
there are y e Γ, / e Γ' with y ^ y' and compatible Γ ~ Γ otherwise [ y e ί
means Γ{y) ̂ 0 ] .

For functions / : Gj -> <C we use the multi-index notation

f := Π / ω r ω (66)
yGsuppΓ

for Γ € CK
Given activities μ : G^ —> C, μ(0) = 1 we define the expectation value of a

function / by

Σ

and one has in terms of formal power series the so-called cluster expansion for
the logarithm of {f)μ,Λ'

log(/>M= Σ cr(fΓ-l)μΓ, (68)
reGA

where cr are purely combinatorial coefficients given by (see [1])

cr :=Σ~^»(Π, (69)

where ^Vn{Γ) is the number of possibilities to write Γ in the form Γ = Γ{-\—+Γn,
where Γj cz G^, Γj ^ 0, (where we identify Γj cz G^ with its characteristic function).
The function cr is called Ursell function and are also denoted in the literature
(as in [10]) by the symbol ΦT(Γ).

An important theorem says that if Γ = Γ' + Γ" with Γ' - Γ" (Γ', T" φ 0)
then cΓ = 0 (see [1, 10, 11]).

Beyond this the following result, which is fundamental for the study of the
convergence of cluster expansions, has been established (see [1]):

Let ||μ| := sup|μ(y)|1 / l ) ; |, where |y| : G^ -• N, |y| = 0 iff y = 0 is the size

of y (in our case |y| is the number of plaquettes contained in γ) and define

| |Γ | | = X Γ(y)\yi f o r Γ e GΛ τ h e n t h e r e e x i s t s a constant K{ depending
γesuppΓ

only on ||μ|| so that

X cΓΠ|μΓΊ<^il|Γ||, (70)

provided

llA*ll ^ llμoll (71)

for a geometrically defined constant ||μo|| < 1.
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As a corollary one has (see [1]), under the same assumption, for any n e N ,

(72)
.— / \ IIAΌII /

where K2 is a constant.
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References

1. Fredenhagen, K., Marcu, M.: Charged states in TLi gauge theories. Commun. Math. Phys. 92,
81-119 (1983)

2. Fredenhagen, K.: Particle structure of gauge theories. Proceedings of the Summer School, "Fun-
damental Problems of Gauge Field Theory", Erice 1985

3. Fredenhagen, K., Marcu, M.: A confinement criterium for QCD with dynamical quarks. Phys.
Rev. Lett. 56, 223 (1986)

4. Filk, X, Fredenhagen, K., Marcu, M., Slachanyi, K.: Charged states and order parameters in the
Georgi-Glashow model. Desy Preprint 89-002 (1989)

5. Kondo, K.: Order parameter for charge confinement and phase structures in the lattice U(l)
Gauge-Higgs model. Prog. Theor. Phys. 74, 152-169 (1985)

6. Fradkin, E., Shenker, S.H.: Phase diagrams of lattice gauge theories with Higgs fields. Phys. Rev.
D 19, 3682 (1979)

7. Borgs, C, Nill, F.: The phase structure of the abelian lattice Higgs model. A review of rigorous
results. J. Stat. Phys. 47, 877 (1987)

8. King, C : Deconfining phase transition in the (7(1) model with Wilson's action. Commun. Math.
Phys. 105, 675-690 (1986)

9. Guth, A.: Existence proof of a non-confining phase in four dimensional U(ΐ) Lattice
theory. Phys. Rev. D 21, 2291-2307 (1980)

10. Seiler, E.: Gauge theories as a problem of constructive quantum field theory and statistical
mechanics. Lecture Notes in Physics, vol. 159. Berlin, Heidelberg, New York: Springer 1982

11. Brydges, D.C.: A short course on cluster expansions. Les Houches lecture notes (1984)
12. Slachanyi, K.: Non-local fields in the Z(2) Higgs model, the global symmetry breaking and the

confinement problem. Commun. Math. Phys. 108, 319-352 (1987)
13. Ginibre, J.: General formulation of Griffths' inequalities. Commun. Math. Phys. 16, 310 (1970)
14. Osterwalder, K., Seiler, E.: Gauge field theories on a lattice. Ann. Phys. 110, 440-471 (1978)
15. Barata, J.C.A., Wreszinski, W.F.: Absence of charged states in the 1/(1) Higgs lattice Gauge

theory. Commun. Math. Phys. 103, 637 (1986)
16. Jersak, J.: Lattice Higgs models in lattice Gauge theory - a chalenge in large-scale computing.

Wuppertal, 1985

Communicated by L. Alvarez-Gaume

Received July 1, 1989






