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Abstract. It is shown that the temperature equal-time correlators of impene-
trable bosons in one space dimension are described by a classical integrable
system. Partial differential equations for two-point as well as for multipoint
correlators are obtained. The short-distance and low-density expansions are
constructed.

1. Introduction

The Hamiltonian of the one-dimensional non-relativistic Bose gas [1] is

00

H= ί (dzψ
 + dzψ + cψ+ψ+ψψ — hψ+ψ)dz. (1.1)

Here \p(z\ ψ+(z) are canonical Bose fields, [\p(z\ψ+(yj] = δ(z — y) and h is a
chemical potential. Only the case of impenetrable bosons is considered below,
the corresponding value of the coupling constant being c— + oo. The thermody-
namics of the model was constructed in paper [2]. At zero temperature the
thermal equilibrium state is the ground state of the Hamiltonian, representing a
Fermi zone. All the states of particles with momenta fc, —q^k^qare filled (here
q = h112 is the Fermi momentum). At temperature T>0, the thermal equilibrium
distribution of particles is given by the Fermi weight

, T) = (l +exp{ε(fc)/T}Γ1 , (1.2)

where ε(fe) = fe2 — h is a particle energy. Gas density D is

- J w(M,T)d/c (1.3)
2π -oo
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and the kinetical energy density E is given as

E=J- f k2w(k,h,T)dk. (1.4)
2π -oo

Chemical potential h determines gas density as a monotone increasing function
oϊh. At T=0, D = 0at /z = 0, andO<D<+oo a s O < f c < + oo. At T>0, D = 0at
h=—co and 0<D< +00 as — oo</z< +00.

In this paper equal-time correlators are considered which are mean values of
field products with respect to the state of the thermal equilibrium. At T>0 the
mean value of some operator O is defined as usual

<0>τ = Tr(0 exp { - #/Γ})/(Tr(exp { - H/T}) . (1.5)

In particular, the two-point field correlator

<φ+(z)φ(-z)>Γ (1.6)

(where distance z is a real variable) is a real-valued function of |z|. Hence it is
sufficient to consider it in the case z > 0 which is supposed further.

The generating functional for correlators of densities

<exp{αβ(z)}>τ (1.7)

will also be considered. Here Q(z) is the operator of the number of particles on an
interval of length z

Q(z)=}ιp+(y)ιp(y)dy (1.8)
o

and α is a free parameter. One easily extracts the two-point density correlator as

<ψ+(z)tp(z)ψ+(0)v(0)>Γ = (l/2)5z

2^<exp{α<2(Z)}>ΓL=0. (1.9)

The value of the generating functional at α= — oo,

P(z,ί,Λ) = <exp{αβ(x)}>Γ|β=-«,, (1-10)

has also a clear physical sense giving a probability that there are no particles of
the gas on interval [0, z] in the state of the thermal equilibrium. Function P will
be called "the emptiness formation probability."

Multi-point equal-time correlators

will also be considered.
The correlators described above are considered in this paper. Our approach

is naturally related to the approach of papers [3-5]. The further contents of the
paper is as follows. In Sects. 2-6 the simplest correlators (1.6), (1.7), (1.10) are
considered. In Sect. 2 it is demonstrated that all of them are generated by the
same linear integral operator. Completely integrable partial differential equa-
tions for these correlators representing the main results of this paper are given in
Sect. 3. The derivation of these results is explained in Sect. 4 where the
completely integrable dynamical system describing temperature correlators is
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constructed. The small distance behaviour of correlators is considered in Sect. 5
and the low density expansion is given in Sect. 6. Multi-point correlators are
calculated in Sect. 7.

2. Correlation Functions and Frcdholm Operators

Only the simplest two-point temperature correlators (1.6), (1.7), (1.10) are
considered up to Sect. 7, where multi-point correlators are dealt with. These
simplest correlators are functions of three variables z, h, T. The essential depen-
dence is, however, on two parameters only [3], namely, on normalized distance x
and chemical potential ί,

(2.1)

One has for the field correlator (1.6),

t), (2.2)

and correlators (1.7), (1.10) at x, t fixed do not depend on temperature explicitly.
All the correlators mentioned can be expressed in terms of the linear integral

operator JΓ acting on any function of spectral parameter λ as follows:

0*7) W= ϊ K(λ,μ)f(μ)dμ. (2.3)
— oo

Kernel K(λ9 μ) is

(2 4)

Fermi weight 9(λ), (1.2), (2.1) is given as

t}Γ1 (2.5)

is, of course, also a function of ί; this dependence will not be written down
explicitly.] It is convenient to describe properties of operator jf in terms of
functions f+(λ,x9t,γ) and /_(λ,x, ί,y), the dependence on x9t,γ being also as a
rule suppressed in notations: f±(λ) = f+(λ,x, ί,y). These functions are defined as
the solutions of linear integral equations

f±(λ)-γ K(λ,μ)f±(μ}dμ = e±(λ). (2.6)
— oo

Here y is a real parameter and functions e±(λ) are

e±(λ)=]/9(λ)exp{±iλx}. (2.7)

Of importance will be the 2x2 matrix of "potentials" Blm(x,t,y) ( / = + , — ;

(2.8)
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It is a real symmetrical matrix with two independent matrix elements B+ +, B+ _,

B*+ + =B+ + =B_-;B*+_=B+_=B- + . (2.9)

Now all the notations necessary to express the correlators in terms of operator
JΓ are introduced.

Field correlator (1.6), (2.2) is represented as

\J=2l1t9 (2.10)

where Δ is a Fredholm determinant

(2 H)

At the end of this section it will be shown that representation (2.10) can be
obtained from the well-known Lenard formula [3] by means of the Fourier
transform.

The expression for correlator (1.7) is still simpler [6],

<exp{α<2(z)}>Γ = A(x/29 ί, y)|y =(1 _exp{α})/π . (2.12)

The critical value y = l/π (α=— oo) corresponds to the emptiness formation
probability (1.10)

So correlators are represented in terms of operator JΓ.
Let us now derive representation (2.10). The result of paper [3] is

(2.13)

9 -x)det(l -yθτ)\y=2/π. (2.14)

Here θτ is a linear integral operator with a difference kernel acting on interval

[-*,*]

= ί θτ(ξ-η)φ(η)dη, (2.15)
— x

the kernel θτ(ξ — η) being a Fourier transform of Fermi weight (2.5),

0τ(£-»ί) = i ί exp{i(£-A)A} WΛ. (2.16)
-00

Factor ρ(x, — x) is the special value of the resolvent ρ(ξ,η\

Q(ξ,η)-y ί θτ(ξ-ξ')ρ(ξ',η)dξ' = θτ(ξ-η). (2.17)

Let us show now the equivalence of (2.14) and (2.10). Consider the integral
equation

φ(ξ)-y } θΊ{ξ-ξ')φ(ξ')dξ' =
— x

Going to Fourier transform

φ(ξ)= f
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one has the equation for f(λ)

f(λ)-γ J K(λ,μ)f(μ)dμ =

2π]/9(λ) -
dξexp{iλξ}Φ(ξ).

Kernel K(λ,μ) here is exactly kernel (2.4). It follows then that the Fredholm
determinants of operators (2.3) and (2.15) are the same,

Making a Fourier transform in Eq. (2.17) one obtains that

ρ(x,-x) = (2yΓ1B+ +

which completes the proof of (2.10).

3. Partial Differential Equations for Temperature Correlation Functions

Here main results (obtained further in Sects. 4-6) concerning the simplest equal-
time two-point correlators are summarized.

Recall that correlators (1.6), (1.7), (1.10) are expressed (2.2), (2.10), (2.12), (2.13)
in terms of Fredholm determinant Δ(x, ί, γ) (2.1 1) and function B+ +(x, ί, y) (2.8) at
special values of parameter y. It is shown in the next section that at any y

B2

+ + = -d2

x(lnA), (3.1)

and differential equations for J5++ and A are obtained.
The partial differential equation in x, t for function B+ + is

+) = 1 +(1/2) dx((dxd,B+ +)/B++). (3.2)

Initial conditions are given by the following asymptotics at x-»0 and ί fixed (see
Sect. 5)

(3.3)

d(t)= J S(λ)dλ,
— oo

and by the requirement that

lim B++(x,t,y) = Q. (3.4)
t-* — co

As shown in Sect. 6, B++ decreases at ί-» — oo and can be expanded into a
Taylor series in exp{ί} at ί-> — oo and x fixed.

The Eq. (3.2) can be obtained from the sine-Gordon equation by means of
deformations proposed in paper [7].
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Fredholm determinant A and hence correlators (1.7), (1.10) also satisfy the
partial differential equation valid for any γ. Putting

(3.5)

one has (see Sect. 4)

(dtd
2

xσ)2=-4(d2σ)l2xdtdxσ + (dtdxσ)2-2dtσl. (3.6)

Initial conditions are [see (3.3)]

σ= -yd(t)x-y2d2(t)x2/2 + 0(x3), (3.7)

lim σ(x,ί,y) = 0. (3.8)
f-» — 00

At ί-> — oo (and x fixed) σ is a decreasing function of t and can be expanded into
a Taylor series in exp{ί}.

Differential equations for B++ and σ allow us to obtain asymptotics of
correlators in various regimes of parameters. The short distance asymptotics
(jχ->0, t — fixed) is given in Sect. 5, where the complete asymptotical expansion is
constructed. The limit ί-> — oo corresponds to D->0. The complete low density
expansion of correlators is given in Sect. 6. The most subtle question is about the
long distance asymptotics (x->oo). The solution of this problem requires
applying the formalism of classical inverse scattering method. The results will be
given in a separate paper.

To conclude let us discuss the zero temperature limit T=0. In this limit the
integral operator tf (2.3) is reduced to the integral operator Jf0 acting on
interval [ — q,q] (q = hί/2) with the kernel

K0(λ,μ) = (λ-μΓ1 sinxμ-μ). (3.9)

Operator θτ (2.15) becomes the operator Θ0 acting on interval [ — x,x] with the
kernel

η). (3.10)

Fredholm determinant A at T=0 depends only on a product τ of x and ί1/2,

A(x,t,y)\τ=0 = A0(τ,y);τ = xtl/2 = zhί/2. (3.11)

Equation (3.6) rewritten for function

σ0(τ) = τ(dlnA0(τ,y)/dτ) (3.12)

becomes (prime denotes d/dτ)

(τσ'tf=-4(τσ'0-σ0)(4τσ'0 + (σ'0)
2-4σ0) (3.13)

reproducing the famous result of paper [4].

4. Correlators as a Completely Integrable System

To derive Eqs. (3.2), (3.6) for correlators one begins with integral equations (2.6)
for functions f±(λ)

f±(λ)-y J K(λ,μ)f±(μ)dμ = e±(λ). (4.1)
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Here

x} (4.2)

and kernel K(λ, μ) (2.4) can be represented as

K(λ,μ)=l2i(λ-μ)Γ1[.e+(λ)e.(μ)-e_(λ)e+(μ) ] ,

K(λ,μ) = K(μ,λ).

It should be noted that the resolvent kernel R(λ, μ) defined as

R(λ,μ)-y J K(λ,λ')R(λ',μ)dλ' = K(λ,μ) (4.4)

[which can be rewritten for operators as (1 — y <#*)& = Jf ] may be represented in
a form similar to (4.3) which appears to be extremely useful,

R(λyμ) = l2i(λ-μ)Γi U+(λ)f-(μ)-f-(λ)fM (4.5)

To prove this one multiplies both sides of Eq. (4.4) by (λ— μ\ representing the
factor (λ — μ) under the integral in the second term as (λ — μ) = (λ — λ') + (λ' — μ)
and then using Eqs. (4.1) (as well as equations conjugated to them).

Now turn to the derivation of Eqs. (3.2) and (3.6). The main idea is to
consider (4.1) as a GeΓfand-Levitan-Marchenko-type equation for some inte-
grable system, the function 9(λ) playing the role of a reflection coefficient.
Though B(λ) for impenetrable bosons is fixed (2.5) as B(λ) = (l + exp{Λ2 — ί})"1,
all the considerations in this section are valid also if <9 is an arbitrary function of
the difference (A2 — ί) decreasing as (λ2 — ί)-» + oo, i.e. satisfying requirements

(2λdt + dJ9(λ) = 0,»\{»-t}-> + «> = 0 (4.6)

The dependence of solutions of partial differential equations (3.2), (3.6) on
arbitrary function 9(λ) enters in initial values (3.3), (3.7) containing function d(t)
= \&(λ)dλ. It can easily be shown that for a given d(t) function θ, (4.6) is defined
uniquely (and vice versa).

It is worth mentioning that the idea of obtaining differential equations for
solutions of integral equations is not quite new; in different aspects it was used in
papers [8-11].

Let us derive now the partial differential equation (3.2) for function
B++(x9t9γ). The following relations can be obtained from integral equations
(4.1):

(4.7)

(2λdt + dλ) F(λ) = (ίxσ3 - ίdtV) F(λ) . (4.8)

Here F(λ) is a two-component vector function

and 2 x 2 matrices σ3, β, V are

~ <4 «»
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"Potentials" Blm(x, f, y) (/=+,- m =+, -) were introduced in (2.8), (2.9); it is to
be stressed that they do not depend on spectral parameter λ.

To prove (4.7) one first differentiates Eqs. (4.1) with respect to x thus
obtaining

[(l-yJΓ)δx/±](A)-y[(δjeJf)/±](λ)= ±iλe+(λ). (4.11)

Then operator (1—yJf*)"1 should be applied to both sides. Noting that the
kernel of operator 3xJf [see (4.2)] is proportional to the sum of two one-
dimensional projectors

2dxK(λ,μ) = e+(λ)e-(μ) + e_(λ)e+(μ), (4.12)

one easily calculates the action of operator (1 — yjf)"1 on the left-hand side. To
calculate the action of this operator on the right-hand side one uses relation
(1 — yJf) (1 +yj?) = l and formula (4.5) for the resolvent kernel.

The proof of (4.8) is based essentially on properties (4.6) of function 9(λ). It is
more cumbersome (see Appendix A).

Relations (4.7), (4.8) are valid for any λ and can be regarded as a zero
curvature representation (similar to those constructed in [7]) for some non-
linear evolutionary partial differential equations for potentials B. The compati-
bility condition

leads to the following system of equations for functions B+ +, B+ _,

dtdxB+_=dt(B2

++), (4.13)

dtB+ _ =x + (l/2)(3,3f*+ +/B+ +). (4.14)

Using the fact that Blm-+Q at ί-> — oo, one can transform (4.13) into

dxB+_=B2

++ (4.15)

[it is worth mentioning that this simple equation can also be derived directly
from definition (2.8) of potentials B using only Eq. (4.7) for dxF~\.

Eliminating now function B+ _ from the system (4.14), (4.15) one comes just
to Eq. (3.2) for potential B++ which is therefore established.

Let us explain now how the partial differential equation (3.6) for σ = lnA is
derived. To this and let us first calculate the differential dσ = (dxσ)dx + (dtσ)dt.
Partial derivatives turn out to be

dxσ=-B+_, (4.16)

dtσ=-xdtB+-+(l/2)(dtB+-)2-(l/2)(dtB++)2. (4.17)

To obtain the x derivative is rather simple,

dxσ = dx In det (1 - γ tf} = - y tr [(1 - y jf) ~ 1

which by means of (4.12) is reduced to (4.16). Equation for dtσ is obtained not so
straightforwardly, the derivation being given in Appendix A.
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To obtain Eq. (3.6) it is now sufficient to substitute B+. = —dxσ and B+ +

= (-d2

xσY12 into (4.17).
It is interesting to note that the equality of mixed derivatives dxdtσ = dtdxσ,

plus Eq. (4.15) lead to Eq. (3.2) for B+ +.

5. Short Distance Asymptotics

Here the behaviour of correlators at small x is analyzed. We study potentials
B+ +, B+ _ as well as functions σ = lnzl and g = B+ +A/4. At small x the kernel K
of the integral operator Jf (2.1) is small and therefore a perturbation theory in
Jf is valid. It is easily seen from (2.6) and (2.8) that potentials B can be
represented as

B+.= ] s(λ)dλ, (5.1)
— oo

B+ + = ] exp{2iλx}s(λ)dλ, (5.2)
— 00

where s(λ) satisfies the linear integral equation

sW-ym 1 i-^-W-M&W-W). (5.3)
- oo zn/i — μ)

Expanding s(λ) into the Taylor series in x one has

s(λ)= Σ *kWxk (5.4)
fc = 0

[where sk(λ) are also functions of t and y]. For sk the recursion relation is readily
obtained

(5.5)
— oo

which allows us to calculate any sm in the explicit but somewhat lengthy form. So
the complete short-distance expansions for functions B+ _ (5.1), B+ + (5.2) as well
as for σ

(5.6)
0

and g

g(x, ί) = (1/4) B + + (x, ί, 7 = 2/π) exp {φ, ί, 7 = 2/π)} (5.7)

are obtained. Coefficients of these expansions are expressed in terms of functions
βι(t, y) which are moments of the function

Q) (5.8)
— oo

[function β0(t) = γd(t), see (3.3)].
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Let us give first several terms

B+ + =β0 + β2x+(β3

0-2β2)x2

) , (5.9)

), (5.10)

σ=-β0x-β2x2/2-β3

0x
3β-[_(β*/4)-(β0β2β) ]x*

+ 0(x6) . (5.1 1)

From these expansions one easily obtains the expansion for the function g(x, ί)
which defines (2.2) the two-point correlator; the answer is

<^(z)φ(-z)>Γ = D[l-2(E/D)z2 + (8/3)Ez3] + 0(z4), (5.12)

where D is density (1.3) and E is kinetical energy density (1.4).
The first two terms in (5.9), (5.11) give initial conditions (3.3), (3.7) for partial

differential equations (3.2), (3.6). These equations allow, of course, to reproduce
the same small x expansion (see Appendix B).

6. Low Density Expansion

Turn now to the expansion of correlators at low densities. It is easy to see that
gas density D (1.3) is small at large negative ί (D->0 at ί-> — oo). For convenience
the variable ζ is introduced here,

ζ=-exp{ί};ζ->0 at f->-oo. (6.1)

It is shown below that functions jB + + ,# + _,σ = lnzl, and g (2.2) can be expanded
into absolutely convergent Taylor series in ζ at £->0 (x fixed)

B+ + = Σ bkζ
k,

fe=l

7 ,
σ = Σ σk?=-]B+_(y,t)dy,

k=ί 0

g= Σ gfcC
fc = i^++(^ί,2

k=l

Quantities bk, cfe, σk here are functions of x and y and gfe are functions of x.
Explicit formulae for coefficients of these series as well as the lower bound for

the convergence radius are given below. Our starting point is again representa-
tions (5.1), (5.2) for B and the integral equation (5.3). Putting into (5.3) function
s(λ) in the form

s(λ)= Σ C\ (6.3)



Correlators as an Integrable System 215

(sk are functions of x and γ) and representing 9(λ) (2.5) as

=~ Σ C fcexp{-/d2}, (6.4)

one obtains recursion relations for sk which can be solved in the explicit form. So
one derives for coefficients bk and ck in (6.2),

bk= jΣ *i°; *i1)= -T(π//c)1/2exp{-x2//c} ,

^2
-X

m
(6 5)

and

(6 6)

These formulae allow us to obtain explicit expansions at ί-> — oo for all the
functions in (6.2). They also allow one to obtain the following estimates uniform
in x:

(6.7)

which guarantees that expansions (6.3) [and also (6.2)] are absolutely convergent
in the following regions:

(i) At |C|<l(ί<0) if ygl/π.
(ii) At|q<(πyΓHf<-ln(πy)) if y>l/π.
Let us give several first terms of expansions for σ and g

σ = _ yπ

1/2x exp {ί} + y(π/2)1/2x exp {It}

(6.8)
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or

<^+(z)tp(-z)>Γ = Dexp{-Tz2}(M-z2T2). (6.9)

In conclusion let us emphasize once more that we have shown that at
ί-> — QO (and x fixed) functions B++,B+_ can be expanded into convergent
series in entire degrees of exp{ί}, the same being true, of course, also for
functions σ and g.

7. Multi-Point Correlators

Temperature equal-time multipoint correlators are considered here. Introducing

normalized distance x = z]/T and chemical potential t = h/T (2.1) one has for
correlator (1.11)

<φ + (zn..V(z^)φ(zΓ)..^^ (7.1)

where GN({x+},{χ-},t) = GN(xϊ,...,xU;xϊ,...,xΰ,t).
Lenard [3] represented this correlator as a Fredholm minor of linear integral

operator θψ\

[0(τ>](£H Σ 7 θτ(ξ-η)φ(η)dη,
J = l X2J-1

where θτ(ξ — η) is a Fourier transform of Fermi weight 9(λ) (2.16) and x/s are all
x£,Xk in (7.1) taken in the increasing order

xi£x2£x3£...£x2N',{x} = {x+}v{χ-}. (7.2)

Similarly to the two-point case considered in Sect. 2 one can represent the
multipoint correlator in terms of another linear integral operator

) = f K(λ,μ)f(μ)dμ. (7.3)
— oo

Kernel K(λ, μ) is now

2N

K(λ,μ)=[2i(λ-μ)Tl Σ (-ί)me+(λ)e-(μ), (7.4)
m = l

where functions e* are

e*(λ) = yW) exp{±Uxm}. (7.5)

It is convenient to introduce functions f^(λ) analogous to f± (2.6),

f+(λ)-γ I

fm-(λ)-7 f
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Distances xm (7.2) and chemical potential t [entering only function
= (1 +exp{/ί2 — ί})-1] play a role of parameters in these integral equations. One
also defines "potentials" Vlm similar to (2.8),

Jf:

(7.7)

One has the following representation for correlator (7.1) in terms of operator

x Π sign(xfe

+ - x /) sign(xk~ - x r)
j<fc

x DetN(7IW({x}, ί, y)) Λ({x}, ί, y)|y=2/7C . (7.8)

Here [(JV + l)/2] = N/2 for N even and [(N + l)/2]=(N + l)/2 for N odd;
ΌQtN(Vlm) is the determinant of the N xN matrix with matrix elements Vlm (7.7)
(1 ̂ l^N; N+ 1 ̂ m^2AΓ), and J is the Fredholm determinant

Λ({x},ί,y) = det(l-y*T (7.9)

In what follows we give differential equations for "potentials" Vlm and for the
function σ = ln J. They are obtained similarly to the two-point case considered in
Sects. 3 and 4. So, only the results will be given below. It should, however, be
mentioned that the following representation for the kernel R of the resolvent

— yjf )^ = JΓ) is essentially used in deriving the results:

2N

R(λ,μ)=[_2i(λ-μ)ri Σ (-l)"/»Wm~(0) (7-10)
m = l

[Due to the property

2N

Σ (-i)7ιW,-μ)=o (7.H)
1=1

there is no pole at λ = μ at the kernel]
To obtain a zero curvature representation for the multidimensional inte-

grable system (xι,...,x2jv
 are co-ordinates and ί is a "time") one applies to

Eqs. (7.6) differential operators dk = d/dxk and (2λdt + dλ), obtaining a set of
L-operators and the M-operator

2N

Σ fι+Wvln

(7.12)

2JV

m (m=l,...,2JV). (7.13)
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Demanding now the compatibility of these equations one comes to the
system of partial differential equations for potentials. First write down equations
without the time derivatives

SkVlm=VlkVkJ2 (fcΦm,/), (7.14)

2N

l*m,j

2N

SmVmm=-^ Σ VπdYim (7.16)

[at derivation of (7.14) the fact is taken into account that potentials are going to
zero as ί-> — oo]. Equations containing the time derivative are

s^l-dm)vlm+(Xl-Xm)Vlm+(dtvmm-d,vll)vlm

One can also easily get the following simple sequences:

2N \ 2N
. =0; Y Vm=Q. (7.18)Jrn ~ L-4 mm \ J

m = l

So equations for potentials (7.14)-(7.18) are written down.
To derive the equation for function σ

one first calculates the differential dσ with respect to variables x, ί. The result is

dmσ=-VmJ2, (7.20)

2N 2N

δ(σ=-i Σ xΛV^ + t Σ (d,Vlm)(dtVml), (7.21)
m = l m , / = l

which by virtue of (7.7), (7.14) gives the equation for σ,

2N 2N

δ(σ= Σ xΛSmσ+ Σ (Stdmσ)2

m=1 m = 1

2ΛΓ

-i Σ (δ,^)-1^^^)2. (7.22)
k φ m

It can be shown also that

2ΛT

Σ Smσ=0. (7.23)
m = l

Considering the equality of mixed derivatives dxdtσ = dtdxσ, one obtains from
(7.20), (7.21) "conserved currents"

/ IN \ /IN \
8t( Σ (^-^)Knfc^J =δfc Σ (StVlm)(dtVml) . (7.24)

\ m = l / \m,/ /
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It should be noted that the zero-temperature limit of Eqs. (7.14)-(7.20)
reproduces (after appropriate change of notations) the corresponding equations
of paper [4].

To conclude let us discuss the zero temperature limit of Eq. (7.22) for σ. In
this limit function σ depends on 2N variables τj9 τj = xjt

ll2 = zjh
ίf2. Recalculating

derivatives one comes to be following equation for σ at T=0:

= i Σ (3mdkσΓldmdkσ + ̂ iSASmσ2. (7.25)

Here δjΞδ/δτ,-. Also, of course, £3.<r = 0. Equation (7.25) is a new result even at
zero temperature. i

8. Conclusion

The impenetrable Bose gas is the simplest non-trivial quantum integrable system
which can be obtained by quantization of a classical non-linear system, namely,
of the non-linear Schrόdinger equation. It is remarkable that after quantization
correlation functions are described by a new classical integrable system. The
essential point is the possibility to represent correlators in terms of the linear
integral operator, the Fredholm determinant playing a role of τ-function of the
new integrable system. As representations of the correlators of this kind are
known also for other quantum models [6] we hope that the scheme described
above is rather general.

It should be noted that the classical integrable system obtained gives the
complete description of correlators. The small distance and low density expan-
sions for them was given above. To obtain the asymptotics at large distances is a
more difficult problem which requires use of the inverse scattering method. It
will be done in the next publication (the first results including the explicit
formula for the correlation radius of the two-point field correlator, see in paper
[12]).

Note added in proofs. I. Gabitov and S. Burtsev informed us that Eq. (3.2) is particular case of
Maxwell-Bloch equation

Appendix A

Here some details of the derivation of M operator (4.8) and of relation (4.17) for
dtσ are given. Considering integral equations (4.1) and differentiating explicitly
with respect to ί, one obtains the following useful formula:

:). (A.i)
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Taking into account Eqs. (4.4) and (4.5) for the resolvent kernel one derives from
(A.1) that

J (f+(X)f-(μ)-f-(λ)f+(μ))ίf±(μ)dμ
I - 00

+ 2y J R ( λ , μ ) f ± ( μ } d μ . (A.2)

Differentiating (A.I) with respect to λ and performing integration by parts one
has

±

oo

R(λ, μ)-JLf±(μ)dμ . (A.3)

Summing up Eqs. (A.2) and (A.3) and taking into account that (2λdt + dλ)8 = Q,
one comes to

±. (A.4)

Here

00 M

(A.5)

Using again (A.I) one proves after some calculations that

Ulm = dt J eι(μ)fm(μ)dμ,
— oo

which allows us to rewrite (A.4) as M-operator (4.8). The derivation of relation
(4.17) for dtσ begins with

which by means of (A.I) and (4.5) can be written as

dtσ=-γ J R(λ,λ)d-
- oo

= y dλ

Taking into account Eqs. (A.3) for dλf+ and (A.5), after some calculations one
obtains formula (4.17).
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Appendix B

Explain how the small x expansions (5.9)-(5.13) can be obtained from partial
differential equations (3.2), (3.6) with initial conditions (3.3), (3.7) and (3.4), (3.8).

Consider Eq. (3.2) for B++ in more detail. Representing B++(x,t) (depen-
dence on γ will not be written explicitly) as a series in x,

00

B++(x,t)= Σ bn(t)xn,

b0(t) = β0(t) = γ j 9(λ)dλ; bί(t) = βl(t), (B.I)
— oo

one obtains from (3.2) the following recursive system of ordinary differential
equations for function bn(t\ n^2:

^ " 2 •_ (R2)

(the general term though rather bulky can also be written explicitly). These
equations are easily integrated [initial conditions are bn(— oo) = 0], the answer
being unique. Thus one has for b2(t\

b2(t) = βl(t)- } β0(τ)dτ. (B.3)
— oo

At first sight this differs from b2(t) = βl — 2β2 given by expansion (5.9). Neverthe-
less, they are equal for any function &(λ) satisfying conditions (4.6). To show this
it is sufficient to prove that functions A(t) and B(t) defined as

A(t) = f /?0(τ)dτ, B(t) = 2γ f λ2B(λ)dλ (B.4)α2-<

— oo

are equal. In fact, A(— co) = B( — oo) = 0 and due to (4.6) also dtA(t) = dtB(t); so
A(t) = B(t).

For b3 one obtains from (B.2),

&3(ί) = /tf-t ί β2(τ}β«(τ}dτ-l \ β2

0(τ)dτ,
— oo — oo

which, in a similar way, can transform into b3(t) = βQ — (4β)β2β0 as given by (5.9).
The same is true for the higher terms.
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