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Abstract. We show that the moments of order γ of the eigenvalues of the
Schrόdinger Hamiltonian in n dimensions can be related to moments of order
less than or equal to y — \ in n +1 dimensions. This makes it possible to improve
the bounds on the sum of the eigenvalues in three dimensions and consequently
the Lieb-Thirring bound on the binding energy of matter.

1. Introduction

A technical, but essential ingredient of the proof of "stability" of matter by Lieb
and Thirring [1] is a bound on the sum of the eigenvalues of a one-particle
Hamiltonian in three space dimensions. The Lieb-Thirring bound has the form

E>-CN (1)

for a system with N electrons and point nuclei of charges Z1? Z2, . . ., Zp; α is the fine
structure constant and m the electron mass.

The constant C is proportional to the power 2/3 of the coefficient appearing in
the inequality

Σki^Li.afllΠ5^3*, (2)

where the e^s are the negative eigenvalues of the three-dimensional one-particle
Schrόdinger equation with a potential F(for the notation L1 3 see Sect. 2). In [1],
Lieb and Thirring get

and correspondingly

C = 4.16. (4)
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The best possible value one can hope to get for L1>3 is given by the semiclassical
estimate [2]

(5)

which is better by a factor 4π. If Eq. (5) was a bound, this would lead to the best
possible C,

C-0.77, (6)

which is what one gets if one takes isolated atoms and assumes the validity of the
Thomas-Fermi approximation. The Thomas-Fermi approximation is known to
hold in the limit of large Z [3],

Shortly after the Lieb-Thirring result, Lieb [4] found a bound on the total
number of bound states up to a given energy E, in three dimensions:

|(^-^)-l3/2 (7)

By integration this gives a bound on £ \et\ which is

(8)
and this leads to

C = 2.78. (9)

The purpose of this paper is to show a link between moments in various space
dimensions which allows, among other things, a slight improvement of inequality
(8), and has an intrinsic interest.

2. Comparison of Moments in Various Space Dimensions

In what follows, we shall take the notation of [5]. We have

+ >x, (10)

where Ly „ is the smallest constant for which (10) holds, n is the number of space
dimensions, y is the order of the moment, the e/s are the negative eigenvalues and
F_ is the negative part of V. Notice that L0 t l and L 0 f 2 are infinite.

If y= λv, and if we let λ go to infinity we get the semiclassical limit [2, 5],

(ii)

We have Γfa + ί)
- - ' /2 (12)

There is one case where we know that Ly n = Lc

y „, which is n = 1, y = 3/2, and by an
argument of Aizenman and Lieb [6] n = 1 and any y > 3/2. In the case of the number
of bound states, y = 0, we know from the explicit examples of Glaser, Grosse, and
Martin [7] that

L0,M>Lco,Π, V n . (13)
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For y = 1 (i.e., the sum of the energies) and three dimensions, there is no
counterexample to the conjecture that the semiclassical constant is in fact the strict
bound.

To establish a link between moments in dimensions n and n + 1, we shall use the
fact that inequality (10) holds for a completely arbitrary potential. We call
x = x l 5x2, •• >x n the first n co-ordinates and t the last one in n + 1 dimensions.

We shall begin by an example. Take

(14)

Then the total number of negative energy bound states of V is given by

Nn+ί(V)^L0,n + ildxndt\lv(x) + λt2l^, (15)

where Np = L0tp designates the total number of bound states in p dimensions. The
integral over t can be carried exactly. It gives

(16)

Γ + 2

Let us now analyze what N is. If the pair (Eί9 φf(x)) is the bound-state energy and
the wave function of a state in potential v, and (εk, φk(t)) is one of the energy levels of
the harmonic oscillator λt2, the levels of V are given by

(Et + BtoψMφώ)). (17)

In N we count the energy levels Ej + ]/A, E + 3]/!, ...9Ei + (2n + !)]/!, as long as
Et + εk is negative. Therefore the level Ef will be counted approximately (neglecting
the zero-energy contribution)

times.
'•• - r

So we get

/— s*3 V ' /

2]/I Jn
V2

and, therefore, letting λ go to zero,

|i?-|2+1d"x,

n
I

2 (18)

It is easy to check, from Eq. (12), that we have

L £ l>» L (19)
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In fact, this result was to be expected without calculation for the following reason.
Instead of starting from the potential V=υ + λt2, we could have taken gK letting g
go to infinity. Then w + 1 a+1

Nn+l*I!0,H+lg
 2 J |F_| 2 fxdt,

and, in n dimensions:

so that unavoidably the ratio of £ |E4| and N contains the semiclassical constants.
There are two possible generalizations of this result. First, starting from

dimension n +1, one can replace the harmonic oscillator potential by another one.
If the energy levels sk increase according to a power law sk ~ c/cα, we shall get a
different moment of the eigenvalues \Et\ of the nth dimensional potential. Only the
asymptotic behaviour for large k of the εfe's matters, because we let the strength of
the auxiliary potential go to zero. So, to get moments of the eigenvalues of the
n-dimensional potential, it is sufficient to consider power potentials. For V= |ί|v,
the eigenvalues εk behave like const x /c2v/ (v+2> [8], and one gets a bound on the
moment of order y = (v + 2)/2v. Notice that by this method it is impossible to obtain
moments of order less than \. This is due to the fact that in any one-dimensional
potential, the nth energy level has an energy which is less than const x n2. To prove
this, notice that

V(x) < sup V(x) for a < x < b, + oo for x outside ab,
a<y<b

and use the monotonicity of the energy levels with respect to the potential.
By using the trick of the large coupling constant we get, without calculation:

ΓC —^on+i for y^l/2. (20)

This can be generalized still further. One can start from the inequality for a
given moment different from zero in (n + 1) dimensions, in a potential v(x) + λtv.
Then the moment of order γ is

with εk ~ const x fc2v/(v + 2). So

ΣKίi + β*)-!"* const |£/+^.
k

Again, explicit calculations are not needed because of the large coupling
constant argument, and we get finally

L^-^-Ly>π+1 with c^y + 1/2. (21)

This inequality gives a constructive proof of some results in low dimensions.

i) The existence of a bound on the number of bound states for three dimensions
implies the existence of a bound on the moments of order \ in two dimensions and
on the sum of the energies in one dimension.



Eigenvalues of the Schrόdinger Hamiltonian 165

ii) The existence of a bound for n = 2, y>0 implies the existence of a bound for
n = l,y>i.
iii) If we know (at present, we don't!) that Ly π = Lc

y>n, then

ίγ+i,M_1=LV+i,,J-1 for y^γ. (22)

In [5, 9], another quantity was introduced, L^ „, which replaces Ly n in (10) when
there is only one bound state, or if one uses only the lowest bound state:

l}0,n = [_πn(n-2)Tnl2Γ(n)/Γ(n/2).

Again in [5], the conjecture was made that

This conjecture was later shown to be incorrect in large-dimensional spaces for
n ̂  7 by Glaser, Grosse, and Martin [7]. However, there is no counter-example to
this conjecture for n = 1, 2, 3. Then one can define yc > M for which L\tn = Uytn. From
(22), one then deduces

. (23)
According to Barnes, this is indeed true numerically [5] : γc 1 = 1.5, yc 2 £ 1.165, yc 3

^0.863.

3. The Case of Few Bound States

In the previous section, we introduced L\ f l l, the smallest possible constant in
inequality (11), corresponding to the lowest (and possibly unique) negative energy
bound state. In particular, if there is at least one bound state we have

(24)

and, if there are ίwo bound states [9], we have

(25)

Indeed, the higher bound state has a wave function which can be separated into
two nodal regions because, from orthogonality to the ground state, it has
necessarily positive and negative values, and it has been shown by Courant and
Hubert that the kth wave function has at most k nodal regions. Applying (24) to the
two nodal regions of the first excited state, we get (25).

Now we can apply the same strategy as in the previous section. Starting from a
potential in n + 1 dimensions V= v(x) + /lί2, but, instead of letting λ eventually go to
zero, choose λ in such a way that V has only one or only two bound states.

Since the lowest level of the harmonic oscillator is at ε = j/I, we shall take first

]/I = — EQ — 77, where E0 is the ground state of v, guaranteed to be non-degenerate,
and η is positive and sufficiently small. Then V has only one bound state and we get

|Eol<^4,M +ιίM^ + >*. (26)
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Notice the factor ^ coming from the fact that the ground state of a harmonic
oscillator has only half a quantum, while the spacing, occurring in the previous
section, is a quantum. Inequality (26) can be rewritten as

1A..4., + 1 ]/π

'"^2 L<0>,,+1 2 /n -ΠPΠΓ (27)
^ ^o.ιι+1 ^ r / ™ , 0 \ r / 2 ιvfT~Γ( — +2 I [π(n — 1)J ^

For n = 3, this gives

This is to be compared to Barnes's numerical calculation [5]

L^
From Eq. (27), we conclude

L\JL\,n<\ for n^5. (28)

Let us now look at £19 the first excited state of v, using Eq. (25). If we take
|/I=|£1| — η, V has ίwo bound states and we get

|£ιl<7r^ίi..+ ιf l»-l* + V*. (29)

Notice that already for n = 3, the coefficient in (29) is 0.0051, i.e., less than the
"exact" coefficient obtained by Barnes for |£0|.

More generally, we get for the p + 1 first bound states,

τπl\υ_\* + lfx. (30)

It is easy to see that for any given p, one can manage to have the coefficient in (30)
less than the semiclassical constant by taking n large enough. For instance, for the
first three bound states, this happens for n ̂  7. This supports the conjecture that for
n large enough it is the semiclassical constant which gives the bound, but it is also
compatible with a situation similar to what happens for the number of bound states
in a spherically symmetric potential, as shown in [7] : for n ̂  7 the configurations,
presumably saturating the bound, obtained by a variational approach, have more
and more bound states as n increases.

Naturally, it is clear that all we have said about |£0|, \E±\, etc., can be repeated
for moments \E0\

γ, lE^7, etc., with y^i The bounds will be in terms of LO> Π + I,
LC

0 w+1, Lc

y „. We leave this as an exercise to the reader.

4. Applications to the Problem of Stability of Matter, and Conclusions

As we said in the introduction, the constant entering into the lower bound (1) of the
binding energy of matter is linked to the value of Lv 3 in the approach of Lieb and
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Thirring [1]. The best value for L1}3 has, up to now, been obtained from the Lieb
bound on N3 = L0 3:

L1>3<0.0467. (31)

From Sect. 2 we have a bound on L^ 3 in terms of L0 4 and also L0 5, since
moments can increase by only half a unit when the dimension of the space
decreases by one unit:

^ι,3<ϊlA),4, L l i 3 <4πLo f 5. (32)

For LO 4 and L0 j 5 we can use the bounds by Lieb [4] or by Blanchard, Rezende,
and Stubbe [10]. The values of Lieb are the best. They are given by

o

f(s) convex ,

o y

(33)

It is easy to prove that the best choice for / is /=0 for s<s0, /= const(s—sQ) for
s^s0. In this way one gets

L0,4< 0.0191, L0> 5 < 0.00321,

and respectively

L l t 3 < 0.0407, L!, 3 < 0.0404. (34)

Comparing with (31), we see that we get a rather minor improvement. The
corresponding value of C, entering into (1), becomes C = 2.52, to be compared with
C = 2.78.

Now the question is to know if one can hope to do better. With the present
method, we cannot hope to find the best possible answer, which would be
L! 13 = Lc! 13 because, from Eq. (20), this would be possible only if L0> 5 was equal to
the classical value. This is not the case. We know that L0> 5 ̂  L1^ 5 > LC

0 5. In fact, it
is unfortunate that this will never happen in any number of dimensions because of
inequality (13). So our method will not, in its present form, allow us to prove that C
is equal to the Thomas-Fermi value.

This being said, there is room for improvement if progress is made on L0 4 and
LO 5. In the spherically symmetric case, we know the best possible value for L0 4. It
is [7] 3

A>.4=32^0.00950, (35)
and hence this would give

L l s 3 = 0.0203 and C = 1.593. (36)

Unfortunately, V is not spherically symmetric, even if v is taken to be spherically
symmetric. One would need some argument to prove that the extremum for L0 4 is
reached for a spherically symmetric potential in four dimensions. Then, if this is so,
one realizes, following carefully the derivation of [7], that this potential would
furthermore be unavoidably a potential containing only one bound state.
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There is also a different path followed by Thirring [11], showing that for very
large Z's the leading contribution in the lower bound on the ground state energy
indeed contains the Thomas-Fermi constant, but the remainder should be
bounded and the simplicity of Eq. (1) is lost. So it is worth trying to improve the
bound on the sum of the energies. This bound remained stationary during 12 years.
Let us hope that it will take less time to get the best possible value.
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