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Abstract. A thorough analysis of the "blowing-up" modes of the Z6-orbifold
based on the Lie algebra A2®DAr is presented. We discover that the
descriptions of these modes in the language of superconformal field theory and
Calabi-Yau compactifϊcation are not immediately in agreement. A solution to
this apparent inconsistency is offered which leads to the possibility of
differentiably distinct Calabi-Yau manifolds giving isomorphic physics.

1. Introduction

The fact that the superstring can propagate in ten-dimensional flat space-time led
early models for superstring physics to be based on a ten-dimensional space
globally of the form M 4 x K, where K is a compact space of 6 dimensions. With this
assumption, and many more, it was shown in [1] that, in order to have an
unbroken N = 1 space-time supersymmetry, K must be a complex 3-fold with
Kahler metric and vanishing Ricci-curvature. Manifolds admitting such a
structure (i.e., Kahler manifolds with trivial canonical class) are known usually as
Calabi-Yau manifolds. Superstrings can also propagate on compactification
spaces with suitably mild singularities such as orbifolds [8] and therefore it seems
appropriate to use a slightly wider class of spaces as candidates for K. In the
following we will use C-Y to denote this class of algebraic varieties possibly with
singularities which may be blown up to give a smooth Calabi-Yau manifold.

A more general approach than the above ten-dimensional view is to take a
superconformal field theory (SCFT) to model the compactification process.
SCFTs are characterized by a central charge c giving operator products for the
stress-energy tensor

+ j-^—i TB{z2)+ ^—d2Uz2). (1)
Z Z z z )

* BITNET address: psa at ukacrl



594 P. Aspinwall

In order to cancel the ghost contribution to the central charge, we require a SCFT
with 6 = 6 in order to obtain four-dimensional flat space-time. In this paper we will
only consider the special case of the heterotic string with the spin connection
identified with the gauge connection or the equivalent of this in conformal field
theory language. For space-time supersymmetry in the heterotic string we require
at least (2,0) world-sheet symmetry with all physical vertex operators having
integral (7(1) charge [the (7(1) associated to the JV = 2 supersymmetry] [2,4]. Since
we have identified the connection on the tangent bundle of the right moving
superstring with the gauge connection on the bundle coming from the left movers,
we will thus be considering (2,2)-superconformal field theories. Since a SCFT
propagating on a circle S1 has 6= 1 (this is how c was normalized) we see that the
product of six c = 1 theories satisfies our requirements (although we would actually
get more supersymmetries than we want phenomenologically). Thus (S1)6 is a
possible compactification space and since this is clearly a C-Y, we see agreement
between the two theories. For general c = 6 SCFTs however, the connection with
any C-Y is far from apparent and we must use indirect methods to check for any
equivalence between these theories. One approach [5] is to look for the spectrum
of particles and discrete symmetries of the compactifications. We will follow the
method initially considered in [6] and look at the moduli space of SCFTs which, if
the theories are equivalent, should match the moduli space of C-Y's in some way.
The moduli space of c = 1 conformal field theories is, at least in part, well known
[3]. The moduli space of c = 1 SCFTs has recently been studied in [7]. At generic
points, the moduli space of any conformal field theory has the structure of a
manifold where the number of dimensions is equal to the number of "truly
marginal operators" Φ{. The field theory moves in this manifold by modifying the
action

S' = S + gJφ.rfz</z. (2)

At certain points however ("multicritical points") truly marginal operators
suddenly appear and we lose the manifold structure. In the simplest case, i.e., that
of a c = 1 conformal field theory connected to the circle we have a moduli space

i ι rorb

Multicritical point

Seiberg [6] has already checked the agreement at smooth points of the moduli
space. The moduli space of C-Y 3-folds is thought to have very interesting singular
points however and it is a useful problem to look at the two types of theories
around such points. The case of e = 4 has already been checked in [6]. Here, the
only non-trivial C-Y's are K3 surfaces and since any C-Y bimeromorphically
equivalent to a K3 surface is biholomorphic to it we have no particularly
interesting structure in the moduli space of K3 to look at. In the case of algebraic
3-folds however, we have interesting birational geometry (see, for example [18]).
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The regions of the moduli space we will look at are the neighbourhoods of the
points where a rational curve (holomorphic P1) has been blown-down. It is
fortunate that it is at a set of points such as these that the only well-studied
rigorous equivalence of SCFTs and C-Y's is known. These points are examples
of orbifold models.

2. Strings on Orbifolds

An orbifold is a space in which the singularities are quotient singularities. One
takes a smooth manifold Mo which admits a discrete group Go which acts as
isometries on Mo and then one takes the quotient of Mo by this group. - I.e.,
locally, in the neighbourhood of a fixed point, the space is homeomorphic to ISS/G
for some discrete group G,

g: x { H-> (MJijXj, geGQG0

for some matrix Mg, (3)

and the points (zf) and g(z^ are identified. For a nontrivial group G, the origin of
WLn/G will be singular since this is fixed by the action of G. Other points in (Cπ may
also be fixed by some element and so these points will also project onto singular
points in the orbifold. If, in a sufficiently small open neighbourhood, the origin is
the only fixed point of any element of G, the orbifold is said to have an isolated
singularity. In order to obtain an orbifold in the class C-Y, we need a space which
will admit a holonomy group of S(7(3) and it can then be shown that we require Mo

to be a complex 3-fold and that GOCSU(3).
Here we will obtain an orbifold in the following way [20]. Take the maximal

torus T# of a given Lie algebra <£. We then divide this torus by the cyclic group
G—Έn whose generator g is the Coxeter element of J5f. The Coxeter element is
defined as the product of reflections about hyperplanes in the root lattice
perpendicular to each simple root (i.e., the product of the generators of the Weyl
group of J£f). The Coxeter element is clearly an isometry of T# and is a rotation for
an even dimensional torus. Thus ££ fully defines an orbifold in this way. The action
of the generator g around a fixed point of g is given by

5 l Z l? Z 2? Z 3/ ""^ \ e ZUe Z2>e Z3)> \V

where the ft can be derived from J5f. If we do not specify the fixed point to which the
fι refer, the origin is assumed. The orbifold is flat everywhere that it is not singular.
The well studied Z-orbifold [8] is given by & = A2®A2®A2. The only other six-
dimensional orbifold from this class with only isolated singularities is the
"2£7-orbifold" JS? = A6, where we have 7 singularities locally of the form (£3/ZΊ,
f=η{\, 2,4). Unfortunately these two orbifolds do not exhibit the properties we are
interested in and we shall study another orbifold based on A2φD4. This has values
/f=-g(l, 2,3) where the middle co-ordinate here refers to the A2 part and the outer
two co-ordinates are associated to D4. We can see immediately that the cube of the
Coxeter generator acts as ̂ (1,0,1), thus fixing the whole A2 torus and we do not
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therefore have just isolated singularities. The fixed point sets are as follows:

g: ^(1,2,3) has 12 fixed points: 3 on A2

4onD4,

g2: ^(1,2,0) has 9 fixed tori: 3 fixed points on A2

3 fixed tori on D 4 ,

g3: ^(1,0,1) has 16 fixed tori: Λ2 is fixed

16 fixed points on D4,

which leads to the configuration on T# shown in Fig. 1. The tori (A) are mapped to
themselves trivially by Z2 CZ6 and to each other in groups of threes by Z3. The tori
(B) are mapped to themselves trivially by TL2 and non-trivially by Έ3. (C) are
mapped to themselves non-trivially by Έ2 and trivially by Z 3 and (D) are mapped
to each other in pairs by Z2 and to themselves trivially by Z3. The twelve points of
intersection of the tori (B) and (C) are the only points mapped to themselves by all
the elements of Z 6 .

In order to describe the strings that propagate on this orbifold we will use the
language of conformal field theory. We begin with the basic c = 6 SCFT, where the
fields Xμ simply describe the torus T&. We then "mod out" by the group G in a well
studied way to obtain another 6 = 6 SCFT [10,11]. This new SCFT consists of
states invariant under G from the original torus but we also obtain new "twisted"
states demanded by one-loop modular invariance of the theory.

A physical string is described by its vertex operator - namely a primary field of
conformal dimension (ή, h) = (1,1). The right moving sector of the heterotic string is
that of a superstring with (at least) N = i world-sheet supersymmetry. The right-

identified
under |

KJ KJ \J
Identified under Z 2

Fig. 1. The configuration of fixed points on the torus T#
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handed part of the vertex operator for the emission of untwisted bosons and
fermions in the ( — 1) and (—j) pictures respectively are [9]

V_ x (boson) = eiab' HeίkXe ~φ, (5)

F_ 1/2(fermion) = e™*' HeikXe ~1/2φ. (6)

Here the NSR fermionic degrees of freedom have been bosonized into five degrees
of freedom H\ (i = 1 ... 5). The αι give the momenta on the weight lattice of 50(10)
corresponding to these degrees of freedom. Given that the conformal weight of elφ

is -^/(/ + 2), for h = \ we have

i«M*2+t=i,
so that for massless bosons we have ah = (+1,0,0,0,0),... i.e., the 10 of 5O(10) and
for massless fermions α / = (±^, +^,...) (even number of + signs) i.e., the 16 of
5O(10) showing we have a vector and a spinor respectively. For the twisted sectors
we introduce a twist operator Λg which takes us from an untwisted state to a

twisted one. The conformal weight of Λg can be shown to be hΛ=\ £ /f(l —/)). Our
boson vertex now becomes i = 1

V_ ̂ twisted boson) = eiab'HΛge
ikxe~φ. (8)

The twist results in a change in boundary conditions for the NSR fermions and so
our 5O(10) lattice must be affected. An St7(3)c5O(6) element
g = diag(e 2 π ί / l,e 2 π ί / 2,e 2 π ί / 3) can be represented as a translation on the maximal
torus of D3 of (/l5 f2,1 — / 3 ), where we have used co-ordinates such that the simple
roots of D3 are (1, — 1,0), (0,1,1), and (0,1, — 1). This embeds naturally as the first
three co-ordinates in the root space of D5, the algebra of SO(10) and, in fact, it is this
translation which acts on our torus for the NSR fermions.

As an example, consider the twist £(1,2,3). This will shift the lattice by an
amount ι; = (£,^,^,0,0). For a vector p on the unshifted lattice we thus have

i (p-f) 2 +iχ(£χf+iχf+iχi)- ik 2 +i=i (9)

satisfied, for k = 0, by p = (0,0,1,0,0) giving a scalar. Similarly for the fermion we

UP-V)2+£+I=I (10)

satisfied by p = ( i ? ϋ ±i> + ί ) giving a chiral fermion in four dimensions. Notice
that a shift of — v will give us the opposite chirality. In the left moving sector we
have no superghost charges and the 5O(10) lattice is replaced by an E8 x E8 lattice.
We will use only one E8 as the second contributes nothing of importance here. The
SO(6) lattice naturally embeds into the E8 lattice and so, for (2,2)-models, a twist
results in a shift of (/l5 / 2,1 —/3,0,0,0,0,0). (We have used here the usual basis for
the E8 lattice - see [8].) The twisted sector then has vertex operators such as

V27 = er"'FAeikx. (11)

For twists such as £(1,2,3), this leads to massless states forming a 27 of E6cE8.
Note that the correspond anti-twist sector gives us a 27 representation. We can
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also obtain massless states using oscillator modes of the form

K.-e ' Λ J ^ e " . (12)

Let us look at a twist with a fixed line through the origin rather than an isolated
fixed point e.g., y(l, 2,0). It is best to treat this as an SU(2) element and embed it in
the 50 (4) algebra and represent v by (j, ̂ , 0,0,...). For the massless fermions we now
g e t i ( p - f ) 2 + f + | = l (13)

satisfied by p = (J,i, ±i> ± i ± 2) ( e v e n number of plus signs) and so we have both
chiralities of each fermion present in four dimensions.

In the left sector we now have

ίip-v)2H=U (14)

which gives us p = (l,0,..., ±1,...), (0,1,..., ±1,...) or (ϋ ±i ±i,...) (with an
even number of + signs). These weights form the 56 of EΊCE8. We are looking for
E6 representations and so we obtain both a 27 and a 27 from this sector. We have
therefore a particle + anti-particle pair of 27 and a particle + anti-particle pair of
27. In the isolated fixed point case we obtained only a particle of a 27
representation. One can understand from this the significance of compactification
on K3 x torus - an example of a C-Y. This has Euler characteristic =0 and so we
should not expect to have any net number of chiral generations. We can build
K3 x torus from an orbifold with only non-isolated fixed points similar (or indeed
precisely the same) as those above and we thus automatically pair off every 27 with
a 27.

We are now in a position to piece together the above information to build the
spectrum of 27s and 27s appearing in the A2@DAr orbifold. The sectors twisted by g
and g5 are easy - these are just like the twisted sectors of the Z-orbifold [8]. For
each of the twelve fixed points of g we obtain a 27, the g and g5 giving the particle
and anti-particle respectively. For the other twisted sectors we mustn't forget that,
like untwisted strings, it is necessary to project onto the Hubert space of g invariant
states. To do this we require that for a sector twisted by t = gm, our twisted strings
are invariant under the quotient group G/T~Zi, where n is the order of g and Γis

m

the cyclic group generated by t. Thus, turning to the sector twisted by g2 we require
that such states should be invariant under the Z 2 symmetry generated by g3. For
each of the tori (D), fixed by g2 and g4 we have a local action of g2 of |(1,2,0) and so
from the above reasoning we obtain both a 27 and a 27 representation. We also
obtain a second 27 and 27 from the g4-twisted sector. The Z 2 identifies the (D) tori
in pairs thus halving the above number of massless particles giving 6 x 27 and
6 x 27 from here. A similar analysis of the (A) tori gives another 4 x 27 and 4 x 27.
The (C) tori, like the (D) tori, begin life before the projection onto g-in variant states
with two 27s and 27s each but here the ΊL2 acts within each sector acting as the
identity on the 27s but as — 1 on the 27s so that the 27s are projected out leaving us
with 6 27s from the (C) tori. The (B) tori similarly give 4 27s. We now have a grand
total of 32 27s and 10 27s coming from the twisted sectors which when added to the
untwisted states gives 35 27s and 11 27s, giving a net number of 24 generations
which may be seen to be in agreement with the index formula from [8].
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What we are interested in are the truly marginal operators of the SCFT based
on this orbifold. It has been shown [2,12] that the world-sheet supersymmetry of a
(2,2)-SCFT may be used to establish a one-to-one correspondence between 27 and
27 matter fields like those above. The marginal operators preserving the world
sheet supersymmetry have the form

φ±± = φ±.± + jΓφ± b± + flφ±Λ± + ΰθΦl^ (15)

so that
S^S + giSΦtdθdffdzdz. (16)

The vertex operators of the fields Φ^Ό* c a n be written [6]

P/ = «Wv*, (17)

where / labels the cohomology class of the (2, l)-forms and the fields Φjb* a r e

Vj=bWψ, (18)
where J labels (1, l)-forms.

From the fields ΦQ, I* (Φo, Ί * ) w e c a n ^ s o obtain the vertex operators for the 27s
(27s) thus giving a one-to-one correspondence. For the truth of the marginal
operators we refer to [2,12].

3. Geometry of Blow-ups

We now look at the orbifold model from the perspective of compactification on a
C-Y. After all, an orbifold is just a particular point in the moduli space of a C-Y
and we should be able to move continuously to a smooth model by resolving the
orbifold singularities. As we shall see, this process is not always unique and this
raises some interesting questions for superstring compactification.

We can cover any complex orbifold by co-ordinate patches which are
biholomorphic to either (C3 or (E3/G. We will resolve the singularities in the
orbifold by applying a bimeromorphic transformation to <C3/G to obtain a
manifold with the same asymptotic topology away from the origin as (C3/G. We
can then cover the whole space with C 3 co-ordinate patches and thus have a
complex 3-fold. In order for this resultant manifold to be a Calabi-Yau manifold so
that we might expect it to be a superstring compactification candidate, we must
satisfy the requirements of being Kahler and having trivial canonical bundle, K.
(The condition K = 0 is equivalent to the vanishing of the first Chern class of the
tangent bundle of the manifold.) As we shall see, these requirements are needed to
render the number of possible resolutions potentially finite.

To begin our discussion of resolutions let us review the "monoidal transforma-
tion" or blow-up of a non-singular point. Over a complex projective space IP" we
have a natural line bundle L=&ψn( — 1). We will use the notation Θψn(k), keZ for
the fcth power of the hyperplane bundle over Pn. The hyperplane bundle is the line
bundle H^Ψn which admits global holomorphic sections with a zero-locus
corresponding to a hyperplane P 1 " 1 of Ψn. The total space of the line bundle
Θ(—ί) may be considered as a submanifold of (Cn+1 x P n

L~{(z,l):zh=zti, (19)
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where

(zo ?...,zn)GCw + 1, [Ic . J J e P .

This space, (Ew+1, is easily seen to be isomorphic to <CΠ+1 away from the origin
z = (0,...). At the origin however we have a Pπ. The origin of (Cw+* is said to have
been "blown-up" at the origin or a "monoidal transformation" has been applied at
the origin to obtain <EΠ+*. This new Ψn replacing the point at the origin is called the
exceptional divisor of the blow-up. Considering the exceptional divisor as a
submanifold of co-dimension 1, we can clearly have a normal line bundle over this
Weyl divisor of Θψn{ — 1) and indeed any such submanifold of a complex manifold
can be blown-down back to a non-singular point. For a manifold M blown-up to
M it is usual to use the notation

π:M->M, (20)

where π is the blowing-down procedure. It is not difficult to show that, for an
exceptional divisor E in the case of a monoidal transformation

KM = π*KM + nE. (21)

(We will be somewhat sloppy when distinguishing between line bundles and
divisors.) Thus, if n > 0, K^ cannot be trivial. This is indeed fortunate as otherwise
any C-Y could be blown-up anywhere any number of times giving a very infinite
number of superstring compactifϊcations.

Another point we need to look at here is the subject of the projectivity of a
monoidal transformation. A manifold M is projective if we can construct a very
ample line bundle on M. Equivalently we can think of this as constructing a
positive (1, l)-form to act as the Kahler form on M. It can be shown [13] that given
a very ample line bundle L on M we can construct another very ample bundle

L=π*Lk-E, (22)

where k is a sufficiently large integer. Thus we start with a Kahler manifold and
blow-up at a point and obtain a new Kahler manifold with part of the new Kahler
form associated with the exceptional divisor. By varying the magnitude of this part
of the Kahler form we change the volume of the exceptional divisor since we can
define the volume by

\ (23)

where J is the Kahler form on the (n 4- l)-fold M. This deformation of J is therefore
sometimes referred to as the "blow-up mode" of deformations of M and is
associated with the cohomology class H^Λ{M) dual to the exceptional divisor.

Now, consider what happens if we take not Θψn{—1) for the normal bundle of
our submanifolds, but Θψn( — k). In G{ — 1) we have co-ordinate patches
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Thus, for Θ( — k) we have

The transition functions are therefore as if (z0, ...,zrt) have been replaced by
(ZQ, ...,ZJ5) and so if we consider the projection

= O}. (26)

We now have the identification

zo,...,zn)~p{e k zo^.^e^zj,p(zo,...,zn)~p{e k zo^.^e^zj, (27)

and so, away from the origin, this space is isomorphic to <Cn+1/Zk where, in the

notation of the previous section, the generator of Zk acts as -(1,1,...). This is then
rv

precisely what we require as a resolution of such a quotient singularity. Blowing
down the exceptional divisor will leave a quotient singularity at the origin. On the
singular manifold M, we can suitably define a Kahler form and canonical class (but
these will degenerate at the singular origin). For the canonical class of M, we can
generalize (22) to obtain

π*KM + (n-k + ί)E. (28)

If we want to obtain a C-Y we therefore require

k = n + \. (29)

In the case of complex surfaces, the resolution of quotient singularities is well
studied. For a thorough review, see [14]. Here n = 1 so we can resolve C2/Z2 with
#Pi( — 2) (the space which admits an Eguchi-Hanson metric [15]) as is well known
from the usual construction of K3. What about other possible Ricci-flat blow-ups?
To obtain SU{2) holonomy we require, for a quotient <E2/G, that GcSU(2). The
resolution now consists of a series of &Ψι( — 2) blow-ups. Each blow-up can leave a
quotient singularity on the exceptional curve and we continue blowing-up until
the space is everywhere smooth. We thus obtain a total exceptional divisor of P l 5s
touching at points. It can be shown that the resultant configuration of curves
correspond to Dynkin diagrams of simply laced Lie algebras giving the most
beautiful correspondence between simply laced Lie algebras and discrete sub-
groups of Sl/(2).

For the case of threefolds, the subject we are interested in, the situation is much
less pleasant. It is simple to see that the line bundle Θψ2(—3) gives the resolution of
<C3/Z3 which can thus be used for the case of the Z-orbifold. Any other GcSU(3)
will require additional tools.

The extra machinery we will use is the geometry of toric varieties. For a proof of
all the statements concerning toric varieties that follow, the reader is referred to
[16]. Toric resolutions have also recently been studied in connection with Calabi-
Yau manifolds in [20,21]. We begin with two free modules M,N^Zr with M and
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Fig. 2. A fan in R2

N dual with respect to some product

<,>:MxJV->Z

We also fill in these lattices to form the spaces

(30)

R. (31)

By a cone, σ, we will mean a subset of NR given by nx,n2,...,nseN such that

β > 0 i - l s\ ( 3 2 )

and the space is convex. We thus have some convex polyhedral based cone with its
apex at the origin. Clearly, faces of this cone are also cones. We make fans, Σ, by
sticking together cones, see Fig. 2. For our purposes we will actually only be
interested in fans where each cone is, or is a face of some cone containing r
dimensional space. Figure 2 is thus excluded because of the two isolated lines. We
can now define a complex r-fold, XΣ, associated to a fan Σ in R r by the following
recipe:

1. Build a set of cones in MR. To each cone σ in iVR we define σv in M R by

(33)

2. In every cone containing r-dimensional space, σf

v, we determine the minimum
set of elements {mijeM}9j=ί ...p, p^r such that

+ . (34)

(35)

σty =mnZ+ +mi2Z+

3. Associate to this cone a space Uσ.

where the /iJeZ are obtained from the maximal set of independent relations

(36)

4. Glue together the co-ordinate charts Uσ. with the rule that relationships like

...=0, lipeZ

go to UnUi2 ...UfcUfa ... — 1 . (37)
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(D2 P 2

Fig. 3. Examples of fans representing toric surfaces

C2/Z2

We then have the following theorems which will prove useful. Define the minimal
set {n^} similarly to mij9

+ ...+niqZ+, (38)
then we have

Theorem 1. XΣ is smooth if and only if for every σf enclosing a space of dimension r,

_ in M _ι_ _ι_ ID γι C\Ό\

Theorem 2. XΣ is compact if and only if the fan Σ covers the whole of iVR.

The examples of Fig. 3 should prove helpful in understanding how to build XΣ

and illustrating the above theorems.
We are interested in smoothing out singularities to obtain Calabi-Yau

manifolds and hence require

Theorem 3. // the conditions for Theorem 1 are satisfied then

{n^} lie in a hyperplane
XΣ= <>HNoflRr.

Thus we can see that a compact toric variety cannot have trivial canonical
bundle. Since, for our purposes r = 3, we have HN~Έi2 and we can draw the
diagram representing Σ, iΐKXΣ = 0, by drawing the {n^} on the plane of our piece of
paper - i.e., draw the section through Σ containing {nfj }.

So, can we represent our singular space <En/G as a toric variety? The answer is
yes so long as G is abelian and can thus be diagonalized into the form (4). In order
to avoid a lengthy exposition of toric geometry, we will again just give a recipe for
constructing our fan Σf from C/1,/2,/3). The fan Σf corresponding to (fί9j\^fz)

=-(l,α 2 ,f l 3 ), where ai9 neΈ may be given by the cone σf and its faces,

where

(40)

(41)

ίnff:
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Fig. 4. Resolution of the quotient singularity in the Z-orbifold

Now, given a triangular cone such as the one above defined by the three lattice
vectors αf, f = 1... 3, we can see that, to satisfy Theorem 1 for a smooth space, we
require det (α) = 1. Since det (K) = n, we have a singular variety for n > 1 as we should
expect. Let us consider the familiar singularity from the Z-orbifold / = i ( l , 1,1)

(42)

In order to satisfy Theorems 1 and 3, it seems natural to subdivide this cone to
obtain a non-singular (in the sense of Theorem 1) fan as shown in Fig. 4. Following
the recipe for building XΣ, one may verify that, as one would hope, XΣ is indeed the
space of the line bundle Θψ2( — 3). This then is blowing up in the language of toric
varieties - we subdivide out cone until we have a fan satisfying Theorems 1 and 3.
It should be noted that once these conditions are satisfied, no further subdivision of
the fan is possible without violating Theorem 3. When building Θψ2( — 3) from the
co-ordinate patches from Σ, one can see that the exceptional divisor is associated
with the cone R+α. This is a general feature of toric varieties - subcones of
dimension s in Σ are associated with submanifolds of dimension r—5 in XΣ.

Before continuing into resolving the singularities of our orbifold we need to
study some aspects of rational curves. Any holomorphic vector bundle over P 1 is
isomorphic to a sum of line bundles over P 1 . Thus, any rational algebraic curve in
a complex 3-fold has associated to it, for the normal bundle of the curve ^Vψι/X9 two
integers ax and a2 such that

Applying the adjunction formula, for a rational curve in a variety with K = 0, we
have ~ ίΛAX

aι + a2=~2. (44)
We shall refer to such a curve as a (α1? α2)-curve. In out toric varieties, curves will
appear as 2-cones and thus as lines in our diagrams of ΣnH. It can be shown that,
for a sub-fan
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/ \

Fig. 5. Resolution of the singularities of type £(1,2,3)

there exist aua2eZ such that

aίaί 4- a2cc2 + βx + β2 = 0 (45)

and that C is then an (a1?a2)-curve.
Turning to our A2®D4 orbifold, we have singularities / = i ( l , 2,3) and we now

apply the above techniques to obtain Fig. 5, i.e., we do not have a unique
resolution. The reason for this can be traced to the rational curves. Whenever we
have a convex quadrilateral of points in our diagram, we have two ways of dividing
this into triangles. From (45) we have that convex quadrilaterals only occur
around (—1, — l)-curves. This ambiguity is well-known in the subject of geometry
of 3-folds and the process of moving from one manifold to another by using the
rational ( — 1, — l)-curves is known as an elementary transformation. Figure 6
shows more on this subject. When no (— 1, — l)-curves are present, the subdivision
and hence toric resolution are unique, e.g., for the Z7-orbifold.

No (-1,-1)-curves

The only toric resolution of the Z7-quotient singularity from f=j{l9 2,4) is given
uniquely by the above diagram. (This actually leads to an exceptional divisor
whose irreducible components are three Hirzebruch surfaces Σ2 touching at a
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Hypersurface singularity
x1x2 = x3x4 c C4

Small resolution

Tranformed

monoidal
transformation Contract

on other
ruling

a ~ ruled surface
pi χ pi

Fig. 6. Elementary transformation on a ( — 1, — l)-curve

point, where Σ2 is given by the compactifϊcation of ΘΨi( — 2) to give Σ2 as a bundle
over P 1 with fibre IP1.) In such cases as the Z-orbifold, it may be shown that the
unique toric resolution is the only resolution of any kind.1

We must still check however that our resolutions are projective. We saw earlier
that this may be verified for a simple blow-up giving exceptional divisor Ψn. We
should now try and extend this reasoning to the more complicated examples here.
Our argument, when constructing the very ample line bundle, depended upon the
fact that the exceptional divisor π~1{0} had co-dimension one and had its own
positive (l,l)-form (i.e., a Kahler form). In the language of toric geometry, the
appearance of a manifold of co-dimension one in a blow-up corresponds to the
appearance of a one-dimensional cone in the fan. The blow-up yielding this
exceptional divisor corresponds to the star subdivision of the fan - namely adding
the cone JR+nd to our fan and then joining this cone to all neighbouring one-
dimensional cones. The resolution of the Z3-quotient singularity in Fig. 4 is a clear
illustration of this. The so-called small resolution in Fig. 6 is an example of a
resolution with no exceptional divisor since only two-dimensional cones are added
to our fan.

From the above reasoning we will obtain a projective resolution if we can
"factorize" the resolution into blow-ups. At each blow-up, we pull-back the Kahler
form from the previous manifold and mix it in with the cohomology class
associated to our exceptional divisor to obtain a new Kahler form. We eventually
obtain a smooth, projective manifold if our resolution can be factorized into such
blow-ups. An example concerning compact toric varieties is known [17] where we

1 1 wish to thank Miles Reid for pointing this out to me
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have a compact manifold birational to P 3 which is not projective. It is easy to see
from the fan representing this manifold that a series of blow-ups cannot give this
space from P 3 . This is shown in Fig. 7.

In our orbifold we have four cones α1 ?..., α4 around which we may perform star
subdivisions to give a smooth fan. We can therefore see that the ambiguity in the
resolution may be thought of as due to the order in which we blow-up different
parts of the total exceptional divisor. Blowing up α3 last gives a P 2 component to
the exceptional divisor. Blowing up α1? α2 or α4 last associates these to P 1 x C If
these are blown up earlier then the later blow-ups can perform birational
transformations on the components of the exceptional divisor already present and
thus if α3 is blown up first our exceptional divisor contains a component birational
to, but not isomorphic to P 2 . We have some resolutions which cannot be
factorized in the above way and may not therefore admit a Kahler metric. Figure 8
shows some examples.

Σ Γ Ί S 2 :

blow-do
. blow-up

Not Projective

Fig. 7. A non-projective toric variety. Note this manifold is not a C-Y and we have thus drawn the
intersection of the fan with S2

PΛxC

Fig. 8. Examples of different resolutions
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The resolution of the fixed tori on Fig. 1 come as light relief and it is easy to
show that singularities of the form i(l, 0,1) blow-up to give an exceptional divisor
of the form P 1 x C and those of |(1,2,0) give (P 1 v P1) x C (v denotes a "plumb-
product" - i.e., joined at a point). These exceptional divisors must also "grow out"
of the divisor to the£(l, 2,3) singularity since lines of these singularities grow out of
a £(1,2,3) singularity.

Looking back at Fig. 1 we can now build the total resolution of the orbifold.
For the tori (A) we have four exceptional divisors of the form P 1 x torus. For the
tori (B) we have 3 (P1 v P1) x torus. The effect of these blow-ups on the dimension of
the cohomology groups is easy to calculate. We take each irreducible component of
the exceptional divisor Ei and, for this, add 1 onto ft1'γ = dim/f|' \M) (and thus
onto ft2'2 too) and add ft1'0^) onto ft1'2 (and thus ft2'1). This may be shown
schematically as acting on the Hodge diamond by the following

1 1

/ 1 \ 0 0 0 0

α α

0 β 0
α α

0 ft1'1 0 0 ft^ + l 0

1 ft1'2 ft2'1 1 -> 1 ftx'2 + α ft^+α 1. (46)

0 ft2'2 0 0 ft2'2 + l 0

\ 1 / 0 0 0 0

1 1

Thus (A) and (B) add 10 onto both ft1'1 and ft1'2. The (B) tori give exceptional
divisors P 1 x torus from the Έ2CZ6 quotient. Modding these divisors by the
remaining Έ3 group kills the deformation of the complex structure on the torus.
The same thing happens for the (C) tori. These components thus add 10 onto ft1'x

but nothing onto ft1'2. Lastly, the twelve fixed points each have 4-irreducible
components to the exceptional divisor (α1? ...,α4) but actually 3 of these are
associated to the tori (B) and (C) and have thus already been counted. Each fixed
point then contributes 1 to ft1'1. Starting with the six-dimensional torus we can
then calculate the Hodge diamond of the smooth Calabi-Yau manifold obtained
from resolving the orbifold singularities,

1 1 1

3 3 0 0 0 0

3 9 3 0 3 0 0 35 0

1 9 9 1 /Zβ > 1 1 1 1 Blow"up> 1 11 11 1. (47)

3 9 3 0 3 0 0 35 0

3 3 0 0 0 0

1 1 1

The reader should note the striking similarity between the way we constructed
these numbers using twisted string ideas and using geometrical ideas.

4. Moduli Spaces

We should now try and construct the moduli space of the theory in the
neighbourhood of our original orbifold. The conformal field theory has a set of 27
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and 27 representations of E6 and so we can associate these each with a truly
marginal operator. This situation can be compared to the c = ί superconformal
field theory [7] in which we have everywhere one dimension (J,^) operator
associated to each marginal operator by supersymmetry in much the same way we
have constructed marginal operators from 27 and 27s. At certain values of radii
however, we obtain an enhanced world-sheet supersymmetry allowing more
marginal dimension (1,1) operators to appear. We are considering an orbifold of
generic radius however and we should not therefore expect any extra world-sheet
supersymmetry to add to the (2,2)-supersymmetry we have assumed. If this is the
case, our moduli space is locally simply flat space of dimension given by the
number of marginal operators = Λ1 2 + A1 1 =46.

The moduli space of Calabi-Yau models at the orbifold point is quite different
however. The blow-ups all give moduli space of dimension 46 but they are different
sectors of space related to each other by elementary transformations. These sectors
are plumbed together at the point corresponding to the orbifold to form a space
which is not a manifold. Actually the situation could be even more complicated.
We can contract the (—1, — l)-curve in the exceptional divisor to form a node
locally isomorphic to the space {(x,y,z,t)e(C4':xy = zt}. This node can now be
deformed birationally in a way described in [18] to give a smooth complex
manifold with different Euler characteristic to the original blow-up and the
number of moduli would also be different. This manifold can also be thought of as
possible resolution of the quotient singularity. It is not necessarily true however
that the resulting manifold admits a Kahler metric. If it were Kahler then our point
in moduli space at which the orbifold lives would be the vertex of many cones of
different numbers of dimensions.

How then can we resolve the discrepancy between the two approaches to string
theory? Firstly, the above resolutions not given by blow-ups are probably not
Kahler and so are illegal regions of moduli space for the theory to go into. We
proved however that the many different blow-ups were Kahler and should
therefore all be candidates for compactifications. It is known however [12] that as
far as physics is concerned, a total explicit specification of the manifold on which
we are going to compactify is more than we need. For example, a non-Ricci-flat
metric can be just as good as the natural Ricci-flat metric. Another good example
of this kind of equivalence is the circle and orbifold equivalence at the multicritical
point of c = 1 conformal field theories. Since all our good candidate blow-ups have
the same number of marginal operators there is the possibility that they are the
same conformal field theories. If they are not, we would have examples of Calabi-
Yau manifolds which are not valid superstring compactifications.

A conformal field theory is given by its spectrum of primary fields and the
three-point functions of these fields. We have already seen that the spectrum of
massless states from the conformal field theory agrees with all the Calabi-Yau
candidates we know admit a Kahler metric. The Calabi-Yau theory of compactifi-
cation allows one, in the case of 27s, to calculate three-point interactions from the
intersection products of homology cycles represented by surfaces in the Calabi-
Yau [19]. These products can be calculated from the fan associated to the toric
variety [20]. The different blow-ups lead to different intersection matrices for the
irreducible components of the exceptional divisors and so one might draw the
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conclusion that these must therefore be physically different theories. When there is
more than one irreducible component to an exceptional divisor however, it is not
apparent that one identifies a certain twisted string with a certain irreducible
component of an exceptional divisor. We just know that the twisted 27 strings
should in some way form a basis for H2(U), where U is the neighbourhood of the
blow-up. We are therefore at liberty to consider intersection matrices Mijk, M'ijk
equivalent if we can find Atj such that

M'ijk = AnAjmAknMlmn. (48)

Actually there is no solution for Au if we take the case of elementary
transformations around one fixed ^(1,2,3)-point on Mijk to obtain Mf

ijk. (This is
because any attempt at reparameterizing H2(M) around one ^(l,2,3)-resolution
necessarily affects the intersections in some of the other eleven ^(1,2,3)-resolutions
due to the non-localized IP1 x torus divisors connecting these points.) This fact
shows that the manifolds given by these different resolutions are differentiably
distinct.

These 273 terms are also prone to instanton contributions ([22], note this
paper has interchanged the roles of 27s and 27s) and this causes further
discrepancy between the conformal field theory which calculates these terms
exactly and the Calabi-Yau approach. It is therefore still possible that the different
Calabi-Yau manifolds correspond to the same conformal field theory.

5. Conclusions

We have shown that the Calabi-Yau theory of superstring compactifϊcations is not
totally equivalent to the more satisfactory conformal field theory approach. It
appears that too much information is specified by giving the explicit complex
3-fold complete with metric. It has already been shown that theories with Ricci-flat
and non-Ricci-flat metrics on the same manifold can lead to identical physics [12],
but we have presented here evidence that differentiably distinct manifolds can also
give isomorphic physics. If one begins with a moduli space of Calabi-Yau
compactifications, it is necessary to mod out this space by a discrete group in order
to obtain the moduli space (or perhaps only part of the moduli space) of c = 6 (2,2)-
superconformal field theories. This discrete group appears to have fixed points at
some of the theories given by orbifold compactifications. One is thus forced into a
position of asking to what extent the compactification manifold exists. Since its
structure cannot be observed it should perhaps only be held as a mathematical aid
to understanding the superstring theory.

Since more is known at present about the moduli space of C-Y's than of c> 1
conformal field theories, it should be useful to consider other parts of the C-Y
moduli space. Some points of particular interest should be the points of transition
between the Calabi-Yau manifolds described by Hirzebruch [23]. We know that
these manifolds are Kahler and have different Euler characteristics and so should
lead to a multicritical point in the moduli space of the conformal field theory. This
would provide the strongest testing ground for the compactification approach to
string theory.
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