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Abstract. For the direct-inverse scattering transform of the time dependent
Schrδdinger equation, rigorous results are obtained based on an operator-
triangular-factorization approach. By viewing the equation as a first order
operator equation, similar results as for the first order n x n matrix system are
obtained. The nonlocal Riemann-Hilbert problem for inverse scattering is
shown to have solution.

1. Introduction

We study in this paper the direct-inverse scattering problem for the 1 + 1 time
dependent Schrδdinger equation:

ίψy + ψXX=-Uψ, (1.1)

for real or complex potentials u. This problem, besides being of independent physical
interest, is connected with the Cauchy problem of the Kadomtsev-Petviashvili (I)
(KPI) equation

(ut + βuux + uxxx)x = 3yyr (1.2)

It has been formally studied by Zakharov and Manakov [Z-M], [M], Fokas and
Ablowitz [F-A]. For the rigorous theory, certain estimates for the direct scattering
transform have been obtained by Segur [S]. The work [Z-M], [M] contains
important ideas such as triangular factorization of operators and the derivation
of the positivity of the d-scattering data / + J* (see (3.20)) from the unitarity of
the physical scattering data 1 + £f (see (3.5)), while the work [F-A] gives a different
approach for deriving 3F and constructs for the first time the lump solutions which
are two dimensional soliton solutions. However, for the inverse scattering trans-
form, even on the formal level, a satisfactory treatment has not yet been obtained
(see [S] for the comments on [M]).

Our approach is based on viewing Eq. (1.1) as a first order operator
equation in y (2.31). For the direct-inverse scattering problem, Eq. (1.1) behaves
much more like a first order system than a one dimensional Schrδdinger equation
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[ G - G - K - M ] , [D-T]. Comparing it with the first order n x n system (see [B-C]
and [Z]), we find many similarities:

1. The triangular factorization of operators takes the place of the triangular
factorization of matrices which has played an important role in the theory of the
inverse scattering problem for the first order nxn system.
2. The equations for the inverse problem need to be set up for the solutions
normalized on the left or on the right instead of for the analytic solutions (see
[B-C] and [Z]). Thus the scattering data used to build those equations are the
triangular factors of / + & instead of / + & itself. In fact, the former may be
obtained more directly than the latter.
3. The real potentials u give rise to unitary / + £f and positive / + 3F, A vanishing
lemma in this case is available and it implies the invertibility of the inverse equations.
The connected time evolution problem (KPI) has no finite time blow-up.
4. For complex potentials, the time evolution exists for a positive time period.

Interestingly enough, the constraint

J O, (1.3)

(or, roughly speaking, that u be in the range of d/dx)9 may be exactly compared to
the constraint that the potential be in the range of the derivation ad J in the case
of the first order nxn system. The constraint (1.3) will be made more precise below
in (C2.14).

In spite of the similarities enumerated above, the slow decaying property of
the lump solutions indicates that the natural inverse scattering problem does not
carry the information of arbitrary degree of decay for the potentials u. This seems
to be the main difference in analytic properties between the first order nxn system
and the 1 + 1 time dependent Schrodinger problem. Nontheless, the regularities in
both x and y are carried to any order.

In Sect. 2, we introduce certain Banach spaces for the related integral equations.
By utilizing the constraint (C2.14), we represent certain solutions of Eq. (1.1) as
/ + certain Hilbert-Schmidt operator valued functions in y. Those solutions are
fundamental when they are invertible as operators. The existence of the analytic
solution φ± is obtained under the small norm assumption (C2.23), and at this
point, the lump solutions are excluded. It is also possible to assume such an
existence on the real axis and to add finitely many simple poles (which give rise
to the lump solutions) off the real axis as it is done in [F-A]. To solve the direct
problem completely (without small norm or genericity assumption) requires further
understanding of the nature of the singularities. For instance, we do not know yet
whether it is possible for infinitely many poles to exist as in the case of the first
order nxn system (see [Z]).

In Sect. 3, we define various scattering data as Hilbert-Schmidt integral
operators and derive the relations among them. It seems to be adequate to choose
the physical scattering data ^ as the "central" scattering data while the others are
determined by Sf through certain operator triangular factorizations.

In Sect. 4, we set up the needed singular integral equations for the inverse
problem which is formulated as a nonlocal Riemann-Hilbert problem. We prove
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a vanishing lemma in the case when / + ίf is unitary. This lemma gives the
invertibility of the singular integral equations. No small norm assumption is needed.
For general w, we obtain a weaker result (Proposition 4.19). The time evolution
problem of the KPI equation is also briefly discussed.

2. Integral Equations

+ 00

Throughout, we set J = \ . We denote by φ = φ(k,x;y) any solutions of (1.1)
— oo

asymptotical to (2π)~ll2eikx~ik2y at x = + oo. We also consider an accompanying
equation

-iφy + φxx= -uφ, (2.1)

and denote by φ = φ(x9 k;y) any solutions of (2.1) asymptotical to (2π)~1/2e~ikx+ik2y

at x = ±oo. Note that if u is real, Eq. (2.1) is simply the complex conjugate of
Eq. (1.1). Below, once any results for Eq. (1.1) are obtained, we expect parallel
results for Eq. (2.1). Equation (1.1), (2.1) may be rewritten as

Lμ = iμy + μxx + 2ikμx + uμ = 0, (2.2)

Lv = — ivy + vxx — 2ikvx + uv = 0, (2.3)

with μ = (2π)1/2e-ikx+ik2yψ and v = (2π)1/2eikχ-ik2yφ. We write u = u(x;y\ μ = μ(k,x;y%
and v = v(x, k\ y). Throughout the Fourier transform A and the inverse Fourier
transform - are between the x and / variables: ύ = ύ(l; y), μ = μ(/c, /; y\ ύ = ύ(l; y), and
v = v(/, k\ y). It is easier to study the (inverse) Fourier transformed versions of
Eqs. (2.2) and (2.3):

iμy - (I2 + 2kl)μ = -(2π)~ 1/2w*μ9 (2.4)

ivy + (I2 + 2kl)v = (2π)~ ι/2ύ*v, (2.5)

where the convolution * is in the / variable. We define the integral operators gι

ktU,

9k,ui and g£u:

H*f(ϊ,η), (2.6)
— oo

+ 00

(2.7)

U }
±oo l

We denote by μ# the solutions of Eq. (2.2) satisfying

where # denotes l,r, or +, and δ = δ{l) (constant in y) is the Dirac δ distribution
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at / = 0. Let B be a Banach space. A function / = f(x; y) may be viewed as a
B-valued function: f(-\y)eB for each yeU;

def

for 1 rg p < oo, and

II/IIL (R,β)

It is assumed in [S] that ώeL^RjL^R)) = L^IR2). Clearly, under this assumption,
the operator g#

Ku is bounded from 1^(05, CδφLΛR)) to LJff^L^IR)) with their
operator norms ^ || ύ \\Lί{R2r Now let B be a Banach algebra under the convolution
and satisfy:

if / e L . and geB, then \\fg\\B^\\f\\LJg\\B. (C2.10)

For instance, besides L l 9 the weighted L 2 space La

2 with weight α > ^ is such a
Banach algebra under some equivalent norm. We may assume that i2eL1(R,B).
The considered integral operators are then bounded from L^U^Cδ + B) to
LooίR, £). Since gι

Ku and ̂  M are Volterra integral operators, / — gι

kfU and / — g[>M

are invertible with the estimates:

' VII HfVϊr VII ^ I'
k,u) \U\\\9k,u) II =

and

II(/ - d L Γ x II, II(/ - 0 U ~ x II S e x p C ( 2 π ) " χ / 2 II ύ ||

The higher order of regularities in x are contained in the following assumption:

ώeL^RjLS) for some integer α ̂  1. (C2.13)

The solution μ = μ(fc, x; y) may also be considered as a function which maps y

to μ(v;)>). We define the integral operators (gtf){K'\-) = gitUf{K'\-).
The parameter fc is rather passive so far. However, it will be the space variable

in the inverse scattering problem. A successful treatment of the inverse scattering
problem therefore requires certain decay in fe for the considered data. In the case
oί nxn system, since ran ad J = ran (ad J)j for any positive integer;, arbitrary
decay in k for the scattering data can be obtained (see [B-C]). However, in our
case, only minimum required decay is available through imposing a further
assumption on u that

(C2.14)

This can also be written as uemn(d/dx)1/2. Clearly under this assumption,

lil + 2k)yύ(l;y\
a

for any — co^a^b^ +oo, defines an L2(dldk) function. We obtain the following
two propositions.
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Proposition 2.15. Under conditions (C2.13) and (C2.14), the integral operator gl is
bounded from Cδ + LJR, L2(R2)) to LJ^L^ίR 2 )) .

Proposition 2.16. μι - 1, μr -

Let C+: L2(!R2) -• L2((R2) be the Cauchy integral operators applied on functions
with respect to the first variable:

1 dk'

l ' ™ (117)

We define L^(IR2) = kerC+ c L 2 ( R 2 ) . If we write

±oo /

then

w+eLjaUCR 2 )) . (2.18)

We assume that

R2)). (2.19)

Clearly, when Im/c'^0, the Cauchy integral operator (2πi)~1Jίί/c(/c — k')'1 com-

mutes with the integration in (#£/)(/, fc;y) Therefore if ±Im/c' < 0 ,

2̂ τJ dk(k - k'y \gϊf)(h k; y) = 0. (2.20)

Combining (2.18) and (2.19) we conclude:

Proposition 2.21. The operator g* is bounded from Cδ + L0O(R,L2

t(IR2)) to

LJR^ίίR2)).

Proposition 2.22. Under the small norm assumption

2))- (C2.23)

Proof. We write c = | |ώ| | L (R2,. Note that the convolution by and L t function / is
a bounded operator from L p to L p with its operator norm ^ || / | |L , we obtain for

Therefore

converges in
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Noticing the following two facts:

1. The multiplication by / is a derivation with respect to the convolution *,
2. By shifting the variable η to η + y in the integrations in (2.6), (2.7), and (2.8),
the y-derivatives may be passed to w*/ as ^-derivatives,

we obtain the following:

Proposition 2.24. // the y-derίvatives of ύ up to the order β are in L ^ R j L ^ π
"L2(\l\-ldldy\ then

gj+f gj+r

^ 1 1 ) W V L ( R L ( d k d » f o r 7 = 0 , . . . , a , / = 0,.. ., )S,
dxJdyJ

and under the small norm assumption (C2.23),

^ ) for j = 0 , . . . ,α,/ = 0,...9β.

Below, we denote by φ (respectively φ the solution corresponding to μ\ μr, or μ±

(respectively vι, vr, or v±), by Ψ{y) (respectively by Φ(y)) the integral operator with
kernel φ('9-;y) (respectively </>(•, ;y)), and 2.24 by W(y) the unitary multiplier by
e~ik2\ and by Ψ0(y) the integral operator with the kernel (2π)~ι/2 (μ(k, x; y) ~ l)eίkx.
Let F denote the Fourier transform: L2(dk) -• L2(dx). Since Ψ may then be written as

Ψ(y)=W(y)(¥-1 + Ψ0(y)l (2.25)

it is clear that Ψ(y) is bounded from L2(R) to L2((R). Moreover, Ψ(y) is Fredholm
with zero index since Ψ0(y) is Hilbert-Schmidt. Similarly we have

), (2.26)

where Φ0(y) denotes the integral operator with the kernel (2π)" 1/2(v(x, k; y) - l)e ~ikx.

Proposition 2.27; Ψ{y)Φ{y):1L2{U)-^L2{U) is independent of y.

Proof We first assume that u has second order regularity in y as in Proposition
2.24, then the differentiation of ψ and φ in x and y shows the boundedness of the
following operators:

Ψ(y):H-2-+L2\ (2.28)

Φ(y):L|->H 2, (2.29)

(2.30)

(2.31)
oy

ή:Ll-+L2

2. (2.32)

We write Eqs. (1.1), (2.1) into the operator forms:
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i Ψyiy) + ny)D2 + Ψ(y)U(y) = o, (2.33)

- iΦy{y) + D2Φ(y) + U(y)Φ(y) = 0, (2.34)

where D denotes the derivative operator, and U(y) denotes the multiplier by u( y).
Clearly the left-hand side of (2.33) is a bounded operator from L 2 to L^ 2 and the
left-hand side of (2.34) a bounded operator from L 2 to L 2 . Substituting (2.33) and
(2.34) into (2.32), we obtain that

— (ΨΦ) = 0.
dy

It then follows from the density of L 2 in L 2 that ΨΦ is independent of y. The
result for general u may be obtained by a limiting argument. •

3. Scattering Data

The connections of different scattering data have been formally derived in [S].
Below, we consider the scattering data defined through both μ and v with the
emphasis of their triangularities. The results in the previous section enable us to
interpret these connections through operator operations in L 2 space.

We define

(3.1)

(3.2)

R*(k,k + I) = i(2πΓ1H(Tl)fdηύ*(l±(k9l;η)eil(l+2k»9 (3.3)

R±{k + l,k)=-i{2π)-1H{±l)$dηύ*v±{kJ;η)e-il(l + 2k)\ (3.4)

and

S{k, k + I) = - i(2π)"L f dηύ*μr(k, I; η)em+2k)\ (3.5)

S(k + /, k) = - i(2π)"1J dηu * vr(/c, /; η)e " ι 7 ( / + 2 Λ )^, (3.6)

where H denotes the Heaviside function. We shall show below that the δ-scattering
data T± and R* are uniquely determined by the physical data 5 through operator
triangular factorizations. Note that T + , R~ are upper triangular and T~,R+ are
lower triangular. The singular integral equations for the inverse scattering transform
will be built up directly from T± and R±.

Integration by parts shows

Proposition 3.7. T±,R±,S, T±

9R
±

9SeL2((l + (/ - fc)2)α(l + (I2 - k2)2fdldk).

We denote by 5 r ± , # ± , ^ ± , ^ ± , t ^ , and if the integral operators with kernels
T±

9 T±, R±

9R
±

9S9 and S respectively.

Proposition 3.8. ψ\ Ψ\ Ψ±, I ± &±,J ± M±, and I + Sf are respectively inverses
ofΦ\ Φr

9Φ
±

9I±3^±

9I±3t±

9 and I + &?.In addition, we have the following relations
among these operators:
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ψ'φ' = ψ'φ' = /, (3.9)

(3.10)

(3.11)

(3.12)

(3.13)

ΨrΦι = I + y, (3.14)

¥"<J>r = / + .£*. (3.15)

Proof. The identities (3.9)-(3.15) are easily verified by using the fact that

lim Ψ'0(y)= lim Ψr

0(y)= lim Φ'0(y)= lim Φr

o(y) = 0,
)>-• — oo y-» + oo y-> — oo >>-• + oo

(2.25), (2.26), and Proposition 2.27. From (3.10)-(3.13), we derive

ψ±φ±=(I±&*){!± <?*) = (J ±#*)(/± J ± ) . (3.16)

Since «^'±,ί#
L± are upper triangular and ^ ± , ^ ± are lower triangular, (3.16) = /.

The invertibility of Ψ± may then be derived from its Fredholm property. Then
the remaining part of this proposition follows from the identities we have obtained
and the Fredholm property of the considered operators. •

The physical scattering data S uniquely determines the δ-scattering data T±

and R* through the triangular factorization

/ + Sf = (I ± # * ) - x(/ ± SΓ% (3.17)

obtained from (3.10), (3.12), and (3.14).
In the case that u is real, it is straightforward to obtain the following two

propositions.

Proposition 3.18. When u is real, the operators Ψr*, Ψ1*, ϊf/±*,̂ *, ±5r±*,_αnί/
are respectively equal to the operators Φr, Φ\ Φ*,&, ±^τ, and ~+0t.

Proposition 3.19. Ψ\y\ Ψ\y\ and I + Sf are unitary.

Remark. We shall choose the physical scattering data S to be the "central"
scattering data supplemented with the triangular factorizability (3.17). All the results
in Proposition 3.18 may be derived from the unitarity of / + $f. Also note that the
unitarity of the physical scattering data / + £f is equivalent to the positivity of the
δ-scattering data I + P = (/ + «T+)(/ - # " ) = (/ + @+)(I - J r ) which relates the
analytic solutions Ψ+ and Ψ~:

(3.20)

To determine Ψ± from ίF according to (3.20) is called a nonlocal Riemann-Hilbert
(factorization) problem.
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4. Inverse Problem

We fix both x and y9 and denote by s/Xty the integral operator with the kernel

By Proposition 3.7, J ^ , , ^ , , ^ , , etc. are bounded from C + L 2 to L 2 . The
functions μ and v are then viewed as vectors in L2(R). The Riemann-Hilbert
problem (3.20) may be rewritten as

> - . (4.1)

The vector μ± is said to be a fundamental solution of the Riemann-Hilbert problem
(4.1) if the corresponding μ± - 1 eker C+, and a vanishing solution if μ± eker C+.
We may also write the Riemann-Hilbert problem (4.1) into the following different
forms:

μ±={I±^iy)μ\ (4.2)

μ±=(I±@±y)μr. (4.3)

Proposition 4.4. (Vanishing Lemma). Ifl + έ? is unitary, the only vanishing solution
of Riemann-Hilbert problem (4.1) is zero.

Proof. Assume that μ± is a vanishing solution of the Riemann-Hilbert problem
(4.1). It suffices to show that μ" = 0. Since / + Sf is unitary, (/ - ^~y)~1 = I + 3Γ + *.
Therefore

>x;y\\2

w (4.5)

It then follows from the invertibility of / + 3Γ^* that μ~(-,x;y) = 0. •

The vanishing lemma is the key to the solvability of the inverse problem in the
real potential case. For general potentials, we have the following weaker results,

Proposition 4.6. If we assume the existence of Φ± in (3.11), then the only vanishing
solution of the Riemann-Hilbert problem (4.1) is zero.

Proof. Let μ±(-,x;y) be a vanishing solution of (4.1). Under the assumption of the
Riemann-Hilbert factorizability (3.11), we have

This may be written explicitly as

f dl[y "(* ', /; y)μ-(l x; y)yiχ-χ)l = f dl\y+(x'l; y)μ+(h x; y)]e*χ-χ')l. (4.7)

The left-hand side of (4.7) equals 0 for almost all x' ̂  x, while the right-hand side
equals 0 for almost all x' ̂ x . It then follows from the invertibility of Φ±(y) that
Φ±C,χιy) = o. m

We study the nonlocal Riemann-Hilbert problem through two integral

operators

CTχ/=C+<r-y + C-&Ίy9 (4.8)
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CTχy and CRxy are compact operators from C + L 2 to L 2 . Using the fact that
±C+ are complementary projections, we obtain:

Proposition 4.10. A vector μι respectively μr is a fundamental solution of the
Riemann-Hilbert problem (4.2) respectively (4.3) if and only if it satisfies the equation

μ'=l+CTχyμ', (4.11)

respectively

μ'=\+CRxy. (4.12)

Also the homogeneous solutions of these equations are exactly the vanishing solutions
of the Riemann-Hilbert problem.

Proposition 4.13. The norm of operator (I — CTχy)~i (respectively (I — C ^ ) " 1 ) ,
for a fixed y0, is bounded by a number Myo independent ofx and yfor large \x\ + \y\
with y ̂  y0 (respectively ^ y0).

Proof. From / ± # ± = ( / ± c ^ ± ) ~ 1 , we may derive the identity,

(I-CfJ{I-CτJ = I + ETχy (4.14)

where

ETχy= C+^-yCΛ^:,y + Ply) + C_#+yC + (^;,, + Γ-y). (4.15)

We proceed to show that the operator C + ^ χ y C + vanishes in norm as | x \ + | y | -> oo
with y^y0. Consider the L2(M2) rational approximation

with a^ being smooth functions with compact support in R±\0.

*-* ώ(k')~ X dk

± χ,y + ~ 2 π ί J fc — J5c' Hh Oί

= | 4 Σ
2111 Tlfc^

, , φ ( l ) .
/ —1 — Kι

(4.17)

We obtain that lim || ETχ y || = 0 uniformly in x. Using integration by parts, we
y^-co

rewrite (4.17) into the form

i > 0
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Since

max [I'-l-kiΓ1

/esuppα*

and the square of it are L2(dΓ) functions, for y in a fixed bounded region, the
operator ETχy approaches zero in norms as | x | -• oo uniformly in y. The proposition
then follows from (4.14) and the compactness of CTχy. Similar proof applies to
I~CR . •

For the invertibility of Eqs. (4.11) and (4.12) for every (x,y\ when I + <¥ is
unitary, we may use the vanishing lemma and compactness of ̂ x y and 0ίxy to
obtain,

Proposition 4.18. If 1 + £f is unitary, the operators I — CTχ y and I — CRχ y are
invertίble for all x and y.

For general potentials, we have the following weaker result.

Proposition 4.19. If we assume the factorizability (3.11), then the operators I — CTχ y

and I — CRχ y are invertible for all x and y.

This proposition says that if the scattering data is obtained from the direct
problem, then the equations for the inverse problem are uniquely solvable. Also
Proposition 4.19 combined with Proposition 4.13 shows that the Cauchy problem
has solution in a positive time period (see the remark following Theorem 4.33).

We denote by Hjj the L2((R2) Sobolev space smooth to order j in the first
variable and smooth to order / in the second variable.

Proposition 4.20. (dj/dyj)(μι(','iy) ~ 1),(3 W)(μ r ( ' ," ,y) - l)eH°'α, for j = 0,...,β;
and the above derivatives for for μι (respectively for μr) approach zero as y -• — oo
(respectively as y-+ + oo).

Proof The proof will only be given regarding the derivatives of μι. We have the
isometry between L2(dldk) and L2((2|/|)~1rf/ί/(/(/ + 2k))). Thus the Fourier transform

f(k, I) = (2πΓ W J dηφ(h η)eil« + 2k)\

gives an isometry between L2(dldk) and L2((2\l\)~ίdldη). We write

T~(k,k + /) = (2π)" 1 / 2 f dηw-(l,η)em+2k)η.

Then the projection of &~χ,yl in r a n C + can be written as

ί dleilx ] dηw-(l,η)eίlil+2kHη-y). (4.21)
— oo — oo

Clearly, as an L2(dkdx) function, (4.21) approaches zero as ;;-• — oo. Therefore
C+&~~yl as an L2(dkdx) function approaches zero as y-+ — oo. Same result
may be obtained for CTχy. It then follows from Proposition 4.13 that

lim \\μι(',';y)—ί ||Ho,« = 0. Similar proofs work for the derivatives. •
y-* — oo

Let ^(fe,x;>')=(2π)-1/2/i(fe)x;j;^i*χ->*2)', and φ(x,k;y)=(2πΓ1/2v(x,k;y)e-ikx+ik2>'.
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Proposition 4.22. Once Ψι and Φι are obtained from the inverse problem, we have

φiψi = φ + ψ+ = φ~ ψ~ = /. (4.23)

Proof. Since

φιψι = φ+ψ+ = φ-ψ~}

w e h a v e

lv ~ (xf, I; y)μ " (/, x ; y) - 1 y ( x " x ) ί = J d / [ v + ( x 7 ; y)μ+(/, x ; j;) - 1~\ei{x " x ) i . (4.24)

The left-hand side of (4.24) equals 0 for almost every (x, x') with x ̂  x\ while the
right-hand side equals 0 for almost every (x, x') with x ̂  x'. •

Thus by the uniqueness of the Riemann-Hilbert factorization the potential u
constructed through μι is equal to that constructed from //. Once μι is solved from
Eq. (4.11) for given data Γ ± , we let the potential u be an undetermined function
in the operator L defined in (2.2). We first assume that T± has compact support
to obtain,

= CTχLμι-LCΎχJ

= (CTχy-I)Lμι^u. (4.25)

If we set

u = lCTχy9L-ulμι, (4.26)

then Lμι = 0 by the injectivity of / - CTχ y. The expression (4.26) may be explicitly
written as

j J d W k ( τ + ^ (4.27)
7C OX

We split u as:

where

dldk(T+(

w2(x;y) = tfdldk(T+(

Proposition 4.28.

1\eχj

C, /) -f" i (rC, /))^ 5

k + i)/)+r-(fe + U)^- i ) t x +* ( k + :

T + + Γ _ ) | L t ( , l i . J k 2 a | f t

!nμ'(U;y)-i)

*,; (4-29)

j = O,...,β, (4.30)
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and the derivatives in (4.30) approach zero in Hα as y-* — oo. An estimate similar to
(4.30) for yεR + may be established by using μr and R±. It is also true that the
derivatives approach zero as y-> + oo.

Proof. The estimate (4.29) follows immediately from the fact that d(l - k)d(l2 - k2) =
2\l-k\dldk. To show (4.30), let us first define

v(l9χ\y) = ]dk(T+(k + /,/) + T (k + lj

Clearly,

dj

~ϊ7jv <r IIT+-I-T~II 2« i 77 i 7 = 0 R Γ4Ή^

Differentiating the formula

w2(x;y) = $dlv(lx;y)(μι(hx;y)-l)

with respect to x and y, and then using the Schwartz inequality, we obtain the
estimate (4.30). The limit as y -• — oo is obtained from the fact that lim μι=l. •

y-* — oo

We have shown that under the assumption that ZΓ*- has compact support, the
potential u constructed from (4.27) and φ satisfy the operator equation (2.33). Every
T± is a limit of some with compact support. The limiting u and φ still satisfy Eq.
(2.33) and the estimates for u in Proposition 4.28 remains valid because μι and μr

depend continuously on T± and R± respectively. Unitarity of / + £f implies that
φi = Ψι*m τ h i s

Proposition 4.32. Ifl + £f is unitary, the constructed potential u is real.

In the Cauchy problem for the KPI equation, the scattering data evolves as a
unitary conjugation: St(kJ) = e4'ik3tSo(kJ)e~4'iι3\ (see any of the mentioned papers
about KPI). Thus the triangular factors T± and R± must evolve in the same way.
We obtain the following

Theorem 4.33. If the real initial data M( ;* ,0) satisfies the conditions in Proposition
2.24 and the small norm assumption (C2.23), then the KPI equation (1.2) has a unique
solution u(",',t)9for all real ί, with the estimates in Proposition 4.28, and such a
solution is real.

We remark that for nonreal w( ; ,0) satisfying the hypotheses in Theorem 4.33,
Propositions 4.19, 4.13 together show that the time evolution u(; ,t) exists in a
neighborhood of t = 0. Certainly we may also assume that T± has small norm to
obtain the existence of w( ; ,ί) for all real t.
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