Instructions to Authors

The instructions should be read carefully before preparing the manuscript.

A. General

Papers submitted for publication should preferably be written in English.
A summary for Zentralblatt für Mathematik should be attached. Manuscripts (in duplicate) must be in their final form and typed on one side of the paper only in double-line spacing with wide margins. The author should also keep a copy of the manuscript. An abstract must be included.
Normally, only printer's errors should be corrected in the proofs. A charge is made for extensive changes not due to typesetting errors, introduced at the proof stage.
Formulae should be typewritten whenever possible.
Special markings should be explained in a "Note to the printer" (see suggestions in section B). Copies produced by matrix printer are not accepted unless clearly legible.
Illustrations and diagrams should be submitted on separate sheets and not included in the text. They should either be good-quality glossy prints in the desired final size (inscriptions 2 mm high are recommended) or be drawn about twice the final size in India ink using clean uniform lines. In the latter case, letters and numbers should be about 4 mm high to allow for 50% reduction. The publisher reserves the right to reduce or enlarge illustrations and diagrams. The author should indicate in the margin of the manuscript where illustrations and diagrams are to be inserted.
Footnotes, other than those referring to the title of the paper, should be avoided. If absolutely necessary, they should be numbered consecutively and placed at the foot of the page on which they occur (not at the end of the article).
On the first page of the manuscript a short running title should be provided (not to exceed 70 typewriter strokes, including spaces).
The list of references at the end of the paper should always be in alphabetical order and include the names and initials of all authors (see examples below). Names of journals and book series should be abbreviated in accordance with Zentralblatt für Mathematik. Whenever possible, please replace all references to papers accepted for publication, preprints or technical reports by
the exact name of the journal, as well as the volume, first and last page numbers and year, if the article has already been published or accepted for publication.
When styling the references, the following examples should be observed:

Journal article:

1. or [B-G] Tomboulis, E., Yaffe, L.: Finite temperature $S U(2)$ lattice gauge theory. Commun. Math. Phys. 100, 313-341 (1985)

Complete book:

2. or [M] Bratelli, O., Robinson, D.W.: Operator algebras and quantum statistical mechanics, Vol II. Berlin, Heidelberg, New York: Springer 1981

Single contribution in a book:
3. or [G] Gromov, M.: Large Riemannian manifolds. In: Shiohama, K., Sakai, T., Sunada, T. (eds.) Curvature and topology of Riemannian manifolds. Proceedings, Katata 1985. Lecture Notes Mathematics, Vol. 1201, pp. 108-121. Berlin, Heidelberg, New York: Springer 1986

Citations in the text should be either (a) by numbers in square brackets, e. g., [1], or Bombieri and Giusti [1], referring to an alphabetically ordered and numbered list, or (b) by the author's initials in square brackets, e.g., [B-G], or (c) by author and year in parentheses, e. g., Bombieri and Giusti (1971). Any one of these styles is acceptable if used consistently throughout the paper. In the third system, if there are two authors, both should be named, e.g., Agar and Douglas (1955); if a work with more than two authors is cited, only the first author's name plus "et al." need be given; e. g., Komor et al. (1979); if there is more than one reference by the same author or team of authors in the same year, then a, b, c, etc. should be added after the year both in the text and in the list of references.
One hundred (100) offprints of each paper will be supplied free of charge. Additional offprints are available in lots of 100 , provided the order form is received with the corrected proof.

B. Color coding

Manuscripts must be marked according to the following rules unless produced on a golfball/ daisy typewriter or on a good-quality printer and the desired fonts (Greek, script, special roman, boldface, etc.) are clearly recognizable. Special letters or symbols should be explained in a "Note to the printer". Unmarked manuscripts may have to be returned to the authors, which may cause a delay in publication.

1. Text

Manuscripts produced by computer typesetting with a daisy wheel or laser printer, or by manual typing with special fonts require marking only of special symbols, and distinguishing between 0 and $\mathrm{O}, 0$ and o , and 1 and 1 . Special letters or symbols should be explained in a "Note to the Printer." In other cases the following instructions should be followed.
The words "Theorem", "Lemma", "Corollary", "Proposition" etc. are normally printed in boldface, followed by the formulation in italics (to be underlined in the manuscript), the end of which should be clearly indicated. The words "Proof", "Remark", "Example", "Note" etc. are printed in italics with the formulation in ordinary (roman) typeface, and Definition in boldface. The text of the definition itself should be in roman except for the concept defined, which should be in italics. Words or sentences to be set in italics should be marked by single underlining. If the material underlined in the manuscript is to be typeset with underlining (and not set in italics), this must be explained to the printer.

2. Formulae

Letters in formulae are printed in italics and figures in roman, if not marked otherwise. It will help the printer if in doubtful cases the position of indices and exponents is marked thus: $h_{\hat{j}}, a^{i /}$. Spacing of indices and exponents must be specially indicated ($A_{m}{ }^{n}{ }_{n}{ }^{m}$) otherwise they will be set $\left(A_{m n}^{n m}\right)$.
Underlining for special alphabets and typefaces should be done according to the following code:
Violet: Letters in formulae ($1, \mathrm{O}, \mathrm{o}$) to be distinguished from numerals $(1,0)$
Brown: boldface (headings, boldface letters in formulae)
Yellow: roman (abbreviations e.g. Re, Im, log, sin, ord, id, lim, sup, etc.)
Red: Greek
Green: script
Orange: special roman
Blue: Gothic
Encircled: sanserif

The following are frequently confused and should be made unambiguous:
$\cup, \cup, \cup, U ; \circ, o, O, 0 ; \quad \times, x, X, \chi, \kappa ; \quad \vee, v, v ;$ $\theta, \Theta, \phi, \varphi, \Phi, \varnothing, \emptyset ; \quad \psi, \Psi ; \varepsilon, \in ;$
a^{\prime}, a^{1}; the symbol a and the indefinite article a; also the handwritten letters:
$c, C ; e, l ; I, J ; k, K ; o, O ; p, P ; s, S ; u, U ; v, V$; $w, W ; x, X ; z, Z$

Please take care to distinguish these capital letters by double underlining.

C. Examples

1. Special alphabets or typefaces

Boldface
 $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{E}, \mathbf{F}, \mathbf{G}, \mathbf{H}, \mathbf{I}, \mathbf{J}, \mathbf{K}$,

 $\mathbf{L}, \mathbf{M}, \mathbf{N}, \mathbf{O}, \mathbf{P}, \mathbf{Q}, \mathbf{R}, \mathbf{S}, \mathbf{T}, \mathbf{U}$, $\mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$Greek $\quad \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega$
$\alpha, \beta, \gamma, \delta, \varepsilon, \zeta, \eta, \theta, \vartheta, \imath, \kappa, \lambda, \mu$, $v, \xi, o, \pi, \varrho, \sigma, \tau, v, \varphi, \phi, \chi, \psi, \omega$

Script $\quad \mathscr{A}, \mathscr{B}, \mathscr{C}, \mathscr{D}, \mathscr{E}, \mathscr{F}, \mathscr{G}, \mathscr{H}, \mathscr{I}, \mathscr{J}, \mathscr{K}$, $\mathscr{L}, \mathscr{M}, \mathscr{N}, \mathcal{O}, \mathscr{P}, \mathscr{Q}, \mathscr{R}, \mathscr{S}, \mathscr{T}, \mathscr{U}, \mathscr{V}$, $\mathscr{W}, \mathscr{X}, \mathscr{Y}, \mathscr{Z}$
$a, b, c, d, e, f, g, h, i, j, k, \ell, m, n$,
$o, h, q, v, s, t, u, v, w, x, y, z$
Special roman $\mathbb{A}, \mathbb{B}, \mathbb{C}, \mathbb{D}, \mathbb{E}, \mathbb{F}, \mathbb{G}, \mathbb{H}, \mathbb{I}, \mathbb{I}, \mathbb{K}$, $\mathbb{L}, \mathbb{M}, \mathbb{N}, \mathbb{O}, \mathbb{P}, \mathbb{Q}, \mathbb{R}, \mathbb{S}, \mathbb{T}, \mathbb{U}$, $\mathbf{V}, \mathbb{W}, \mathbb{X}, \mathbb{Y}, \mathbb{Z}, \mathbb{1}$

Gothic $\quad \mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \mathfrak{D}, \mathfrak{E}, \mathfrak{F}, \mathfrak{G}, \mathfrak{H}, \mathfrak{I}, \mathfrak{I}, \mathfrak{R}$, $\mathfrak{L}, \mathfrak{M}, \mathfrak{N}, \mathfrak{D}, \mathfrak{P}, \mathfrak{Q}, \mathfrak{R}, \mathfrak{S}, \mathfrak{T}, \mathfrak{U}$, $\mathfrak{B}, \mathfrak{M}, \mathfrak{X}, \mathfrak{Y}, \mathfrak{3}$
$\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}, \mathfrak{e}, \mathfrak{f}, \mathfrak{g}, \mathfrak{h}, \mathfrak{i}, \mathfrak{i}, \mathfrak{f}, \mathfrak{l}, \mathfrak{m}, \mathfrak{n}$, $\mathfrak{v}, \mathfrak{p}, \mathfrak{q}, \mathfrak{r}, \mathfrak{s}, \mathfrak{t}, \mathfrak{u}, \mathfrak{v}, \mathfrak{w}, \mathfrak{x}, \mathfrak{y}, \mathfrak{z}$

Sanserif A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U, V, W, X, Y, Z
$a, b, c, d, e, f, g, h, i, j, k, l, m, n$,
$o, p, q, r, s, t, u, v, w, x, y, z$

Final check:

- All formula characters unambiguous?
- Information on title page complete (title, name(s) of author(s), institute(s), complete address(es)?
- All figures enclosed?
- References complete and cross-checked?
- Text and end of theorems, lemmas etc. marked?
- Short running title given?
- Summary for Zentralblatt für Mathematik enclosed?

Mathematical Analysis and Numerical Methods for Science and Technology compiles the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of mathematics applied to the theoretical and numerical resolution of physical models on computers.
The advent of high-speed computers has revolutionised methods of computation. For the first time it is possible to calculate values from models accurately and rapidly. Researchers and engineers thus have a crucial means of using numerical results to modify and adapt arguments and experiments along the way.
Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form.

Volume 1:

Physical Origins and Classical

 Methods1989. Approx. 672 pp. 41 figs.

Hardcover DM 198,-.
Prepublication price (valid only up to publication) DM 168,-.
ISBN 3-540-50207-6
Contents:
Chapter I: Physical Examples
Chapter II: The Laplace Operator
Volume 2:
Functional and Variational Methods
1988. XV, 561 pp. 20 figs. Hardcover DM 198,-. ISBN 3-540-19045-7

Contents:

Chapter III: Functional Transformations
Chapter IV: Sobolev Spaces
Chapter V: Linear Differential Operators
Chapter VI: Operators in Banach Spaces and in Hilbert Spaces
ChapterVII: Linear Variational Problems. Regularity

Volume 3:

Spectral Theory and Applications

1990. Hardcover approx. DM 198,-Prepublication price (valid only up to publication) approx. DM 168,-. ISBN 3-540-50208-4

Contents:

Chapter VIII: Spectral Theory
Chapter IX: Examples in Electromagnetism and Quantum Physics
Volume 4:
Integral Equations and Numerical Methods
1990. Hardcover approx. DM 198,-. Prepublication price (valid only up to publication) approx. DM 168,-. ISBN 3-540-50209-2
Contents:
Chapter X: Mixed Problems and Tricomi Equation
Chapter XI: Integral Equations
Chapter XII: Numerical Methods forStationary Problems
Chapter XIII: Approximation of Integral Equations by Finite Elements. Error Analysis

Volume 5:

Evolution Problems I

1990. Hardcover approx. DM 198,-.

Prepublication price (valid only up to publication) approx. DM 168,-.
ISBN 3-540-50205-X

Contents:

Chapter XIV: Evolution Problems: Cauchy Problems in IR^{n}
Chapter XV: Evolution Problems: The Method of Diagonalisation
Chapter XVI: Evolution Problems: The Method of Laplace Transformation
Chapter XVII: Evolution Problems: The Method of Semigroups
Chapter XVIII: Evolution Problems: Variational Methods

Volume 6:

Evolution Problems II

-The Navier-Stokes and Transport Equations in Numerical Methods 1990. Hardcover approx. DM 198,-Prepublication price (valid only up to publication) approx. DM 168,-. ISBN 3-540-50206-8
Contents:
Chapter XIX: The Linearised NavierStokes Equations
Chapter XX: Numerical Methods for Evolution Problems Chapter XXI: Transport

Springer-Verlag
Berlin Heidelberg New York London
Paris Tokyo Hong Kong
Heidelberger Platz 3, D- 1000 Berlın 33
175 Fifth Ave, New York, NY 10010, USA
8 Alexandra Rd., London SW 19 7JZ, England
26, rue des Carmes, F-75005 Paris
7-3, Hongo 3-chome, Bunkyo-ku, Tokyo 113, Japan Citicorp Centre, Room 1603, 18 Whitfield Road, Causeway Bay, Hong Kong

New and Recent Titles in Mathematical and Theoretical Physics

Birkhåuser Popular Science Books				
A selecti				
	New		Irving M. Klotz Diamond Dealers and Feather Merchants	
tales of physicists ano Mathematicians	Tales of Physicists and			
		DIMOND		
	Mathematicians	DEALERS		
		FEATHER		
	Arthur I. Miller Frontiers of Physics 1900-1911 Seleceed Essays		Arsenij Gulyga Immanuel Kant His Life and Thought sfr. 68 .- - IDM $78 .-$ In this biography of Immanuel In this iograph of of mmanue Kant by Arsenij Gulyga, the reader discovers Kant's inner life, the mind of a great phılosopher whose ideas are wond- rously alive and whose thoughts soul. To read Kant is to be well inhroduced philosophy.	
	Selected Essays 320 pages, Hardcover ISBN 3-7643-3203-4 5Fr. 78.-IDM 98.-			
	These selected essays by Arthur tions in electrodynamics,			
	electrical engineering, and mathematics on which the			
	physicists of 1905 based their conceptions. The episodes are			
	discussed in. light of contempo-rary philosophical currents, thus			
	making Frontiers of Physics avaluable contribution to the		Discrete Thoughts	
		81	and Philosophy 280 pages, HardcoverISBN 3-7643-3285-9 sFr. 68.-1DM 84 -	
Serious Questions	Erwin Chargaff Serious Questions An ABC of Skeptici Reflections			
				cover a variety of interesting
Hik	Eachessy IS unique. Some ere	THOUGHTS	tople	
			of matementis to eenomitics,	
	tions and thoughts of a man		book reviews, philosophy of mathematics, and problems in	
			hematical deducaion The	
			coadin for mathematicicins	
			osophers of mathematics." A M. COYNE ZENTRALBLATT F. MATHEMATIK UND IHRE GRENZGEBIETE	
	I		Please order from your bookseller or Birkhäuser Verlag, P. O. Box 133,	

Communications in Mathematical Physics

Chief Editor A. Jaffe, Cambridge, MA
Editorial Board M. Aizenman, New York, NY
H. Araki, Kyoto
A. Connes, Bures-sur-Yvette
J.-P. Eckmann, Genève
M. E. Fisher, College Park, MD
J. Fröhlich, Zürich
K. Gawedzki, Bures-sur-Yvette
J. L. Lebowitz, New Brunswick, NJ
J. Mather, Princeton, NJ
N. Yu. Reshetikhin, Cambridge, MA
B. Simon, Pasadena, CA
Ya. G. Sinai, Moscow
T. Spencer, Princeton, NJ
S.-T. Yau, Cambridge, MA
Advisory Board M. F. Atiyah, Oxford
F. Hirzebruch, Bonn
G. 't Hooft, Utrecht
R. Schrieffer, Santa Barbara, CA
I. Singer, Cambridge, MA
C. N. Yang, Stony Brook, NY

written as

$$
\begin{equation*}
(D \mathscr{R} \varphi)(z)=-\frac{1}{\lambda} \varphi\left(L_{+}(\tau z)\right)-\frac{r}{\lambda} f^{\prime}\left(L_{+}(\tau z)\right) f(\tau z)^{r-1} \varphi(\tau z) . \tag{3.6}
\end{equation*}
$$

If we define the linear operator Q by

$$
\begin{equation*}
(Q \varphi)(z)=\frac{\varphi(z)}{f^{\prime}(z)}, \tag{3.7}
\end{equation*}
$$

then

$$
\begin{equation*}
Q D \mathscr{R}=T Q, T=Q D \mathscr{R} Q^{-1} . \tag{3.8}
\end{equation*}
$$

The domains of these operators will be chosen to be certain spaces of functions holomorphic in complex neighborhoods of $[0,1]$ in such a way that these equations make sense. The spectrum of $D \mathscr{R}$ will then be the same as that of T.

It is natural to expect (and true) that T will preserve the class of functions holomorphic in the same domain as f. Indeed recall that U is holomorphic in $\Omega(\lambda)$ which it maps bijectively onto a certain bounded open subset Δ of \mathbf{C}, on which f is holomorphic. By (2.7), $\tau \Delta \subset \Delta$. The identity (2.15) shows that $L_{+} \circ \tau$ is analytic on Δ and maps it into itself. But $L(\tau \Delta)=U(-\lambda \Omega(\lambda))$ is not relatively compact in Δ since their non-real points are the same. We will therefore use a sub-domain of Δ to make T analyticity-improving. A convenient choice is given by

$$
\begin{equation*}
\Delta_{1}=U\left(\left\{z:|z|<\frac{1}{\lambda}\right\}\right), \quad \Delta_{0}=U(\{z:|z|<u(-1)\}) . \tag{3.9}
\end{equation*}
$$

Note that $\Delta_{0} \Subset \Delta_{1}$ since

$$
1=u(-\lambda)<u(-1)<u(-1 / \lambda)=x_{0} / \lambda .
$$

Lemma 3.1. If v is a real function on $[0,1]$ which extends to a holomorphic function on Δ_{0}, then Tv extends to a holomorphic function on Δ_{1}. For every $\Delta^{\prime} \Subset \Delta_{1}$ one has

$$
\sup _{z \in \Lambda^{\prime}}|(T v)(z)| \leqq \frac{1}{\tau} \sup _{z \in \mathbb{J}^{\prime}}\left(1+\left|\frac{1}{\bar{L}_{+}^{\prime}(\tau z)}\right|\right) \cdot \sup _{y \in \Delta_{0}}|v(y)| .
$$

Proof. We shall use the following simple fact: if a Herglotz or anti-Herglotz function is holomorphic on a real segment (a, b) and maps it into the real segment $\left(a^{\prime}, b^{\prime}\right)$, then it maps the disk with diameter (a, b) into the disk with diameter $\left(a^{\prime}, b^{\prime}\right)$. (See e.g. [E2].)

We claim now that $\tau \Delta_{1} \subset \Delta_{0}$ and $L_{+}\left(\tau \Delta_{1}\right) \subset \Delta_{0}$. Indeed, let $z=U(\zeta)$, for some $|\zeta|<1 / \lambda$. Then $\tau z=U(u(-\lambda \zeta)$), and $u(-\lambda \zeta)$ is contained in the disk with diameter $(0, u(-1))$; hence $\tau z \in \Delta_{0}$. On the other hand, by (2.15), we have $L_{+}(\tau z)=U(-\lambda \zeta)$ and this is also in Δ_{0}. The derivative of $L_{+} \circ \tau$ tends to zero near y_{0} / τ. But its reciprocal is bounded in modulus in any $\Delta^{\prime} \Subset \Delta_{1}$. This completes the proof of the lemma.

We denote by \mathscr{B} the Banach space of holomorphic, bounded functions on Δ_{0} which are real on [0,1], equipped with the "sup" norm. It follows from Lemma 3.1 that $T \mathscr{B} \subset \mathscr{B}$ and T is a compact linear operator on \mathscr{B} whose eigenvalues form an exponentially decaying sequence.

We use the following lemma to take advantage of the simple form of T :
Lemma 3.2. The function L_{+}is convex on $\left[0, y_{0}\right]$, and the function L_{-}is convex on [$\left.y_{0}, 1\right]$.
Proof. By our general assumptions, the function U is holomorphic and antiHerglotzian in the cut plane $\Omega(\lambda)$, described by (2.3). As such it has positive Schwarzian derivative on the interval ($-\lambda^{-1}, \lambda^{-2}$), i.e. $\phi=U^{\prime \prime} / U^{\prime}$ satisfies $2 \phi^{\prime} / \phi^{2}$ $-1 \geqq 0$. Integrating this inequality gives

$$
\begin{equation*}
-\frac{2 \lambda}{1+\lambda z} \leqq \frac{U^{\prime \prime}(z)}{U^{\prime}(z)} \leqq \frac{2 \lambda^{2}}{1-\lambda^{2} z} . \tag{3.10}
\end{equation*}
$$

By (2.14),

$$
\begin{equation*}
-\frac{S_{ \pm}^{\prime \prime}(\zeta)}{S_{ \pm}^{\prime}(\zeta)}=\frac{1}{r \zeta}\left[r-1-z \frac{U^{\prime \prime}(z)}{U^{\prime}(z)}\right] \quad \text { with } \quad z= \pm \zeta^{1 / r} \tag{3.11}
\end{equation*}
$$

We now use the lower bound for r obtained in [E1]:

$$
\begin{equation*}
r>\frac{1+\lambda^{2}}{1-\lambda^{2}} . \tag{3.12}
\end{equation*}
$$

For $z=\zeta^{1 / r}>0$ we find:

$$
\begin{equation*}
-\frac{S_{+}^{\prime \prime}(\zeta)}{S_{+}^{\prime}(\zeta)}>\frac{1}{r \zeta}\left[\frac{1+\lambda^{2}}{1-\lambda^{2}}-\frac{1+\lambda^{2} z}{1-\lambda^{2} z}\right] . \tag{3.13}
\end{equation*}
$$

This is positive for $z<1$. For $z=-\zeta^{1 / r} \leqq 0$, we get:

$$
\begin{equation*}
-\frac{S_{-}^{\prime \prime}(\zeta)}{S_{-}^{\prime}(\zeta)}>\frac{1}{r \zeta}\left[\frac{1+\lambda^{2}}{1-\lambda^{2}}-\frac{1-\lambda z}{1+\lambda z}\right] . \tag{3.14}
\end{equation*}
$$

This is positive for $-\lambda \leqq z \leqq 0$. Thus:

$$
\begin{equation*}
-\frac{S_{+}^{\prime \prime}(\zeta)}{S_{+}^{\prime}(\zeta)}>0 \quad \forall \zeta \in[0,1], \quad-\frac{S_{-}^{\prime \prime}(\zeta)}{S_{-}^{\prime}(\zeta)}>0 \quad \forall \zeta \in[0, \tau] . \tag{3.15}
\end{equation*}
$$

To see that the inequalities (3.15) remain strict even in the limit $r \rightarrow \infty$, we rewrite r in (3.11) as $\log (1 / \tau) / \log (1 / \lambda)$ and, using again the bounds (3.10), and $\log (1 / \lambda)$ $<1 / \lambda-1$, we find:

$$
\begin{equation*}
-\frac{S_{+}^{\prime \prime}(\zeta)}{S_{+}^{\prime}(\zeta)}>\frac{1}{\zeta}\left[1-\frac{1+\lambda^{2}}{\lambda(1+\lambda) \log (1 / \tau)}\right] \forall \zeta \in(0,1], \tag{3.16}
\end{equation*}
$$

and exactly the same inequality for $S_{-}^{\prime \prime} / S_{-}^{\prime}$ on $(0, \tau]$. This proves that L_{+}and L_{-}are convex on $\left[0, y_{0}\right]$ and $\left[y_{0}, 1\right]$ respectively. This completes the proof of Lemma 3.2.

Corollary 3.3. For all $z \in[0,1]$, we have $L_{+}(\tau z)>\tau z$ and $L_{+}^{\prime}(\tau z)<-1$.
Proof. By the monotonicity and convexity of L_{+}it suffices to prove this for $z=1$. Applying the functional equation (2.11) and its derivative at $z=0$ gives

$$
\begin{equation*}
L(1)=-\tau, \quad L^{\prime}(1)=-1 . \tag{3.17}
\end{equation*}
$$

Reapplying them at $z=1$ gives

$$
\begin{equation*}
L(L(\tau))=\tau^{2}, \quad L^{\prime}(L(\tau)) L^{\prime}(\tau)=1 \tag{3.18}
\end{equation*}
$$

It follows that $L(\tau)<y_{0}$, and also $L(\tau)>\tau$. Otherwise $L(L(\tau) / \tau)$ would be in $[-1,1]$, contradicting

$$
\begin{equation*}
L(L(\tau) / \tau)=-L\left(\tau^{2}\right) / \tau<-L\left(\tau y_{0}\right) / \tau=-y_{0} / \tau<-1 . \tag{3.19}
\end{equation*}
$$

The convexity of L_{+}implies $-L^{\prime}(\tau)>-L^{\prime}(L(\tau))$ and hence $-L^{\prime}(\tau)>1$ by (3.18).
From the convexity of $L_{ \pm}$we can now derive, following an idea of [CE], the existence of invariant cones for the operator T. However, the cones we define here do not coincide with the cones defined there because of the use of $v=\delta f / f^{\prime}$ instead of δg. (The cones of [CE] could not be shown to be invariant under the tangent map for r much above 2 because of the lack of concavity of g on $\left(x_{0}, 1\right]$.)
Definition. Define Γ_{1} as the set of real \mathscr{C}^{1} functions v on $[0,1]$ for which
i) $v(z) \geqq 0$ for all $z \in[0,1]$,
ii) $v^{\prime}(z) \leqq 0$ for all $z \in[0,1]$.

We also define $\Gamma=\Gamma_{1} \cap \mathscr{B} . \Gamma$ is a closed cone with non-empty interior in \mathscr{B}.
Lemma 3.4. The tangent map T maps Γ_{1} into itself. Furthermore, T^{2} maps any nonzero vector in Γ into the interior of Γ.

Proof. Suppose $v \in \Gamma_{1}$. Then, since (by Corollary 3.3) for any $z \in[0,1], L_{+}(\tau z)>\tau z$, and since v is decreasing,

$$
\begin{equation*}
\tau(T v)(z) \geqq v(\tau z)\left[1+1 / L_{+}^{\prime}(\tau z)\right] . \tag{3.20}
\end{equation*}
$$

This is non-negative since $L_{+}^{\prime}(\tau z)<-1$ by Corollary 3.3. Furthermore

$$
\begin{equation*}
(T v)^{\prime}(z)=v^{\prime}\left(L_{+}(\tau z)\right)-\frac{v\left(L_{+}(\tau z)\right) L_{+}^{\prime \prime}(\tau z)}{L_{+}^{\prime}(\tau z)^{2}}+v^{\prime}(\tau z) \tag{3.21}
\end{equation*}
$$

The point is now that all three terms of this formula are non-positive, so that $T v$ is indeed in Γ_{1}. The interior of Γ is clearly composed of those v for which the inequalities defining Γ are all strict. Suppose $v \in \Gamma$ is not 0 . If $v(z)$ vanished for some $z \in[0,1)$, it would have to vanish on $[z, 1]$, hence everywhere by analyticity, i.e. 1 is the only place in $[0,1]$ where v can vanish. But $T v$ cannot vanish even at 1 by (3.20). Furthermore the middle term in (3.21) cannot vanish in (0,1 , and can vanish at 0 only if $v(1)=0$. Hence $T^{2} v$ is in the interior of Γ as claimed.

4. Inequalities and Numerical Bounds

Suppose $v_{e} \in \Gamma \backslash\{0\}$ and $T v_{e}=\varrho v_{e}$. Then v_{e} is in the interior of Γ by Lemma 3.4, and

$$
\begin{equation*}
\varrho v_{e}(0)=\frac{v_{e}(1)}{\tau L^{\prime}(0)}+\frac{v_{e}(0)}{\tau}>v_{e}(0)\left[\frac{1}{\tau}+\frac{1}{\tau L^{\prime}(0)}\right]>v_{e}(0)\left(\frac{1}{\tau}-\frac{1}{\lambda}\right) . \tag{4.1}
\end{equation*}
$$

The last inequality uses $-\tau L^{\prime}(0)>\lambda$ due to the convexity of L_{+}. The middle inequality is strict because v_{e} is in the interior of Γ, so that $v_{e}(1)<v_{e}(0)$. Finally,
since $v_{e}(1)>0$, we get the inequality announced in the Introduction:

$$
\begin{equation*}
\frac{1}{\tau}-\frac{1}{\lambda}<\frac{1}{\tau}+\frac{1}{\tau L^{\prime}(0)}<\varrho<\frac{1}{\tau} . \tag{4.2}
\end{equation*}
$$

Applying the theorem of Krein and Rutman [KR] we obtain from Lemma 3.4:
Lemma 4.1. As an operator on \mathscr{B}, T possesses an eigenvalue of largest modulus δ which is real and positive. The spectral subspace corresponding to this eigenvalue is one-dimensional and generated by an element of the interior of Γ which is (up to rescaling) the only eigenvector of T in Γ. This eigenvalue satisfies the bounds (4.2). The adjoint T^{*} of T has a unique eigenvector φ_{e} in the cone Γ^{*} dual to Γ (i.e., the set of continuous linear functionals on \mathscr{B} which take positive values on all elements of Γ) and the corresponding eigenvalue is δ.

At $r=\infty$, we can use the rigorous numerical bounds obtained in [EW1], written here just as ordinary numbers, not as intervals:

$$
y_{0}=0.391132999351022542, \tau=0.033381055, L_{+}^{\prime}(0)=-67.42069 .
$$

This gives

$$
\frac{1}{\tau}=29.957112, \frac{1}{\tau}-1=28.957112, \frac{1}{\tau}\left(1+\frac{1}{L^{\prime}(0)}\right)=29.5128
$$

to be compared with the following numerical estimate of δ :

$$
\delta=29.5763
$$

This shows that the bounds (4.2) become rather satisfactory at $r=\infty$. They are poorer at, e.g. $r=2$, where

$$
\begin{gathered}
\delta=4.669201609, \text { while } \frac{1}{\tau}=6.26454783121704, \frac{1}{\tau}-\frac{1}{\lambda}=3.7616, \\
f^{\prime}(0)=-1.52763299703630145, \frac{1}{\tau}\left(1+\frac{1}{L^{\prime}(0)}\right)=4.2141 .
\end{gathered}
$$

Acknowledgements. This work was begun during the first author's stay at the IHES, where he profited from the usual warm hospitality. Further support was received from the Fonds National Suisse.

References

[CEL] Collet, P., Eckmann, J.-P., Lanford, O.E., III: Universal properties of maps on the interval. Commun. Math. Phys. 76, 211-254 (1980)
[CE] Campanino, M., Epstein, H.: On the existence of Feigenbaum's fixed point. Commun. Math. Phys. 79, 261-302 (1981)
[CT] Coullet, P., Tresser, C.: Itération d'endomorphismes et groupe de renormalisation. J. Phys. Colloque C539, C5-25 (1978). CRAS Paris 287 A (1978)
[E1] Epstein, H.: New proofs of the existence of the Feigenbaum functions. Commun. Math. Phys. 106, 395-426 (1986)
[E2] Epstein, H.: Fixed points of composition operators. In: Non-linear evolution and chaotic phenomena. Gallavotti, G., Zweifel, P. (eds.). Plenum Press: New York 1988
[E3] Epstein, H.: Fixed points of composition operators. II. Nonlinearity 2, 305-310 (1989)
[EW1] Eckmann, J.-P., Wittwer, P.: Computer methods and Borel summability applied to Feigenbaum's equation. Lecture Notes in Physics, vol. 227. Berlin, Heidelberg, New York: Springer 1985
[EW2] Eckmann, J.-P., Wittwer, P.: A complete proof of the Feigenbaum conjectures. J. Stat. Phys. 46, 455-477 (1987)
[F] Feigenbaum, M.J.: Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19, 25-52 (1978). Universal metric properties of non-linear transformations. J. Stat. Phys. 21, 669-706 (1979)
[KR] Krein, M.G., Rutman, M.A.: Usp. Mat. Nauk 3, 1, 3-95 (1948); English Translation: Functional analysis and measure theory. Providence: Am. Math. Soc. 1962

Communicated by A. Jaffe

Received June 20, 1989

Note added in proof. Using the upper bounds on τ given in [E1], it is easy to see that $(1 / \tau-1 / \lambda)>1$ (and hence $\delta>1$) for all $r>1$.

A Text and Exercise Book

W. Greiner

An introduction

Walter Greiner, University of Frankfurt, FRG

Theoretical Physics

Text and Exercise Books

Theoretical Physics is a major survey of quantum theory based on Walter Greiner's long-running and highly successful course at the University of Frankfurt.
The text is divided into five volumes:
Quantum Mechanics - An Introduction Quantum Mechanics - Symmetries Relativistic Quantum Mechanics Quantum Electrodynamics Gauge Theory of Weak Interactions
These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in particle physics.

Walter Greiner
 Quantum Mechanics An Introduction

1989. XV, 347 pp. 57 figs.

Softcover DM 68,-
ISBN 3-540-18755-3
Volume 1 lays the foundation for the rest of the course. Starting from black-body radiation, the photo-electric effect and waveparticle duality, Greiner goes on to discuss the uncertainty relations, spin and many-body systems, then discusses applications to the hydrogen atom and the Stern-Gerlach and Einstein-de Haas experiments. The mathematics of representation theory, S-matrices, perturbation theory, eigenvalues and hypergeometric differential equations are presented in detail, with 84 fully and carefully worked examples and exercises to consolidate the material.

Walter Greiner, Berndt Müller
 Quantum Mechanics Symmetries

1989. XVI, 368 pp. 81 figs. Softcover DM 78,ISBN 3-540-19201-8

Volume 2 presents a particularly appealing and successful theme in advanced quantum mechanics - symmetries. After a brief introduction to symmetries in ciassical mechanics, the text turns to their relevance in quantum mechanics, the consequences of rotation symmetry and the general theory of Lie groups. The Isospin group, hypercharge, $\operatorname{SU}(3)$ and their applications are all dealt with in depth before a chapter on charm and $\mathrm{SU}(3)$ leads to the frontiers of research in particle physics. This unique text includes almost a hundred detailed, worked examples and problems.

Springer-Verlag

Berlin Heidelberg New York London Paris Tokyo Hong Kong
Heidelberger Platz 3, D-1000 Berlin $33 \cdot 175$ Fifth Ave., New York, NY 10010, USA
8 Alexandra Rd., London SW 19 7JZ, England • 26, rue des Carmes, F-75005 Paris
37-3, Hongo 3-chome, Bunkyo-ku, Tokyo 113, Japan Room 1603, Citicorp Centre,
18 Whitfield Road, Causeway Bay, Hong Kong

Communications in

Mathematical Physics

Chief Editor A. Jaffe, Cambridge, MA

Editorial Board	M. Aizenman, New York, NY
	H. Araki, Kyoto
	A. Connes, Bures-sur-Yvette
	J.-P. Eckmann, Genève
	M. E. Fisher, College Park, MD
	J. Fröhlich, Zürich
	K. Gawedzki, Bures-sur-Yvette
	J. L. Lebowitz, New Brunswick, NJ
	J. Mather, Princeton, NJ
	N. Yu. Reshetikhin, Cambridge, MA
	B. Simon, Pasadena, CA
	Ya. G. Sinai, Moscow
	T. Spencer, Princeton, NJ
	S.-T. Yau, Cambridge, MA
Advisory Board	M. F. Atiyah, Oxford
	F. Hirzebruch, Bonn
	G. 't Hooft, Utrecht
	R. Schrieffer, Santa Barbara, CA
	I. Singer, Cambridge, MA
	C. N. Yang, Stony Brook, NY

