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Abstract. We construct N — 2 Yang-Mills theory in projective superspace by
exploiting the analogy to Ward's twistor construction of self-dual Yang-Mills
fields.

In a series of papers [1,2] we have developed a formalism for describing N = 2,
d = 4 (or equivalently, ΛΓ = 1, d = 6 or JV = 4, d = 2) supersymmetry, useful for
studying scalar multiplets off shell. This projective superspace adjoins to the usual
N = 2 superspace a complex coordinate, which can be viewed as a coordinate on
CP(1), and parametrizes the N=ί subspaces oϊN = 2 superspace (see below). This
development largely parallels that of harmonic superspace [3,4] which instead of
using a projective coordinate on CP(1) uses spinor harmonic analysis on S2.
Though the two approaches are presumably essentially equivalent, the projective
approach is concerned with analytic properties on the Riemann sphere, while the
harmonic approach focuses on group theoretical properties under SU(2) (acting on
S2). We have concentrated entirely on classical properties of various scalar
multiplets and non-linear σ-models, whereas the harmonic superspace methods
have also been applied to super Yang-Mills and supergravity systems, as well as
quantum calculations [4]. Recently a harmonic approach to self-dual Yang-Mills
theory, based on the harmonic superspace formulation of TV = 2 super Yang-Mills
theory, has been proposed [5]. This article also discusses the relation to Ward's
construction of self-dual Yang-Mills fields [6,7]. Here we give a projective
superspace description of N = 2 supersymmetric Yang-Mills theory which is
completely analogous to Ward's twistor construction of self-dual Yang-Mills. We
find our approach simpler and more direct than that of [4], but we have not carried
our program as far, since we have not found the unconstrained prepotential for the
Yang-Mills field.
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The usual N = 2,d = 4 superspace has, in addition to the spacetime coordinate
xαά, anticommuting coordinates 0αfl, θ% where α, ά are left and right-handed Weyl
spinor indices and a is an internal 5'(7(2)-isospinor index [8, 9, 10]. The spinor
derivatives

D = 8 I V (1

*a dθaa 2 "δx"*'

satisfying the supersymmetry algebra

{Dαa,D|} = i^, {Dββ,D/,6} = {/^^}=0. (2)

We obtain projective superspace by introducing a projective isospinor (1,£)

(3)

[Note that V(Δ) is noί the complex conjugate of V(Λ)~\. Under isospin rotations of
the internal SU(2), ζ transforms as the complex coordinate under rotations of the
Riemann sphere. The algebra of the derivatives in (3) is

Observe that the Γ's (idemzl's) form a graded abelian subalgebra that corresponds
to an N = 1 subsuperspace. These subalgebras are preserved by the involution #
which composes the antipodal map £-> — C"1 with complex conjugation:

Λ(P)=_r ir, *(Λ) = f* (5)

JR defines a real structure on projective superspace. The basic superfields we work
with are annihilated by all the P's, and thus effectively live in an N=ί
subsuperspace (cf. chiral fields in ordinary N = 1 superspace). Different superfields
are defined by their C-dependence.

In [2] we introduced a number of scalar superfields. The multiplet that we use
here is an analytic multiplet defined by

Vη=Vη = Q, η= £ η^ . (6)
i = 0

Substituting in (3) this implies

D1ηί_ΐ, (7a)

= 010,^=0. (7b)
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This means that, as N= 1 superίields, η0 is antichiral, η^ is antilinear and all other
/7/s are unconstrained. We also have the conjugate field, defined to be

η=R(η)9 n= Σ
i = 0

In [2] we use these multiplets to describe supersymmetric nonlinear σ-models on
hyperkahler manifolds. In particular, the free action for this multiplet is

I=\dxj^j.A2Z2ήη. (9)

By analogy to the N = ί supersymmetric Yang-Mills transformations of chiral
superfields we define N = 2 gauge transformations on η

η' = eiλη, (10)

where η is in some representation of the gauge group. The gauge parameter λ is
chosen to preserve the constraints (6), which simply means that it also satisfies (6).
Note in particular that λ is analytic in ζ. The conjugate field ή transforms with the
conjugate parameter λ which is analytic in ζ'1. Again, in analogy to N = ί
supersymmetric Yang-Mills, to make the action (9) invariant under local gauge
transformations we introduce a superfϊeld V that "converts" J-transformations to
^-transformations:

ev' = eaeve-λ. (11)

Here V is chosen to satisfy

W=VV=Q, R(V)=V,
(12)

These constraints imply that v0 is real and that vt satisfy the analog of (7a);
however, they do not imply any N = 1 constraints analogous to (7b), and thus as
N=l superfields the vt are unconstrained. The gauge invariant action constructed
using V is

J dx § 7— A 2A2ήevη. (13)

As discussed below, υ0 is essentially an JV=1 Yang-Mills prepotential and vi

contains an N = 1 chiral superfield (the N — 2 partner of v0). Because of the
constraints (12) it is not obvious how to construct gauge covariant derivatives from
V (the procedure directly analogous to the N = ί construction fails). Instead we
factor ev as follows:

ev = ev-ev°ev+, V.= £ Vλ -~ V+= Σ V£. (14)
«=ι V ζ/ ί=ι

For the abelian case, Vi = vi9 but in general this factorization is difficult to perform.
Note that VV+ φO etc. From (12) it follows that
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Note that

Γ_=e-v-(Vev-} = Σ ^-Γf,
i = 0

whereas

Γ+=ev°ev+(Ve-v+e-v°)= £ Γi + ζ*-
i = 0

However, (15) says that Γ_ =Γ+, and hence

Γ0+=Γ0_=Ω, ri+=rt_=0, i^l . (16)

Thus

e-v-rev-=Dl + ζD2 + Ω = 9l + ζ929 (17)

and it is natural to identify Ω as the 2f^ spinor gauge connection. This implies that
we are in a gauge where the Q)2 connection vanishes.

So far we have constructed a connection but we must identify what
representation it transforms under. To do this we substitute (14) into (11) and find

ev- =jlev-e~a\ ^WV^ίΓ"0, ev'+ =eiλ°ev+e-ίλ. (18)

This implies

δΩ = ea°Dίe-a°, (19)

which is the correct transformation for a connection when the gauge parameter is
J0. Note that (7a) implies D2λ0 = 0, consistent with the observation that the 3)2

connection vanishes. Equation (18) allows us to go to J, /10, or λ representation
using ev~, ev° or ev°ev+. Similarly, we can find the 9) connection from the relation
e~v(Ϋev) = Q; in the J0 representation

e-v-Fev-=D2-ζDl + ΩΈΞ®2-ζ&1, (20)

and hence the &1 connection vanishes. In JV = 1 terms, we are in an antichiral
representation. We have thus constructed the gauge connections. The gauge action
is well known [10]:

I = ldx(Dl)
2(D2)

2Ίτ(W2}, W^{^\®2}. (21)

This completes our construction of N = 2 Yang-Mills theory. As noted above, in
the non-abelian case we can relate the components V{ that enter in the action to the
components vt that satisfy simple constraints only via a series expansion.

We now examine the gauge transformations (18) in more detail. We study the
abelian case, or equivalently, the lowest order in the expansion in fields and
parameters in the nonabelian case. In this limit, vt = Vt, and the gauge transfor-
mation reduces to

δV=i$-λ)=*δv0 = i$0-λ0), Ovt=-ai9 i^ l . (22)

In N = 1 terms, the components of the gauge parameter λ are unc unconstrained
except for λQ and λl9 which are antichiral and antilinear respectively. This means
that all the components vt can be gauged away except υθ9 υl9 and ϋl. The
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component v0 transforms like the usual N = ί gauge prepotential, and the gauge
transformation o f v ί can be used to gauge away all but the anti-chiral field strength
(Dί)

2v1. This is precisely the correct N= 1 superfϊeld content of N = 2 super Yang-
Mills theory.

We now describe some partial N = 2 supersymmetric gauge choices. The basic
idea is to truncate the ζ expansion of V by gauging away all but a finite number of
its components while insisting that N = 2 supersymmetry is maintained. Choosing

V=£?vi9 n>2, (23a)
— n

N = 2 supersymmetry (VV= PF=0) implies

D^^Vi (23b)

The remaining gauge transformations are generated by

λ=ΣC lλ (=>Λϊ,, = (fl1)2Vι (24)
0

For n = 2, λ1 = λn-1 and thus satisfies (D1)2^ =(D1)
2λ1 = 0; however, (23) implies

that v1 is also constrained:

(DΎv^O. (25)

In both cases, the remaining gauge freedom is precisely what is needed to gauge
away all but the physical fields. The further possibility of n = 1 above leads to a
supersymmetric Landau gauge for the N = 1 vector multiplet t>0, but unfortunately
gives a higher derivative theory for the chiral multiplet.

The construction oϊN = 2 Yang-Mills theory that we have presented is a direct
transcription of the Ward construction of self-dual Yang-Mills fields [6, 7] into
superspace. For completeness, we include a brief summary of the relevant aspects.
The observation that the two theories are closely related was made in [5].

Ward begins by writing the self-dual Yang-Mills equations as

[Dα,D,>0, Du = Dai + ζDai, (26)

where Dαά is the gauge co variant derivative. He then considers a group element g
(corresponding to ev above) that satisfies

aαg=o, δ.sδ.i+ζδ.i. (27)
Finally, he factorizes g:

g=fh~1, (28)

where / is regular around C->oo, h is regular around C->0, and there exists some
region where both are regular. Substituting (28) into (27), one finds

DΛ=f-1dJ=h-1δeίh. (29)

This is analogous to Eq. (1 5). The regularity conditions on / and h ensure that DΛ is
at most linear in ζ, and thus (26) can be used to define the connection. This is
analogous to (17). We conclude our brief discussion of the relation between the two
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constructions by emphasizing that despite the strict formal analogy between the
two, the physical Yang-Mills field in the N = 2 multiplet is completely
unconstrained.
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