
Communications in
Commun. Math. Phys. 128, 141-160 (1990) Mathematical

Physics
© Springer-Verlag 1990

Power-Law Corrections to the Kubo Formula
Vanish in Quantum Hall Systems

M. Klein and R. Seiler

Technische Universitat Berlin, Fachbereich Mathematik MA 7-2, D-1000 Berlin 12

Abstract. In first order perturbation theory conductivity is given by the Kubo
formula, which in a Quantum Hall System equals the first Chern class of a
vector bundle. We apply the adiabatic theorem to show that these topological
constraints quantize the averaged conductivity to all orders of perturbation
theory. Hence the Kubo formula is valid to all orders.

I. Introduction

Integrality of conductivity in Quantum Hall Systems has its origin in the topology
of its underlying parameter space: the two torus. This fact has emerged from the
work of Laughlin [L] and of Thouless, Kohomoto, Nightingale, and deNijs
[TKN2] and became clear in the work of Thouless and Niu [TNI, TN2], and
Avron and Seiler [AS] there it was shown that the Kubo formula for the Hall
conductivity is the first Chern number of a line bundle over the torus.

The topological nature of Kubo's formula for the Hall conductivity is very
satisfactory because of the astounding experimental precision of the phenomenon.
However the question of the validity of the Kubo formula and the corrections to
Ohm's law had to be tackled in order to give a satisfactory picture. For that reason
charge transport or- what is the same - the time averaged conductivity was
analyzed in [ASY]. It was shown that - provided the gap condition holds -
conductivity is given by Kubo's formula and that the correction terms are at least
quadratic in the electric potential V. It is the purpose of this article to prove the
stronger statement that the corrections to Ohm's law are of order F°°.

We shall now give a short review of the model, methods and results. For
technical details we refer to the later sections. The model is basically the same as in
[AS]. This time however we use a rectangular configuration space and not the two
hole geometry. This is irrelevant for all major results. Interaction with impurities
and among electrons is included. For concreteness we choose Coulomb forces
although the specific form of the electron interaction is irrelevant. The electric field
is generated by a vector potential proportional to φίβ As in [ASY] it is switched on
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and off smoothly and adiabatically over a time scale τ, φ± =f(s = t/τ); t denotes
physical time, s scaled time and / the switching function. The current operator is
defined in terms of its conjugate variable φ2. Dynamics is given through the
multiparticle Hamiltonian H(φ) respectively H(φ\ φeJR2; H(φ) is doubly periodic
in φι and φ2 by construction.

The gap condition can now be formulated. It says that the spectrum of H(φ)
splits into two disconnected pieces, separated by a gap. The spectral projector on
the lower part is denoted by P(φ) and is assumed to have finite dimension q. Hence
P(φ) defines a vector bundle B over the two torus.

The main result, stated in Theorem 4.1, concerns the charge transport Q
defined in terms of the Hall-current /

β(Φ) = τf<fe/(s,Φ), Φ:=Φ2. (1.1)

The Φ average of the transported charge Q satisfies the equation

2π Aφ

<Q>= ί
o

J Trace AiAiP + 0(l/O. (1.2)

The first term on the right-hand side is an integer divided by the dimension q
because of its geometric significance. In fact i Trace PdPdP is the first Chern
class of the vector bundle B. Integrality of

-ί-f Trace PdPdP (1.3)
2π T

follows from an elementary computation.
The above result can be reinterpreted in terms of the averaged Hall

conductivity σ. For that we choose the switching function in such a way that
f'(s) = 2π for all s between switching on and off (hence the graph of/ consists of 3
linear pieces which are smoothly connected). So the Hall voltage during this time
interval is V= 2π/τ. The time and Φ averaged Hall current becomes now

f <fa J I(s,Φ) =
o o 2π

(1.4)

σ =-7^-ττί Trace PdPdP.
q(2π)2 }τ

Hence 2πσ is an integer.
In order to apply the above theoretical results to physical reality one has to

discuss the following three questions:
1. Does the multiparticle Hamiltonian satisfy the gap condition?
2. Is the groundstate degenerate or nondegenerate?
3. What is the numerical value of the adiabatic parameter?

There are two points of view for looking at the question of a gap in the
spectrum oίH(φ). The first one is very general and makes use of the von Neumann-
Wigner theorem [ASS]. This theorem states that complex hermitian matrices with
degenerate spectrum have real codimension three in the set of all hermitian
matrices. Hence a two-parameter family of Hamiltonians has generically non-
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degenerate spectrum and in particular a gap. Nothing is said about the size of the
gap. It could be very small compared to thermal energies.

The second point of view brings in the effective two-dimensionality of the
experimental setup and makes use of a very crude one-particle approximation. In
the experiment one has an electric field perpendicular to the sample plane that
keeps the electrons in the vicinity of the insulating material surface (in within a few
Angstroms). The electrons move therefore in a plane under the influence of a strong
magnetic field of about 5 Tesla. The experimental parameters are arranged in such
a way that the transversal excitation energies are several times larger than the
Landau energies of a few meVolt. So in this very crude approximation the
Hamiltonian has a gap if the Fermi energy lies between Landau levels.

Now we turn to the second question. In view of Eq. (1.4) the experimental result
suggests that in the case of the ordinary QHE the physical state is nondegenerate.
In the case of the fractional QHE one expects a degeneracy q = 1/v of the physical
state, where v denotes the filling factor (the filling factor is the number of magnetic
flux units through the sample divided by the number of electrons in the sample).
This is in conflict with an analysis based on the von Neumann-Wigner theorem
[ASS], where only generic Hamiltonians are considered. However there is good
reason to believe that Hamiltonians modeling Quantum Hall Systems with
fractional conductivities are non-generic: The fractional QHE is typically
observed in very clean material. This suggests that one looks at a model
Hamiltonian of the type H(φ) as defined in the next section (2.1) with all potentials
V set equal to zero because the F's stand for the interactions with impurities. This
family of operators has - after a minor change of boundary conditions -
degenerate discrete spectrum. The degeneracy of each eigenvalue is a multiple of
1/v. Since all this holds for every </>e!R2, the operator is manifestly non-generic.

Now we come to the third question: The definition and size of the adiabatic
parameter. The multiparticle Hamiltonian H(φ) modeling the Quantum Hall
System is defined in the next section. Here we need just its general structure.
Furthermore we replace the atomic units by the conventional MKS units:

H(Φ)=^(-^-eA-φίea1-φ2ea2j +W. (1.5)

W stands for all interactions among particles and of particles with impurities. H is
periodic in both variables up to a unitary transformation with period h/e. Now
φ1 = — Vt, where V denotes the electric potential and t time. Hence
H(Φι = — Vt9 φ2) is periodic in time with period τ = h/eV, τ is the adiabatic time
scale. If we rewrite the Schrodinger equation

in terms of the scaled time s, t = τs, we get

(1.6)

Here we have defined the Hamiltonian H by H(s, Φ) = H(φ1 = — Vτs, φ2 = Φ). By
construction it is periodic in 5 with period one and periodic in Φ with period h/e.
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The adiabatic expansion is generated by partial integration with respect to the
scaled time using the Schrόdinger equation (1.6) ([AS, ASY], see also the appendix
for details). In every step one introduces therefore a term

eV
α=

'2πA'

where A denotes the gap in the spectrum of H. We call α the adiabatic parameter. It
is a number proportional to the adiabatic time τ. To get a rough estimate on α we
set A equal to the Landau energy, V= 10 mV, £ = 3 Tesla and the effective mass of
the electron 7/100 electron masses. This gives for α the value 1/4. In this
approximation α is proportional to V and 1/B.

The main tool in this article is the adiabatic theorem [K2, ASY]. It says that
the physical time evolution Uτ defined by the initial value problem

iδsl/τ(s, Φ) = τH(s, Φ) C/τ(s, Φ), (s, Φ) ε R2, τ > 0 ,

t/τ(0,Φ) = l,

is approximated in the limit τ->oo by the adiabatic evolution UA(s, Φ) defined by

t/τ(0,Φ)=l,

HA(s, Φ) = H(s, Φ)+l- [SsP(s, Φ), P(s, Φ)] .

There are two remarkable facts about UA:

1. Let s0e]R be such that H(s) is constant in the vicinity of s0. Then l/τ

approximates UA on the range of P(0, Φ) very well in the following sense:

P(0, Φ) l7S(s0, Φ) Uτ(s0, Φ)P(0, Φ) = 0(l/τ°°), ΦeR2 .

2. The adiabatic evolution has the property (intertwining property)

UA(s9 Φ) P(0, Φ) = P(s, Φ) UA(s, Φ), (s, Φ) E R2 .

The intertwining property can be interpreted in a more geometric way leading to a
better understanding of the main result (Theorem 4.1). Consider the vector bundle
B with base R2 and fiber range P(s, Φ), (s, Φ) eR2. On B we define the connection

VH = d- [_(dP\ P] + iτH(ds + dΦ) .

By construction UA is a solution of the differential equation

(xrH)uA=o,
where X denotes the vector field (δ/<3s,0) on R2. Hence UA is the integral of the
connection VH along X. The leading term in the adiabatic expansion of the
averaged charge transport <β> turns out to be the trace of the holonomy of VH

around the boundary of the rectangle R = [0, 1] x [0,2π], (Berry's Phase).
Now H(s, Φ) is up to unitaries periodic in s and Φ with periods 1 and 2π. Hence

one can substitute in leading order for <Q> the connection VH by the connection
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V = d — [(dP),jP] on the vector bundle B. The holonomy of VH on B turns into a
Chern number of B (Lemma 4.2).

To estimate the remainder term in the adiabatic expansion one proves that
modulo terms of order τ~ °° the rest is again a Chern number of a connection. Due
to the adiabatic theorem it has to be small in 1/τ. So it has to vanish.

To end this section let us mention that the connection V on B has a well known
and natural origin. Consider the trivial Hubert bundle T x Jf , where T is the two
torus and ffl denotes the space of many body states. The most trivial connection is
the derivative with respect to the coordinates of T. Out of that the canonical
connection V is constructed:

This is done so as to respect the splitting of T x 2C into B and its orthogonal
complement Bλ. The latter is defined in analogy to B using the projectors 1 — P.
Now V is the restriction of V to B:

One finds by a straightforward computation for the corresponding curvature
operator Ω the expression

Hence the first Chern character ι/2π Trace Ω is the expression given in
formula 1.3.

This article is organized as follows : In the next section we introduce the model
in detail. In Sect. 3 the Hall current and charge transport is discussed. A Chern-
Simons type formula turns out to be of great use. The fourth section contains the
basic estimate on the corrections to the Kubo formula for charge transport and a
short proof of integrality of the Chern numbers for the situation under discussion.
To make the article selfcontained we collect in an appendix the main points about
the adiabatic theorem as presented in reference [ASY]. This gives us at the same
time the opportunity to correct a mistake in the original proof.

II. The Model

We now describe in detail the dynamics of a Quantum Hall System. It involves N
electrons moving in configuration space A in an external magnetic field B and an
external electric field E perpendicular to B (Fig. 1). We are interested in the current
perpendicular to B and E, the Hall current /.

The configuration space is assumed to be the closed rectangle A = [Q,Lί]
x [0,L2] in R2. Other configurations are possible too, for instance the two hole

geometry in 2 or 3 dimensions [ASY]. The external magnetic field B is introduced
through a (smooth) vector potential A and gives rise to the velocity operator
v = p — A.

The electric field is generated by a time dependent vector potential through the
following construction: Letting eί be the unit vector in the 1-direction, a1 = e1/Ll

is the vector potential which "generates a flux unit through loop 1" (Fig. 1).



146 M. Klein and R. Seller

Γ"

I Flux 2

Fluxl

Fig. 1. Geometry of a quantum Hall system. The time dependent flux 1 through loop 1 induces the
Hall current / through loop 2

2π

0

Fig. 2. The graph of the switching function

Furthermore, letting t be time, τ the time scale, we take /eC°°(R,R) to be a
switching function of the scaled time s = t/τ. It is supposed to grow monotonically
from 0 to 2π within (0,1) (Fig. 2). In particular, fe Cg>((0,1), R). By Faraday's law,
the flux φ1 =f(s) through loop 1 gives rise to an electromotive force of size 1/τ -f(s)
across the rectangle A.

The observable of the Hall current / is most easily defined by means of a second
flux φ2 through loop 2 (Fig. 1) and a corresponding "unit vector potential"
a2 = e2/L2, where e2 denotes the unit vector in the 2-direction of R2. φ2 serves as a
conjugate variable to define the current operator in formula (3.1) below.

The electrons interact among themselves by Coulomb repulsion and with
impurities. The corresponding potential V typically involves singularities. To
cover this case in sufficient generality we consider for φ = (φl9φ2)elR2 the
Hamiltonian

H(φ)= (2.1)

with periodic boundary conditions on the antisymmetric (fermionic) part of
N

(x) L2(A) and assume
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HI: The potential V is — zl-form bounded with relative bound zero, i.e.

(e>0) (22)

for all ΨeH1(A). H1(A) denotes the first Sobolev space on the rectangle A.

We remark that in dimension n — 2 the Coulomb potential is not operator
bounded with respect to — A. Our assumption (HI), however, allows us to treat
any finite superposition of Coulomb-like singularities in the sense of quadratic
forms [Kl, p. 352].

To apply the adiabatic theorem to our situation we need some control on the
operator domain of H(φ). This is given by the following technical

Lemma 2.1. Assume (HI). Then the family of operators H(φ) is type A analytic in
</>e R2 with operator domain D = D(H(0)) contained in the Sobolev space Hί(AN).

Proof. It follows from the positivity of: - - and the form - boundedness of V
that \*i-xj\

, Σ v(χd+ Σ r-—\ ψ

i = ι \ j —

defines a closed symmetric semibounded form on

β(ff0) = I) { Ψ e H\A); Ψ(0, y) = Ψ(L\ y), Ψ(x, 0) = (x, L2)} ,
i = l

where the periodicity is understood in L2-sense on the boundary of A.
According to the first representation theorem [K 1], ί0 defines a unique self-

adjoint operator H0 in L2(AN) with operator domain D C Q(H0). Furthermore, we
have for all ΨεD,

(2.4)

for any ε, δ > 0, using Schwarz inequality and (2.2). This gives

(ΨeD,ε>0). (2.5)

Including the vector potential A(x) + φ1aί + φ2^2 in tne definition oϊfϊ(φ) induces
a perturbation of H0 which clearly is bounded as a map from Hί(AN) to L2(AN).
Thus H(φ) is self-adjoint on D for all φ eR2, and on that domain analyticity in φ is

~ N

obvious in view of (2.5). Restricting H(φ) to the fermionic part of (x) L2(A) proves
Lemma 2.1. j=1

H(φ) is up to unitary transformations periodic in both variables. To see this, we
set for ί = l,2,

N

FI{X)= Σ <«i^j>' x = (xί,...,xN)εAN, (2.6)
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and introduce the gauge transformation

Then
H(φ) = G(φ)H(φ)G*(φ)

(2.7)

(2.8)

is 2π-periodic in φl and φ2, since its symbol is formally ^-independent and its
domain D(φ) = G(φ)D is 2π-periodic by construction.

At this point we want to formulate the main hypothesis of this whole approach,
the gap condition [AS] :

H2: The spectrum σ(H(φ)) has a gap (Fig. 3), i.e. there are continuous functions
g+ :R2->R such that for some ε>0,

wSdist({g.(φ),g+(φ)},σ(fi(φ)))>B. (2.9)

Note that due to the periodicity ofH(φ) and Eq. (2.8) we actually could restrict the
values of φ to the square [0,2π]2 in R2.

One of the main consequences of hypothesis (H2) is that the spectral projection
of H(φ) or H(φ) associated to the spectrum σ(H(φ}} within the interval
(g _(</>), g+(φ)) is real analytic in φ. This follows from Lemma 2.1 and the integral

d ( H ( Φ ) )

Fig. 3. The part of the spectrum of H(Φ) within the interval [g_(Φ), g+(Φ)] is separated by a gap
from the rest of the spectrum

gjφ)

Fig. 4. The contour Γ defining the projection P(Φ)
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representation

zΓίdz, (2.10)

where the complex contour Γ(φ) crosses the real axis at g±(φ) (Fig. 4).
The physical time evolution of our QHS is then given by the time dependent

Hamiltonian

H(s,Φ) = H(φ1=f(s),φ2 = Φ). (2.11)

For fixed Φ, it satisfies the conditions (i-iii) of our Appendix. These ensure that the
theorem of Kato and Yoshida about existence and uniqueness of the solution to
the time dependent Schrόdinger equation is applicable ([Y, Kr]). We have

Lemma 2.2. For all ΨεD, the initial value problem

idsUfa Φ)Ψ = τH(s, Φ)Ufa Φ)Ψ (7τ(0, Φ)Ψ=Ψ (2.12)

possesses a unique solution which satisfies:
UfaΦ) is unitary, strongly continuous in s, ΦeR and UfaΦ) is continuously

differentiate in s, ΦeR for all ΨeD. An analogous statement holds for the
adiabatic propagator UA(s, Φ).

For the proof of differentiability in Φ we refer to [ASYj. It is based upon
Duhamels principle. Finally, we replace the pure state

ΨfaΦ)=UfaΦ)Ψ0(Φ) (2.13)

by the mixture
Pfa Φ) = Ufa Φ)P(0, Φ)U*(s, Φ) , (2.14)

where P(0, Φ) is the spectral projection of H(Q, Φ) associated to the spectrum of
#(0, Φ) within the interval (g_(0, Φ), g+(0, Φ)).

This slight generalization makes the following analysis much more transparent
and allows us at the same time to say something about the fractional Quantum
Hall effect. We remark that the state Pτ(s, Φ) is equivalent to the pure state Ψfa Φ)
if P(0, Φ) is the one-dimensional projection on Ψ0(Φ). Pfa Φ) will be referred to as
"the physical state."

III. Hall Current and Charge Transport

The Hall current / is given in terms of the physical state Pτ and the Hamiltonian H
by

I(s, Φ) = -TrPfa Φ)dΦH(s, Φ) (s, ΦeR). (3.1)
q

The above expression reduces to the formulae given earlier in [L, AS, ASY] if
q = dimP(s, Φ) = 1. The main result of this section is formula (3.2) below, which will
be the point of departure for deriving the Kubo formula and estimating the
remainder term in Sect. IV.
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Proposition 3.1. Letting PΦ = P(0, Φ), the Hall current I can be represented as

I=—dsΎrPφU?dφUτ. (3.2)
qτ

Proof. In view of Lemma 2.2, the derivatives in the above expression exist. Thus
we get from (3.1), suppressing dependence on s, Φ,

ql = ΎτPτdφH = ΎτPφUf(dφH) Uτ = Tr PφUf dφ(HUτ) - ΎτPφUfHdφUτ . (3.3)

Using the Schrόdinger equation idsUτ = τHUτ,H can be replaced by a time
derivative. This gives

/= Ύr{PφUfdφdsUτ + Pφ(dsUτrdφUτ} , (3.4)

and proves the proposition.

For the interpretation of formula (3.2) we need the following version of the
Chern-Simons formula:

Lemma 3.2. Let Pbea function on Rw with values in the projections of finite rank in
some Hilbert space. Let U be a function on R" with values in the invertible linear
operators on this Hilbert space. Assuming P and U to be (strongly) dίfferentίable, the
following identity holds:

ΎτPudPudPu = ΎrPdPdP + d(ΊτPU ~ ldU], (3.5)

where we used the notation PU=UPU~1 and the product dPdP is understood to be
the wedge product of projection valued differential forms.

Proof. First note the following identity:

dPu = l/([Λί, P] + dP) U ~ 1 , (3.6)

where we introduced the notation M=U~ίdU.It follows by direct computation
from the definition of Pu. Formula (3.6) leads to

PudPudPu =U(K1 + K2 + PdPdP)U~i, (3.7)

where

K2 = P[M, P] dP + PdP[_M, P] .

Computing term by term, we get

K1 = PMPMP - PMMP ,
(3.8)

K2 = PMPdP-PMdP + PdPMP.

We have used the trivial but important identity

PdPP = Q, (3.9)

which follows from

dP = PdP + dPP. (3.10)
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The first terms of K^ and K2 do not contribute to the trace; hence

ΊτPudPudPu - ΎrPdPdP = - Tr PMMP - ΊτPMdP + ΎrPdPM

= -TrPMMP + TrdPM, (3.11)

where we used (3.10), cyclic invariance of the trace and anticommutativity of the
differential forms dP and M. Finally we use

(3.12)

to get formula (3.5).

The basic formula (3.2) can be recast into another form which allows for an
appealing interpretation. This is not necessary to derive our main result on the
Kubo formula in Sect. IV. However, to clarify the geometric character of charge
transport in a QHS, we state the following:

Proposition 3.3. Interpreting the Hall current as a differential 2-form, it is given by

Lwhere

IdsdΦ = (dφE)dsdΦ+ —ΎτPτdPτdPτ, (3.13)

E=-ΎrPτHq
denotes the instantaneous energy of the system. E(s, Φ) is ^In-periodic in Φ.

The first term in formula (3.13) can be interpreted as a dynamical contribution
to the current (which in a QHS vanishes on the average) while the second term is of
geometric origin. It almost has the form of a Chern character of a vector bundle.

Proof of Proposition 3.3. Adding zero to the right-hand side of (3.2) we get,

τ} . (3.14)

Using the Schroder equation idsUτ = τHUτ in the first term on the right-hand side
we get

IdsdΦ = (dφE)dsdΦ+ —d(ΊτPφU?dUτ). (3.15)
qτ

Now the Chern-Simons formula (3.5) can be applied to the last term on the right-
hand side of (3.15) with t/=l/τ, P = PΦ. This proves (3.13).

To prove periodicity of E in Φ, we introduce the Φ-periodic Schrόdinger
operator

H(s, Φ) = eίφF2H(s, Φ)e-iφF\ (3.16)

where F2(x) was introduced in (2.6). H(s, Φ) is periodic in Φ by construction.
Furthermore it is clear that the flow Uτ defined by the time dependent Schrόdinger
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equation (2.12) with H replaced by H is obtained by simply conjugating Uτ with the
s-independent gauge transformation eiΦF2. This yields

ΎrPτH = ΎrPτH with Pτ=UτP(Q,Φ)U? (3.17)

and concludes the proof of Proposition 3.3.

This result gives rise to the following

Corollary 3.4. The charge transport

Q(Φ} = τ\dsI(s,Φ) (3.18)
o

has the following Φ-average:

-1- Jπ dΦQ(Φ) = -*- f ΎrPτdPτdPτ, (3.19)
2π o

where R denotes the rectangle [0,1] x [0,2π] in R2.

Note that the energy term in (3.13) does not contribute to the average due to
periodicity in Φ. Unfortunately this nice formula has not been of great use for
actual computations. It however strongly suggests integrality of charge transport
because of its close resemblance to an integral of a Chern character over the torus.

The main advantage of formula (3.2) over formula (3.13) is the fact that it leads
to an expression for the Φ-averaged charge transport which is just a line integral
over the boundary s = 1 of the rectangle R. Formula (3.13) however produces for
the charge transport the integral (3.19) over all of R.

IV. The Kubo Formula and its Correction Term

This section contains our main result: In a Quantum Hall System, charge
transport is quantized according to the Kubo formula up to infinite order in the
adiabatic parameter τ.

More precisely, we shall show

Theorem 4.1. The charge transport

i
Q(φ) = τ J dsl(s, Φ)

o

has the following Φ-average

-») (4.1)
2πq

as τ f oo.

T denotes the torus (R/2πZ)2, and P is the spectral projection of rank q
associated to the Hamiltonian H defined in (2.8), which is a function on T. It thus
induces a ^-dimensional vector bundle B over T with (first) Chern character

chB = i j ΎrPdPdP e 2πZ. (4.2)
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Before proving the above statement we want to add a few remarks and a
preparatory lemma. First of all, it is clear from (4.1) and (4.2) that charge transport
in a QHS is of entirely geometric character up to infinite order in τ. The right-hand
side of formula (4.1) is just another way of writing the conventional Kubo formula
which is well known to be of geometric character for a QHS [AS, TN].

Theorem 4.1 states that this result actually holds to all orders of perturbation
theory. The main idea in the proof is to relate all correction terms to Pτ(l,Φ)
-P(0, Φ). This difference measures the degree to which the physical state Pτ(s, Φ)
"tunnels out of the initial state" Pφ = P(0, Φ) as the electric field is switched on and
off again; in view of the adiabatic Theorem A 4 it vanishes to infinite order in τ.
Finally we want to remark that we have chosen to represent the right-hand side of
(4.1) in terms of the periodic projection P because it clearly defines a vector bundle
over T which is the basic geometric object related to charge transport. In fact, one
may replace P by any of the projections P, P, P in formula (4.1).

This follows from

Lemma 4.2. Let R = [0,l] x [0,2π] and let P, P, P, P denote the spectral
projections associated to H, H, H, and H, which were introduced in Sect. II and
formula (3.16) respectively. Then

J TΐPdPdP= J ΎrPdPdP= f ΊrPdPdP= J ΎiPdPdP. (4.3)
R T T R

Proof. In view of definition (2.11), the equality

J ΎrPdPdP = J ΎΐPdPdP (4.4)
R T

is a trivial consequence of the chain rule, setting φv =f(s). To prove the second
equality, we recall from (2.7) and (2.8) that P and P are related via the unitary gauge
transformation

where Fj are (^-independent multiplication operators.
Thus the Chern-Simons formula gives

ΎrPdPdP = ΊrPdPdP + d(Ύΐ PG* dG) . (4.5)

G*dG is a φ-independent 1-form which commutes with G; thus

G (4.6)

is well defined, i.e. periodic, as a 1-form on T.
By Stokes theorem,

Jd(TrPG*dG) = 0. (4.7)
r

Thus the second equality in (4.3) follows by integrating (4.5) over T. The last
equality in (4.3) is proved analogously.

We shall now analyze the basic formula (3.2) for the Hall current by relating the
physical time evolution C7t(s, Φ) to the adiabatic time evolution UA(s9 Φ) via the
wave operator Ω(s, Φ) = (U^Uτ)(s9 Φ) introduced in the Appendix. We recall that
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UA is the adiabatic time evolution introduced in [ASY] and defined by the initial
value problem

idJJ A = τHA UA HA(s, Φ): = H(s, Φ) + - [dsP(s, Φ), P(s, Φ)], UA(Q, φ2) = 1.
τ

It intertwines spectral subspaces

UA(s, Φ)PΦ = P(s, Φ) UA(s, Φ), (s, Φ e R), (4.8)

and our assumption suρp/C(0,1) ensures that

Ω(1,Φ)PΦ = PΦΩ(1,Φ) modO(τ"°°), (4.9)

in view of Theorem A 4, applied to H(s, Φ).
Furthermore, differentiability in s and Φ is always settled by Lemma 2.2 since

the range of the g-dimensional projection P is contained in the s, Φ-independent
operator domain D of H. With these preparations we are ready to give the

Proof of Theorem 4.1. Using Uτ=UAΩ we get modO(τ~°°),

ΎrPφUϊdφUτls=l = ΎrPφUχdφUAls=l+ΎτPφΩ*dφΩls=^ (4.10)

where we have used (4.9) and cyclicity of the trace to obtain the first term on the
right-hand side. Combining (4.10) with (3.2) yields for the averaged charge
transport

dR 0 J

To obtain the first term on the right-hand side of (4.11) note that

JfaUA (4.12)

is periodic in Φ by use of the gauge transformation eίF>2φ introduced in (3.16). Since
dPφdPφ = Q, the Chern-Simons formula yields

J TrPφU%dφUA= $ΎrPdPdP= \ΊτPdPdP (4.13)
dR R T

in view of (4.8) and (4.3).
Thus it remains to show that

(4.14)

Setting W(Φ) = PΦΩ(1,Φ)PΦ5 it follows from (4.8) that one has modO(τ-°°)

(4.15)

where the determinant of the finite rank operator W considered as a map in RanPφ

is well defined. The expansion of the wave operator in Theorem A3 gives

(τ->oo). (4.16)
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Thus

ω(Φ) = det Hf(Φ) = detPφβ(l, Φ)PΦ (4.17)

describes a closed curve in the complex plane as Φ runs from 0 to 2π which, for τ
sufficiently large, never crosses the negative real axis which serves as a branch cut
in the definition of the logarithm. This proves

{ dΦdφ\ogdetW=0 (4.18)
o

and yields (4.14).
Finally we remark that the same type of argument gives by use of the

intertwining property (4.8) combined with (2.8),

$ΊrPdPdP= J ΊτPφU$dUA= f dΦdφ log det VA(Φ) , (4.19)
T dR 0

where

VA(Φ) = Pφe
2πiF> UA(ί, Φ)PΦ (4.20)

is considered as a unitary operator in RanPφ.
But now the right-hand side of (4.19) is an integer multiple of 2πi since the

curve

may wind around the branch point of the logarithm. Combining (4.19) and (4.13)
we obtain integrality of the Chern character as claimed in (4.2). This concludes the
proof of Theorem 4.1.

Appendix

For completeness sake we collect in this appendix the main points about the
adiabatic evolution of time dependent Schrόdinger operators explained in [ASY].
The main point is to correct an error in the proof of Lemma 2.7 of that reference. It
states that for Hamiltonians with energy bands separated by gaps, tunneling out of
such energy bands decays faster than any inverse power of the adiabatic time scale
τ. This is crucial for our analysis of the corrections to quantized charge transport in
Sect. IV.

Let J f be a Hubert space and denote by / a bounded open interval containing
zero. We consider time dependent Hamiltonians satisfying:

(i) For sεl H(s) is a family of operators on Jjf, which is self-adjoint on some
s-independent domain DC3^ and bounded from below.
(ii) Topologizing D with the graph norm of H(Q), the function H(s) is Ck as a map
from / to the Banach space B(D, Jtf) of bounded linear operators.
(iii) H(s) has gaps in its spectrum and P(s) is the spectral projection on a finite
band bordered by gaps; i.e. there are two continuous functions g± : /-*1R and ε > 0
such that

dist [{g+(s), g(s)} σ(tf (s))] > ε, (s ε I).
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It follows from (i) and (ii) that the resolvent R(s,z) = [H(s) — z]"1 is Ck as a map
from / to the space B(^f ) of bounded linear operators on 2? . The same is true for
the projection

z)dz9 (Al)

where Γ denotes a contour encircling the band of the spectrum associated with P(s)
in the clockwise sense.

For brevity we henceforth freely suppress dependence on s e I in H, R(z), P and
use the notation β = l-P, P0 = P(0).

Defining the adiabatic operator associated to H and P with time scale τ by

HΛ = HA(S9P) = H+±[.P9P ] 9 (A2)

the theorem of Kato and Yoshida on existence and uniqueness of the solution to
the time dependent Schrόdinger equation can be applied to H and HA9 yielding

Theorem A 1. Let /c^2, τ>0. Then, for all ΨεD, the initial value problems

idsUτΨ = τHUτΨ; U$)Ψ=Ψ 9 (A3)

idsUAΨ = τHAUτΨ 17̂ (0) Ψ = Ψ; (A4)

have a unique solution which satisfies:
l/τ(s), UA(s) are unitary, strongly continuous ίnsel and UτΨ, UAΨe C\I9 2?) for

all ΨeD.

It then follows readily from Eq. (A 4) that the adiabatic evolution UA = UA(s, P)
intertwines the spectral subspaces of H in the sense that

UA(s9 P)P0 = P(s) UA(s9 P) (set). (A 5)

To compare the adiabatic with the physical evolution one considers the "wave
operator"

Ω(s)=VΪ(s9P)VJίs) (sel). (A6)

Introducing the kernel

K = K&9P)=UilP9p-]UA9 (A 7)

it readily follows from (A3) and (A 4) that Ω satisfies the Volterra integral equation

Ω(t) = l-\KJs9P)Ω(s)ds (tel). (A8)
o

Since Kτ(s,P) is a (strongly) continuous kernel for se/, the standard iteration
procedure

Q0(ί) = l , ΩJ{t)=-]κτ(s,P)Ωj_ί(s)ds 0^1) (A9)
o

yields a convergent expansion for Ω(t).
However, to make this into an asymptotic expansion with respect to the

adiabatic time scale τ, the rapid oscillations in UA(t, P) have to be used.
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To prove such a result, one must combine the specific algebraic properties of
[P,P] and the intertwining property (A 5) with the following formula for partial
integration:

Lemma A2. Suppose H satisfies (i-iii) above with k^2. Let X,Y:I-+B(3f) be
strongly C1. For all ίe/, let

= - Λ f *(ί2πz r

(s)P0Y(s)ds

= l-Q0 j(E/l?£/J (5) PO7(5)1*0 - ί (UAXU$) (s) P 0Ϋ(s)ds}

(AH)

Furthermore, if P and Q are interchanged in formula (All), the right-hand side has to
be multiplied by ( — 1).

For the proof of Lemma A 2 we refer to [ASY]. To understand the meaning of
interchanging P and β, one simply observes that the right-hand side of (All) is
linear in X which depends on the orientation of the contour Γ enclosing the band
spectrum of H associated with P. As a curve on the Riemann sphere, Γ then
encloses the spectrum of H associated with Q = l— P with opposite orientation;
thus interchanging P and Q introduces a factor of ( — 1) in the twiddle operation.

Lemma A 2 serves to exhibit the asymptotic nature of the expansion (A 9) with
respect to τ:

Theorem A3. Suppose H satisfies (i-iϋ) above with fc^2.
Let

RN(s) = Ω(s)- £ Ω/s).
7 = 0

Then

\\Ω2J^(s)\\ + ||fl2χs)|| =0(τ- 0 (/^ 1), (A 12)

\\R2Jm + Iiκ2, +1(s)ll ^(τ-;-1) (JEN) (A 13)
locally uniformly in s e /.

Proof. The proof of Theorem 2.4 in [ASY] yields by use of Lemma A 2,

\\Ωn+l(s)\\^C/τ sup (||ΩM(ί)ll, ||Ωπ_1(ί)||), (A 14)
0<ί<s

locally uniformly in s e I. Since Ω0 = 1 and Ω l = 0(τ "1), one gets (A 12) by induction
on n. Using the integral equation for the remainder term,

J?J V(s)=-}xτ(t)ΛJ V_1(ί)Λ, (A 15)
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one derives as above the estimate (A 14) with Ωn replaced by Rn. The crude bounds
R0 = 0(l\ R1 = 0(τ~1) first yield (A 12) with Ωn replaced by Rn. Equation (A 13)
then follows from

Rn = Ωn+l + Rn+l

by use of A 12.

Next we come to the main point of this appendix: If the time dependence oϊH(s)
is smoothly switched on and off, then tunneling out of spectral subspaces is small.

Theorem A4. Let H satisfy (i-iii) above for all k e N, and suppose H to be compactly
supported within (0, 1)C/. Then

=0(τ-°°) (A16)

uniformly in ίe/\(0, 1).

The essential idea in proving (A 14) is to repeatedly apply Lemma A 2 to Ωj(s)

Y(s)= ]dsίK(sί)
Sids2 ...Sk^dskK(Sk) (A17)

for some fceN, gaining a factor τ-1 at each step.
Note, however, that the higher derivatives djY(s) fory ̂  2 involve derivatives of

UA(s) up to order j— 1, and these will grow like τj~ 1. In view of the intertwining
property (A 5) we will, however, explicitly show that no derivatives of UA(s) occur
upon partial integration in the formula for Ωj(s). To this end we introduce some
more notation and prove a technical lemma which then will yield the proof of
Theorem A 4.

We set M = CQ(((), 1\B(J^)) where differentiability is understood in the norm
sense. For Jf7 ,Z7.eM(/eN*) we set

Fj=UAXjUA, Gj=U*ZjUA (A18)

and define for all neN

A0

n: = A0

n(Xl,..,,X2n+1)=P0ldtlFi(tl)Q0'idt2...P0Jdt2n+1F2n+1(t2n+1)Q0
0 0 0

Next we define Al

n(X^ ...9X2n+ί) for 1 ̂ l^n by replacing β0 by P0 on the
right-hand side of (A19), after F1?F3 up to F2l_l. Similarly, we set

^ = 5n°(Z1?...,Z2n+2) = P^ (A20)

in an obvious shorthand and define -E^(Zl5 . . . , Z2n + 2) for 1 ̂  / ̂  n by replacing Q0

by P0 on the right-hand side of (A 20), after G2, G4 up to G2l. Furthermore we set

. ,...,n}). (A21)
We claim

Lemma AS. With the hypothesis of Theorem A4, we have

Vn,/eN, VX1,...,X2 M + 1,Z1,...,Z2 n + 26M:

2ll + 2)||=0(τ-00). (A22)
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Furthermore, if P and Q are interchanged in the definition of Al

n and Bl

n, then (A 22)
still holds true.

Proof. The proof is by induction on n. In each step we use induction again. For
brevity we suppress the quantifier: MX^

For n = 0 we have to show:

\\A°(XJ\\ + ||Sg(Z1,Z2)|| =0(τ-^. (*)

This is obviously true for N = 0. Furthermore, it follows from Lemma A 2 that

^8(JO=^g(i + [P,ί]), (A23)

and, in view of the intertwining property, that

Bg(Z1,Z2)= - l-{Al(Z,PZ2)-BQ

Q(Z^Z2^[_P,Z2-\}} . (A24)

Our hypothesis implies that P e C°°(/, B(tf)) and P E M. Clearly M is stable under
differentiation, the twiddle operation and the operation of taking commutators;
furthermore PZeM for all Z e M. Thus (*) follows by induction on N from (A 23),
(A24).

Next we come to the induction step with respect to n. Assuming (A 22) for (fixed)
n — 1, we have to show

AlXXn+1)\\ + \\BtiZ1,...,Z2n + 2)\\=0(τ-N)
(**)

1,...,X2π + 1,Z1,...,Z2M + 2eM).

The proof is by induction on N. For N = 0 (**) is obviously true. Assume 0 :g / g n.
Setting X = X2l+l9

(respectively zero for 1 =n) we apply Lemma A 2 to the term

in the definition (A 17) of Al

n and obtain

..)}. (A25)

Similarly we set Z = Z2l + 2 and integrate by parts in the definition of Bl

n to get

B«(ZI, •• >Z2π + 2)= {An(Z^ ...,Z2ί, Z2/+1PZ,

— An (

(A26)
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Thus (**) follows by induction on N from (A25), (A26), where we use the induction
hypothesis (A22) for fixed (n — 1) to estimate the right-hand side of (A25). This
proves (A22). Finally, interchanging P and Q in the definition of Al

n and Bl

n just
multiplies the right-hand side of (A23)-(A26) by ( — 1). This proves the lemma.

Now we are ready for the

Proof of Theorem A4. In view of Theorem A3, it suffices to prove (A 14) with Ω
replaced by ί̂  eN. Since PPP = 0, it follows readily from (A 5) that

=0. (A27)

By definition of Ωp this implies inductively for all j e M,

Λ)Ω2;βo = 60^2/0 = 0 (A28)

PoΩ2J+1β0 = - Λ°([Λ PI - - > [A Ώ) - (A29)

Since [P,P]eM, (A 16) follows from Lemma A 5.
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