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Asymptotic Neutrality of Large Ions

Charles L. Fefferman* and Luis A. Seco**
Department of Mathematics, Princeton University, Princeton, NJ 08544, USA

Abstract. It is proved that a nucleus of charge Z can bind at most Z 4- 0(Zα)
electrons, with a = 47/56.

Consider the Hamiltonian for a nucleus of charge Z and N quantized electrons,

H z w = Σ Γ ( - 4 < )—Z Ί ^ '

The ground state energy is then

} = infE(Z,ΛO = inf inf

where <ff = f\ (L2(R3)(χ)C f l) is the space of antisymmetric wave functions with q
i= 1

spins. Throughout this paper we will simply refer to them as "antisymmetric" wave
functions.

For each Z, call N(Z) the smallest number for which £(Z) = £(Z, N). It is an
interesting problem to obtain sharp estimates for N(Z). The sharpest known result
appears in [8], where the reader will find a discussion of the history of the problem.
In particular, Λf(Z)/Z-» 1 as Z-> oo, although there were no estimates for the rate
of convergence. Our main result is the following:

Theorem.

47
N(Z) = Z + 0(Zα) for α = — .

JO

We announced this result in [1]. We are grateful to V. Bach for pointing out a
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minor error in our announcement. The rest of the paper is devoted to the proof
of this theorem.

For the proof we will be interested only in the case Z^N ^ 2Z. Lieb ([6]
and [7] ) has given a simple argument to handle the case N > 2Z. Thomas-Fermi
theory will play a central role in the proof. We recall a few fundamental facts. For
a nice detailed discussion see [5].

1. £(Z)~CTFZ7/3 asZ-+oo.
2. Let pTF be Thomas-Fermi density. Then:

a. J>TF(x)dx = Z.

b. For lx |>Z~ 1 / 3 + ε , pT F(x)^C|xΓ6.
c. J pΎF(x)dx ^ CpΎFR~3 for R > Z~1/3, for some constant CpTF.

\x\>R

1. Key Estimate

Fix N points in R3, x l 9 . . . ,x N . Take a radially symmetric function φ9 supported
in £(0, ϊioZ-2/3)J0=l, sup |</>|^CZ2, and set p X ί , . . . , X N ( x ) = ΣΦ(x-Xi). Observe

that the subharmonicity and positive-definiteness of the Coulomb potential
implies that

V — - - >if f P * ' ..... *"(X)P*' ..... x"(y)dxdy-CZ2/3-N
.L..\~ ^ - 2 J J \χ-y\

\x-y\

+ Σ w(Xj) - iJ

\χ-y\

) dxdy _ ιj| ^xrf _ CZ2/3.N
' ^JJ

with

Let's set

γ ^_ l f f . , . . . . x 1 y x . . . . . . x i v τ . .
1,...,xN)-2]] - : — — - dxdy

and note that K ^ 0 pointwise. This provides the operator inequality

HZ,N £ K + £ Γ( - 4J - -i-
t = i | _ | X f |
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for N ̂  2Z. We point out that similar inequalities were used in [2] and [4].
Let λl9λ29. . be the negative eigenvalues of

and let

It follows then that

for all N between Z and 2Z. From [3] we know that for some b between 1/3 and
2/3 we have

£(Z) ̂  CTFZ7/3 + f Z2 + 0(Z7/3~b).
8

A careful exposition of Hughes' proof appears in [10]. Similarly, it follows from
[7] that

E(Z,N) ^ CTFZ7/3 + § Z2 + 0(Z7/3-")
o

for all JV ^ Z.
Putting all this together we see that

for any N between Z and 2Z. In particular, we have

//z>jV^£0(Z) + K(x1,...,xN)-CHSw(Z7/3-6) (1)

for

E0(Z)= inf E(Z,N),

where ε# will be picked later, and some constant CHSW. The constant b plays a
crucial role in the analysis of the best possible power of Z for the excess charge.
From [3] and [7] it follows that we can take b = f : this implies that we can take
α = jg in the statement of the theorem. Notice however that this value of b has
been obtained using a much stronger result, namely the correct asymptotics for
the energy. It is clear that one can do better and may be one can take b — f , which
would allow us to take α = f.

2. Estimates for a Ball

What we are planning to do now is conclude that if the number of electrons a
particular state puts inside a ball is too different from what Thomas-Fermi theory
predicts, then this state will have too much energy. This will be then generalized
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to random variables other than the number of electrons inside a ball. We need a
few definitions.

Consider a ball £(0, R). Define

Λ / K ( X I , .., XN) = number of j^e^O, R).

Also, take a smooth function

Ί for | x | < f Λ

0 for | x | > f f l

that we will call χR whenever we want to make it explicit which R is being used,
and let

Observe that NR/2(x1,..,,xN)<>Nχ(xί,...,xN)^ N2R(xl,...,xN\ for all X I ? . . . , X N ,
provided R > 2Z~2/3, which will certainly hold in our case, since we will be working
with JR^Z~ 1 / 3 .

Define

Now, note that

N,(xl9 . . . , XN) - NY = S(pxlt...tXN - pΎF)(χ)χ(χ)dx = f ( β X l , . . . , X N - pΎF)(ξ)χ(ξ)dξ.

Hence

|Nχ-N7|2^J|χ(ξ)|2 |<K^

Therefore, (1) implies

/ I /V — /V T F l 2 ι// ι/Λ
/ w ,// »//\ > π (7\ _L r \ l j v ^ 7 -\HZNΨ 9 ψ/ ^ ̂ o(^; + ^K

K.

for some constant Cκ. In particular, Cauchy-Schwarz implies

I / / V i// ι//\ — /VT FI 2

<flz,^, ^> ̂  £0(Z) + cκ

l^*Ψ'Ψ> "* ' - CHSW(Z7/3 -") (A)
K

for any antisymmetric ψ, |) ̂  ||2 = 1.
The previous argument can be generalized to yield the following result:

Lemma 2.1. Given any function φ(x)eL2(R3\ we have

, ι M

, \\ψ\\2 = I.Here,
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in the case of a fully antisymmetric φ (i.e. q = 1) and in general

N

Now, we define a working variant of estimate (A).

Definition. We say that Estimate (ε,ε, R) holds if for a nucleus of charge Z at the
origin and N quantized electrons confirmed to the ball B (0, R) we have

<J/z,ΛriA, ψy ^ E0(Z) + — (N - (1 + ε)Z)

for normalized ψ, where

E0(Z)= inf E(Z9N)

/or ε# ίo be picked later. By N quantized electrons confined to the ball B(Q,R) we
mean that ψ = φ(xί , . . . , XN) is supported in the set x, e£(0, R) for all i = 1, . . . , N.

Now it will be necessary to introduce two parameters y x and y 2 > m tne proof.
They are related to b by the relation

2. y2 = b/l.

The significance of γί is that it represents the excess charge. Precisely

On the other hand, y2 is related to the radius of the largest ball for which we can
obtain favourable estimates for its excess charge. This is clearly seen in the following
lemma.

Lemma 2.2. There exist constants C0 and c0 independent of Z, such that Estimate
(έ,ε,β) holds for

Proof. Pick R, ε and ε within this range. Say ψ confines N electrons to β(0, R).
If ΛΓ^(l+β)Z, then

If N>(l+ε)Z, then



114 C. L. Fefferman and L. A. Seco

for χ = χ2R. Since N^F < Z,

\N-Z\2 ε2Z2 2

2R ""* 2R ' ^K~2R

C C2

>_^L_°£7/3-(2yι + y2) > 2

for C0 large enough; so,

On the other hand,

CK

N~Zl2>E--(N-(l-£)Z) for Λί^(l+ε)Z. (2)

To see this, observe that it holds trivially at N = (1 + ε)Z, because the right-hand
side is zero; if now we differentiate both sides with respect to N, we obtain for the
left-hand side

CK(N - Z) Cκ εZ

2R >TΎ

and εZ/R for the right-hand side. So Estimate (ε, ε, R) holds taking c0 small enough.
Throughout the proof we will need a couple more conditions on C0 and c0

that will force us to take them to be larger and smaller respectively than what we
needed for this lemma.

Lemma 2.3. Let R = Z~1/3 + ϊ2, and χ = χR. Say that for a number Y,

(Nχψ,ψy = z+γz1-?1.
Then, for some universal constant cί9

(\γ\ — C Ϋ 7"2-2yι

<# z>, ψy z £0(z) + <v' ' »+ -- cHSWz7/3 ~b.

Proof. Observe that we have

NY^Z- f pΎF(x)dx ^ Z - SC^Z1 -^ = Z -
\x

and NΊ/ ^ Z. Thus,

R - R ~ R

and

^
R = R R

Applying (A) to both cases and averaging the resulting inequalities, we get

(HZtNψ9ψy^E0
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Elementary calculus says that

, .. .2 . , 0 ^ ( 1 * 1 -<Ή

and this implies the conclusion of the lemma.
The previous estimates could have been done for R of the form z~1/3 + y for

y ̂  y 2 > w i t h the only effect of decreasing γλ and thus worsening a little the estimates
for the excess charge. However, they cannot be carried out with these techniques
for y > y 2 > since whatever term we want to estimate will give a contribution so
small to the energy that it will simply be lost in the 0(ZΊ/3~b). For radii this big
we need a different approach in which we use in a more direct way the properties
of the Coulomb potential. The goal of the next section is to analyze how estimates
for a given ball imply corresponding estimates for its double.

3. Estimates for Spherical Shells

In this section we consider a system of N quantized electrons confined to 5(0, R\
and N' electrons confined to 5(0,2R) — 5(0, R/2). That is, we will be considering
wave functions φ(xl9...9xN9 x\9...9x'N.) supported on the set x l 5...,xNe5(0,K),
x'l9...9x'N.eB(Q92R) — 5(0,R/2). We have to impose the extra condition that for
fixed x' l 9..., x'N,9 ψ is antisymmetric in the x l 5 . . . , XN and viceversa: that is, we will
be considering vector-valued ψ9 with domain x\9...,x'N,eB(Q92R) - 5(0,R/2)9 and
values in tf and vector-valued ψ9 with domain x 1 ? . . . , xNe5(0, R), and values in Jίf.

To stress the different role of the two sets of electrons, we rewrite the
hamiltonian as

HZ,N + N = HZ,N + //extra = ( —4cι,..., jcN + ^) + ( ~ ̂ extra + ^extra)

with

v = - y

V = - V ^~γ extra ^ , / ,

Also, we restrict our attention to the case R > C0R# = C0Z~1/3 + 72.
The content of the following lemma is as follows: We know from previous

estimates that approximately Z of the electrons will organize themselves to be close
to the nucleus; this will have the important effect of "screening" the nucleus. That
is, all the other electrons will hardly feel any negative electrostatic potential; this
has as a consequence that a lot more than Z electrons will only make the energy of
the system grow above the ground state energy.

Lemma 3.1. Assume that N + Nf ^ (1 + δ)Z for

C0Z~yι^δ<(l + KΓ6)C0Z-yι.
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Then, for some constant c,

or else

Proof. We will assume that N1 / 0 or else there is nothing to prove. Recall that
K* = Z~1 / 3 + y2. Let χ = χR^. Note that

as operators on our space of functions, since χ*φ and φ have disjoint support in
the x'j variables.

T pf v — V V (Y Y Y' \ ' \ fπr
^CL yextra ~~ Z^ KJ v*!' * ' ' J^J ^l' ' >XN'J 1(JΓ

j

Note that

y _I_=y ^ ί̂) , y

' '

\\ ' \ I v' I I v-x I '
I X 7'I l^ l i = l \Xj\

and write

i/ί ' ' ^ Z-N, , N. l-z^(x f)
F,(x1,...,xw,x1,...,xΛΓ.)= r + Σ . .

~

+- y

= Tt + T2 + T3 + Γ4.

Let's analyze this term by term:

-) , , r /= Λ/2

N-N, .
: L pointwise.
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Therefore

_ _ Λr + ΛΓ-<ΛLιfr,ι/r>-

9R

for Ω = N + N' — δZ — Z. Note that by hypothesis, Ω ^ 0. Summing over ally we
obtain

^Γ^ N' (3)

If we could prove that |Z — (Nχψ,ψ)\ <cZl γι for some constant independent of
C0, then we would have

^^δZ-2ΰ\Z- <Λ^,ψy\ + β ^Z
7 - 9^ - lOR

by simply taking C0 large enough. So, the result will follow if we can prove that either

or else:

δZ

and

Iz-ζN^
with c independent of C0.

In order to analyze this, let's define

\l/x'λ ^ Λ'N,(XI , . . . , XN) =

together with its normalized version

defined on the set

£={(

Also, as in Lemma 2.1, define

N

'̂ x' W = Σ..... '
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Note also that since pTF and χ are radially symmetric

Then

$T4\ψ(xi,...,xN,x'ί9...9x'N.)\2dxl'~dxN

- Π

Now observe that

Summing over all j we obtain that

- z)pj, ' (y)dydz

Note that

as long as f - y2 < 1 - 3y2, that is, y2 < £, or b < |, which certainly holds in this
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case. So

'T4\\j/(x1,...9xN,x'l9...9x'N.)\2dxί dxN

119

Zl/3

Zl/3

So, if we define

we have

In particular

Next, observe that

CJV'

x'j-y\2

for

for

for

In any case,

therefore,

Zl/3

Zl/3

By Lemma 2.1 applied to ,̂ we have for (xι,...,x
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R2

R2

In other words,

-b

71/3
~ 77/3

^

-6

71/3

Zl/3

'V K* \\ΨιΊ....,x'N.\\2

Now, integrate with respect to (x\,...,x'N.)eE to obtain

,W^, ̂ > £ £0(Z) - C'

Zl/3

IIΆ/, .4. II!

Now use Cauchy-Schwarz and the fact that

to realize that

/3 \2

Zl/3

71/3

—dx\ -"dx'N'
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z1'3

ll̂ yjli
Z l/3

—dx\ - dx'N,

Therefore

R2 7-1/3

ZΊ/3~b.

Recall that

^Z,N + ̂ e

to obtain

<Hz,N + N.ψ, ψy * £0(Z) + </ίextra tfr, <

71/3
9_ *jr \ C 77/3-b

— ^ „-) -tV — CHςWZ,

Using (3) we get

+ C' — ̂ —

Similarly, since

if we let, for (x\,..., x^,) e £,

(Nχψx' x ' / ? ι /

and

<^
then

Now, Lemma 2.3 implies that

<HZfN^x/ x / , , ^x/ x/ > ̂  £0(Z

for (\' Y1U1 I Λ i . . . . . Λ

yl/3 \ 2

-2^-Λf' -CHSWZ7/3-b. (5)
κ / +

= z + z1
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Arguing just as before we see that

Therefore,

and using (3) we see that

1 Y\ -

Therefore, averaging this expression with (5), we get that

•>- ύ^>E δZ-2V\Z-(Nχψ9ψy\+ΩN,
" > V > = ol J 9R

-(C(|y|-c1)i-cH S W)z7/3- f c

_1_

ΛΓ R2 '

possibly with a different constant C.
Let's say now that, for some numbers S and K,

'- VδZ— >C0VδZ.

(6)

Thus F^O. Note that if |S| <ιV ancJ I ^1 is bounded above independently of C0

we are done. This follows from the remarks following (3).
Observe that

Ω=N' + N-Z-δZ^(N'

v 2|y| Λ My i <)̂

, ι/O - Z - <5Z) +

Using (4) we can rewrite (6) to obtain

F(s, y,
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for
2

20

Q Q

^ ^ / / V I V Ί ^ , /^ l£ | _ If) ) + ) — CHSW

+ C"((|y|-Cl)
2

++(C0 |5|-lO-6)i)-9CHsw).

Observe that we can assume that C" < 1 and C j is so big that

c2C"-18CHSW>2. (7)

The rest of the lemma is devoted to proving that either | S \ < γg and \Y\< some
constant or else F > some other constant. In order to understand why this is so,
we deal with different cases:

Case I. |S |>τk Y\<2c, V<^\S\.

Since \S\ > &, for C0 > 64 we have (C0|S| - 1(Γ6)2+ >$CfjS2. Thus,

9F ^ - iC"ClC0|S| -^C"C2S2 + {C"C%S2 - 9CHSW

= I/-2 ^o( 40cx H-1 2C0) — 9CHSW,

and pick C0 large enough so that this is at least 1.

Case 2. \S\>^ Y\<2c1 V^—-\S\.

Pick now C0 large enough so that

(ClV2-4ClCQV-ClV)+>^ClV2 for
Δ

then

240
!7Γ ^ OUCj K C 0 ~f 2^C/o ^ T^T" r GO -^GHSW

/- 60-24- Ifc 240
K ^ ~ f " C C

and again pick C0 large enough so that this is at least 1 for V> C"/24 16.

Case 3. All |S| | Y\ >2c^ V<\Q~6C".

If |S| ^iV, observe that - 10C^F|5| -h C72C^|5|2 is increasing in |S| as long as
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V < C'yi60, which is true in our case. So it is enough to consider the case \S\ < iV
Observe that

Therefore

9F ^ f C2 V - 30C0 V\ YI + ̂ - y2 - 9CHSW

15Cn V 900

CΊ4 '

-0 |/ \ ™u

 Γ2 F2 QΓ

T^Γ^-O^ ~~ y(^HSW

iι/_8 V -- 7^~

Now, if F> 100CHSWCo 2 we are done. Otherwise,

9F ̂  - 3000CHSWCo J I IΊ + ^2 - 9CHSW

2 / 3000CHsw C/;

^
• V 2( — M5W . - i (

- I -Λ /^ * Λ\ 2,c O 4

Γ1" /^2 Γ"r

\-̂  Λ C 1 \_x

= n λ ~ ^^HSW = ^ 7^HSW =
o Z

by (1) and for C0 large enough.

Case 4. \S\<-^\Y\>2cί KΓ13C"2Cj/3 ^ K^ 10"6C".

If |y |>CS / 3 ,by(8)

9F ̂  - 30C0 K| y I + ̂  y2 - 9CHSW

Differentiate with respect to |y| to realize that for C0 >216 10~36C"3 the
right-hand side is increasing for | y| ^ Co/3. So,

(9)

and pick C0 big enough so that this is at least 1. If, on the contrary, | y| ^ Co/3,
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we have

So, using (8) again

9F ^ - 30C0 V\ Y\ + iC3 V2 - 9CHSW ^ - 30C*/3 V + Ko V2 - 9CHsw, (10)

and pick C0 so that this is bigger than 1 for V^ 10~6C".

Case 5. |S| ̂  | Y| > 2^ l(Γ13C"2Cέ/3 ̂  F^ 10~6C".

In this case, argue as in Case 4, with the only difference that Cg(K- 10| S| K + ̂ C"S2)
need no longer be positive, and we have to include it in (9) and (10), which will
be replaced respectively by

and

Note that
1 00

2, (11)
V-'

since, for given V9

is attained when IQV= C"\S\: so,

100
mm(V-W\S\V + $C"\S\2)^- — V2.

\s\ ί

Therefore, in our range of V9 (1 1) is at least — 10~24C"3Co/3, so, for C0 big enough
it doesn't affect the result since V is bounded below by a constant independent of C0.

Case 6. All |S| | Y\ > 2c^ 10"13C//2Cj/3 ^ V.

If 7| >(200/C")C0F, and \S\<&, by (8),

Again the derivative of this with respect to | Y| is positive for | Y\ > (200/C")C0K
So, plugging in for | Y\ the value | Y\ = (200/C")C0, F, we obtain

If |S| ̂  T6, by (1 1) we have to subtract (100/C")C£ V2, that does not alter the result.
Now, if 1 7| ̂  (200/C")C0F, observe that

400
ClV2-2C0V\Y\-C2

0V^C3

0V
2- — C2V2-
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for C0 big enough, since V^ 1. So, for \S\ <γ£ we have

9F ^ - 30C0 V\ Y I + Ko V2 - SO

and as usual we pick C0 so that this is at least 1. If |S| Ξ> j^, we have to subtract
(100/C")Co V2, which again is harmless for C0 big enough. This proves that either
both ISI^and 171^2^ or

which concludes the lemma.

4. The Bootstrap

In Sect, two we obtained estimates for wave functions supported on balls, where
the ball was to be of a certain size. The estimates from the previous section will
help us obtain essentially the same kind of estimates for a ball of twice their size,
and by induction, to all balls in R3.

Lemma 4.1. Let R ̂  C0Z~1 / 3 + y2, ε = c0Z~yι and

C0Z-yι^ε^(l + 10"12)C0Z"yι.

,// Estimate (έ, ε, R) holds, then Estimate (έ, ε', 2R) also holds, with

1C
ε = ε + —

provided that ε' ^ ε# < 1.

Proof. We consider a partition of unity given by two smooth functions, Θ0 and
Θl9 satisfying

Ί if | x | < Λ / 2
if I v l ^ J? 'II X > K

Given a wave function φ(xί9. . . , XN) supported on 5(0, 2R), and given any sequence
i1 , . . . , iN of O's and Γs, we define

Assume for simplicity that ij = 0 for j = 1, . . . , N1 and z'7 =1 for j = Nl + 1, . . . , N;
let N2 = N — N1 . We define φx x to be φ9 where the variables xNl + x , . . . , XN

are fixed. It is thus an antisymmetic wave function supported on (5(0, R))Nί.. Since
Estimate (ε, ε, R) holds, we have
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Integrate this against dxNl + 15 . . . , dxN to obtain

<Hz,N>ίli....ίN, ̂  1,..., I N> ̂  (EO(Z) + ̂ (Ni - (1 + ε)Z)) || ̂ ί l t ... t ίN H i . (12)
V κ /

Our goal now is to prove that

^,...^!!!. (13)
/

This is trivial if N = Nί + N2 <Ξ (1 + ε)Z, since ε ̂  ε#. If N ̂  (1 + ε)Z, we can apply
Lemma 3.1, with δ = ε. If

then, either

cZ7 / 3 ' f c>^(N-(l+e)Z)
R

in which case (13) is proved, or

cZ7/3 -* g ̂ (N _ (J + g)Z)>

/?

If this is the case, just like in (2), note that provided c0 < cCK/(8CHSW), where c is
the constant in Lemma 3.1 (we can assume c < 1 and CHSW > 1),

Equation (14) then implies that

Γ l^~^l ^ or1

4R~ ^^HS

Estimate (A) then with χ = χ2Λ implies that

IN — Zl 2

' '

IN — Zl
E0(Z) + cCκ

l~- -

and (15) again implies (13).
The alternative left from Lemma 3.1 is that

f 2 l l ^ 1 ..... ίjll (16)

Since
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and cε > ε (for c0 < c C0), (12) and (16) imply

<tfzjv1+*A,..,^i^^
\ κ /

and (13) is proved.
Putting all these estimates together, we see that

Σ <tfzjvt + N A....,*> Άΰ,...,^> ̂  £o(Z) + ̂ (N! + N2 - (1 + ε)Z).
iι,...,ΪN K

Now,

Σ < ί /CoulombίAi 1,...,iN ' lAί 1,...,^>= : :< ϊ /Coulomb^ίA>
i i , . . . , i A r

For — 4, we have

=.,..?.,
= Σ

=Σ

'•* " Γ ' x " ' 'x" N
•-Σ

ί,k

The last term on the right is zero, since

Σ v^?(*k) = v,, Σ #(**) = vi = o.
i i

Hence, if we define

we get

Σ <-Δ
i ι, . . . , i ιv

As result, we get

Observe now that
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Thus it follows that

CN

Thus we have

εZ CN

1\ /\

So we have only left to investigate when

— (N-(l +ε)Z) r = — (N~(l + ε')Z) (17)
I\ Λ\ Z/V

Observe that the derivative with respect to N of the left-hand side is bigger than
the derivative of the right-hand side. This amounts to checking that

εZ C εZ

which is equivalent to

C εZ

R-~2'

which will hold as long as R ̂  2C/εZ. This certainly holds in our case, since

So it is enough to prove that (17) holds for the smallest value of N in which we
are interested. For N = (I + ε')Z, (17) is equivalent to

.e.

So, Estimate (ε, ε', 2R) holds with

2C
ε' = ε + -

εZR

Corollary. There exist ε#, ε* such that Estimate (έ*, ε#, R) holds for all R ̂  C0Z "1/3

Proof. Define

P _ C 7~yι P — r 7~yι
ί>0 — ̂ 0^ 5 fcO ~ C0^ J
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Note that

^ "1

for Z large enough, provided b < yf (which is true in our discussion), with
C*^(1 + 1(Γ12).

By Lemma 2.2 we see that Estimate (ε0, ε0, R0) holds. Therefore, by the previous
lemma, if we make ε# = ε0, Estimate (εθ9εn,Rn) holds for all n, and the corollary
follows. This implies that

and therefore

N(Z) ^Z + ε#Z = Z + O(Zi ~ y

From [11] it follows that

N(Z) ^ Z,

and therefore,

which proves the theorem.
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