
Communications in
Commun. Math. Phys. 127, 573-583 (1990) Mathematical

Physics
© Springer-Verlag 1990

Measure and Dimension of Solenoidal Attractors
of One Dimensional Dynamical Systems

A. M. Blokh and M. Yu. Lyubich

Steklov Mathematical Institute, LOMI, Fontanka 27, SU-191011 Leningrad, USSR

Abstract. Let / : M^M be a C°°-map of the interval or the circle with non-flat
critical points. A closed invariant subset A c M is called a solenoidal attractor

of / if it has the following structure: Λ= f] \j I^\ where {/[n)}^0 is the
« = 1 k = 0

cycle of intervals of period /?„-• oo. We prove that the Lebesgue measure of A is
equal to zero and if sup(pπ + 1/pπ)< oo then the Hausdorff dimension of A is
strictly less than 1.

1. Introduction

Let M be a one dimensional compact manifold with boundary, i.e. a finite union of
disjoint intervals and circles. Let us consider the class 91 of C00-smooth
transformations f:M-+M with non-flat critical points [the last means that for
each critical point c there exists n such that f{n\c) Φ 0]. The map / is called d-modal
if it has d extrema in intM (for d = 1 / is said to be unimodal). Let fn=f°f°... °/
denote the nih iterate of /

By solenoid attractor of M (or simply a solenoid) we mean a closed /-invariant
subset AcM of the following structure:

A= η M ( w \ M{1)^Mi2)D . . . , (1)

where

Min) = Pn{J 4"> (2)

is the union of pn closed disjoint intervals 4n ) such that flj^Cl^+i (here / ^ is
identified with /(

o

π)), pM-κx).
Clearly, pn is a divisor of pn+ί. The type of the solenoid A is the maximal

possible sequence {pn}™=! of the pairwise distinct periods pn.
Let λ denote the Lebesgue measure on M and dimX denote the Hausdorff

dimension of a subset XcM. The aim of the present paper is to prove the following
theorem:
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Theorem, Let Abe a solenoidal attractor of type {pn}™=0 of a map /e9I. Then 1)
λ(A) = 0; 2) if sup(pn+1/pn)<oo then dim A <1.

For unimodal maps the theorem was proved earlier (see [G 2, BL 2, MMSS]).
Our approach to multimodal maps is based upon the method developed in [L].

We refer to [B 1, B 2] for detailed study of topological properties of solenoids
for continuous one dimensional maps. Now we state some of these properties.

An interval J C M is called wandering iϊfnJnfmJ = 0 for n > m ̂  0 and the orbit
{fnJ}™=0 doesn't tend to a limit cycle. It was proved recently that maps / e 31 have
no wandering intervals. This result was obtained in [L, BLl] for maps /e 91 without
inflection critical points. The restriction on critical points was removed in [MMS].
For injective and unimodal maps the absence of wandering intervals was earlier
proved in [Gl, Y, MS].

It follows from the absence of wandering intervals that any solenoidal attractor
of /e9ί is nowhere dense (since an interval Jcint^4 should be wandering).
Consequently, the restriction f\A is topologically conjugate to the transitive shift
on a compact group [B1, B 2]. So, f\A is a minimal dynamical system, i.e. there are
no proper closed invariant subsets A'cA. Hence, AnB = φ for any two distinct
solenoids A, B.

Notice also that clearly A has no isolated points and the restriction f\A is
injective.

Remarks. 1. We have proved that if A is a non-periodic and non-solenoidal
attractor in the sense of [M, BL3] and λ(A)>0 then f\A is essentially non-
invertible. It follows that every absolutely continuous /-invariant measure has
positive entropy. The proof will appear elsewhere.

2. Using the Milnor-Thurston kneading theory [MT] one can show that
solenoids of all types occur even in the quadratic family x i—• ax(\ — x). The most
popular of them is the so-called Feigenbaum attractor for which pn = 2". For this
attractor one can prove the theorem using the renormalization group method
[VSK].

3. The requirements of smoothness of / in the theorem can be essentially
weakened, as in the papers [BLl] or [MMS].

2. Notations and Conventions

If points x and y lie in the same component of M, [x, y] denotes the (closed) interval
ending at x and y (we don't assume x ^ y). Similarly, if L and N are intervals, [L, AT]
denotes the minimal closed interval containing LuiV. Let (L,ΛΓ]= [L, NJ\L, so
(L, AT] is closed when L, N are intervals.

At first let us introduce some notations and convenient conventions. Denote
by

C = C(f) the set of critical points of/, d = \C(f)\;
E = E(f) the set of extrema of/ lying in intM.
Replacing M by some invariant submanifold M(n) of the definition (l)-(2), we

can get M to be the union of intervals and all critical points of f to lie on the solenoid
A (just for this reason it is convenient to consider non-connected manifolds M):

C(f)cA. (3)
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Besides, one can assume

f(dM)cdM. (4)

Indeed, let us include M into a manifold M with boundary so that M C int M. Then
one may construct a continuation J.M^M of/ such that C(J) = C(f) and J{dM)
C dM. Note that the property (3) is preserved.

It follows from (4) that all points of dM are preperiodic (i.e. fna=fn+pa for
some n^O, p>0), and hence ^4cintM.

Further, replacing the smooth structure on M, we can reduce / in neighbour-
hoods of critical points c e C(f) to the form

where v e { ± l } and K G N depend on c.
Let us define in neighbourhoods of extrema c e E(f) the involution τ: x^xf by

the equation f(x')=f{x). By (5) τ is just the reflection with respect to c.
Now, let us fix for the rest of the paper a small number η > 0 such that

^-neighbourhoods of points C;eC(/)uδM are disjoint and (5) holds in
^-neighbourhoods of critical points. Then the involution τ is well-defined in
//-neighbourhoods of extrema.

Proposition 1. Let fe 21, V be an interval whose orbit doesn't tend to a limit cycle.
Then

inf λ(fmV)>0. (6)
meN

Proof Since fe 21 has no wandering intervals, fpVn Fφ 0 for some p e N. Hence,
00

I= U fpnV i s a periodic interval (perhaps non-closed). If / contains two /Mixed

points α, β then fpnVj {α, β] for all sufficiently large n and (6) follows. The simple
analysis of the other case is left to the reader. •

It follows from Proposition 1 that there exists ξ > 0 such that

for any interval Vc M containing some critical point. Fix such a ξ from now on.

3. Chains of Intervals

A sequence of intervals (G = {Gm}ι

m=0 will be called a chain of intervals (of length /) if
fGmCGm+1.

The multiplicity multG of the chain is the maximal μ for which there exist μ
intervals Gm with a common point.

The order ordG of the chain is the number of intervals Gm containing critical
points. Clearly,

[recall that d = \C(f)\ is the number of critical points].
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The chain G is called maximal if Gm are maximal intervals for which
fGmCGm+ί (m = 0,...,/ — 1). It is called cyclic if /GZCGO. When we say maximal
cyclic chains, we mean Gι also satisfies the maximality property.

The concept of maximal chain introduced in [L] is the effective tool in a
number of problems of one dimensional dynamics. We use the convenient
modification of the concept suggested in [MMS].

Suppose GjCintM, λ(Gt)<ξ^η, where ξ and η are defined in Sect. 2. Since
f(dM)cdM the intervals Gm don't contain boundary points of M (m = 0,1,...,/).
Moreover, by (7) λ(Gm) < η for any interval Gm containing a critical point. Hence,
Gm can contain only one critical point.

Suppose additionally that (E is maximal. Then f(dGm) c dGm+ v If Gm contains
an extremum c then it is symmetric with respect to c. If Gm doesn't contain extrema
t h e n / G m = G m + 1 .

In what follows we will consider only the chains satisfying GjCintM and

MGύ<ξ.
For two chains <G={Gm}Uo and I = { / w } U o we write G>I if GmDlm

(m = 0,...,/). In such a case G^ denotes the connected components of Gm\Im.
Given a chain I = { / W } m = o and an interval GDlb there exists the unique

maximal chain Qj = {Gm}ι

m=0 such that (G>~I and Gt = G. Indeed, one may
subsequently construct the intervals G^G^G^^..., Go. We say that such a chain
C is associated with the chain I and the last interval G.

Proposition 2. Let I = {/m}£~J0 be a cyclic chain of disjoint intervals, It = {Im}ι

m=0 be
its subchaίn, l^p — 1. Consider another chain {Gm}ίn=0 = G > I ί . Suppose Gt

intersects q intervals of the chain I. Then

a) mult<G<;2g;
b)

Proof Let mult(E = μ. Then there exists a point x belonging to μ intervals
Gmι,...,Gmμ of the chain G. Clearly, one of these intervals, say Gm. = Gm, must
intersect μ/2 intervals of the chain I. Since this chain is cyclic, the interval
Gpfι~mGm also intersects at least μ/2 intervals of the chain I. Hence μ/2^q, and
part a) is proved.

Part b) follows from a). •

4. Distortion Theorems Along Chains of Intervals

In this section we sum up the information on the distortion of iterates fι of maps
uniform with respect to /.

All statements below have two versions: a) distortion of interval ratio and b)
distortion of density of measurable set. Version b) is always stronger than a) but it
is convenient to have both statements.

The first two lemmas concern / itself.

Lemma la (cf. [L]). Let I be an interval divided into two subintervals L and R. Then
there is a constant B such that, provided λ(L) 5Ξ λ(R), we have

λ(fL)/λ(fR)SBλ(L)/λ(R)

(B is independent of I, L, and R).
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Remark. In the above and further lemmas all constants depend on / but we don't
notice this dependence.

Proof. Clearly, one can assume that I lies in the ̂ -neighbourhood of some critical
point c. We restrict ourselves to the case when eel, since the other case is similar.
Let c divide / into two intervals J* = [a±, c], where for defϊniteness λ(I+) ^ λ(I~). It
is clear from (5) that the case when L ends at a+ is worse than the opposite case. So,
assume L ends at a+ and hence Rsc [since λ(L)^λ(RJ]. Then by (5) λ(fL)
= \f'(x)\λ(L)Sκλ(I)κ-ιλ(L) (here x is an appropriate point of L) and λ(fR)
^(λ(R)/2)κ. Consequently,

λ(fR)= \λ(R)J λ(R)= λ(RY

Lemma lb. There is a constant β such that, provided dens(X|/)rgl/4, we have

dens(/X|//) ^ β dens(X| J).

Proof. Assume again that I lies in the ̂ /-neighbourhood of a critical point c which
divides / into the intervals7±- [α1,c],and λ(l+)^λ(Γ). Set X± = X~nI±. Let us
replace X± by the intervals J± Cl+ ending at the same point a+. Then by (5),

. (8)

Set ε = dens(X|/). Then λ(J±)/λ(I+)^2ε^ 1/2 and applying Lemma la we obtain

A(p±)/A(//+)^4Be. (9)

Finally, (8) and (9) imply

λ{fx)

ΊΪJΓ)-
as stated. •

Lemma 2 (Koebe property [MS, S, BL1]). Let I and K be two intervals, IcintK, X*
be components of K\I. Suppose KnC(fι) = 0 (hence, fι/K is monotone). Then there
are constants η = ημ(δ) > 0 and H = Hμ(δ) such that provided mult {fmK}ι

m=0 ^ μ and
λifK^/λifl^δh

a)

The following two lemmas estimate the distortion of fι along the chain (E of
length I depending only on multG.

Lemma 3a (cf. [L], Lemma 1.2). Let (E= {Gm}ι

m = 0 be a maximal chain of intervals,
{Im}ι

m=0 = KG be another chain. Let μ = mult(G. Then there exists a function
ω = ωμ(δ) such that
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Proof. Let us consider the maximal sequence of moments

0 = m(0)<m(l)< ... <m(s + ί) = l

such that Gm ( OnC(/)φ0 for ze[l,s]. Then

Denote by cm(i) the critical point belonging to Gm ( ι ).
1

Assume for some i e [ l , s + l ] ,

Then we will show

MGΪii-1yλίImii-1^co{δd = δi+1. (12)

Iterating (s + 1) times, we will obtain the required estimate for λ(G^)/λ(I0).

The method of proving (11)=>(12) consists of two steps: at first we use the
Koebe property of / m ( ί ) " m ( I ' " 1 ) " 1 | G I I I ( i _ 1 ) + 1 (Lemma 2a) and then apply
Lemma la to f\Gm{i-ιy At the first step we get

Note that we may use the Koebe property since the map y^o-mίί-ij-i.
Gw ( i_ 1 ) + i->Gw ( / ) has no critical points and is surjectίυe due to maximality of the
chain <E.

To make the second step, set c = c m ( ί _ 1 } and consider several cases.

(i) ceC(f)\E(f) is an inflection point. Then by Lemma la,

(ii) ceE(f) is an extremum and celm{i-ιy Let c divide /m ( ί_i) into the intervals
/ί (ί_i). Suppose, to be definite, A(j;(i_1})^A(J"(,-_!)). Since G m ( i _ υ is symmetric
with respect to c, we have by Lemma la,

(iii) c G E(f) and c φ Im{i _ 1}. To be definite, suppose c e G^{i _ 1}. Then by Lemma 1 a,

But as Gm ( i_!) is symmetric, A(G^( i_1))^A(G^( i_1)). So, (12) holds in all cases.
The lemma is proved. •

Lemma 3b. Let XcM be a measurable set. Under the assumptions of Lemma 3a
provided flm = Im +1 (0 ̂  m < /), ί/zere βxzsίs α function Ω = Ωμ δ{ε) such that Ω(ε) ->Ό

1 Recall that we assume throughout the paper that A(OZ) < ξ and hence Gm ( 0 contains at most one
critical point (see Sect. 3)
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Proof. The proof of this lemma is analogous to that of Lemma 3a, but one should
use Lemmas lb, 2b instead of Lemmas la, 2a.

More precisely, considering as in Lemma 3a the moments m(ί) for which Gm(f)

covers some critical point cb we must show that

dens(/»<'- »X\lm-ύ ύ 6,-1 => dens(/m">X|/m(i)) £ e£,

where εf depends on εi^ί only. To this end we estimate the distortion of

fm{i)-m(ί- l ) ι j
J Kmίi-l)

in two steps.
In the first step we obtain by Lemma la that

In the second step we use the Koebe property to estimate the distortion of the
diffeomorphism

fm(i)-m(i-l)-l . si /~<
J 'yjm(i-\)+\~*^m(i)-

It is possible since by Lemma 3a λ(G*{i))/λ(Jm{i))^ω = ωμ(δ). Consequently,

where H = Hμ(ω) is the constant from Lemma 2b. So, we have obtained the
required.

Note that on both steps the surjectivity of/: Jm C / )->Jm C / + 1 ) is essential. •

5. The Ratio of Generating Intervals

Let H(π) = {1$}%*~Q denote the cyclic chains of intervals generating the solenoid A
[see definitions (l)-(2)]. Clearly, we can choose intervals J(

0

M) in such a way that the
map /p":/(on)->/(o") is surjective. Set 4W) =/ k / (

o

n ) (fc=l, ...,/?„-1). Then

/ m 4 w ) = 4 M L , (13)
where fc + m is considered modpn.

We also need the other family of cyclic chains Ψn) = {T^}^~Q generating An.
The I ( π ) is defined as the cyclic chain such that ϊ ( n )

if / ^ contains an extremum, and fT$ = 7^+ λ otherwise. It is easy to check the
existence of such a unique chain. Set

m = 0

oo ^

Since the restriction of / onto the solenoid f] M{n) is a minimal dynamical
n = l

oo

system, we have f] Mn = A.
n=l
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Lemma 4. Consider an interval TeΨn) containing an extremum and the nearest to Ί
interval]eΨ\ Then

where δ is independent of n, 7, J.

Remark 1. In fact, the proof shows that λ(I, J~\/λ(I)^δ>0 for any 7, Jel(n\

Proof Let 7 be the symmetrization of I e l{n\ Index the intervals 7^ in such a way
that 7 = 7<O

W) (and of course // ( ^ = / ^ + 1 ) .
Fix an extremum c e A. Since A has no isolated points, there exist one or two

points xveAn(c,c + vξ) for ve{ + l}. Let

α = min (|xv — c\9 \c + vξ — xv\).
V

Since A is nowhere dense,

supΛ(4M )H0 (n-oo) .
m

Let n be so large that

Then the interval 7*n) containing c doesn't cover xv, and the intervals 7^(

}

v)

containing xv lie in [c — ξ,c + ξ]9 m(v) + s. Let L0 = Ii")vτ(I{")) be the symmetri-
zation of 7 °̂.

Let L1C [c — ξ, c + ξ] be the nearest to L o interval of I ( w ). To be definite, assume
that Lγ lies to the right of Lo. Consider then all intervals L 1 ?..., Lk of the chain I ( w )

lying in (c, c + ξ] indexed from left to right.
Since [Lo, Lk] D [c, x+] D [c, c 4- α] we have

As λ(Lo)<oc/2 there is an z'e[O,/c— 1] such that

(14)

Consider such a minimal /. Let L_ x = ̂ L J . Consider the interval G = [α(_ l 5 α i + J ,
where α̂  denote the midpoints of Ly Let G 1 be the right-hand and left-hand
components of G\Lt correspondingly. Then by (14),

λ(G+) 1 UUU^ 1

' = 4 '

^ •>•»•
If Ϊ = 0 then G and L, are symmetric with respect to c, so

λ(L0) = 4
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Further, let Lι = I\n)=fιI9 0^l<pn. Let us construct the maximal chain of
intervals <E={Gw}^ 0 such that GX = G and GmDl%> for m = 0,l,...,J. Since Gι

intersects at most three intervals of the chain I ( n ) we get by Proposition 2

multG^ό.

Now make use of Lemma 3a taking in account (15)—(17) (and replacing /by 7):

Since Gz contains the unique interval Li = I\n) of the cyclic chain Iin\ the
property (13) implies that Go C [J, τ(J)], and we are done. •

Lemma5. There exists ρ<l such that for any neN, me[(),/?„ —1] the following
estimate holds:

Proof Denote K = Ί^\ Let us consider the least / e [0, pn — 1] for which the interval
Kt =fιK covers some extremum c. Note that Kt e Ψn) is symmetric with respect to
c and f^.K-tKμsa diffeomorphism. First we estimate the density of M ( n + υ in Kι

and then pull it back to K.
Consider the interval 7el ( n + 1 ) containing c, /CKt. Let J eI(n+υ be the nearest

to /interval. Clearly, Juτ(J)cKt. So, Lemma4 yields

( Λ ) ^ ( , ] ^ 2(5-

hence,

^(KΛ7)^2yλ(ig, (18)

where γ = δ/(2δ + l).
Let Z = M{n+1)n(Kι\Ί). Since f\Z is injective, Znτ(Z) = φ. Hence

This estimate and (18) imply

) ^ « l ) ^ (19)

Further, let iV be the nearest to Kt interval of the chain I(π). Let us construct the
maximal chain of intervals (E={Gr}

ι

r = 0 such that Gz = [JV,τ(iV)] and GrDKr

(r = 0,1,..., /). By Lemma 4,

By Proposition 2

mult<G^4. (21)

Denote X = K\Min+1\ dens(X\^) = ε. Lemma 3b with (20) and (21) yield

) ̂  Ω(ε) = Ω4yS(ε).
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Hence dQns(M(n+1)\Kι)^l-Ω(ε). Comparing this with (19) we conclude Ω
Thus, ε^ε o >0, where ε0 depends on / only. Finally, set ρ = 1 — ε0. •

Remark. Using the above argument, one can show that λij^) ^ C λ(I{^).

6. Proof of the Theorem

It follows from Lemma 5 that

This implies the first part of the theorem:

λ(A)=\imλ(M{n)) = 0.
n —• o o

Now let N = max(pn + 1/pB)< oo. Find such an index qe(0,1) that for all numbers
Nn e N

χie [0,1] (i = 1, , N) the following property holds

Let T^jT^D... and φ π :Z p + 1 ^ Z p be the natural homomorphism. So,
+ 1)C/riffφM(m) = fc.
By Lemma 5 for any ke[O,pn — 1] we have

Consequently

m:φn(m) = k

Summing by k e [0, q — 1] yields

Consequently, / ^ ) < oo, where lq denotes ^-dimensional Hausdorff measure.
Thus

and the theorem is completely proved. •
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