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Abstract. The center of the quantum algebra is studied. Especially an analogue
of the Harish-Chandra isomorphism is established.

1. Introduction

In the study of the quantum Yang-Baxter equation, DrinfeΓd [3] and Jimbo [6]
found a certain Hopf algebra, which is a quantization of the enveloping algebra
of a symmetrizable Kac-Moody Lie algebra (The sl2 case is due to Kulish-
Reshetikhin and Sklyanin). The purpose of this paper is to investigate the structure
of the center of this quantum algebra associated to a finite dimensional semisimple
Lie algebra. Our main result is Theorem 2 below giving an analogue of the
Harish-Chandra isomorphism ([5]).

Let A = («ij)ig£j^/ be a symmetrizable generalized Cartan matrix. This means
that A is a matrix of integers such that au = 2, atj ^ 0 for ί Φ j and there exist
positive integers d1,...,dι satisfying d^ = dfy. We fix such dl9...9dt. Let k be a
field of characteristic zero. Choose a finite-dimensional Jc-vector space t 0 and
elements α l 5 . . . , α z e t g , t ί 9 . . . , ί f e t 0 satisfying the following conditions:

(a) {(*!,...,a,} is linearly independent,
(b) {t!,...,ίj is linearly independent,
(c) ai(tj) = diaij{ij=l9...,l).

The Kac-Moody Lie algebra g (see [8]) associated to A is the Lie algebra over
k, generated by the k-vector space t 0 and the elements e1,...9ehfί,...,fι with the
following fundamental relations:

[ί,ί '] =

=«,(t)«

-«;(«:

1 = $i i

= 0 (ί.ί'eto

•,- (ίeto,i =

l/. (t6to,i =

tίM (h j =

),
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aιJ(ej) = O {iφj\ (1.5)

(ad (/i))1-«'(/,.) = () {iΦj). (1.6)

We introduce the following ^-analogue of the binomial coefficient ( J for
\ /

non-negative integers n, m with n ^ m:

/ = 1 _ r n - m — d 7)

r"=l r = l

The quantum algebra Uh(q) is the algebra over the formal power series ring
R = fc[[ft]], which is /z-adically generated by the R-module t = R®kt0 and the
elements eί9...,eh f l 9 . . . , fι with the following fundamental relations:

tf - ί'ί = I

tft-fit

(ί,ί'et),

(ίet, i = 1,

(tet,i=ϊ,

(», 7 = 1 , - -

. . . , / ) ,

. . . , / ) ,

.,/),

(1.8)

(1.9)

(1.10)

(1.11)

fVΓ1"^] / (1.12)

= o (iφj), (1.13)

where ^̂  = exp(ftai(ii)/4)GK* for i = 1,...,Z. Let us be more precise. Let (7 be the
/ I \ ( I \

tensor algebra of the free K-module t 0 ( 0 Ret )®\ 0 Rft . We denote by U
\i=l J \ ί = l /

the completion of U with respect to the ft-adic topology (see Sect. 2.1 below). Hence
we have U = lim (U/hnU) and Ό has a natural ft-algebra structure. Let / be the
two-sided ideaΓof Ό generated by the left-hand sides of (1.8),...,(1.13) and let T
be its closure with respect to the ft-adic topology. Then / is also a two-sided ideal
of U, and we define Uh(q) to be the quotient algebra U/T. Apparently Uh(q)/hUh(q)
is naturally isomorphic to the enveloping algebra ί/(g) of g.

Let N+ (respectively N~, respectively T) be the subalgebra of Uh(q) generated
by el9...,ex (respectively f l 9 . . . , / / , respectively t), and let U{(Q) be the subalgebra
generated by N+,N~, T, where barring denotes the ft-adic closure. We denote by
N the K-algebra with 1 which is given by the presentation with generators υl9...9υt

and relations:

H Γ j r ( φ j ) (1.14)
rn j
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Theorem 1. (i) N is a free R-module and we have isomorphisms of R-algebras:

N+ ~N~N~ (e^v^f). (1.15)

(ii) T is naturally isomorphic to the symmetric algebra S(t) of the free R-module t,
and the inclusion T c_> T is the h-adic completion.
(iii) We have an isomorphism of R-modules:

). (1.16)

(iv) The inclusion Ufa) ĉ > l/Λ(g) is the h-adic completion.

This theorem may be well-known to the experts (see [3]); however, we will
give its proof since it seems that it does not exist in the literature and since it will
be used in the proof of our main result. The proof of the freeness of N is based
on the character formula of integrable highest weight modules (Lusztig [9]), and
the other statements are proved using the arguments of Yamane [13].

The topological Hopf algebra structure on Uh(§) defined by the following is
one of the ingredients of the proof of our main result (see [3], [6]):

(tet), (1.17)

l,...,/), (1.18)

l,...,i), (1.19)

ε(t) = O ε(β£) = ε(/i) = 0 (/=l , . . . , ί ) (1.20)

S(ή=-t (tet), (1.21)

S(ei)=-q;ιei ( i = l , . . . , / ) , (1.22)

S(fi)=-qJi ( i=l, . . . ,Z). (1-23)

Here 4, ε, S are the coproduct, the counit and the antipode, respectively. Note that
the definition of the topological Hopf algebra structure on an Λ-algebra H is given
by replacing H ® //, H ® H ® H in the definition of the Hopf algebra (see [1]) with
their ft-adic completions.

In the rest of this section we assume that A is a Cartan matrix of finite type
(see [8, Chap. 4]) and ί0 is spanned by t1,...,tι. Therefore g is a finite-dimensional
semisimple Lie algebra and t 0 is identified with a split Cartan subalgebra of 9. Let
W be the Weyl group, that is, the subgroup of the automorphism group of the
k-vector space t 0 generated by the transformations sί9...9st given by:

sί(ί</) = ί i / -f ly ί i . (1.24)

Since the action of W on t 0 is naturally extended to an K-linear action on t = R ® t 0 ,
the group W acts on T and T as algebra automorphisms. Define peϊ% a HomΛ (t, R)
byp(ί i) = αi(ίi)/2 = d ί f o r i = l , . . . , / .

We define an analogue of the Harish-Chandra homomorphism as follows. Let
ε±:N±^R be the algebra homomorphisms defined by ε + (ei) = 0, e~(/£) = 0 for
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i = l , . . . , / and let β be the unique algebra automorphism of T satisfying
β(t) = t- p(t) for tet Identifying Ufa) with N~ <g) Γ(χ)ΛΓ+ by Theorem 1 (iii), we
define δ:U{($)-+T by δ = ε~ ®β®ε+. By virtue of Theorem 1 (iv) δ is uniquely
extended to an K-module homomorphism δ:Uh(o)^>T. Let ΰ(Uh(o)) be the center
of Uh(q) and let δ:$(Uh(§))^> T be the restriction of δ.

Theorem 2. δ is an injective algebra homomorphism and its image coincides with
Tw = {zeT\w(z) = zfor all weW}.

The organization of this paper is as follows. In Sect. 2 we will give a proof of
Theorem 1 except for the freeness of N. In Sect. 3 several basic facts concerning
highest weight modules are stated and a proof of the freeness is given. Section 4
is devoted to the proof of Theorem 2.

2. Structure of Uh(q)

2.1. h-Adic Topologies. We recall basic facts concerning the topologies of modules
defined by ideals (see for example [10]). In this subsection only, R is a general
commutative ring with the identity element 1.

Let M be an R-module and let {Mn\n = 1,2,...} be a decreasing sequence of
submodules of M. We have a topology on M such that {x + Mn | n = 1,2,...} is a
fundamental system of neighborhoods of x for any xeM, and this topology is
called the linear topology of M defined by {Mn\n= 1,2,...}. For an ideal/ of R the
linear topology defined by {ΓM} is called the /-adic topology. Especially, when
R = /c[[ft]] and / = (ft), the /-adic topology is called the ft-adic topology. Note that
any homomorphism of jR-modules is continuous with respect to the /-adic
topologies.

An JR-module M with a linear topology is said to be separated if it is Hausdorff
as a topological space, and is said to be complete if any Cauchy sequence has a
limit in M. Here a sequence {xn} of elements of M is called a Cauchy sequence if
it satisfies the following condition:

(*) for any open submodule L of M, there exists n0 such that xnl — xn2eL for
any nί9n2tn0.

Note that the limit of sequence in M is not necessarily unique unless M is separated.
Let M be an K-module with a linear topology. An .R-module M with a complete

separated linear topology together with a continuous K-homomorphism f:M-+M
is called the completion of M if, for any ̂ -module L with a complete separated
linear topology, and for any continuous K-homomorphism f'.M-^L, there exists
a unique continuous K-homomorphism φ.M^L satisfying φ°f = / ' . It is known
that the completion exists and is unique up to isomorphisms. When the linear
topology of M is defined by {Mn}, we have M = Hm M/Mn, Mn = ker (M -• M/Mn),
and / : M -> M is the natural homomorphism. It is easily seen that / is injective
(respectively surjective) if and only if M is separated (respectively complete). The
following is clear by definition:

Lemma 2.1.1. Let M be an R-module with a linear topology and let L be its submodule.

If f.M^M is the completion ofM, then the natural homomorphism M/L-+M/f(L)
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is the completion ofM/L with respect to the quotient topology ofM/L. Here barring
denotes the closure.

It is obvious that the quotient topology of M/L with respect to the /-adic
topology of M coincides with the /-adic topology.

We will use the following lemma in Sect. 2.2. It is an easy consequence of the
well-known fact that if / is finitely generated, the topology of the /-adic completion
M of an /^-module M is the /-adic topology.

Lemma. 2.1.2. Let M be a separated R-module and let Ma+M be the I-adic
completion. If I is finitely generated, then the topology of M induced from the I-adic
topology of M coincides with the I-adic topology.

Example. Let # = /c[[ft]] be the formal power series ring over a field k. For a
/c-module M o set M = R®kM0. Let M be the ft-adic completion of M. Then we
have the following natural identifications:

/ \ 1
o, dimJ £ fern,. < oo >,

\ / J
. =

where £ ft'm,- is a formal infinite sum.
ΐ = 0

2.2. 77ie Triangular Decomposition. In the rest of this paper R denotes the formal
power series ring fc[[ft]], where k is a field of characteristic zero, and /^-modules
are endowed with the ft-adic topologies. We will use the notations in Sect. 1. From
now on until the end of Sect. 3 we assume that A is a symmetrizable generalized
Cartan matrix, which is not necessarily of finite type.

Let /x be the two-sided ideal of U generated by:

tt'-t't (ί,r'et), (2.2.1)

tei-βit-aiiiήei (ίet,i = 1,...Z), (2.2.2)

( ί e t , i = l 7), (2.2.3)

and set Uι = ϋ/T1. Let I2 be the two-sided ideal of U1 generated by:

(2.2.5)

(2-2.6)

Lemma 2.2.1. The R-algebra Uh(g) (=0/1) is naturally isomorphic to U1/I2-

Proof. Let f:U->Uί = U/T1 be the natural homomorphism. We have / " 1(f(T)) =
Tby T1 c T. Since / is a surjective open map and f~ι{f(ϊ)) is closed, we see that
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/(/) is a closed subset of Uί, and hence we have /(/ ) = /(/). (Note that a surjective
homomorphism of ^-modules is automatically an open map with respect to the
ft-adic topology.) Since /(/) = / 2 , we have

and the assertion is proved. •

Let jR<x l 5...,x ί> (respectively R(yu . ,yι}) be the tensor algebra of the
^-module with free basis {xι,...,xι} (respectively {yl9. .,yι}), and set

V = R<yu...,yι)®RS(t)®RR(xu...,xι}. (2.2.7)

Choose a basis {z l5...,z r} of the /c-vector space t 0 . Then V is a free K-module
with basis:

We define a [/-module structure on the completion V by:

v ...v .. v
s inh(H /2)

= yh '''yφ - K + + αJίOW tfxji''' xjq (tet), (2.2.9)

= yiyiι-yipzV- za/χh-χjq ( i = l , . . . , / ) . (2.2.10)

More precisely, we first define Λ-homomorphisms K-» K by the above formulas
and extended them to the endomorphisms of the K-module V. Since U is a free
K-algebra, we get an action of U on V, and it lifts uniquely to the action of Ό on V.

Lemma 2.2.2. (i) The ideal Tx ofϋ annihilates V, and hence V is a U1 -module.
(ii) The R-homomorphism from U1 to V given by u\-+u l is an isomorphism.

Proof, (i) Since V is separated, we have only to show /x K = 0. Details are omitted,
(ii) Let D be the fc-subspace of U spanned by the elements

fiι'"fip^i'"^rejιt"ejq (p,q,al9...9ar^09 i1,...JpJu...Jq=\,...J).

Then we have:

0 = Iί+D + hϋ. (2.2.11)

Indeed, this is easily proved using the fact that the /c-algebra £//(/i +hύ) has a
presentation with generators to,eί9...,eι,fί,...9fl9 and the fundamental relations:

tt' = ft (t9t'et0)9

eίt = (t-oti(t))ei
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tfι = fι(t-«ι(t)) ( t e t o , / = l , . . . , / ) ,

eιfj = fJeι + δutl/dι (i,j = 1,...,/)•

Let M be an element of U. By (2.2.11) we can take elements bnely, cneD,
ene0(n = 0,1,2,...) satisfying u = b0 + c 0 + fte0, en = frπ+, + c B + 1 + hen+1. Then we
have

« = Σ ft'fe< + Σ ^ + ft"+lg» (« = <U, 2,...).
i = 0 i = 0

Since (7 is complete and separated, any Cauchy sequence in U converges to a
unique element, and hence we have:

r oo

Thus, setting £ = < J] Wc^CiβD}, we have;

(2.2.12)

Let φ: U -+ V be the K-homomorphism defined by φ(u) = u 1. By (i) we have φ | JΊ = 0
and by definition we see that φ\E is an isomorphism. Therefore the assertion
follows from (2.2.12). •

Let Nf (respectively Λff, respectively Γ J be the subalgebra of U1 generated
by e!,...,βι (respectively / i , . . . , / i , respectively t), and let U{ be the subalgebra
generated by JVJ", JVf, 7\.

Lemma 2.2.3. (i) VFe have isomorphisms of R-algebras:

U (2.2.13)

(ii) Tι is naturally isomorphic to the symmetric algebra S(t) of the free R-module t,
and the inclusion Tx <^+ T1 is the h-adic completion.
(iii) We have an isomorphism of R-modules:

). (2.2.14)

(iv) The inclusion U{a^U1 is the h-adic completion.

Proof By Lemma 2.2.2 it is sufficient to show that Nΐ TXN^ is a subalgebra of
Uί. This is easily checked by direct calculations. •

Set

"ϋ = l Σ"(- Iff l ~~ Λ'Λ fl -""-""/ /re/VΓ (i Φj),
m = o \_ m jq.

and let J+ (respectively J " , respectively J) be the two-sided ideal of Nf (respectively
Nϊ, respectively U{) generated by {u£\i Φj) (respectively {MJ \i Φj}, respectively



562 T. Tanisaki

Lemma 2.2.4. (i) J = J - f 1 i V ί + N^T1J
 + .

(ύ)J = T2.
(iii) J=U{nI2.

(The bars denote the closures in U1.)

Proof, (i) It is sufficient to show that J'T^^N^ and N'[T1J
+ are two-sided ideals

of U{. Let us consider J~TίN^. Since it is apparently a right ideal, we have only
to show that it is preserved under the left multiplications by eh /,- (i = 1,...,/) and
elements of T1. This can be shown by using the identity

eHurj=urjen [iφj\ (2.2.15)

which is proved by direct calculations. The proof for N^T1J
+ is the same,

(ii) Since_l/{ is a dense subalgebra of Uί9 J is a two-sided ideal ofUl9 and hence
we have J=>T2. Another inclusion Jc:T2 is obvious.
(iii) By (ii) we have U{nT2 = U{n J. Since the topology of U{ induced from the
/-adic topology of Uί coincides with the /-adic topology (Lemma 2.1.2), it is
sufficient to show that J is closed in U{ with respect to the /-adic topology of U{.
Under the identification U{ ^ Nϊ ® 7\ ® Λ^ of Lemma 2.2.3 (iii), J corresponds
to J~ ® 7\ ® ΛΓ̂  + Nϊ ® ΪΊ ® J + by (i). (Since R is a principal ideal domain, an
K-module is flat if and only if it is torsion free. Hence J~ ®T'1®A/Γ^ and
Nϊ" ® Tι ® J+ are naturally identified with submodules of Nΐ ® Tί ® Nf.)

For an /-tuple H = (hl9...,hι) of non-negative integers, let NftH (respectively
NΪ,H) be the K-submodule of Nf (respectively JVf) spanned by the elements eh e ip

(respectively / f l / f p) such that i appears /zrtimes in the sequence (i*!,...,^) for
i = l , . . . , / . Setting j \ =J±nN^H9 we have Nf = ©HNlH and J^1 = ®HJ^ by
the definition of J 1 . Hence we have:

+ = ΘH,H(JH

Therefore it is sufficient to show that (JH®NttH> + Nx,H® J ^ ) ® 7\ is closed in
(NϊH® Nt,H')® Ti for each H,H'. Since iVf>H® N+ j J Γ is a free K-module of finite
rank, we have only to show that (0) and hnT1 (n = 0,1,2,...) are closed in 7\. This
is obvious by definition. Π

Proof of Theoem 1 Except for the Freeness of N. By Lemma 2.2.1 and Lemma
2.2.4 (ii) we have U{(q) ^ U{/J. Hence the statements (i), (ii), (iii) except for the
freeness of N follow from Lemma 2.2.3 (i), (ii), (iii) and Lemma 2.2.4 (i). The statement
(iv) is a consequence of Lemma 2.2.3 (iv), Lemma 2.2.4 (ii), Lemma 2.2.1 and Lemma
2.1.1. •

Set

(2.2.17)
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i

Note that {α l 5...,α z} is linearly independent. For y=YjmμieQ + , let Ny
i=l

(respectively NZy) be the K-submodule of N+ (respectively N~) generated by the
elements eh eip (respectively fh •/,. ) such that i appears m rtimes in the sequence
(i l 5 . . . , ip). By definition we have the following:

N±= @ Nir (2.2.18)

3. Highest Weight Modules

3.1. Highest Weight Modules. Let K = k((h)) denote the quotient field of R =
Set

viy (yeβ + )

By (2.2.18) we have:

ΛΓ±= 0 N±y. (3.1.1)

For /leHomΛ(t,Λ)let ξλ:T-+R be the K-algebra homomorphism determined
by ξλ(ή = λ(t) (fet). We denote by ξλ:K®RT -+K the scalar extension of ξλ.

Let λeHomR(t,R). A [/{(g)-module M is called a highest weight module with
highest weight λ if M is generated by a non-zero element D E M satisfying et v = 0
(i= 1,...,/), ί . i ^ l a ί φ (teK®RT). Such i; is called a highest weight vector.

For a L/f(g)-module M and μeHomR(t,R) set

Mμ = {meM\t m = ξμ(t)m for ίGK®RT}.

We define an ordering on Homκ(t,K) by

λ^μ if and only if λ-μeQ + . (3.1.2)

Lemma 3.1.1. Let M be a highest weight module of U{(Q) with highest weight
λeHomR(t,R) and let v be a highest weight vector.

(i) M=@Mμ and Mλ_y = NZyv (yeQ+).

(ii) M has a unique irreducible quotient, which is also a highest weight module with
highest weight λ.
(iii) Let M' be the U{(q)-submodule of M generated by v. Then we have

M' = 0 (M'r\Mμ), M'nMλ_y = NZyv (ye<2+).

Furthermore, M'nMμ is a free R-module of finite rank and the natural map
K ® R(M' nMμ) -> Mμ is an isomorphism. Here M' is a free R-module and we have

Proof, (i) This follows from the following obvious facts:

= N~v= X NZγv9



564 T. Tanisaki

(ii) It follows from (i) that any submodule of M is a direct sum of certain subspaces
of Mλ_γ = NZyv (yeQ+). Hence M has a unique maximal submodule contained
in ©M μ .

μ<λ

(iii) The first half is clear. Let f:K®(M'nMμ)^>Mμ be the natural map. Since
M'nMμ is a finitely generated R-submodule of the K-vector space Mμ, and since
/ is surjective, we see that / is an isomorphism. •

For λeHomR(t, R) we set

j ^ t U ΰ y (3.1.3)
This is obviously a highest weight module with highest weight λ. Since any highest
weight module with highest weight λ is a quotient of Mf(λ), there exists a unique
irreducible highest weight module Lf(λ) with highest weight λ. We denote by Mf(λ)
(respectively Lf(λ)) the ί/f(g)-submodule of Mf(λ) (respectively Lf(λ)) generated
by a highest weight vector. We call Mf(λ) and Mf(λ) the Verma modules.

A [/{(g)-module M is said to be integrable if the elements ei9 ft (i = 1,...,/) act
on M locally nilpotently. The following is proved in exactly the same manner as
in [9].

Lemma 3.1.2. Let λ be an element of HomR(t, R). Then Lf(λ) is integrable if and only
if λ{2tilθίi{ti)) is a non-negative integer for each i= 1,...,Z.

For 2eHomR(t,K) we define λ°et$ by:

λ°(t) = λ(t)\^0 (ίet0).

Let λ be an element of HomR(t?JR) such that λ(2ti/(xi(ti)) is a non-negative integer
for i = 1,...,/. Then as in [9] we can determine the dimensions of the spaces Lf(λ)μ

for μ^λ in the following manner. Set L°(λ) = k®RLf(λ\ where the ring homo-
morphism R^>k is given by ft->0. Since k®RU{(§)(=U{(§)/hU{(o)) is
naturally isomorphic to the universal enveloping algebra U(§) of the Kac-Moody
Lie algebra g, we have a (7(g)-module structure on L°(λ). Furthermore it is easily
seen that L°(λ) is the integrable highest weight module with highest weight λ° in
the sense of [8]. Identify t0 with the abelian subalgebra of g and set

L°(λ)v = {meL°(λ)\fm = v(t)m (ίet0)} (vet*).

Then by Lemma 3.1.1 (iii) we see that, for yeQ+, dimκL/(λ)λ_y coincides with
dimkL°(λ)x_y, and this is given by the Weyl-Kac formula ([8]).

In order to write down the formula explicitly we need some notations concerning
the Kac-Moody Lie algebra g.

Set

flβ= {xeg|(ad(ί))(x) = α(ί)x(ίet0)} (αeβ),

4 = {αeβ-(0)|gα#(0)}, Δ+=ΔnQ\

W=(Si\i=l...J)czGL(t0) with sί(ί) = ί-(2αi(ί))/αi(ίI.))ίi.

Then it is known that we have

A = A + u ( - A +), dim gα = dim g _ α < oo,
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and that A is preserved under the contragredient action of W. Let p be an element
of ί j satisfying p(2ίί/αi(ί f)) = 1 for i = 1,...,/. Set

l(w) = min {p\w = sh •• si for some / 1 , . . . , Ϊ / 7 G [ 1 , / ] } (3.1.4)

for weW. Then the preceding arguments imply the following:

Lemma 3.1.3 ([9]). Let λ be an element of HomR(t,R) such that λ(2ti/oci(ti)) is a
non-negative integer for each i= 1,...,/. Then we have:

3.2. Freeness of N. Let us show that N is a free K-module. By (1.15) and (2.2.18)
it is sufficient to show that NZy is a free K-module for each yeQ + . Since NZy is
a finitely generated K-module, we have:

for some n,m^0, pl9...,pm^l. Then we have NZy = K®RNZy^Kn and
k®RNZy = kn + m. Hence we have only to show

dimκNZy^dimk(k®RNZy). (3.2.1)

Let M be a highest weight module of t?{(g) with highest weight λeHomR(t, R).
By Lemma 3.1.1 (i) we have:

y γ (3.2.2)

On the other hand, since k®RN~ is naturally isomorphic to the enveloping
algebra of the Lie subalgebra φ g_α of cj, we see by the Poincare-Birkhoff-Witt

aeΔ+

theorem that

άimk(k®RNZy) = the coefficient of e~γ in _ g . (3.2.3)

Hence it suffices to show that there exist some λeΐiomR(t,R) and a highest weight
module M of U{(q) with highest weight λ such that

dim^M Λ _ v = the coefficient of e~Ί in - = — - — . (3.2.4)

aeΔ +

l

Let γ = J] mίoίieQ + . Let /I be an element of HomR(t, K) satisfying λ(2tJθLi(ti)) =
ΐ = l ^

mf (i = 1,..., /), and set M = L/(λ). By Proposition 3.1.3 we have

y
W

dim κ M Λ _ y = the coefficient of eλ~? in weW

_ e - t γ m Λ m
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= the coefficient of e - in π ( 1 ' ^ ^ +

•I the coefficient of e {)

 π _ dm

and hence it is sufficient to show

^wφ\). (3.2.5)

Let us prove (3.2.5) by induction on /(w). If /(w) = 1, we have w = Sj for some), and
hence

y + w(λ + p) - (A + p) = y - {mj + l)ocrfQ +.

Assume that /(w) ̂  2. There exist some j and yeW such that w = Sjy with
/(y) = l(w) - 1, and then it is known that y~ 1(ocj)eΔ+ (see [8]). We have

y + w(λ + p) - (λ + p) = (γ + y(A + p) - (λ + p)) - (A +

and y~ί(2tj/<Xj(tj)) is a linear combination of 2ί f/α i(ί/) (i = 1,...,/) with non-negative
integral coefficients. Hence we have (3.2.5), and the freeness of N is verified.

The proof of Theorem 1 is completed.

Corollary 3.2.1 ([3]). (i) Uh(q) is topologίcαlly free; i.e., it is the completion of α free
R-module.
(ii) Uh(§) is an integral domain; i.e., if x, y are elements of Uh(§) such that xy = 0,
we have x = 0 or y = 0.

Proof, (i) By Theorem 1 Uh(Q) is the completion of the free ^-module N~ ® T® iV + .
(ii) This follows from (i) and the fact that Uh(q)/hUh(g) (^ (7(g)) is an integral
domain. •

3.3. Verma Modules. For λeHomR(t,R) we define a C/Λ(g)-module M(λ) to be the
ft-adic completion of the l/f (g)-module Mf(λ).

Lemma 3.3.1. Let λeHomR(t, R) and let v be a highest weight vector of Mf(λ).

(i) The R-homomorphism N~ ->M/(/l) (WHM U) is an isomorphism.

(i)' The R-homomorphism N~ -+M(λ)(u\-*wv) is an isomorphism.

(ii) M'(λ)* U{{β)l(;Σ Λ

(ii)' M(λ)z Uh(Q) It Σ^ 17,(8)^+ l/Λ(g)kerξΛ

Proof By Theorem 1 we have

l/jf(8) = AT" Θ ( Σ t/{(8)^ + U{(6)ker ξΛ,

.Σ
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Since N~ is a free /^-module, the natural map N~ -^N~ = K®RN~ is injective,
and hence we have (i), (ii). The statements (i)', (ii)' follow from Theorem 1 and
Lemma 2.1.1 •

Lemma 3.3.2. Let λeHomR{t,R) and ie[l,Z]. Setm = λ(2ti/oci(ti))+I. If m is a
non-negative integer, then M(λ — mαt ) is isomorphic to a U h(q)-submodule of M(λ).

Proof. Let v be a highest weight vector of Mf(λ) and set υx = ff v. By a direct
calculation it is seen that ej-v1 = 0 (7 = 1,...,/) and t-v1 = ζλ-mιXi{ήvι (ίeT). Hence
we have a ί/^(g)-homomorphism Mf(λ — mcci)-+Mf(λ), sending a highest weight
vector to υx. Taking the completions we get a C/Λ(g)-homomorphism M(λ — mαf)->
M(λ). The injectivity of this homomorphism follows from Lemma 3.3.1 (i)' and
Corollary 3.2.1 (ii). •

4. Center

In this section A is a Cartan matrix of finite type and we take t 0 to be the linear

hull of *!,. . .,ί z .

4.1. Harish-Chandra Homomorphism. The purpose of this subsection is to prove
the following.

Proposition 4.1.1. The R-homomorphism δ:$(Uh(§))^> T defined in Sect. 1 is an
algebra homomorphism and its image is contained in Tw.

The following arguments are parallel to those for L/(g) (see [2]).
By Theorem 1 we have

( t t \ (4.1.1)
\ί=l i=l /

and hence

Uh(Q)ei+ ί fiUh(g)\ (4.1.2)
ί i = l /

Let p: ί/ft(g)-> T be the projection with respect to (4.1.2). Let β:T^T and
£• *Λ(9)~~> T be as in Sect. 1. Then we have δ = β°p by definition.

Lemma 4.1.2. For zGβ((7ft(g)) we have

i=ί i = 1

Proof For yeQ set

Then we have

(4.1.3)

tx-xt = y(t)x (tet,xeU{(Q)y). (4.1.4)
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Set zn = (zmodhn)eUh(q)/hnUh(Q)=U{(Q)/hnU{(q). Since zn commutes with any

element of t/hnt, we have zHeU{(g)0/hnU{(β)0 by (4.1.3) and (4.1.4). Thus we

have zeU{(q)0. By the definition of (7{(g) we have

y-p(y)e £ Ufafan £ fUfa) {yeU{(6)0)9
i=ί i = l

and hence

/

y-p(y)e Σ Uh(Q)etn Σ f^M (yeU{(a)0).
i=ί ϊ = l

We are done.

Lemma 4.1.3. Let λe¥ίoτnR(ί,R). For ze^(Uh(q)) and meM(λ — p) we have z-m =
ξχ(δ(z))m.

Proof. Let v be a highest weight vector of M(λ — p). Since et-v = 0 (i = 1,..., /), we

have (z — p(z))-v = 0 by Lemma 4.1.2, and hence we have

Since any element meM(λ — p) is of the form m = wv (ueUh(§)\ we have

z m = (zu)-v = (uz) v = w{z'v) = ξλ(δ(z))uv = ξλ(δ(z))m. Π

Let P be the set of elements λet$ such that λ(2ίi/αi(ίi)) is an integer for each
i = 1,...,/. This is a lattice in t j preserved under W.

Lemma 4.1.4. If λ,μεP are in the same W-orbit, then we have

Proof We may assume that λ = st.μ. Since /l(2ίI /αt (ί/)) = - μ(2ίί/αι(ίI )), we may also
assume that λ{2ti/θLi{ti)) is a non-negative integer. Then by Lemma 3.3.2 we see
that M(μ — p) is isomorphic to a submodule of M(λ — p). Since M(λ — p) is a torsion
free K-module by Theorem 1 and Lemma 3.3.1, the assertion follows from
Lemma 4.1.3. •

Proof of Proposition 4.1.1. Let z1,z2e3(l/ft(g)). Then by Lemma 4.1.2 we have

Σ
i = ί

I I

Since y1p{z2) +p(z1)y2 +yxy2 is an element of Σ Uh($)ei + Σ fiUh(β)> w e h a v e

_ i = l i = l

p(z1z2) = p{zχ)p{z2\ and hence P' l{Uh{c£))-* T is an algebra homomorphism. Since
δ(z) = j?(p(z)) for ze3(£/ft(g)), we conclude that δ is an algebra homomorphism. Let
us show that δ(z) = wδ{z) for zG3(L/ft(g)) and weW. For any /IGP, we have

ξλ(δ(z) - w-δ(z)) = ξλ(δ(z)) - ξw- Hλ)(δ{z)) = 0,

by Lemma 4.1.4. Set δ(z)-w δ(z)= Σ ^^(^eS(t 0 )). Then we have £ h^x(y() = 0
i = 0 i = 0
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for any λeP. Since ξλ(yt)ek9 we have ξλ(y.) = 0 for any λeP, and hence ^ = 0.
Therefore we have δ(z) = wδ(z). Π

4.2. Adjoint Representations. Let H be a (topological) Hopf algebra over R. We
define an K-module homomorphism

ad:H-+EndR(H) (4.2.1)
by

((ad)(x))O0 = (mo(m®l)oτ)(((l®S)Δ(x))®y\ (4.2.2)

where m is the product, S is the antipode, A is the coproduct and τ:H®H®H^>
H®H®H is given by τ(a®b®c) = a®c®b. Then it is easily checked that ad
is a homomorphism of Λ-algebras. Therefore the ^-module H is endowed with an
iί-module structure. We denote H by Had when it is regarded as an //-module.

We also denote by tήvH the one-dimensional //-module given by the counit
ε:H-+R.

Lemma 4.2.1. (i) For yeUh(Q), we have ye$(Uh{Q)) if and only if (ad{x))(y) = ε{x)y
forallxeUM

(ii) Let v be a generator of triv^^. Then we have an isomorphism of R-modules

Proof The statement (i) is easily verified using (1.17) — (1.23), and (ii) is equivalent
to (i). •

Remark. The definition of the adjoint representation of Hopf algebras and
Lemma 4.2.1 are communicated to the author by T. Hayashi.

4.3. Proof of Theorem 2. It remains to show that the algebra homomorphism
))^>Tw is an isomorphism. Set

" Uh(Q) = 17 jf(g)/ft" I7jf(g), Tn = T/hn T = T/hnT,

for simplicity. As in Sect. 4.1 we have algebra homomorphisms

δn'^(Λn)^TY (n = l,2,...,),

such that the diagram

3(17,(8))-L+f"

I i

3μn) - ^ r f

commutes. It is easily seen that we have

g))^ϋm3(yU Tw ^limTf,

and hence we have only to show that δn:$(An)->T™ is an isomorphism for
each n.

Let us prove it by induction on n. Since δx is the (original) Harish-Chandra
isomorphism for (7(g) (see for example [2]), we assume that n ^ 2 and δk is an
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isomorphism for k S n - 1. By Corollary 3.2.1 (i) we have an exact sequence:

O-^-^-Λ^-O, (4.3.1)

where Ax^An is given by the multiplication by h"'1. Hence we have the
commutative diagram

0 n(Al)-^i{AH) > 3(A,-i)

whose rows are exact sequences. Since δ1 and δn_ λ are isomorphisms, it is sufficient
to show that 3(>lπ)^3(y4M_1) is surjective.

Similarly to Lemma 4.2.1, we have

i{An) ~ UomΛn(tήwAn9(An)Λά) =

and hence it suffices to show

Ext^ )(triv [ ; Λ ( 9 ),C/(g)a d) = O. (4.3.2)

Let B -> C be a ring homomorphism. Then for a 5-module M and a C-module
N we have the following spectral sequence:

E™ = Ext? (Tor£(C, M), JV) => ExtJ+^(M, N). (4.3.3)

Let us apply this to the case

B=Uh(Q)9 C=I/(g), M = triv^(9), ΛΓ=I/(g)βd.

Using the free resolution:

0^l/Λ(8)-^l/Λ(g)->l/(9)->0 (exact)

of the right I7ft(g)-module t/(g), we see that

Hence we have

E x t ^ ί t r i v ^ , l/(g)ad) = E x t ^ t r i v ^ , l/(g)βd). (4.3.4)

/ \
In general we have Ext£(g)( K , 0 F J = φExt^(g)(K, KA) for a finite dimensional

\ A / λ

[/(g)-module K and L/(g)-modules Vλ. Since ί/(g)ad is a direct sum of finite
dimensional (7(g)-modules, it is sufficient to show

Ext/, ( f l )(trivwK) = O

for any finite dimensional (7(g)-module V. This is a special case of the well-known
fact that

Ext1

m(Vl9V2) = 0
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for finite dimensional t/(g)-modules Vί,V2. (This is equivalent to the complete
reducibility of finite dimensional l/(g)-modules.)

The proof of Theorem 2 is completed.
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