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Abstract. In the present formalism the Yang-Mills field is constructed as a
"non-linear sum" of excitations, small field excitations, the modes, and large
field excitations, the chunks. The chunk excitations, herein studied, are each
described by a finite number of group element variables. The continuum field
associated to the excitation in general has point gauge singularities (arising
from the non-trivial π3(G)). We find estimates for plaquette assignments, edge
assignments, and the smoothness of edge assignments, at all scales. The central
conceptual motor in our constructions and estimates is a split up of the field
at each length scale, locally, into a pure gauge field, and a deviation field. An
example is presented establishing the general inevitability of gauge singularities,
as a consequence of fall off requirements on the continuum field of an excitation.

1. Introduction

This is the fifth in a series of papers developing a treatment of the finite volume
Euclidean Yang-Mills quantum field theory in four dimensions. To read this paper
familiarity with the Papers I and IV in this series is assumed. (We refer to papers
in this series with Roman numerals.) Not all of the material in these two papers
will be of present interest to us, in particular the interesting mechanism of "gauge
invariant coupling" introduced in IV will not be herein used. Of most interest will
be Sects. 8-11 and the appendices of IV; we will detail references in the course of
the paper. The abstract and introduction of IV serve also as a partial introduction
to this paper (and the overall program) and should now be read; we in this
introduction complement the introduction of IV. We begin by addressing two
questions we have been often asked.

Does the procedure use a lattice formalism, or work with continuum fields? In
the old days one asked, "is the electron a particle or a wave?" One there dealt
with a "particle-wave duality." We deal with a "lattice-continuum duality? as
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introduced in /. We work with continuum fields, but describe the continuum fields
by group element variables, conveniently related to group elements living on bonds
of lattices. Our lattices are a mathematical construction to associate variables to
the continuum field—a nonlinear association which we regard as realization of
the epigram "The Yang-Mills theory is an essentially non-linear field theory." Loop
variables constructed from the group elements associated to lattice loops are gauge
invariant variables associated to the field (this is not true in Balaban's work), and
the existence of their expectation values will have been directly constructed once
the phase cell expansion is established.

The basic problem studied in this paper involves the problem of determining
a continuum field that approximately minimizes the continuum action subject to
the constraint of some of its variables being fixed—those living on some of the
lattices. This has lead to a second question we have been frequently asked. Why
is it sufficient to only approximately minimize the action? One may also ask why
the Chinese no longer bind their daughters' feet. One does not define variables for
the φ% field theory by exactly minimizing the full action—though presumably one
could. It is true that Balaban works with configurations that exactly minimize the
action (on a fine lattice) subject to variables being fixed on a coarse lattice—we
address the same problem by using "gauge invariant coupling" (the problem of
avoiding coupling to large scale variables through the A field instead of the F field).

In this paper we study the continuum field associated to a chunk. A chunk is
precisely defined in Sect. 8 of IV. For a given S-L configuration one has specified
at all levels which plaquettes, in & = \J 0>\ are S and which are L. Loosely speaking,

r

a, chunk E = {ej consists of a finite collection of edges e^S = (J $r such that each
Γ

ei is "close" to an L plaquette, and near it in level. The chunk "surrounds" each
L-plaquette in it by S-plaquettes. Variables are specified on the edges of the chunk
and one must find a continuum field sufficiently close to minimizing the action
subject to being specified on these edges. One has much gauge freedom, in particular
one may arbitrarily specify a gauge field, hh at all vertices not in the chunk. One
must in addition choose the gauge to ensure sufficient smoothness in the resultant
continuum field.

The continuum field is constructed by inductively giving its assignments to
each lattice going down the scale (given the assignments to ££\ the assignments
to i ? r + 1 are constructed). The gauge choice, on J£?r+1 is specified uniquely by
specifying assignments to a maximal tree in each block in J£?r+1. This is "gauge
interpolation," whose study is initiated in Sect. 11 of IV. (The gauge choice on
&r+ * "sort of" interpolates the gauge choice on ifr.) Once the gauge is determined
on jS?r+1, the assignments to the remaining edges of i ? r + 1 are made, "field
interpolation" as specified in Sect. 10 of IV. The deviations from a pure gauge field
are very small, and field interpolation uses local approximation by abelian fields
and local minimization of the abelian action.

As the prototype problem studied in this paper we consider the following
situation. We are given a configuration on the lattice ifr, an assignment of group
elements to oriented bonds of the lattice. We seek a continuum field, Aμ(x\
associated to this configuration on !£r, and minimizing the continuum action,
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2, subject to this constraint. The association of continuum fields to lattice
configurations has been analyzed in I and VI. Because of gauge invariance such
Aμ(x) are not unique; among the minimizing solutions we seek one with smoothness
properties and fall off at infinity (if the configuration on ifr so does). In I and II
this problem was solved precisely, in the case all assigned group elements on 5£r

lie in an abelian subgroup of the gauge group G, and are sufficiently close to the
identity. Under these conditions one may work with Aμ(x) minimizing the abelian
continuum action.

For chunks, large field excitations, the situation is much more complicated.
The isolated chunk field, as made explicit in Sects. 8-11 of IV, is specified by a
finite number of group element variables, living on a number of levels. In this
introduction we restrict our discussion to the prototype problem, the heart of our
analysis. As we will explain, we compromise the original problem, we only
approximately minimize the continuum action. More important, we do not achieve
full smoothness; point singularities will arise in the gauge field. We will prove that
such singularities are necessary if fall off at infinity is demanded.

We first consider the special case when the assigned configuration on 5£r is
pure gauge. That is, to each edge e = ab in 5£\ we have the assignment A ~ ι(a)Λ(b\
where

A:Ϋ~r-+G, (1.1)

with i^r the vertices of J£?r. A pure gauge Aμ(x\ i.e. one with Fμv(x) = 0,
associated to the assignment on J? r would clearly minimize the action—setting it
to zero. If the mapping in (1.1) is extended from i^r to R4, then such an Aμ(x) can
be found by setting

Aμ{x) = A-\x)dμA(x). (1.2)

Such extensions are always possible.
In Appendix B we exhibit a pure gauge configuration on 5£\ which falls off at

infinity, for which we can find an associated pure gauge Aμ(x) falling off at infinity,
with a point singularity; but to which no pure gauge Aμ(x) is associated that is
both everywhere continuous and has such fall off. This paradigm establishes the
generic inexorability of gauge singularities as a concomitant of fall off requirements.
In this example we deal with power law fall off, but we expect that examples can
be constructed with exponential fall off (of necessity, not pure gauge).

We continue to discuss the case of a pure gauge configuration on ££τ. As alluded
above the problem of finding action minimizing Aμ(x) is equivalent to the problem
of extending A from Yr to K4. The procedure we follow to accomplish this is
presented in Sect. 11 of IV. Two nearest neighbor vertices in i^r are viewed as the
boundary S° of the straight line segment joining them. The mapping A is extended
from S° to this line segment. When A has been extended over all such line segments
similarly, one next considers a face, whose boundary, viewed as S1, is made up of
four such line segments. A has been defined already on S1, it is extended to the
face. We do assume that πx(G) is trivial, so this extension may be continuous. We
likewise extend from the boundary of volumes (= hyperfaces), viewed as S2's, to
hyperfaces. (π2(G) is trivial.) Finally we extend from the boundary of hypercubes,
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~ S3, to the interior of the hypercubes. Here we may encounter maps from S3 to
G that are homotopically non-trivial, and thus encounter the necessity of dealing
with point gauge singularities. (There is no topological obstruction to the extension
of maps into G from i^r to R4 which forces singularities. Our construction leads
to singularities. However as the paradigm above illustrates, avoiding the singulari-
ties means one must sacrifice fall off at infinity. "One constructs a tube, on which
Aμ(x) does not go to zero, pushing the singularity out to infinity.") The specific
restrictions on extensions to yield smoothness are given in the Geometric
Constructions of Sect. 11 of IV, analyzed in Theorems A.I, A.3, and A.4 of IV.

We now proceed to the general situation when the configuration on t£r need
not be a pure gauge. JS?r divides space into (hyper) cubes. We define a pure gauge
field on each of these cubes separately. A maximal tree is selected of the edges in
the boundary of a given cube. The group elements of the configuration on <£r

restricted to the maximal tree may be viewed as pure gauge on the maximal tree,
arising from a Λ(x) restricted to the vertices of the cube. This A may be extended
from the vertices of the cube, throughout the whole cube, giving the local pure
gauge field in the given cube. Such local pure gauge fields in each given cube, are
chosen to match well with the pure gauge fields of the neighboring cubes—for
pure gauge fields in i? r the matching may be chosen perfect as above. The matching
is discussed in Sect. 11 of IV, and Theorem A.2 of IV. The discussion is further
amplified in Appendix D herein. (We recommend reading Sects. 8-11 and Appendix
A of IV, followed by Appendix D, before reading the body of this paper.)

We now discuss the configuration on J ^ r + 1 associated to the configuration on
5£r by the developments in Sects. 10 and 11 of IV. Section 10 of IV specifies the
configuration on j£? r + 1 up to a gauge transformation—the configuration chosen
arises from continuum fields that (locally) approximately minimize the continuum
action. In Sect. 2 we derive properties of this field independent of the gauge choice,
and likewise properties of the configuration on 5£s, s>r, derived by our inductive
construction. In particular Theorem 2.2 yields estimates of the loose form

\gdP\ S c(lf)2 sup\gdpl (1.3)

where P is the plaquette in if5, and 0>r is the set of plaquettes in $£r.
Each edge e, in if r + 1 may be viewed as living in one of the cubes we have

discussed above, and so the edge may be given an assignment by the pure gauge
field associated to the cube; we call this assignment gG(e). Section 3 studies the
difference between the actual assignment to e, g(e), and gG(e). Bounds are obtained
on \g(e) — gG(e)\. (Here we view the #'s as unitary operators letting the bars represent
operator norms. We also use bars for another purpose, by \g\ we mean d(g,Id), d
the invariant distance on G arising from the invariant metric.) We have split the
field locally into a pure gauge part, and a deviation. This type of analysis seems
rather basic, and we expect it will have other applications—perhaps it already has
been used by others which we do not know about.

Section 4 studies the gG themselves. This is the hardest section of the paper,
and the prettiest. We feel the reader who fights through Appendix D and
Sect. 4—these go together—will find the effort rewarding. Basically one is involved
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with how well or how badly the local pure gauge fields of neighboring cubes match.
The first part of Appendix D deals with the abstract setup for measuring how well
two sets of gauge assignments agree—such as the assignments by the Λ(x) of two
neighboring cubes to their region of intersection. Here we must remember Λ(x)
and uΛ{x) yield the same field Aμ(x) (via (1.2)) if ueG is constant.

Section 5 and Appendix E study the problem of edge smoothing, as introduced
at the end of Sect. 10 of IV. This is perhaps a technical matter, of less interest than
the rest of the paper.

Finally we note Appendix C makes a few changes and additions to structures
defined in previous papers.

2. Plaquette Estimates

Definition 2.1. Let E be a chunk, and Sr(E) be the level r edges of £, as defined in
Sect. 8 of IV. (We may write gr(E) = Er\Sr) For any point x in # 4 , and level r',
we now define rE(x, r') by

with

SE(x) = {r,d(x9

If rE(x, r') is not defined, we say it is "empty." rE(x, r') is a sort of the level of chunk
edges lying above the point x viewed as living at level r'.

Theorem 2.2. Let p be a plaquette of level r' outside the chunk E. Let xp be any
vertex of p, and abbreviate rE(xp,r') as fp. Then

p( (2.1)

or if fp is empty

Theorem 2.3. Let p and p' be parallel plaquettes of level r\ whose distance, measured
between corresponding vertices, satisfies

d ( p , p ' ) < φ _ 1 . (2.2)

We develop plaquette values as given in a radial gauge on the <£r' lattice with
center at distance < clr,-ί from p and p'. We let xp be a vertex of p and abbreviate
rE(χ

P>
rΊ = fP- We then have

W^YΎty- . ,2,,
Again if fp is empty all plaquette values are trivial.

The following subsection contains estimates that lead to a proof of these
theorems, and are interesting in their own right.

Field Interpolation Estimates. We consider a given configuration at level r, and
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study the configuration at level r + 1 determined by field interpolation via Sect. 10
of IV. We consider a point z0 in ψ~r+1 and points zλ in f r satisfying

d(zhz0)<clr. (2.4)

We assume for pe^r

\gδp\ύM^ε (2.5)

for p within distance Clclr of z0 (where all the action takes place). Clc will eventually
be picked proportional to N. We also assume if plaquette values are calculated in
the radial axial gauge about any of the zf one has, for p, p' in 0>r (and within distance
Culr of z0)

\gdp-gdp]ύfM. (2.6)

Estimate 2.4. If e is an edge in Sr (at distance less than Culr from z0) and the field
is calculated in a radial gauge about one of the z>x then

\g(e)\^cC2

uM. (2.7)

(The C\c could be improved to C l c . There are a number of such possible
improvements we do not comment on in this section.)

We have used Lemma 5.5 of III and properties of a radial tree. From now on
we no longer repeat the injunction of being at distance less than Cίclr from z0,
always assumed.

Estimate 2.5. For a p in &\ we calculate gdp in radial gauges centered at z{ and
Zj (gfp and g^\ gauge transformations of each other, and find

\gfp-gfp\^cMCu{C\cM\ (2.8)

We have noted that cCu(C\cM) is a bound on the size of ft's needed to
implement the gauge transformation. The following follows from Lemma A.I
(see (A.1)).

Estimate 2.6. For a given Lie Algebra direction, we calculate plaquette values in
0>r + 1 via the construction in the paragraph containing (10.7) in IV, for any of the
z{ (playing the role of v in IV). Call these Az.{dp). One has

\AXi(dp)\ g cCψ)2M + c^ψ-Jf(C2

uM)Cle-y'c^\ (2.9)

^4~j M. (2.10)

In the last term in (2.9) we note f(cC\cM) as a bound on modification of
plaquette values at sphere boundary caused by truncation of (10.7) of IV, and cC\c

as the sphere volume.

Estimate 2.7. We view i, as a vertex in i^r+1 (equaling zt in ̂ r ) and work in the
radial gauge about z-x in JS?r+1. Then as in the paragraph containing (10.8) of IV
(with z^Zi as υ9υ therein) we construct A fields for edges ee#r+1, denoting them
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as AZι(e). For e within distance clr of z0 one has

\AZi(e)\£c0ψλ2MN2. (2.11)

Estimate 2.8.

\ΛZι(dp) - AZj(dp)\ ̂  c^ψ-jM[Cu(C2

lcM) + (C2

lc'Cl'f)e-y'c^2l (2.12)

(2.13)

We have used Estimate 2.5 and Lemma A.I. For a number of estimates now
we will be less specific about constants (as in going from (2.12) to (2.13)). (es) stands
for a factor "exponentially small" in some variable (C l c), M will also be very small,
each dominating any power of N that occurs.

Estimate 2.9. Let AZι(dp) be the plaquette variables constructed from the edge
variables Az.(e). And let AZι(dp) be the plaquette variables whose Lie Algebra
components are the Az.(dp). (This may be confusing. The AZι(dp) are components
in the different Lie Algebra directions of a Lie Algebra element AZι(dp). But these
Al.{dp) may not be the plaquette variables associated to the Az.(e)—they would
be if all elements commuted.) One has

- AZi(dp)\ ^ KX{N)M2. (2.14)

In fact we are bounding this difference by c
2

and using Estimate 2.7.

There now follows from this last estimate, and the size of /z's needed to perform
a gauge transformation, the next estimate.

Eestimation 2.10. We let Afj(dp) be the gauge transformation of Az (dp) to the
radial axial gauge about i f

\AZi(dp) - Af;(dp)\ ^ a2(N)M2 + (es)2/M. (2.15)

We have compared plaquette values as computed by the two different
constructions, one about zh one about zj9 as measured in the same gauge. We now
compare edge assignments in the two different constructipns, as compared in same
gauge.

Estimate 2.11.

\AZi(e) - A%(e)\ ^ a3(N)M2 + (es)3/M. (2.16)

This follows from the previous estimate (easily if we note that M will be very
small). This estimate, and the next, show we will be able to approximate the
interpolated field plaquette values, obtained by averaging edge values arising from
different zt constructions, by any one of these going into the average—for small M.

Estimate 2.12. Let δA (e) be the change of the assignment to an edge esSr^ι required
to satisfy averaging, then

\δA(e)\ S a4(N)M2 + (es)4/M. (2.17)
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There follows from Estimates 2.6, 2.9-2.12.

Estimate 2.13. For \

\9dp\ S
 c[-ψ-)M + a5(N)M2 + (es)5/M. (2.18)

There easily follows

Estimate 2.14. There are functions N0(Έ) and εo(N) such that for any ε > 0 one has
for pe0>r+\

p^ψJ M (2.19)
if

N^N0(ε) and ε^εo(N). (2.20)

(See (2.5) for definition of έ.)
Similarly we can prove

Estimate 2.15. There are functions Λ/\(ε) and ε^N) such that for any ε > 0 , and
for p,pf in ̂ r + 1 satisfying

d{p,p')<clr9

one has (working in a radial gauge in the ϊ£r + * lattice with center < clr from p and p')

\gdp - gcy\ ϊ
d^^ψjM(f + M^\ (2.21)

if

N^Nλ(ε) and ε^ε^N). (2.22)

There is nothing very special about the 2/3 in (2.21), this may be any number
satisfying 1 / 2 < X < 1 . The introduction of Aa

Q and A% and the corresponding
construction involving (10.7) of IV were devised to yield our last estimate.
(One uses in deriving (2.21) the fact that, working to linear order in the fields, if
the plaquette assignments at level r are all the same, this is also true at level r + 1
for the construction of Sect. 10 of IV.).

Theorem 2.3 follows from Estimate 2.15 by induction down the levels. From
Estimate 2.14 there similarly follows immediately our next result.

Estimate 2.16. Under the same conditions as in Theorem 2.2,

\gdp\ύca[f) , (2.23)

and likewise trivial if rp is empty.
We again consider two neighboring levels r and r + 1. We consider a level r

plaquette P, and set Mr=\gdP\. We consider plaquettes at level r + 1 within distance
clr of P and for such we set

,p| = Λfr+1, \gδpi-gdpj\^ΔMr+ί, (2.24)
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where in the last relation ΔMr+1 is a bound on differences of plaquette values
measured in a local radial gauge. From (2.1) of III, Infinitesimal Field Averaging,
we get the inequality (recalling lr = l/iVr),

M
Mr+1^^ + cΔMr+1 + c{N)M2

r+ x. (2.25)

We use Theorem 2.3 and Estimate 2.16 to bound the second and third terms on
the right side of (2.25), respectively. Inequality (2.25) may then be used inductively
to establish Theorem 2.2.

3. Edge Assignment of Estimates

We first place a very mild requirement on our maximal trees, and the arbitrary
choices that enter Eq. (11.14) of IV.

Quadrant Localization of Maximal Trees, and Gauge Choices. There is a constant
c (independent of N), such that the following holds. We consider a block in @r

with base point v, and let w be another point in the block. Then tvw is the path in
the maximal tree connecting υ and w, made up of edges in S\. Let this sequence
of edges be e1,e2,...,es. Then we may partition this sequence into ^c segments
(cutting the path tvw into ^ c subpaths) such that in each of these segments
assignments to the edges via (11.14) of IV come from a single Ht (more properly φ^.

We note that this is a requirement on trees; they may not wander back and
forth endlessly from one quadrant to the other. It is also a requirement on the
selections going into (11.14) of IV; for a path living on the boundary of two
hypercubes, Hx and H2, the selections may not for example be alternately taken
from Hx and H2.

We now define an edge from a small field neighborhood, or an SFN-edge in
$r*ι as an edge e in Sr+1 for which all plaquettes in £Pr and £Pr+ ι within distance
10/Γ of e are small field (S-plaquettes). (This makes all relevant hypercubes small
field, as defined before (11.2) of IV, and all relevant plaquettes small field, in the
estimates to follow.) The assignment to e,g(e,r + 1), as given by (11.14) of IV, we
write as gG(e) (the assignment "by gauge") and the actual isolated field assignment
by g(e) ( = g(E, e)). For ee$γ1 one has g(e) = gG(e). We will want to study properties
of gG(e\ and estimate d(g(e), gG(e)) (~ \g(e) - gG(e)\).

Bounds on \g(e)-gG(e)\ for SFN-Edges. We first make some definitions. We let
ar+1 and ar be bounds on plaquette assignments in ^ r + 1 and £Pr respectively that
are in the SFN of our edge (bounds on the relevant plaquettes in ^ r + 1 and 0>r\
We consider hypercubes, Hh in j£?r in the SFN of our edge. Let φt be the associated
gauge potentials on Hh as constructed in Sect. 11 of IV. Let Ht and Hj intersect
in their boundary portion S o . We then define (using the definition (11.1) of IV oϊd?)

Δφ = Supd^φi\Sij,φj\Sιj). (3.1)

For / = we replace dβ( ~) by the greatest distance between the actual assignment
to an edge of if,- and the assignment by φt. The bounds in this section will depend
on ar,ar+ί, and Δφ. They will have some disappointingly large N dependences.
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We distinguish between edges in $γγ, edges within a block but not in S\+1, and
edges in a channel. Our final results will be summarized in (3.20)-(3.22).

a) Edges in S\. For edges in SI we have (of course)

\g(e)-gG(e)\ = 0. (3.2)

b) Edges in a block, not in St. We consider an edge e that joins two vertices v1

and v2 (in a block). We let v0 be the basepoint of the block. In a gauge where all
edges in S]+ι are assigned the identity it is easy to see (by Lemma 5.5 of III)

\g\e)\^cNar+1. (3.3)

The prime indicates we are in a different gauge, g(e) is a gauge transformation of
g\e). We have also used Radial Property 4 of Appendix E. Inequality (3.3) follows
from considering the loop et~olίtVoV2. We get, undoing the gauge transformation

g(e) = g(tV0V2)g'(e)g '(tvov.y (3.4)

In the case all edges in tVoV2 and tVoVί receive assignments from the same Ht (in
(11.14) of IV), one has

gG(e) = g(tVOV2)g~1(tvovl) (3.5)

and from (3.3)—(3.5) we deduce

\g(e)-gG(e)\ScNar+1. (3.6)

In general we have

and thus

\g(e)-gG(e)\ScNar+1+cΔφ. (3.8)

c) Channel Edges. We first state a little lemma

Little Lemma.

I I0102030J - I0103020J I ̂  2|#2I (3-9)

We now consider a plaquette containing two neighboring channel edges and

two edges from each of two neighboring blocks. The channel edges
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are ex and e2. We write

9(ei) = uΓ10iuigf9 i = l , 2 , (3.10)

where

Ui = gtmv. (3.11)

We are laying down the gf9 as though they were pinned to the base point of the
block containing vγ and v2, via gauge invariant coupling. We have

ι . (3.12)

We have set ga = g(ea)> a n d likewise with b, and moved the u^lg\ from the left
side to the right side of the product. We deduce from the little lemma that

l « i ^ β t o ? ) " 1 « 2 1 « 2 ^ Γ M ^ ) " V i l ^ ^ + i + 2 | i ι 2 ^ M Γ 1 l , (3.13)

which implies

gbi (3.14)

(3.15)

(using (3.8) and other simple observations).
Writing analogs of (3.10) for all the edges of a channel we deduce for any two

edges in the same channel, ei and ej9

' (3.16)

We now let /~\ and Γ2 be two paths whose group elements gΓι and gΓl enter
into the average determining the assignments to the edge e0 in Sr "above" the
channel in question. With eι and e2 the channel edges in Γx and Γ2 respectively
we have from (3.16) and (3.8),

(3.17)

and

l0*(*i)l S cN2ar+ί + cNΔφ + d(gΓι9g(e0)). (3.18)

These two equations easily imply

^ ' (3.19)

The fruit of this analysis is in Eqs. (3.2), (3.8), and (3.19). We collect these
questions in one place:

a) For edges in <?ϊ+1,

\g(e)-gG{e)\ = 0. (3.20)

b) For edges in blocks

\g(e) - gG(e)\ ^ cNar+ι + cΔφ. (3.21)

c) For edges in channels

\g(e)-gG(e)\^cN2ar+1 +cNΔφ. (3.22)
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(The reader may note these are similar to (E.3), (E.4), and (E.ll).) The cNΔφ in
(3.22) seems excessive to us, probably this can be improved to cΔφ by modifying
the construction of Sect. 11 of IV. We finally note here the basic estimate

Δφ ^ car. (3.23)

4. Smoothness of Local Gauge Fields

In this section we finally face up to the task of obtaining general estimates for the
edge assignments of the isolated field of a chunk. We will use material from
Sect. 2 (Theorem 2.2), Sect. 3 ((3.20)-(3.23)), Sect. 11 of IV, Appendix C and
Appendix D. We begin by making definitions similar to Definitions 2.1.

Definitions 4.1. Let £ be a chunk. We consider the isolated field of £, and all edge
and plaquette assignments, in this section, are of this isolated field. For any point
x in R4, and level r', we now define r£(x, r') by

with

SE(χ) = {r,3pe0>\p is an L-plaquette, d(p,x) ^ colr}. (4.1)

Here an L-plaquette is understood as one of E. c0 is some number such as 20 or
so (which embraces all the hypercurves we deal with at a given level, near x). If
tE(x, r') is undefined we set tE(x, r') = r(E) - 1 (r(E) the level of E\ fE(x, r') sort of
finds the lowest level of an L-plaquette living above x, viewed as living at level r'.

We now make a related definition. For any point x in R4, we define ar(x\

βr(*) = Max{|0 a p | , Pe&\ d(p,x)<c0lr}. (4.2)

The Prototype Case. We view an edge e at level r, and let x 0 be one vertex of e.
We assume ^(xo,**) = τ(E) — 1. (This implies that we are away from the influence
of gauge singularities and large gauge fields.) We assume at each level s ^ r, each
hypercube at distance ^(co/2)/ s from x 0 is of depth s. In the language of
Appendix D, we are in a no-jump situation.

Theorem 4.2. In this prototype case we have the following bound for g(e):

(4 3)

To prove this we write for each hypercube, Hh just mentioned above, the gauge
potential φ^x) as

φi{x) = φ\{x)φi{x). (4.4)

This is (11.3) of IV. Here φf(x) is the restriction to Ht of the potential of the
hypercube containing Ht of next larger size. (See Appendix C, Subsection 1.) If Ht

is level 5, we deduce from (2.20)-(2.23) and Appendix D, that φ\(x) may be picked
as satisfying

kΔM'i) ^ cN2as(x0) + cJVα.-Λxo) (4.5)
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in the notation of Sect. 11 of IV. We are using the no-jump conditions here, see
Appendix D. We have

\g(e)\ ^ cN2ar(x0) + cN^M + KMΦa) (4.6)

from (3.20)-(3.23) and the definition of Δ, (from Sect. 11 of IV). Here φa is the
gauge potential of the next larger hypercube containing the level r hypercube from
which e takes its assignment. We have

ΔMSΔΛΦ'J + A^φt) (4.7)

(by splitting differences). This extends by induction

4 1 ( 0 J ^ 2 l 1 ( ^ ) + ^ 1 ( ^ ) + 2l 1 (0;)+.. . , (4.8)

where α, b, c label successively larger hypercubes, each containing the other. From
(4.5), (4.6) and (4.8) we get

\g{e)\ S cN2ar(x0) + cNar^(x0) + /r//r-i(dV2flr-i(*0) + cNar_2(x0))

+ lr/lr_2(cN2ar_2(x0) + cNar-3(x0))+. . (4.9)

This is Theorem 4.2.

The General Small Gauge Field Case. We deal with a situation as the prototype
case, fE(x0,r) = r(E) — 1, but we impose no condition on depths.

Theorem 4.3. In the small gauge field case we have the bound for g(e\

^ ( * o ) . (4.10)

(ε may be picked as small as desired by making N large enough.)

Using the analysis of Appendix D, Subsect. 3, (4.5) is replaced with

lsΔι(φ'i)ScN2as(xo) + cNas.1(xo)+ Sup cl.Δ^φj). (4.11)

This replaces (4.3) with

2 f M ( x 0 ) c Γ s , (4.12)

which readily yields the theorem.

The General Case. With x0 one vertex of e, let fE(x0,r) be abbreviated as f. Recall
r is the level of e. We define gG{Ϋ\e) as the assignment to e by the gauge potentials
of the hypercubes of level r + 1.

We define Disc£(x0) by

Dis4(x 0) = ί,+ 1 sup Δ MiΦ j ι IH^H^U^X (4.13)

where ij label hypercubes at level f + 1. φt is the gauge potential associated to Hi.

U(x0) = {x,d(x,x0) < colf+ι}. (4.14)
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Theorem 4.4. In the general case

gG%)\ScN2 Y\g(e)~gG%)\ScN2 £ ( r Y ^ 0 ) + ^ - M Disci(x0) (4.15)

with the same statement about ε as in Theorem 4.3. We note that we may use {4.15)
for f any value in the ranqe

r-2^f^fE(x0,r). (4.16)

Some Qualitative Quantitative Bounds. From the discussion in Appendix D and
the bounds of the Geometric Constructions in IV we may deduce estimates on the
terms in (4.15).

Discontinuity Estimate.

Disc^xo)^c. (4.17)

We now define Suspicious Hypercubes in E. A hypercube H of level r is not
suspicious if all fff of level r satisfying d(Hi9 H) < (co/2)lr are small field, and all Hi

of level r - 1 satisfying d(Hh H) < (co/2)/r_ ί are small field. Otherwise it is suspicious.

Gauge Singularity Estimate. In the notation of Theorem 4.4

Γ—, + clf, (4.18)

where xa are the locations of the centers of gauge singularities. The number of xα

(influencing gG{f\e)) in any set if c K4 is

£cN(Sr,t)9 (4.19)

where N(£f, f) is the number of suspicious hypercubes Hγ of level ry < f and
intersecting £f.

Estimating Gauge Field Smoothness. We start with an elementary estimate for
unitary operators

i4|, (4.20)

where here, at slight deviation from our usual rule, we mean for a unitary operator w,

|ιι| = | t ι -Id | .

The estimate follows from the identity

(4.21)

We consider parallel edges e1 and e2 at level r, with vertices (a9b) and (c,d)
respectively. From considerations as leading to (4.6) we have

\g(eι) - g(e2)\ £ cN2(ar(d) + ar(b)) + cNa^^d) + | Φ-\a)Φ{b) - Φ ~ \c)Φ{d)l

(4.22)
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assuming

Φi,β2)<ylr-i. (4.23)

Here

Φ(x) = ΦΊ(x)Φ'2(x)'~> (4.24)

the φ'i(x\ gauge potentials of higher and higher level hypercubes as i increases. We
estimate the last term in (4.22) using (4.20) in an inductive manner. We use

Φdj = φ'jφ'j+ί.~. (4.25)
We arrive at

(4.26)

This is convenient for estimation. In addition to estimates already used in this
section recall (11.11) and (11.13) of IV for use in conjunction with (4.26).

To use (4.26) effectively we need sharper estimates on Δ^φβ than we have so
far detailed. We introduce a concept related to depth. We define the iterated depth
of a level r hypercube Ht. rid(Hi) is the minimum r' for which one can find a
sequence of hypercubes

Hi9HiuHi2,...,His (4.27)

with

level Hit = r- t, level His = r' (4.28)

(so r' = r — s) and such that

ΘH.ndHn Φ 0 , dHitndHi(t + 1) # 0 . (4.29)

Note rid(Hi) ^ rd(Hi) (rd the depth). Then if r id(H f) > r£(x0,r), with x o e H i 5 one has

lrΛ Md ύcN2 X (\\ \s(x0). (4.30)
\lJ

5. Edge Smoothing, the Principal Principle

It is possible that edge smoothing is not necessary for the convergence of the cluster
expansion, but we find it, at the least, makes the convergence more natural to
prove. Edge smoothing, as introduced in Sect. 10 of IV, is the smoothing of the
isolated chunk field near the edge (boundary) of the chunk. We have required the
isolated chunk field to satisfy

\gdp\^cia (5.1)



448 P. Federbush

for all S-plaquettes p, and some fixed suitable c1. If we do not perform edge
smoothing this cx would of necessity depend on N—this we do not desire. In this
section we do not directly prove the possibility of edge smoothing. Rather we
relate this possibility to the following property that we will prove in a later paper.

Inductive Property ER, Edge Rounding. Assume that in the inductive construction
of the isolated chunk field one has been able to perform edge smoothing for all
levels less than or equal r. Then at level r + 1 one may modify the assignments on
edges outside the chunk and on $r£γ to ensure

1. Averaging holds,
2. \gδ I ̂  C2a f° r aU S-plaquettes in ^ r + 1 that are at distance ^\Culr from edges
of theP chunk in Sr+ι (for suitable c2).

So at the inductive step we are assured by this property a smoothing by
modifying edge assignments outside the chunk (and on Sr^x), but the smoothing
does not meld into the inductively constructed field at distance ^Cίclr as required
by edge smoothing. In this section we prove this is sufficient, i.e. the following
theorem.

Theorem 5.1. The existence of edge rounding at each level implies the existence of
edge smoothing. That is, if Inductive Property ER holds, for a given c 2, then edge
smoothing is possible for cx =c1(c2)

To prove the theorem it is sufficient to show that if at a given level, r + 1, edge
rounding is possible, then at this same level, edge smoothing is possible. This we
proceed to show.

We are given two configurations on S>r+1, the configuration constructed in
Sect. 10 of IV, {g°(e}} o standing for "original," and the edge rounded configuration
{geτ(e)}. These agree on edges of the chunk. We construct the final edge smoothed
configuration in a number of steps, which we proceed to detail.

A Word of Explanation and Guidance. The edge smoothed configuration is
constructed by interpolating between the edge rounded configuration near the
chunk, and the original configuration at a distance from the chunk, using a smooth
function to exhibit the partition (Step 3). Naturally enough one puts the edge
rounded configuration in a gauge to make it as close as possible to the original
configuration—here making them identical on a maximal tree (Step 1). However
if one uses a single maximal tree, estimates on the difference between bond
variables of the two configurations are particularly bad in the channels, so we
average over choices of the maximal trees (Step 2), which trees are constructed by
geometric divisions of R3 (Step 0). After the interpolation of Step 3 averaging will
no longer be satisfied, and this is corrected in Steps 4 and 5, corrected not just on
the edges of <^+ 1, which would have led to too violent plaquette variables near
<^4+1. The details are pursued in Appendix E.

Step 0. This first step is purely of geometric nature. We will divide K4 into regions,
tiles, each bounded by pieces of planes. We will consider a class of such tilings, a
tiling will be labeled by t, teT. We first define primary planes. Let Bλ and B2 be
neighbouring blocks in &r+1 (separated by a channel joining them) with base points
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υγ and v2 in Sr+ι. The perpendicular bisector of the line segment joining v1 and
v2 is a primary plane. The set of all primary planes divides space into tiles, each
tile containing the vertices of $r+1 contained in some block in J* r + *. We call this the
primary tiling. A sub-primary plane H is a plane satisfying

a) H is parallel to some primary plane.
b) There is a primary plane, Ho, parallel to H such that d(H,H0) = kN~r~ι, k an
integer, k < jiV.

We now take a collection of sub-primary planes with the following properties:

a) Each primary plane is within distance jN~r of some member of this set parallel

to it.
b) Two parallel planes of the collection are at distance >jN~r from each other.

This tilings we will consider will be in 1-1 correspondence with such a collection
of sub-primary planes. We will say a tiling is associated to a proper collection of
sub-primary planes.

We now proceed to define the tiling, ί, associated to a given proper collection
of sub-primary planes. We do not merely take the division of R* these planes yield,
since we will want the tiling to be as the primary tiling within the chunk. We define
a core region in R4 as the union of those tiles of the primary tiling that are at
distance <10N~r from the set of edges £>r+1nE. The core region is tiled as by
the primary tiling. Tiles, obtained by the division of JR4 by the proper collection
of sub-primary planes, that are at distance greater than \N~r from the core region
are also part of our tiling. We have tiled R4 except for a zone surrounding the
core region. We now divide the zone into tiles. The zone is tiled by distorted
hypercubes, objects with 8 hyperplane (hyper) faces; but these faces will not be
required to be naturally parallel or perpendicular. Rather they will be determined
by the 16 vertices of the distorted hypercubes. These vertices will be contained
either in the vertices of the hypercubes in the boundary of the core region, or in
the vertices of the hypercubes in the boundary of the region built up of hypercubes
determined by the subprimary planes. (Vertices are located on either the inner or
outer boundary of the zone, as vertices of the rectangular tiles already constructed.)
It is clear which vertices to select for each distorted cube, ones "minimizing the
distortion."

In fact there are an infinite number of tilings t as we have defined them. But
they may be divided into a finite number of equivalence classes so that tilings that
are members of the same equivalence class have the same contribution to the
construction to follow. (The tiling of space far enough away from the core region,
>iClclr, is irrelevant.) From now on we implicitly work with these equivalence
classes.

Step 1. We are given a tiling t. Each tile contains a single base point within it. A
radial maximal tree centered at the base point is constructed within each tile. (Each
vertex in f^r+1 is in one and only one maximal tree. Points on the boundary of
neighboring tiles lie on the maximal tree of one of the tiles sharing the boundary.
Further properties of the maximal trees will be given later.) We perform a gauge
transformation on the field configuration {ger(e)} so that assignments of {g°(e)}
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and the gauge transformed field {gcrt(e)} agree on edges of the maximal trees
associated to the tiling t.

Step 2. We find the modified edge rounding assignments on Sr+1, gmer(e\ by
averaging the assignments on ( ί r + 1 , gmer{e\ over tilings, t. That is we minimize

Σd2(gmeτ(elg«Xe)). (5.2)

Step 3. We now have two configurations on S>r+1, the original assignments of
Sect. 10 of IV, and our modified edge rounded assignments. These assign to an
edge e values g°(e) and gmeτ{e) respectively. We find a function χE{x) on R4 that
satisfies

a) o^χE(x)Sl (5.3)

b) \DχE\^cN\ (5.4)
c) XE(X) = 1 if the distance between x and edges in Sr+ x nE is ^ τβCulr, (5.5)

d) χ£(x) = 0 if the distance between x and edges in Sr+1 nE is ^ τ ^ C l c / r . (5.6)

We now take as our assignment on <Γ+ 1 for edge e, g3(e), defined by minimizing

χE(έ)d2(g3(el g°(e)) + (1 - χE{έ))d2{g\e\ g™r (e)). (5.7)

Step 4. We now basically construct a localized form of an averaging correction
mode. To each edge e we associate a vector function on R4, χe{x\ as given by (2.1)
and (2.2) of /. We find C00 vector valued functions ξe(x) with the properties:

a) The support of ξe(x) lies within the support of χe(x).
b) \χe{x) ζe{x) is 1 if e' = e\ and is zero if eΦe\ e,e' at the same level.
c) The functions ξe(x\ for different e, are all scalings, rotations, and translations
of a single function.

We now select a single bond e at level r. For plaquette p at level r + 1 we find
plaquette assignments from ξe> as

Adp = $χp(xyξe(x). (5.8)

We consider the configuration on Sr with assignment 1 to edge e and zero to all
other edges. We set A(e) = 0 for all ee$γx. Now we use the plaquette assignments
of (5.8) to determine a unique configuration on <Γ+ 1, satisfying averaging with the
just specified r level configuration. (The configuration on Sr+1 yields the plaquette
assignments of (5.8), and averages to yield the just specified configuration on Sr.)

Step 5. We consider the configuration on Sr+ι at the end of Step 3 (the g*(e)), it
will not necessarily average to the correct assignments on Sr. We modify the
assignments on <Γ+ 1 by (in any order) using gauge invariant coupling and adding
the truncated averaging correction modes of Step 4 (pinned as ordinary average
correction modes) with amplitudes chosen to give a combined field that, to linear
order, averages to the correct field in Sr. (Note, this procedure does not, as when
one adds a usual average correction mode, exactly fix the averaging error. We are
not modifying Sr+ι on a single edge to exactly satisfy averaging. Presumably we
could modify our present procedure slightly to make it satisfy averaging exactly.)
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Step 6. Modify the configuration on Sr + 1 on edges of Sr^1 to exactly average to
configuration on Sr.

Note. Once the edge smoothed configuration on Sr+1 is constructed, it is returned
to the gauge specified in Sect. 11 of IV.

Appendix A. A Postscript to /

In this Appendix we are in the set-up of /, studying the plaquette assignments of
a continuum field minimizing the continuum action, for the Abelian theory, with
plaquette assignments specified at length scale L, level r.

Lemma A.I. Plaquette-Plaquette fall off Estimates:

Here p is at length scale /, the P at length scale L. / is any number, / < y (y
as in /). Now let p± and p2 be parallel (oriented) plaquettes at length scale /,

X \ (A.2)

for each ε > 0, where d(p1,p2) is measured between corresponding vertices and

d(pup2)<cL. (A3)

It may seem that these results should follow immediately from the estimates
in /, but we require a small additional argument. We find a vertex in the length
scale L lattice, i.e. in i^\ that is closest to p in (A.I) or px in (A.2). We now construct
the field, in the lattice ££\ in a radial axial gauge radiating out from this vertex
(using the universal radial tree). Of course this does not change plaquette
assignments. Edge assignments are easily bounded in terms of plaquette bounds,
(using Lemma 5.5 of III) bounds that, loosely speaking, grow as some power of
distance in the radial direction. Using these bounds, and Estimates 0.6 and 0.7 of
/, the lemma follows.

Appendix B. Necessity of Gauge Singularities

We construct a field configuration on the unit lattice in K4 that is associated to a
pure gauge continuum Aμ(x\ with a point singularity, and fall off (to zero) at
infinity; but which cannot be associated to any A'μ(x\ that is pure gauge and
everywhere continuous, and falls off to zero at infinity.

We work with a gauge group G, a simple compact non-abelian Lie group. (This
will imply π3(G) is not trivial.) We denote by Y the vertices of our unit lattice,
a set of points in R4. We identify S3 with the standard sphere Σxf = 1, and
let

/ : S 3 - G (B.I)
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be a continuously differentiate map that is not homotopically trivial. We pick a
point aeR* that is not in f, and define

A(x\ a gauge transformation, defines a gauge field

Aμ(x) = Λ-\x)dμΛ(x) (B.3)

and likewise, an associated field on the lattice. This lattice field assigns to edge

e = ab the group element Λ~\a)A(b). Λμ(x) is continuously differentiate, except

at a, where it is discontinuous, and falls off to zero at infinity.
We now assume the existence of a pure gauge continuous A'μ(x\ that falls off

to zero at infinity, and is associated to the same lattice configuration. We will
deduce a contradiction. (We interpret fall off at infinity to mean fall off uniform
over spheres centered at the origin.)

Since A'μ(x) is pure gauge, and gives the same lattice field as Aμ(x\ we can find
a continuous gauge transformation Λ'(x) satisfying

A'μ{x) = Λ'-\x)dμΛ\x\ (B.4)

and

(B.5)

Given any ε > 0 and any Ro we can find an R = R(ε, Ro) such that R> Ro, and

\A'β{x)\<ε9 \Aμ(x)\<ε (B.6)

for all x within distance 2 of the sphere of radius R, SR> centered at the origin.
We let x be a point in SR. We wish to bound

\A(x)-A'(x)\.

(We work with a particular faithful unitary representation of G, and let bars indicate
operator norms.) We note there is a point xeΨ" within distance 2 of x, and proceed
as follows:

\Λ(x) - Λ'(x)| ύ \A(x) - A(x)\ + \Λ'(x) - Λ'(x)\9 (B.7)

since A(x) = A\x). We also have

2ε (B.8)

and a similar bound for /Γ's. Thus we get

|/l(x)-yl / (x) |^4ε on SR. (B.9)

This implies, if ε is small enough, that A(x) and A'(x) give homotopic maps of SR

into G, homotopically nontrivial maps if R is large enough. This is in contradiction
with the assumed continuity of A\x) over all R4.
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Appendix C. Clarifications, Additions, Modifications,
Corrections to Earlier Papers

1. Use of Depth in Sect. 11 of IV. The concept will still be of use to us, but we have
decided not to employ it in (11.3) of IV. Modify the sentence previous to this
equation so that Ha is the level (r — 1) hypercube containing Ht.

2. Radial Trees. In addition to the treatment of radial maximal trees in Sect. 5.4,
B) of III, we find amplifications as follows.

a) In the first paragraph of Appendix E.
b) We assume the straight line path realizing the shortest distance between nearest
neighbor base points is built up of portions of the maximal trees (and a channel
edge). (This is used in the argument surrounding (E.I 1)—but this is not necessary
for this prupose.)
c) In the first paragraph of Sect. 3.

3. Averaging in the Isolated Field of a Chunk. In our formalism each compatibility
requirement between lattice assignments on different lattices is realized as a
requirement on the assignment to an averaging edge. In developing this isolated
chunk field, for averaging edges outside the chunk we take each such assignment
to be consistent with pure small field averaging—without the modifications given
in III. Thus rule was also implicitly followed for the mode field isolated assignments
(there all averaging edge assignments chosen by pure small field averaging).

Appendix D. Expansion of Sect. 11 of IV

In this Appendix we make more explicit the application of the mathematical
theorems of Appendix A of IV to the constructions of Sect. 11 therein. Indeed the
reader may feel that the constructions of Sect. 11 of IV were themselves not
presented sufficiently precisely, and we further amplify their description. We first
study the invariant distance d9 of (11.1) of IV, obtaining some simple but elegant
general results.

1. Abstract Properties of d9. Let G be a group with an invariant distance d on it.
Thus d(gl9g2) = d(agιb, ag2b). We consider two indexed sets of group elements {gj,
{hi} ieif and define (the definition of (11.1) of IV in slightly different notation)

d'Afa}, {M) = d°({9i}> {K}) = InfSupdfo,.,uh,). (D.I)

For the same sets of elements we may restrict if to a subset 2Γ a if, and obtain
the absolutely trivial result

The Subset Lemma. Let F <z if, then

^ ( { ^ },{/zi})^^({^},{/Il.}). (D.2)

We proceed to a more interesting, less trivial result.

The Non-empty Intersection Lemma. Let srf aif,0& aif,srfr\0& Φ 0. We for now
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abbreviate ̂ ( ( t f i M M ) by d9r for any subset of'Sf. Then

^dJ}. (D.3)

We turn to proving this lemma. We note the following useful equivalence

^ ( { & M * i } ) < d o 3 t i 9 for alii, d(u9gihΓ1)<d. (D.4)

Now let 0 be in stfn St. We note from (D.4) there follows

d(g0K\9ιK*) < Άd% + ε), ieΛ, (D.5)

for any ε > 0. This implies

d(goho \9iK') < ^(Max {d%,d%} + ε), iestuSt9 (D.6)

which is the lemma.
We turn to a transitive property of d9.

The Triangle Lemma. Lei {#,-}, {Λf}, {sf}, ί e ^ fee ί/iree seίs of similarly indexed
group elements. Then

dβΛ{gt}9 {st}) Z d%({gt}9 {ht}) + ^({ΛJ, {Si}). (D.7)

To prove this, using (D.4), we note

d{{9iK 'XMΓ ι\ uιUl) ^ d((gihr i)(hiSr i), Uι(hiSr i)) + φ x (Λ.sr *), ttl w2)

^dίffjΛΓSwiί + ^ M Γ S ^ ) . P 8)

This immediately yields the triangle lemma.

2. The Distance dg Between the Gauge Potentials of Neighboring Hypercubes Along
Their Intersection. Initially the gauge potentials are defined only on the vertices of
each hypercube. Let Ht be a hypercube that is not large field (see Sect. 11 of IV,
after (11.1)). Let {Hj}JeJ^h be the set of hypercubes of the same level that are
not large field and have non-zero intersection with Hh its neighbors. We define

Δ(ή = Maxd°(φi\ φj\ ). (D.9)

Here the φi9φj need only be defined on the vertices of Ht. We claim, at the end
of the process of extending the φt and φj to the full hypercubes, one has

for all jeJ^i. This implies readily (3.23).
To see (D.10) we note that the extensions are achieved by performing a finite

number (independent of N) of Geometric-Constructions 1-4 of Sect. 11 of IV.
(Geometric Constructions 5 and 6 are not now relevant.) It is only the application
of Constructions 2 or 4 that may change the d9 between hypercubes. Suppose an
application of one of these two constructions extends the mapping φα on Hα from
dD c Hα to D c Hα. φβ on Hβ already is defined on D α Hβ. The extension of φα

is done by matching as well as possible on 3D and extending to D obtaining
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estimates (11.5) of IV. (This may clarify the construction process of Sect. 11 of IV.)
Using D.2, D.3, and D.7 (we need all three of these), and with some thought, we
deduce (D.10).

3. Δ1 of'φi9 the Gauge Field on Hypercube, Ht. We recall the separation of φt in
(11.3) of IV,

and note, from 1) in Appendix C, that φ\ is the gauge field of the next smallest
hypercube containing Hh restricted to H(. In the case that hypercubes near Ht

and of the same level or one level higher are small field, we may read off an estimate
for A ^φ'i) from (3.20)-(3.22)—where here we view φ\ as restricted to the vertices
of Ht. That is

lrΔ !(</>;•) ScN2ar^cNar_u (D.12)

where Ht is level r; and ar,ar-x may be taken as ar(x0\ a^^Xo) for x0 a vertex of
Hi (in the language of (4.2)). Again, in (D.12) φ\ is viewed as living only on the
vertices of Ht.

In the process of using Geometric Constructions 1 and 3 the bound on Λ^φ'i)
is at most multiplied by a constant (see (11.4) and (11.8) of IV). Let us consider
using Geometric Constructions 2 and 4. One has already defined φ'β of Hβ on
DaHβ.We are extending φΛ on Ha from dD c Ha to D cz Ha. (This is the notation
of the last subsection.) We carry out this construction trying to match φ'aφ* with
φ'βφd

β. This is the same as matching φ'a with φ'β W^OftJ)"1). If φdβ = Φi on the
intersection HanHβ we are in a no-jump situation. This will happen if Ha is of
depth r ( = r(Ha)). This is language from Sect. 11 of IV. If all such matchings are
no-jump (the hypercubes we deal with at level r all are in the interior of the same
hypercube at the next higher level) then we may deduce from (11.6) of IV, and
(D.12) that

lrA^d £ cN2ar(x0)

If there are jumps possible at the interfaces of H( and its neighbors, we must
modify (D.13).

IMΦ't) £ cN2ar(x0) + cNar_ x(χ0) + c Sup lrά x (φfiΦD'1 I π ^ λ P-14)

Jίi is a notation of the last subsection. Note that on the left sides of (D.13) and
(D.14) φ\ is viewed as defined on dHt. Estimates on Geometric Constructions 5
and 6 determine bounds for Δx{φ^ in all Ht, by either (11.11) or (11.13) of IV.

We note that if φ\ = φ{φ?9 φj = φjφγ with φ? = φnjj\H.nHj, then

Here the superscripts stand for jump, and no-jump respectively.

Appendix £. Some Estimates for Edge Smoothing

We first note an additional property of radial trees as constructed in III (at unit
scale).
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Radial Property 4. Let px and p2 be two neighboring points (d(pι,p2)^c\ and
consider the closed loop consisting of two paths along the maximal tree from the
origin to pι and p2 respectively, and a path from pι to p2 of length rgc. Then this
closed path may be contracted to a point by a number of elementary homotopies,
Ne. that satisfies

Ne£c + c\Pι\. (E.I)

We wish to estimate

δ(e) = d(g°(e),g"Xe)) (E.2)

for edges e in <ίr + 1. For e an edge of one of the maximal trees associated to the
tiling t we have

δ(e) = 0. (E.3)

If the two vertices in de belong to the same maximal tree, we may estimate δ(e\
using a gauge in which the assignments to the maximal tree are trivial, and we
find (from Lemma 5.5 of III, and (E.I))

δ(e) ̂  cNa. (E.4)

(δ(e) is a gauge invariant quantity—when {g°(e)} and {geri(e)} experience the same
gauge transformations.)

We now let ex and e2 be edges that join the same two maximal trees of the
tiling in same orientation (in the same "channel" of the tiling), then similarly to
the above we find

(E.5)

and

dig^e.lfie^^cN'a. (E.6)

(We could improve this last estimate.) Let Γί and Γ2 be two paths in if r+ x entering
the averaging of contributions to an edge e in Sr. Then we have easily (in the
region outside the chunk)

ί 2 , (E.7)

and

d(g%g%)£cN2a (E.8)

(where again estimate (E.7) can be improved). Of course we have

Av Γ / Γ = AvΓ0
e;1. (E.9)

We deduce from (E.7)-(E.9) that

Together our sequence of estimates now enable us to deduce for a "channel" edge e,

δ(e)^cN2a. (EM)
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(We first deduce this for the "channel" edge on the line joining base points, and
then thereafter at other "channel" edges.) The estimates (E.3), (E.4) and (E.ll)
complete this study of the difference of edge assignments between g° and gcτi.

We next deduce

for e in <Γ+ 1. This follows from the fact that the estimates (E.3) and (E.4) hold for
~ dV4 terms in the average determining gmeτ(e) and the estimate (E.ll) for ~cN3

terms. (This argument is questionable near the zone surrounding the core, but
(E.I2) is not needed in this region.)

From the bounds on g°p and g™\ and from (E.I2), we deduce

(If we had settled for d{gme\e\g°{e))^cN2a, then one would have had \gjp\ ̂
cNa; this is the reason we average over tilings.)

From (E.I2) (and the construction of Step 3) we deduce the averaging error at
a bond e in S\ from the assignments of {g3(e)}> to be in error by

ScN2a. (E.I 4)

The construction of Steps 4 & 5 will correct this error to within

^f(N)a\ (E.I 5)

which error is corrected in Step 6. Step 5 changes plaquette values by

^cα, (E.I 6)

and Step 6 by

Sf(N)a2. (E.I 7)
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