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The System of One Dimensional Balls
in an External Field. II
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Abstract. We modify the system introduced in [Wl] so that we can establish
the nonvanishing of all Lyapunov exponents easily.

Introduction

In the paper [Wl] we have introduced a Hamiltonian system with arbitrary
number of degrees of freedom (dimension) for which we can establish the
nonvanishing of at least one Lyapunov exponent almost everywhere. It is a
system of n particles in a line which fall down with constant acceleration towards
a hard floor and collide elastically with each other. This system should be
compared with Sinai's gas of hard spheres, for which also the nonvanishing of
only few exponents was established in the general case of arbitrary number of
spheres ([C-S], [W2]). Although there is little doubt that the system has all
exponents different from zero one encounters serious technical difficulties; see
the paper about three balls by Kramli, Simanyi, and Szasz, [K-S-S]. What one
needs to prove to get nonvanishing of all exponents is first that every ball is
connected by a chain of collisions with every other ball and secondly that certain
conspiracies (too technical to formulate here) can occur only on orbits of total
measure zero. For our system the former is taken care of automatically (all
collisions that can occur do occur on all orbits) but we still cannot prove the
latter. In the present paper we modify the potential of the external field from
V(q) = qto V(q) such that f(q) = V'(q) > 0 and f'(q) < 0. These requirements allow
in particular for the standard gravitational potential V(q)=— \jq. In such a
system nonvanishing of all Lyapunov exponents can be established fairly easily
under the usual assumption that the masses of the particles decrease as we go up.

1. Description of the System

We consider a system of n point particles in the half line q^O with masses
mu ..., mn. They collide elastically with each other and the bottom particle collides
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with the floor q = 0. They are all under the influence of an external potential field
with the potential V{q) such that /(<?) = V'(q) > 0 (i.e., the particles fall down) and
f'(q)<0 (i.e., the acceleration decreases with the distance to the floor). Hence
between collisions the motion of the particles is governed by the Hamiltonian

where qt are the positions and pt = mivi the momenta of the particles, i = 1,..., n. At
the time of a collision of ιth and i +1 particles there is an instantaneous change of
momenta

PΪ=yιPΓ +(l+7i)ft"+i>

where y. = — — , the superscript " refers to momenta before the collision and
m + rn'

the superscript + to momenta after the collision. At the collision of the bottom
particle with the floor

Pΐ = -Pl (2)

In particular in a collision of two particles the top particle increases its momentum
while the bottom particle decreases its momentum by the same amount zl̂ p,

PΪ =P7-

where

In a collision of the bottom particle with the floor its momentum is increased by

where

Aop=-2pϊ>0.

Our system is a hamiltonian flow with collisions as defined in [Wl, Sect. 1].
Indeed we consider the hamiltonian system

4i=—> Pi=-mif(qi), (3)

i = 1,..., n. We fix the value of the Hamiltonian H = H0 and we let φ*: N -> N be the
flow defined by (3) on the submanifold N = {(q,p)\H(q,p) = H0}. φ* preserves the
Liouville measure v. Further we let MciV,
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The boundary dM of M is piecewise smooth and on an open dense subset dMr

C dM the boundary is smooth and the flow φι is transversal to it (regular part of the
boundary). The connected components of dMr are dM*9 Ϊ = 0, 1, ...,rc —1, where

and

dM? = {(q,p)eN\O<ql<...<qi = qi+l<...<qn, ±{Όt-Όi+1)<0}9

i = ί, ...,n — 1. The flow φt enters M in dM+ and leaves it in dM~. The collision
rules (1), (2) define the collision map Φ:dM~ -><3M+. The collision map is
symplectic with respect to the canonical symplectic structure on dMr. Indeed both
in the case of the collision with the floor and the collision between two particles Φ is
the restriction of a symplectic linear map of the ambient space R" x R". We have

i = 0, l,...,rc —1 and

«-('.• ΰ
where Ix =diag(— 1,1,..., 1) is the diagonal matrix with all the diagonal elements
equal to 1 except for the first one equal to — 1,

ί
y.

(5)

• • • , /

ί = l, ...,n — 1. More precisely Λi = (rw)fct/=:1, where r w = ί i (Kronecker's (5) if fcφj,
Ϊ + 1 or l + i, ϊ + 1 and ru = γi9 riJ+ί = l—yh ri + 1J = l -\-yi and ri + 1 f ί + 1 = — )V

In this setup we introduce the Hamiltonian flow with collisions \p*: MudM +

-+MvdM+ defined by

ψt(x) = φt(x)

for 0St<τ(x\ where τ(x) is the earliest moment of time when φ\x) reaches dM~
and

The flow φf preserves the Liouville measure v.
We will assume that the total energy Ho is smaller than the escape energy of the

top mass i.e.,

Then the closure of M is compact and the Liouville measure v on it is finite.
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The flow ψ* is not defined or differentiate for all t or x e M. But for v almost all
x Dψ* is well defined for all t except for the moments of collision. This allows us to
define Lyapunov exponents for the flow. Since Dip* maps the velocity vector field of
the flow into itself we automatically get one zero Lyapunov exponent. It is useful to
consider the quotients of the operators Dψt by the one dimensional subspace
spanned by the velocity vector of the flow. We will denote this quotient by Lx.
What makes the quotient operators useful is that they do not depend on the
derivatives of the collision time τ(x) (Dψ* do!).

Theorem. // f(q)= V\q)>0 and f'(q)<0 for all q, O^q^qmax9 where qmax is the

highest point the top mass can reach under the energy constraint H = Hoi i.e. Ho

n-ί \ V

= Σ mi^(0) + m / ( q m a x ) I and if the masses are decreasing m1 > ... > mn then the

flow ψ* has all but one Lyapunov exponents different from zero.

We will prove the Theorem by applying the β-criterion as formulated in [Wl,
Sect. 3].

2. Description of the Derivative

We introduce linear symplectic coordinates in the tangent spaces to the phase
space Rw x R" by the formulas

δhi = mif{q^δqi+ —δpi9mt

i = 1,..., n, where (δq, δp) are natural linear symplectic coordinates in R" x R". In
these coordinates the velocity vector field (3) is (0, —1), i.e., δht = O, δzt= — 1,
/ = 1, ...,n. The tangent space 7^V to the submanifold N = {H = H0} becomes

Let 2Γ denote the quotient space of this tangent subspace by the one dimensional
subspace spanned by the velocity vector (0, — 1). Note that (0, — 1) spans the
skeworthogonal complement of TXN and that 3Γ has the canonical symplectic
structure.

The linearization of equations (3) is

^ (6)

1 = 1, ...,n. In (δh,δz) coordinates the equations (6) become
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We will now express ^b i = 0,..., n — 1, the linear symplectic extensions of the
collision map Φ in (δh, δz) coordinates. Since at the moment of a collision of the ίth

and z + 1 particles qi = qi+1 and f(qi) = f(qi+ι), the computations are almost the
same as in [Wl, Sect. 4], where we had f(q) = l. From (5) we get for i=l,...,n— 1,

X f'V
where

K,=

\
_\ / and ^^t-ΛV- (9)

/

More precisely Ki = (klm)lm=u where klm = 0 if l + i, ί + 1 or m + ί, ί + 1 and kUi

= K + \ i+1 = 1, fcf i + i = fei+i ί = - l . Also using (4) we have

( XX f)
where i*\ = diag(l, 0,..., 0) is the diagonal matrix with all diagonal elements equal
to zero except for the first element equal to one and

oco = f(0)Aop. (11)

Now the action of the operator Ilx in 2Γ amounts to the effect of (7) interspersed
with the application of «9̂  , i=ί,...,n— 1 or Sf0. £fi9 i = l , . . . , n —1 factor on 2Γ
whereas ίf0 does not (!) so that the application of 5^0 should be understood in the
following way: immediately before the collision with the floor we project our
vector (δh, δz) onto TX3MQ along (0, — 1) and only then we apply £f0.

3. Proof of the Theorem

The new element in our approach compared to [Wl] is that we consider the
operators Ux\&'-*&' without introducing internal symplectic coordinates in ZΓ
or representing <Γ as an (n — 2)-dimensional subspace in Rπ x R". Instead we work
with objects in R" x R" or TXN which factor on 2Γ. We begin with introducing a
β-form into ZΓ.

Definition. The quadratic form Q on the standard linear symplectic space Rn x R"

Q((χ,y))= Σ
l

is called the standard Q-form. A quadratic form is called a β-form if it is equal to
the standard g-form under a linear symplectic change of coordinates.

Lemma. Let Ψ' bea hyperspace in the standard linear symplectic space Rn x Rw and
SPCV the skew orthogonal complement of Y* (the characteristic line). If a Q-form
F on Rn x RM factors on rΓ/& then F is a Q-form on 1TjSe.
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Proof. Without loss of generality we can assume that

F((x,y)) = (x,y), χ,yeR»

and

ir = {(x, y) e Rn x R" I <α, x> = <j8, y}} for some α, j8 e RM.

Then S£ is spanned by (β, α) e R" x Rn. Since by assumption F factors on TΓ/JSP we
have

F((x,y) + λ(β,a)) = F((x,y)) for every (x,y)er and AeR.

Hence
<ocjy=o

and
<α,x> + <β,j;> = 0 for every (x,j;)eiΓ.

We get that either α or β is equal to zero so that by an F-preserving symplectic
change of coordinates we can make

^ = { X l = 0 } and £? = {x = 0,yi = 0,ί = 2,...,n}.

If we identify ^/JS? with {xA =0, j ^ = 0} then the canonical symplectic form in
YjSi? becomes dx2 Λ d)>2 +. . . + dxn A dyn. Hence F on T^/JS? becomes the standard
β-foπn. D

We introduce now the standard Q-form in the (δh, δz) coordinates

Q((δh,δz)) = (δh,δz).

We have

Q((δh9 δz) + Λ(0, -1)) = Q((δh, δz)) - λ(δh, 1> = Q((δh, δz))

if (δh, δz) e TXN, so that Q factors on y and by the Lemma it is a β-form on 9~.
We will show that Ilx for sufficiently large t (depending on x e M) is a strictly

β-monotone operator on ^". This is equivalent to showing that Dψ* increases the
value of the form Q for all vectors in TXM which are not multiples of (0, — 1).
Between collisions (δh, δz) evolves according to (7) so that we get

= £ J™ (δhd2. (12)

Under the assumption f'(q)<0 the derivative (12) is nonnegative so that between
collisions the value of the form Q increases on all vectors (δh, δz) e TXM except for
vectors of the form (0, δz). By (7) such vectors stay unchanged until a collision of
two particles or the collision with the floor. From (8) and (9) we get

G O T A, δz)) - Q((δh, δz)) = φzt -δzi + ί)
2, (13)

ί = l,...,n — 1. Under the assumption that the masses decrease (yf>0,
i = 1,..., n — 1) and f(q) > 0 we have αf > 0 so that the value of the form Q increases
in a nondegenerate collision of two particles on every vector (δh, δz) e TXM except
for vectors with δzt = δzi+1. By (8) and (9) such vectors stay unchanged in the
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collision. Finally by (10) and (11) we get

z)) - Q((δh, δz)) = 0L0(δZι)
2. (14)

Again under the assumption /(0) > 0 we have α 0 > 0 so that in the collision with the
floor the value of the form Q is increased on all vectors except for those with δzx = 0.
We cannot claim though that such vectors are unchanged in the collision. On the
contrary before the application of £f0 we have to project our vector on TXΘMQ

along (0, — 1) which typically changes all δz coordinates by the same amount but
this means that there is no change of the vector in &'.

Independently of the initial conditions xeM every particle will eventually
collide with its neighbors (and the bottom particle will collide with the floor).
Taking this into account and putting together (12), (13), and (14) we conclude that
the only vectors in TXM on which the value of the form Q fails to increase
eventually are the vectors with zero δh coordinates and equal δz coordinates i.e.,
multiples of (0, — 1). We can thus conclude that Ilx is strictly Q-monotone for
sufficiently large t and applying the g-criterion from [Wl, Sect. 3] we get the
Theorem.

4. Remarks, etc.

A. Having established nonvanishing of all Lyapunov exponents for our system we
can apply the structural theorems of the Pesin Theory which were worked out for
systems with singularities by Katok and Strelcyn [K-S]. Strictly speaking they
discussed only the case of discrete time but we can easily represent our system as a
suspension of a piecewise smooth map to which the results of [K-S] can be applied.
We conclude that our system has at most countably many ergodic components
and on each ergodic component the flow is either the Bernoulli flow or a
suspension of the Bernoulli system with constant roof function. The question
which of the two is the case for our system is wide open. For geodesic or billiard
flows this issue is settled once and for all by invoking the underlying contact
structure. First of all we have there a family of codimension one invariant
subspaces in the tangent bundle and secondly this family is strongly nonintegrable
as required by the axioms of a contact structure. This approach was developed in
an abstract form by Katok in [K]. In our case we do not know the invariant
subspaces. In the case of linear potential V(q) ([Wl]) we worked with a family of
subspaces which not only fails to be invariant but also is completely integrable
(they are tangent spaces of leaves of a nice codimension one foliation of the phase
space). In the present paper we consider only the quotient operators Ίlx and by
doing so we altogether avoid looking for invariant subspaces. Naturally then we
cannot say anything about the integrability of the family of invariant subspaces
(spanned by strongly stable and strongly unstable subspaces).

B. Another question which we did not address is whether our system is ergodic or
not. Most probably the methods applied to the gas of hard spheres by Chernov
and Sinai [C-S] and Kramli, Simanyi, and Szasz [K-S-S] are applicable to our
system. We can confidently conjecture that our system is ergodic.
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C. Although in the case of a linear potential it does not really matter whether we
consider point particles or hard core particles this is not so in the Theorem. The
difference surfaces in formula (8) which is not valid any more in the case of hard
core particles: at a collision of ίth and i +1 particles we have qi+1 — qt = diameter of
a particle >0 and so /(<?;) >/(<?ι+i).

D. In the case of a linear potential the exponential growth is the result of interplay
between double collisions and collisions with the floor. In the nonlinear case the
collisions with the floor are not so important. The only thing we need is that in such
a collision the value of the Q-form is not decreased. We get the exponential growth
from the effect of the evolution (7) between collisions and the double collisions
alone.

E. In the case of a potential well of finite depth (F(oo)< oo) and sufficiently large
value of total energy Ho particles may escape to infinity. In such a case one should
expect that hyperbolic properties of the system force almost every orbit to infinity.
It would be interesting to study the scattering properties of the dynamics, e.g., is it
true that for almost all orbits with one (k) particles coming from infinity exactly one
(k) particles escape to infinity in the future. What can one say about the scattering
map?

F. It is still an open problem whether smooth interaction of particles in a line
(pairwise or nearest neighbor) can produce the similar effect of hyperbolic
behavior in all of the phase space.
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