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The Rotation Set of a Homeomorphism
of the Annulus is Closed

Michael Handel
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Abstract. We show that the rotation set for any orientation preserving,
boundary component preserving homeomorphism of the annulus is closed. In
particular, if the homeomorphism is area preserving, then the rotation set is a
closed interval.

Introduction

In this paper we show that for any orientation preserving, boundary component
preserving homeomorphism f:A—A of the closed annulus, and for any lift
f:A—A to the universal cover, the rotation set R(f) is closed. This generalizes
work of Aubry [Au-D] and of Mather [Ma] who showed (among other things)
that if f is an area preserving twist map of the annulus, then R(f) is a closed
interval.

We identify A with R x [0, 1] and let p, : A—R be the projection onto the first
coordinate. The covering translation for A is T(x, y)=(x+1,y). For each xeA,
choose a lift X € A and consider lim (p, f*(%)— p,(%))/n. When this limit exists, it is

called the f-rotation number of x and denoted g(f, x); as the notation indicates, it is
independent of the choice of X. Although g(f, x) need not be defined for all x, it is

defined p-a.e. for every f-invariant measure u.

Theorem 0.1. If f: A— A is an orientation preserving, boundary component preserv-
ing homeomorphism and f:A—A is any lift, then:

1. The rotation set R(f)= | o(f, x) is a closed set, where the union is taken over the
domain of ¢.

2. Foreachre R(f), thereis an f-invariant measure p, such that o(f,x)=r for p,-a.e.
x€A.

3. With the exception of at most a discrete set of values r in R([), there is a compact
invariant set Q, such that o(f, x)=r for all xe Q, if r is rational then Q, exists and is
realized by a periodic orbit.
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Remark. 1 do not know any examples for which there exists re R(f) with no
compact invariant set Q satisfying o(f,x)=r for all x€Q,.

Remark. For each x € A, let ¢'(f; x) be the set of accumulation points of {(p, (%)
—pi(X)/n:n=1}andlet R'(f)= U 0'(f, x). Our proof of Theorem 0.1 extendsin a

straightforward way to show that R (F)=R(]).

The proof of Theorem 0.1 can be divided into three parts. Although there are
no pseudo-Anosov homeomorphisms on an annulus, there are homeomorphisms
that are pseudo-Anosov relative to a finite invariant set. The first step in the proof
(Proposition 1.1) is to show that for this special class of homeomorphisms, the
rotation set is a closed interval and that each point in this interval is realized on a
compact invariant set. The proof is a straightforward application of symbolic
dynamics.

The next step is to exploit the fact that a pseudo-Anosov homeomorphism has
the minimal complexity among all homeomorphisms in its homotopy class. We
show (Proposition 1.2) that if ¢ is pseudo-Anosov relative to K, and if f is
homotopic to ¢ relative to K, then the interior of the rotation set for ¢ is contained
in the rotation set for f and that every element of this open interval is realized on
an f-invariant compact set. The proof is a simple extension of the global
shadowing techniques in [H2].

The third part of the proof is to show that if certain limit arguments (taking
Hausdorf limits of w-limit sets) do not succeed in producing an invariant set with
rotation number r, then the pseudo-Anosov techniques of steps 1 and 2 are
applicable. This step is contained in Sects. 2 and 3. The limiting arguments in
Sect. 2, especially the use of the Birkhoff Ergodic Theorem in Proposition 2.3, is
taken from [B-S].

The heart of this paper (Lemma 3.2) is a fixed point result that detects a finite
invariant set K, so that the relative mapping class determined by f and K is
pseudo-Anosov. The proof of this lemma is essentially a subset of the proof of
Theorem 9.1 in [H1]. The techniques from [H1] can also be used to prove
Lemmas 2.1 and 2.2.

1. Relative Pseudo-Anosov Homeomorphisms

We say that ¢: A—A is pseudo-Anosov relative to a finite invariant set K if it
satisfies all of the properties of a pseudo-Anosov homeomorphism (see [T] or
[F-L-P]) except that the associated stable and unstable foliations may have
1-pronged singularities at points in K. Equivalently, let N be the compact surface
obtained from A\K by compactifying each puncture with a boundary circle; let
p:N—A be the map that collapses these boundary circles to points. Then ¢ is
pseudo-Anosov relative to K, if and only if there is a pseudo-Anosov
homeomorphism @: N— N such that ¢pp=p®.

Proposition 1.1. If ¢:A— A is pseudo-Anosov relative to some finite invariant set
K, then each R(§) is a closed interval. For eachr € R($), there is a compact invariant
set Q, C A such that o(¢, q)=r for all g€ Q,. Moreover, if r€int(R(})), then we may
choose Q,Cint(A\K).
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Proof of Proposition 1.1. Let p: N—A and &: N— N be as in the definition of a
relative pseudo-Anosov homeomorphism. We can compute o(¢, x) using @ instead
of ¢ as follows. Let K C A be the full pre-image of K C A. Let N be the infinite cyclic
cover of N obtained from A\K by compactifying each puncture with a boundary
circle, and let j: N— A be the map that collapses these boundary circles to points.
A lift §:A—A of ¢p:A—A determines a lift #: N>N of #: N-N such that
p®=@p. Choose yep~1(x)C N and a lift je N of y; define o(®, y)= lim (p,pd"(§)
—p1by)/n= hj{l (p19"P(5) —p1PP)/n=0(@, x) if this limit exists. "~

Choose a Markov partition of N into topological rectangles {R,, ..., R,} such
that the diameter of each R; and each @(R;) is less than 1/4 and such that each non-
empty ®(R)N(intR;) is connected. Let B=(b;;) be the transition matrix for
@: N— N with respect to this partition; i.e. b;=1 if ®(R)(intR;)+@ and b;=0
otherwise. We say that a sequence S= {s;} of integers 1 <s,<n is admissible if each
b,.,=1. Since B is an irreducible matrix (Expose 10 of [F-L-P]), there is a
constant L so that for any 1 <i, j<n, there is an admissible sequence of length at
most L starting at i and ending at j.

An admissible sequence S={s;:0<i<m} is a partial address for yeN if

@'(y) e R, for 0<i<m. We say that S has average rotation greater thanr if (p, PE"(H)
- plp(y))/m>r for every lift je N of every point ye N that has S as a partial
address. We define average rotation less than r similarly.

Suppose that o(®, y,)=r, <r<r,=o(®, y,) for some y,,y,eN and r,r,,r,€R.
Choose 1 <i, <nso that b, ; =1. By adding admissible sequences of length at most
L to the beginning and end of a long partial address for y,, we construct an
admissible sequence U that starts with 1, ends with i, and that has average rotation
less than r. Similarly we can use y, to construct an admissible sequence V that
starts with 1, ends with i, and that has average rotation greater than r.

Define the infinite admissible sequence S= W, W, W;...by W, =U,by W, =U
if W, W, ... W, has average displacement greater than r and by W, ; =V otherwise.
Choose ye N so that ®(y) e R,, for all i>0 (Expose 10 of [F-L-P]), and note that
|p PP —p, () —kr|is bounded mdependently of k>0. Let Q* be the w-limit set
of the @-orbit of y and let Q, = pQ*. Then o(®, ¢*)=r for all g* € Q* and o(@, q)=r
for all geQ,.

We have shown that R(@) is an interval and that each r e int(R(¢)) is realized on
a compact invariant set. By choosing y,, y, €int(N) and by choosing U and V
sufficiently long, we guarantee that QF Cint(N) and hence that Q,Cint(A\K).

Suppose now that r is the upper endpoint of R(). (The argument for the lower
endpoint is similar.) Choose an increasing sequence r;,—r. We claim that there exist
constants M,>0 so that for any 1<i, j<n, there is an admissible sequence
V=V(,ij)={v.:0=<k<M,} such that:

1. vy=1i,

2. Uy, =],

3. V has average rotation greater than r,,

4. Forall0<!'<land 0<a < M,— M,, the admissible sequence {v,, ..., v, 1 5, } has
average rotation greater than r;.

The construction is inductive. Suppose that we have constructed V(I',i,j) and
M, for all 0<I'<! and all 1<i, j<n. Construct V'(l,i,j)={vi:0<k<M}}
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satisfying (1)~(3) from a long partial address for some y,, , € N satisfying o(®, y;. ;)
=r,,, by adding appropriate initial and terminal sequences of length at most L. If
(4) fails for some I and a, replace {v;, ..., vty } in V(1,i,j) by V(I v,,,va+M,) to
obtain V3(l,i,j). Then V*(l,i,j) also satlsﬁes (1)~3) and if V!(l,i,j) is a partial
address for z, and V?(l,i,j) is a partial address for z,, then p,f®M(z,)— plp(z2)
>p P®MZ,)— p,P(Z,)+ 1/2. After finitely many such replacements we arrive at
V(l,i,)).

Define S to be the infinite admissible sequence S=V(1,1,i;) V(2,1,i,)
V(3,1,ic)... and let y e N satisfy ®'(y) e R,, for all i >0. Define Q* to be the w-limit
set of the @-orbit of y and define Q,=pQ*. Then g(@, g)=r for every geQ,. [

A key dynamical property of a pseudo-Anosov homeomorphism is that it has
minimal complexity among all elements in its mapping class. The following
proposition is another example of this phenomenon.

Proposition 1.2. Suppose that ¢:A—A is pseudo-Anosov relative to K and that
f:A—A is homotopic to ¢ relative to K. If T:A—A and ¢:A—A are lifts that are
equivariantly homotopic telK, then R(f)>int(R(@)). Moreover, for each
reint(R(Q)), there is a compact f-invariant set Q. such that o(f,q')=r for all ' € Q..

Proof of Proposition 1.2. Fix reint(R(¢)). Let p:N—A, #: NN, j: N-»A and
@: N N be as in the proof of Proposition 1.1. Then o(®, y) = o(@, p(»)) for all yeN
at which these limits are defined. Let QFcCint(N) and Q,=p(Q¥) be as in
Proposition 1.1.

For all n>0, there exist F,: N—N and f,: A—A such that pF,= f,p and such
that f=f, on K and on the complement in A of the 1/n-neighborhood of K. (Of
course, if f is well behaved on a neighborhood of K, then there exists F : N— N such
that pF = fp.) Let f,: A— A be the lift of f,: 4— A that is equivariantly homotopic,
relK,to f:A—»Aandto ¢:A—-A4;let F,: N— N be thelift of F,: N — N that satisfies
pF,=7.p. Then F, is equivariantly homotopic to & and o(F,, w)= 11m (p1PF*(W)

—pPW)/k= llm (0, FEp(W)— p1PW)/k=o(f,, p(w)) for all weN on whlch these

limits are deﬁned

We say that the @-orbit of y shadows the F -orbit of w in N if there exist C>0
and lifts , j N so that D(&%(5), F¥(w))< C for allke Z, where D is an equivariant
metric on N. If the ®-orbit of y shadows the F ,~orbit of w in N, then o(®, y)
'_Q(Fm W)

y d(y) &4y

L] L] L] L]
O O O O O

L] L] L] . L]

" () FE (@)

Fig. 1

Let N be the universal cover of N, and let $: N>N and F,:N—N be
equivariantly homotopic lifts of @: N— N and F,: N— N respectively. We say that
the ®-orbit of y shadows the F,-orbit of w in N (this is called global shadowing in
[H2])if there exist C >0 and lifts w, § € N such that D(®X(9), F(w)) < C forallke Z,
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where D is an equivariant metric on N. If the ®-orbit of y shadows the F n-orbit of w
in N, then obviously the @-orbit of y also shadows the F,-orbit of win N. We are
therefore reduced to proving the following lemma.

Lemma 1.3. For all e> 0, there exists 6 > 0, so that if Q* C N is a non-empty compact
¢-invariant set satisfying dist(Q*, ON) > ¢, then for all n> 0 there exists a non-empty
compact F-invariant set Q'*(n)C N such that dist(Q'*(n), ON)> 6 and such that for
aAll w e Q'*(n), there exists y € Q* so that the ®-orbit of y shadows the F,-orbit of w in
N.

Proof of Lemma 1.3. This is a straightforward extension of Theorem 1 of [H2].
The stable and unstable foliations for @ determine a function Dy,,: N x N—[0, o)
(as in 1.4 of [H2]) that has all the properties of an equivariant metric except that
Dio21,2,)=0 when 2, and 2, lie in the same component of the pre-image of oN.
For sufficiently small d,,, the Dy, ,-diameter of a component of the full pre-image of
N,;,(ON) is less than one. In particular, D, (®(2), F,(2)) and Dy, (®~1(2), F,, 1(2)) are
uniformly bounded independently of n and 2. This implies (cf. the proof of
Lemma 2.2 in [H2]) that the constant C used in the definition of shadowing in N
can be chosen independently of y, w, and n. This is sufficient (cf. the proof of
Theorem 2 in [H2]) to imply the existence of Q'*(n) with the appropriate
shadowing properties; it remains to show that dist(Q'*(n), ON) has a lower bound
that is independent of n.

There exists K >0 so that if dist(y, 0ON) > ¢, then Islup Dy (D4®), A)>C +1 for

k| <K

every lift § of y and component A of the pre-image of dN. Choose 6 >0 so that if
we N4(0N), then Fiw)e N, (ON) for all |k|<K and all sufficiently large n. [J

2. The pA Hypothesis

Throughout this section f: A— A is a fixed lift of a fixed homeomorphism f: A—A;
we will write o(x) for o(f; x). Most of the results in this section are contained in
[B-S].

Lemma 2.1. Suppose that ¢(x) is defined and that Y is the w-limit set of x. Then
either 9(y)=g(x) for all y € Y, or there are periodic orbits in A with prime period and
with rotation numbers arbitrarily close to o(x).

Proof of Lemma 2.1. If the lemma fails, then (cf. Theorem 6.19 of [Wa]) there
exists a point y € Y such that g(y)#¢(x). For concreteness, assume that g(y) > g(x)
and choose g(y)> p/q> o(x). We will show that there exists a periodic point ze A
such that o(z)=p/q.

Let k=T ?f4:A—A. Then lim ph"(j)=co0 and lim p,h"(X)= — oo for any
lifts § and X of y and x. Fix ¢>0. For each i>0, choose lifts j; of y and %; of x
and choose segments Y,={h(j):a;<j<b;]} of the h-orbit of j and
X,={W(%):c;<j<d;} of the h-orbit of %; such that
1. pih*(F) < —10},

2. ph*(F)>10',
3. dist(h(3)), h(X)) <e,
4, dist(h*1(,, 1), h%(X,) <e.
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The e-pseudo-orbit Y, X, Y, X, ... hasaccumulation points, so by [Fr], h has a fixed
point Z. Let z€ A be the pIO_]CCted image of Z. [

Lemma 2.2. Suppose that Y, is an w-limit set, that o|Y;=r;—r, and that Y,— Y in the
Hausdorf topology on closed sets. Then either g|Y =r or there exist periodic orbits in
A with prime periods and with rotation numbers arbitrarily close to r.

Proof of Lemma 2.2. The proof is similar to that of Lemma 2.1 and is left to the
reader. []

We say that r satisfies the pA-hypothesis if there are periodic orbits X ;, a closed
invariant set X, an invariant measure y with support in X, a (not necessarily
invariant) set BC X of positive u-measure and &>0 such that
(pA-i) X;— X in the Hausdorf topology.

(pA-ii) Either o(X,)<r<r+e<p(b) for all be B and all sufficiently large i or
o(X))>r>r—e>g(b) for all be B and all sufficiently large i.

This definition is motivated by Lemma 3.1 and the following proposition.

Proposition 2.3. For all r in the closure of R(f), one of the following holds:
1. There is a compact invariant set Q such that 9(q)=r for all g€ Q.

2. There is an f-invariant measure u such that o(x)=r for u-a.e. xeA.

3. r satisfies the pA-hypothesis.

Moreover, the set of values of r that satisfy (2), but not (1) or (3), is discrete.

Proof of Proposition 2.3. Lemmas 2.1 and 2.2 imply that either (1) holds or there
exist periodic orbits X; with o(X;,)=r,—r. After passing to a subsequence, we may
assume that {X;} converges in the Hausdorf topology to a closed invariant set X
and that the unique invariant measure y; on X; converges in the weak-star
topology to an invariant measure p with support in X.

Let g: A—A be the displacement function g(z)=p, f(£)— p,(8), where Z€ A is

n—1
any lift of ze A. Then ¢(z)= lim (1 /n)( Y g(f "(z))) and the Birkhoff Ergodic
n—» oo k=0
Theorem implies that j" gdy;= j odp;=r; and that j gdu= j odu. Since y;—u in
the weak-star topology, j gd,u,—-»j gdu. We conclude that jgdu r. Either

o(x)=ru-a.e. or r satisfies the pA- hypothes1s

It remains to show that the set D of points in the closure of R(f) that satisfy (2)
but not (1) or (3) is discrete. Suppose that ;e D and that r;,—r. We will show that
r¢D. Lemmas 2.1 and 2.2 imply that there are periodic orbits Y; such that o(Y)—r.
We may assume without loss that {Y;} converges in the Hausdorf topology to a
closed invariant set Y. If | Y =r we are done. We may therefore assume that there is
an invariant measure v with support in Y such that | gdv=r (cf. Theorem 6.19 of

Y

[Wa]). Suppose for concreteness that each r;<r; the case r;>r is similar. If
[ edv<r, then r; would satisfy the pA-hypothesis for all sufficiently large i. Thus
Y

{ odv>r and r satisfies the pA-hypothesis. []
Y
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3. Proof of Theorem 0.1

As in Sect. 2, f:A—A is a fixed lift of a fixed homeomorphism f:A—A and we
write g(x) for o(f; x). The results in Sects. 1 and 2 reduce Theorem 0.1 to the
following proposition.

Proposition 3.1. If r satisfies the pA-hypothesis, then there exists n>0, an f"-
invariant finite set K and a homeomorphism ¢ : A—A such that:

1. ¢ is pseudo-Anosov relative to K,

2. ¢~f"relK,

3. nreint(R(Q)), where ¢: A—A is the lift of ¢ that is equivariantly homotopic to
7 relK.

The following lemma is the heart of this paper. Its proof is postponed until after
the proof of Proposition 3.1.

Lemma 3.2. Suppose that r satisfies the pA-hypothesis. Then there exist f-periodic
orbits Y, and Y, that have distinct prime periods and that satisfy the following
property: for any homeomorphism g: A— A that is homotopic to f relative to Y;UY,,
there is a g-periodic orbit Z such that either 9(Z)<r<g(Y,), o(Y,) or o(Yy), o(Y3)
<r<o(2).

Proof of Proposition 3.1. Let Y, and Y, be as in Lemma 3.2, let N be the compact
surface obtained from A\(Y;uY,) by compactifying each end by a circle and let
p:N—A be the quotient map.

The restriction f|(A\(Y,uUY,)) determines an element u of the mapping class
group of N. If  is a pseudo-Anosov class, definen=1, K=Y,uY, and ¢ =pPp~ !,
where @ is a pseudo-Anosov representative of p. Properties (1) and (2) are
immediate. Property (3) follows from Lemma 1.1.

If u were a finite order class, then it would have a representative G: N—>N
whose projected image g=pGp~':A—A was conjugate to a rigid rotation (see
[H3], for example). Since Y; and Y, have distinct periods, this is impossible.

We may therefore assume that p is reducible [T]. Choose a reducing set I for y;
i.e. a disjoint union I'={y,, ..., y,} of non-peripheral, non-parallel, simple closed
curves in N that is setwise preserved by a representative G: N—N of p.

We first observe that for each 1<j<k, G setwise fixes y;. If y; separates the
components of JA then this is immediate. If y; bounds a disk D; in A, let [; be the
smallest positive integer such that G4(y))=7;. If ;nD;+0, then the period of ¥, is
the product of [; with the cardinality of ¥;nD;. The claim now follows from the fact
that the periods of Y; are distinct primes.

We next observe that each y; separates Y; from Y,. If y; separates the
components of JA, then this follows from the fact that y; is non-peripheral. If y;
bounds a disk D;, then D; cannot intersect both Y; and Y, since these orbits have
distinct rotation numbers. By our first observation, D; contains Y; if it intersect Y.
Since y; is not null-homotopic in N, y, separates Y, from Y,.

The five possible configurations for I are shown below; the components of
A\I" whose union contains Y, uUY, are labelled 4, and 4,.

Let P be the union of small product neighborhoods of the y;’s. Let N; be the
component of N\P corresponding to 4;, We may assume that I" is a maximal
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reducing set and hence that the element of the mapping class group of N;
determined by G|N; is irreducible. Let H;: N;— N, be a representative of this class
that is either pseudo-Anosov or finite order. Then UH;: UN,;—>UN;, extends to a
homeomorphism H:N—N whose nonwandering set is contained in UN,. Let
H:N-N be the lift of H: N— N determined by f: A—A. Denote {o(H,x): xe N;}
by R(H)).

(d) (e)
Fig. 2

We consider the five possibilities. In Figure (3.1-a), 4, and A4, are annuli and
R(H)=R(H,)UR(H,).1f H,is finite order, then R(H ;)= o(Y;). Thus either H, or H,,
say H,, is pseudo-Anosov and reint(R(H,). Define n=1, K=Y, and
¢=spH,p~'s™ !, where s: A, > A is a homeomorphism that is homotopic to the
identity relative to Y;.

In Figure (3.1-b), A, is an annulus, 4, is a disk and N, is a three times
punctured sphere. Since H;: N;— N5 setwise preserves the components of N,
H; =identity. Moreover, o(H,z)=0o(Y,) for all ze N,. Thus R(H)=R(H,)ug(Y,)
and the proof concludes as in the previous case.

In Figure (3.3-c), A, and A, are disks while N; and N, are three punctured
spheres. Thus R(H)=g(Y;)ue(Y,) which is impossible.
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In Figure (3.3-d), 4, and A, are disks, N is a four times punctured sphere and
R(H)=R(H)uo(Y;)uo(Y,). As above, H, is pseudo-Anosov and reint(R(H ).
Let n be a multiple of the periods of Y; and Y, and let y;e€ Y;, i=1,2. Let N’ be the
surface obtained from A\{y,,y,} by compactifying each end with a circle, let
p': N'— A be the quotient map and let u’ be the element of the mapping class group
of N’ determined by f"|(A\{y, y,}). There is a homeomorphism s: N;— N’ so that
sH%s™' is a representative of u'. Define K={y,,y,} and ¢=p'sH3s™'(p")~*.

In Figure (3.3-¢), A, is a disk and R(H)= R(H ) + o(Y;). The proof concludes as
in the previous case with K=Y,u{y,}. [

The proof of Lemma 3.2 relies on the “homotopy Brouwer Theory” developed
in [H1]; see in particular the proofs of Theorem 9.1 and Theorem 4.4 in [H1].

Proof of Lemma 3.2. Let (X, X, u, B, ¢) be as in the definition of the pA-hypothesis.
For concreteness, we assume that each Q(X )<r the case o(X;)>r is analogous.
Choose r<p/q<r+e¢ and let h=T " ?f4: A-A.

Lemma 3.3. For all D> 0, there exist >0, ,, ,€A and m, n>0 so that:
(i) §; covers a point in some Y;=X,, j=1,2,

(i) dist(¥,, y,) <9; dist(h™(§1), h~"(§)) <9,

(iii) R(N§(F)ONo(71)=0; h(Nh"(F))ON(h"(F1) =9,

(iv) dist(¥,, h"(7,))>D,

h‘“(?z)

Y2
% h 9 h
>D

Fig. 3

Proof of Lemma 3.3. Let BC X CA be the full pre-images of BC X CA and let ji be
the measure on X determined by p. Since ¢|B>p/q, we may assume, after
restricting to a subset of Bif necessary, that there are constants D'>D>0and 6 >0
such that:

1. p,hi(B)>p,(b)— D’ for all i>0 and he B,

2. dist(h(z),z)<D’/3 for all z€A,

3. W(N,5b)nB)"N,,b)=0 for all i>0 and be B,

4. h(N,4b))NN ,5b)=0 for all beB.

(o]
A
.Bko-lo B1 Bo
. 5
Yy b
K" (b)

Fig. 4
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Choose by e B so that i(N,,(bo)nB)> 0. Since B is contained in the Hausdorf
limit of the Xs, there exists Y;=X;, y,€Y;, and a lift j; of y, such that
dist(¥,, bo) < 5/2 If a is a positive multiple of the period of y,, then h%(J,)= T ~4(¥,)
for some d > 0. By choosing a to be sufficiently large, we may assume that d > D'
Let By=Nj,)nB and let B,=T "(B,)=N,T "“5,)nB=N,h"§,)nB. Each B,
has the same ji measure, say ¢>0. Properties (2) and (3) imply that the forward
orbit of B, intersects C=p; }([p,(7,)— D', p,(¥,)+ D']) in a set of /i measure at least
c. Since fi(C) is finite, the forward orbits of the B;’s can not all be disjoint. By
property (1), the forward orbit of B, is disjoint from B, for all k> I. Thus the forward
orbit of Bk intersects Bj, for some k, > lo. Since h commutes with T, the forward
orblt of Bk0 1, intersects Bo Choose be B, and n>0 so that h~ "(b)eBkO I Let

=(kg—lo)a. Then dist(b, j,) <4, dist(h="(D), h™(,)) <6 and dist(§,, h"(¥,))> D.
Smce b is contained in the Hausdorf limit of the X s, there exists Y, = X i V2EY,
and a lift j, of y, that is so close to b, that dlst(yz,y1)< 6 and dist(h~"(§,),
FrF))<s. O

Let R=sup{dist(h(z),z): ze A} and apply Lemma 3.3 with D = 5R. Denote the
h-orbits of , and j, by @, and 0, respectively. Suppose that g: A — A is homotopic
to f relative to (Y;uY,), and that h': A—A is the lift of g that is equivariantly
homotopic to k relative to (0, u0,). Since fixed points of &’ correspond to periodic
points of g with rotation number p/q, it suffices to show that Fix(/'|(int(A)) 0. We
will assume that Fix(#'|(int(A)) =0 and arrive at a contradiction.

An arc aCint(A) connecting x to h(x) is called a homotopy translation arc for x
with respect to (h, 0, U0,) if there is a homotopy F,:int(A)—int(A) such that:
1. Fy=identity,

2. F(O(x)u0(y))=identity, te[0,1],

3. Fi(h(@))no=h(x).

Note that if #':int(A)—int(A) is homotopic to h relative to @, U@,, and if a is a
homotopy translation arc with respect to (h, @;U0,), then « is also a homotopy
translation arc with respect to (', 0, L0,).

Let tC Ny(¥,) be an arc connecting j; to 7i,. Let ¢ C Ng(¥,) be an arc connecting
7, to h(7,). Then h™*(g)uguh(e) C N ,x(¥,) and h(zr)nt=0. It follows (cf. Corollary
4.5(c) of [H1]) that there is an arc yC N,x(j,) that contains j, Uy, and that is a
homotopy translation arc for y, with respect to (h, 0, U@,). Similarly there are arcs
aCN,x(h"(#,)) and BCN,x(h~"(7,)) that contain A™(j,)Uh~"(j,) and that are
homotopy translation arcs with respect to (h, O,00,) for h™(j,) and h™"(j,)
respectively. Note that anf+0 and that (xwpf)ny=0@. This contradicts
Corollary 4.5(a) of [H1]. O

Acknowledgement. I am grateful to Dick Hall for bringing this problem to my attention through
his problem list [Hall].
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