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Abstract. We study the non-relativistic Coulomb problem on a cone. The
non-trivial topology of the cone breaks the symmetry associated with the
conservation of the Lagrange-Laplace-Runge-Lenz vector. Classically this
translates into a precession of the orbits, and quantum-mechanically into a
splitting of the energy levels. For the scattering problem we find that classical
multi-scattering is possible and that it gives rise to a wake structure; we also
evaluate the full quantum wave function and from it recover the classical results.

1. Introduction

There has been considerable interest recently in the problem of scattering, both
classical and quantum, by a cone [1-3], that is the behaviour of geodesies or
solutions of the Klein-Gordon or Schrόdinger equation in the background metric

ds2 =-dt2 + dz2 + dr2 + r2dφ2, (1.1)

where

π —

and δ is the deficit angle of the cone. The purpose of the present paper is to extend
this work to the case when a Coulomb potential of the form

V=-j (1.2)

is present. Such a term may arise in a number of contexts including:

1. The induced electrostatic repulsion experienced by a particle with electric charge
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e brought up to a cosmic string [4], the constant K in (1.2) being given, for small
deficit angles, by

This effect may be important when considering the Callan-Rubakov effect for
cosmic strings [5].

2. The induced gravitational attraction experienced by a particle of mass m when
brought up to a cosmic string [6], the constant K in (1.2) being given, for small
deficit angles, by

This effect is specially interesting because the metric outside a cosmic string is
locally flat and the usual Newtonian potential U = ^ln( — g00) is constant.
Nevertheless there is an induced attraction which, since δ = 8πGT, T being the
energy per unit length of the string, is second order in Newton's constant G.

3. The slow scattering of two parallel Nielsen-Olesen vortices in the critical case
when the Higgs and vector masses are equal has been recently shown to be
describable as a geodesic motion on a curved "moduli space" which has the
geometry (for large separations) of a flat cone with deficit angle δ = π [7,8]. If the
masses are not equal there will be forces between the vortices. The nature of these
forces is not well understood but one might anticipate Coulomb-like terms.

4. More speculatively, recent work on quantum gravity in 2 + 1 dimensions has
involved quantum scattering on cones [1,9]. In this connection the induced second
order attraction described may be of interest.

One final motivation for studying the problem is that we have an exactly
solvable problem which allows a detailed investigation of the interaction between
the so called "topological" effects due to the conical boundary condition with the
long range scattering effects due to the Coulomb term. For example, it is well
known that the conventional Coulomb problem exhibits "hidden" or "dynamical"
symmetries which lead to degeneracies in the spectrum. We are able to study in
detail how these degeneracies are split by the topological effects.

In what follows we shall mainly be concerned with the classical or quantum
non-relativistic motion. For ultrastatic metrics like (1.1) (i.e. with g00 = constant,
gOi = 0) and no potential term the relativistic motion does not differ significantly
from the non-relativistic motion. Now, if potential terms are present this is no
longer true. For example, even without the cone, special relativistic effects cause
a precession of the perihelion for Keplerian ellipses. However, in the applications
we have in mind it is unlikely that the simple Coulomb-like term (1.2) would remain
valid if the motion were significantly relativistic. For this reason we will merely
mention "en passant" the effects of special relativity. We hope in a future paper
to consider the effects of spin.

The plan of the paper is as follows. In Sect. 2 we shall consider the bound



Non-Relativistic Coulomb Problem on a Cone 297

states, for which the constant in (1.2) is positive. Classically—projected on the
(r, φ) plane—we obtain precessing ellipses with one focus the vertex of the cone.
The conical geometry implies that if δ Φ 0 the classical Lagrange-Laplace-Runge-
Lenz vector ceases to be well defined. Quantum-mechanically we obtain, by
separation of variables in cylindrical coordinates, the spectrum of bound states
and show how the conical geometry breaks the dynamical SO(3) symmetry down
to 0(2). In Sect. 3 we consider the choice of an appropriate incoming state for the
scattering in the absence of a Coulomb term and comment on its related wake
structure. Section 4 contains our treatment of the Coulomb scattering, both classical
and quantum. As is well known, the long range nature of the Coulomb potential
leads to a divergence in the differential cross-section in the forward direction. We
find that in the conical case the divergence persists but is shifted by the deficit
angle. Finally, Sect. 5 contains our conclusions.

2. Bound States

2.1 Classical Bounded Motion. We shall be concerned with the motion of a particle
of mass μ in the potential (1.2). The most direct way to obtain the classical orbits
is probably using the Hamilton-Jacobi method. We have

dx" Aa ΛβdS
u \- A — a β

μ dλ 9 dxβ'
where Aa= - δlK/r and

9 dx* ΊhS = ~ μ '

Making the Ansatz (ignoring the z-motion)

S = p°t + jφ+W(r)

we find that

fdr^2

and

2dφ
r 7T =

dλ

Defining u = ί/r allows us to deduce that

d%J+"2 = ] ψ ί i p Ύ ~μ2+2Kp°u+KV] {2Λ)

The solutions of (2.1) are

Kp°
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If K > 0, i.e. the force is attractive, and (p0)2 < μ2 then u will be bounded below
by a positive number and hence r will be bounded above. These are the classical
bounded motions. They are periodic in φ with period

2π

Since φ is periodic with period 2πα the orbits are not in general closed, rather
they are rosette shaped—the periapsis advances by an amount

\
Δφ = δ + 2π

per revolution.
In the non-relativistic limit we set p° = μ + E and expand in inverse powers of

the velocity of light (which has been set to unity above). The orbit is now given by

Φo) (22)

and the advance of the periapsis now becoming simply given by Δφ = <5, as one
might have supposed without calculations.

If the motion is relativistic we also have bounded motions with K2 > j 2 which
start from and finish at the vertex. We shall not discuss them further here.

It is well known that the existence of closed orbits in the non-relativistic flat
space Kepler problem is associated with the existence of an extra conserved
quantity, the Lagrange-Laplace-Runge-Lenz vector, discovered originally by
Lagrange [10]. It is thus of some interest to enquire about the fate of this vector
in the case that δφO and the orbits do not close. In the flat coordinates

~x = (r cos φ, r sin φ) (2.3)

the equation of motion is

μϊc= 3 3c. (2.4)

The conserved angular momentum vector points along the z-axis and has the value

L z = μx x 3c. (2.5)

The Lagrange-Laplace-Runge-Lenz vector M is given by

M=icx L-K~, (2.6)
\x\

and hence lies in the 3c plane. Now if we pass to the cone, Eqs. (2.4), (2.5), (2.6),
remain true locally and hence formally M is still conserved. However, unlike Lz

which is a scalar and thus well defined on the cone, the components of M are no
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longer globally well-defined functions on the cone (they are periodic and non-
constant with period 2π in φ rather than 2πα). Thus their formal conservation no
longer guarantees the closure of the orbit.

Similar remarks apply to Hamilton's equivalent but less well known formulation
of the extra symmetry in terms of the "hodograph." The hodograph of a motion
3c = ~χ(t) in R2 is the associated curve in velocity space U = ~v(t). For Kepler motion
Hamilton [11] observed that the hodograph is, in general, a circle with its
centre displaced from the origin. The reader may easily establish this property
using M. However, the very definition of the hodograph depends on being able
to parallel transport the tangent vector to the orbit to some fixed point in IR2. For
flat Euclidean space this parallel transport is unambiguous. On the cone, however,
the holonomy is non-trivial: it depends on how one encircles the vertex. The
inability to define a global Lagrange-Laplace-Runge-Lenz vector is analogous
to the inability to define total momentum or total supercharge in an asymptotically
conical background [12,13].

2.2 Quantum-Mechanical Bound States. From a quantum-mechanical point of view
one is interested in finding the bound states of the system, which amounts to
solving the eigenvalue equation Hφ = Eφ, or equivalently

" 1 d ( d\ Id2 2μK 2~|

where we have introduced the notation k2 = — 2μE. The boundary conditions on
the wave-function φ are, on the one hand, the standard requirements of fmiteness
at the origin and convergence to zero at infinity, and on the other, that φ has to
be periodic in φ with period 2πα,

To solve Eq. (2.7) we make the Ansatz,

ψΛ(r, φ) = - ± = eim^R(r% m = 0, ± 1, ± 2,..., (2.9)

which already takes care of condition (2.8). Substituting Eq. (2.9) into (2.7) and
solving the resulting differential equation for R(r) we obtain that the only solution
which satisfies the required boundary conditions at the origin and infinity is

where Wλβ(z) is Whittaker's function, and Q = μK/k and |m|/α are related by

— = Q-l-h 1 = 0,1,2,.... (2.10)

From this last equation it follows that the energies of the bound states are
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Έ ί \ r r\ I

2N + —•
(2.11)

When condition (2.10) holds WQ^myx(2kr) can be written in terms of the Laguerre
functions Li

2|"l|/α(2fcr):

2/c3 /! 1/2

where we have introduced a normalization constant so that

2πα

# ί rdrψ^ir, </#α,,m(r, </>) = διvδmm,.
o

In order to have a well-defined Schrδdinger eigenvalue problem the hamiltonian
has to be self-adjoint. This amounts to specifying its domain, that is, the space of
functions on which it acts as a self-adjoint operator. In general, this domain will
not be unique. For example, in the case of the cone without potential there is a
whole one-parameter family of them [14], corresponding to different behaviours
of the wave function at the origin. In our case, the conditions of boundedness at
the origin and vanishing at infinity ensures that the hamiltonian is self-adjoint on
the function space spanned by φatιm(r, φ). This follows from the fact that condition
(2.10) implies that

If the deficit angle is zero we have α = 1, which corresponds to the plane; then
the energy levels only depend on the quantum number n = l + \m\ and have
degeneracy In + 1. This has to do with the fact that, apart from H, there are three
conserved quantities, namely the angular momentum and the two components of
the Lagrange-Laplace-Runge-Lenz vector. The Poisson algebra for bound states
is 50(3). The bound states are degenerate and carry the spin n representation of
SO(3). However, when α # 1, this symmetry breaks down and we are left with a
residual 0(2) symmetry since now the only conserved quantity is the angular
momentum, whose quantum number is m. The splitting of the levels for small δ
can be found by expanding (2.11) in powers of δ,

n = 0,1,2,..., m = — n, — n + 1,..., n.

Before closing this section let us make one more comment. Speaking of bound
states only makes sense for attractive potentials (K > 0). This is precisely the case
of the gravitationally induced potential by cosmic strings mentioned in the
introduction, for which K is quadratic in Newton's constant G. This amounts to
saying that we are dealing with quantum gravitational effects quadratic in G.
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3. Choice of Incoming State for Scattering

We now turn to the problem of the scattering on a cone with and without a Coulomb
potential. It will be convenient to discuss the problem in the "wedge" representation
of the cone as described by Eq. (1.1).

To study the classical scattering without a Coulomb potential, consider a
particle approaching the cone from the φ = 0 direction. Hence, in the "wedge"
representation, the initial position of the particle can be taken to be (xθ9yo) with
xo-> + oo. The initial velocity is — vex and v > 0. As noted before, the metric is
locally flat and the trajectory of the particle is simply c(ί) = (x0 — vt)ex + yoey. This
is valid until the particle has an angular coordinate φ = π — δ/2 for y0 > 0 or
— π + δ/2 for y0 < 0. At this time the identification of the lines φ = π — δ/2 and
φ = —π + δ/2 must be used and the trajectory of the particle must be continued
across the wedge. This leads to a scattering angle given by

φs = φout — φin = (nsδ — π)\_Θ(yQ) — Θ( — yo)\

where Θ(y0) is Heaviside step function and ns is the number of scatterings
that the particle undergoes in the wedge representation. In other words, ns is the
smallest positive integer such that

— π + - ^ φs(moά2π) ^ π — -. (3.1)

This condition tells us that there are critical values of the deficit angle δ at which
ns changes by unity. Introducing δ = 4πη, with 0^f/^l/2, Eq. (3.1) can be
rewritten as

1 / n\ 1 / n\ 1 /1 \

-21 (3.2)

where q = 0,1,2,.... The smallest ns satisfying (3.2) is

nβ = g + l = 1,2,3 (3.3a)

and corresponds to

hzλ.<η^-^—. (3.3b)
2ns - 1 2ns + 1

This equation tells us that for deficit angles between 0 and 4π/3 the particle will
be scattered once, twice for δ between 4π/3 and 8π/5, and so on. Note that this
solution does not depend on the impact parameter in any way. This will not remain
true when we consider Coulomb scattering.

Next consider a continuous stream of particles with various impact parameters
scattering off a cone with δ < 4π/3. In the region — π + δi^φ^π — δ (Region I
in Fig. 1), the particles are all moving in the — x-direction as prescribed by the
incoming state. In the region π — δ^φ^π — δ/2 (Region II), however, there are
two streams of particles. One of these streams arises due to the particles that started
with y0 > 0, and the other stream is due to the particles that started with y0 < 0
but got scattered into Region II by the cone. This means that the number density
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Region I

Fig. 1. Wake structure for deficit angle δ = π/3 in absence of potential

of particles in Region II is twice that in Region I. Similar considerations apply to
Region III given by — π + δ/2 ^ φ ^ — π + δ. The overdense wedge-like region
formed by Regions II and III is known in the cosmic string literature as
a "wake" [15].

The structure of the wake depends on the choice of the initial state of the
particles. As an example, for cosmic strings moving through a primordial plasma,
it seems reasonable to choose the particles to be initially streaming in the
- x-direction in the rest frame of the string. Although the initial state could be
different in other physical problems, we feel that it is most suitable to take the
initial state corresponding to the one for cosmic strings. In that case, we should
always get a result that exhibits a wake structure. In particular, the quantum
mechanical Coulomb scattering should also lead to a wake.

A number of authors [2,16] have considered the quantum mechanical scattering
problem on a cone without a potential and with an incoming state

exp (— ikr cos (0/α)). (3.4)

This incoming state is to be understood as follows: Let us embed the cone in U3

with the z-axis as the axis of symmetry of the cone. Then (3.4) represents an
incoming wave on the cone that looks like a plane wave when projected on the
xy-plane.

The local momentum operator in the incoming region on the cone is
~P = — ί(dx,3y), where {x,y) are given by Eq. (2.3). Acting on (3.4) it gives

px= — k\ cos (φ/oi) COS φ + - sin (φ/oc) sin φ \.
L « J

Clearly, (3.4) is not a momentum eigenstate.
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In what follows, we shall always choose the incoming state to be

exp (— ikr cos φ). (3.5)

This initial state can be understood as a plane wave on the cone, after the cone
has been flattened out as in the wedge representation. In other words, the wavefronts
are straight lines parallel to the y-axis in the wedge representation. The local
momentum operator acting on (3.5) gives px= —k. Hence (3.5) is indeed an
eigenstate of the local momentum operator and corresponds to the incoming state
that we have considered in the classical scattering case. This choice also agrees with
the choice of't Hooft [1] and so we can directly compare our results with those
of [1].

4. Coulomb Scattering

4.1 Classical Scattering. We can discuss the classical Coulomb scattering of a
non-relativistic particle by making use of the trajectory given in Eq. (2.2).
The asymptotic (u-+0) values of φ are given by cosiφ^ —φo)= ±e~1

9 where
e = yj\ +4E2b2/K2 is the eccentricity, b is the impact parameter, defined as
j = μvb, v being the velocity, and φ 0 is the angle of the periapsis direction. The
plus sign corresponds to the repulsive case, and the minus to the attractive one.

First let us consider the case of an attractive potential (K > 0). The scattering
angle is defined by φs = 2(φO0 — φ0) + nsδ - 2π, where π/2 < φ^ - φ0 < π. Then,

_2Eb\

V
= 2arctan( - - — \ + nsδ-2π,

with the understanding that the arc-tangent lies in the second quadrant and we
are restricting our attention to b > 0. As before, ns is the smallest positive integer
such that - π + δ/2<φs(mod2π)<π-δ/2. Introducing 2πβ = 2arctan(-2Eb/K)9

with \/2SβS 1, we have

2ns-l = η 2ns+l

where q is a non-negative integer and δ = 4nη. Its solution is attained for q = ns — 1,
which corresponds to

Notice that now the range of η for which we have multiple scattering depends on
the impact parameter also. In Fig. 2 we show the regions of the (η, β) plane that
correspond to n s = 1,2 and 3. The critical values of δ for which the number of
scatterings changes by one are obtained from (4.1) by taking β = 1 (b = 0).

The classical scattering cross-section is given by

K
''ΪE

db

dφs
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1/2
1/3 2/5 3/7 1/2

Fig. 2. Values of the deficit angle and the impact parameter for which the particle undergoes single,

double and triple classical scattering in an attractive potential

1.0E+04

i.aε+00

Fig. 3. Classical scattering cross-section for δ = 5π/6 and K > 0. In plotting we have chosen K/4E = 1

where the sum is over trajectories with b < 0 and b > 0. As an example, we plot
(Fig. 3) σ(φs) versus φs for φs < 0 and δ = 5π/6. The discontinuity at φs = — π/3 is
a consequence of the double scattering (ns = 2) of particles with small impact
parameters.

We now turn our attention to the case of the repulsive (K < 0) Coulomb
potential. Once again the scattering angle is

, ^ ( 2Eb\
φs = 2 arctan I — + nso,

\ κ /
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where the inverse tangent lies in the first quadrant (b > 0). Here, too, we find ns

by requiring — π -f- δ/2 < φs(mod 2π) < π — δ/2. But now ns = 0 is an acceptable
value. We will not discuss the solutions in detail here but will restrict ourselves to
a few comments. We find that now ns = 1 for large b and ns = 0 for small b, if
(5<4π/3—the critical value in the absence of any Coulomb potential. For
4π/3 < δ < 8π/5, the particles with large b get scattered twice (ns = 2) but the
particles with small b still undergo single scattering (ns = 1) and the particles with
even smaller impact parameter do not get scattered by the wedge (ns = 0). In
fact, the particle with zero impact parameter never undergoes any scattering by
the wedge. This is just the opposite of the case of the attractive Coulomb potential
where we got multiple scattering for zero impact parameter. The critical values
for the deficit angle are obtained when the impact parameter is infinite and are
the same as for the case of absence of potential.

In the preceding non-relativistic analysis we did not get any "rainbow"
scattering or "glory." We have observed that such phenomena do occur when we
carry out the relativistic treatment. We plan to study the relativistic particle in a
separate publication.

4.2 Quantum Scattering. The non-relativistic quantum scattering is governed by
the Schrόdinger equation

where k2 = 2μE and E is an arbitrary positive energy. We are interested in finding
a solution φa to Eq. (4.2) that is regular at the origin, satisfies φa(φ) = φa(φ + 2πα)
and at infinity can be interpreted as the superposition of an incoming Coulomb
wave and a scattered piece. To find such a solution φa we use the same method
as 't Hooft [1], originally introduced by Sommerfeld [17] to study the classical
scattering of electromagnetic waves by a cone. It consists of the following two
steps: first solve the scattering problem in the plane with a cut, and second, take
care of the periodic boundary condition φa(φ) = φa(φ + 2πα).

We will first treat the attractive case, K > 0.
So then consider Eq. (4.2) in the plane with a branch cut, which we assume to

be along the negative real semiaxis, and call its solution φc. Because we have a
cut at φ = π, the incoming wave at early times is only defined for | φ \ < π. It then
follows that φc has to represent an incoming plane wave as r-* oo and \φ\<π. It
must also reproduce a Coulomb scattered wave as r -> oo and π < | φ I <̂  2π. This
behaviour can be easily understood using the classical picture: the orbit of a particle
approaching the scattering centre is bent because of the attraction of the potential
and ultimately will cross the cut onto the next sheet. Now back scattering
corresponds to φ = \2π\.

To construct φc we start by noticing that

ψ^r, φ) = exp ( - ikr cos φ) Φ(iQ, \\ 2ίkr cos2 (φ/2))9

with Φ(a, b; z) the confluent hypergeometric function and Q = μK/2, is a regular
solution to (4.2) for all r and φ. This is precisely the solution for the plane (without
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the cut) and has asymptote

Φ1 (r> Φ) * *Ain(r> Φ) + !^sc(r> Φ) > (4*3)

f~* 00

where

πe-*e / 2

/πe

<Ain(r> Φ) = ta ΠΛ e χ P ( - ί k r cos Φ - i(2ln (2kr c o s 2

is an incoming Coulomb wave, and

x P< ι 7 c r + ̂ ln(2fcrcos2(φ/2)))
{ ]

is an outgoing cylindrical wave with a long range Coulomb correction. Note that
the scattered piece has the usual forward (φ = π) singularity, due to the long range
nature of the Coulomb potential. It is convenient to write φx as

φ), (4.6)

where

F ( r ' ^ } = X i _ ; 0
 e x P ( - i k r c o s Φ) ψVQ> 2; 2ifcr cos2 (φ/2)),

ιJπe~πQ

G(r, φ)=- ^ eik' Ψ(i - iQ, \; - 2ikr cos2

and Ψ(a, c; z) is

Ψ{a,c;z)= J'iί~C2..Φ(a,c;z) + Γ{^~ί) zι-cΦ(a-c+l,2-c,z).
1 (a — c + 1) 1 (a)

The reason for the splitting in (4.6) is that the asymptotes of F and G for large r
are precisely φin and ι̂ sc:

F(r,φ)r-zZψia(r,φ), G(r,φ)^ψsc(r,φ). (4.7)

For φc we now write

_ι I J _ l '> ' ' ι x ' '

where CUC\ and C 2 and C 2 are the contours depicted in Fig. 4. From the fact
that G(r, φ) is periodic in φ with period 2π and that (4.5) solves (4.2) it follows that
each of the terms on the right-hand side of (4.8) is a solution of (4.2), and so is
(4.8). It still remains to prove that it has the required behaviour at infinity. To do
that we re-arrange (4.8) as a sum of integrals around the poles of the integrands
and along the horizontal lines of Cί9C'ί and C2,C2'.
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Fig. 4. Contours of integration in (4.16)

c(r,φ) = F(r,φ)Θ(π-\φ\)

+ G(r,φ)[Θ(2π-φ)-

with

and

- π - φ)- Θ(- 2π -

(4.9)

Xc(r, Φ) = Xi(r, φ + π)-χ1{r,φ-π) + χ2(r, φ + 2π)- χ2(r, φ - 2π) (4.10)

(4.11)
i -oo x + iφ

+ °° dx

i (4.12)

The asymptotes of the JF- and G-terms on the right-hand side of (4.9) are already
given in (4.7); that of χc is (see the Appendix for its derivation)

Jkr 1 1

ίQln(2kr))( 1

\φ-2π/2ίkr 2πf
(4.13)
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A and B being β-dependent constants,

Λe«°>2exp(ig(l -InQ))

That (4.8) has the required behaviour at large distances is immediate from Eqs.
(4.9), (4.7) and (4.13).

Having solved the scattering problem in the plane with a cut it is easy to find
the solution for the cone; it is given by

Ψ*(r,Φ)= Σ Ψe(r,Φ + 2πm). (4.15)
n= — oo

It is a solution of Eq. (4.2) beause it is a sum of solutions, and it obviously satisfies
φa(φ) = φΛ(φ + 2πα). It can be written as a contour integral,

-4
(4.16)

Its asymptote is

Σ (<M» .ύ.)®(*-lδ.l)

A eikr Γ ίΦ-π\ fΦ + π\Ί
+ ^ c o t —^— ~ c o t ~^—

2α /7kir \ 2α / \ 2α /
£ exp(ifcr + iβln(

2α

where φn = φ + 2πocn. Equation (4.17) contains an incoming Coulomb wave,
φin{r,φ0), the standard scattered piece, φsc{r,φ0), and many other terms arising
due to the topology of the cone.

As a check of consistency let us show that φa includes as particular cases the
ordinary Coulomb scattering in the plane and the scattering on a cone without
potential considered in [1]. The first case corresponds to α = 1; then from Eqs.
(4.15) and (4.9) it follows that φa reduces to φί9 which is the solution in the plane.
Alternatively, if α = 1, the last two terms in (4.17) vanish and for the rest we get
ΨiΛri Φ) + *Asc(r> Φ\ which is the asymptote of the solution for the plane. The second
case corresponds to β = 0, for which G(r,φ) = 0 and (4.16) reduces to 't Hooft's
solution, Eq. (5.7) in [1].

If we restrict ourselves to the domain of physical interest, i.e. — πα ̂  φ ^ πα,
only a finite number of terms enter in the sum of (4.17). This is so because there
are finitely many n simultaneously satisfying — πα ̂  φ ^ πα and one (or more) of
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n = 0,±l

Fig. 5. Wake structure for δ = π/3 in an attractive potential

the conditions — πi^φ + 2πocn ^ π, —2πSΦ + 2πocn ^ — π, π^φ + 2παn ^ 2π
given by the Heaviside functions in (4.17). The allowed values of n depend on the
deficit angle and on φ. For 0 < δ < 2π/3 we can have n = 0, + 1 (see Fig. 5).
For 2π/3 ^ <5 < 6π/5, n = 0 , ± l , ± 2 . In general, for (2N - l)2π/(2N + 1) g δ <
(2N + l)2π/(2N + 3), with N a positive integer there are 2N + 1 different n,
(n = 0, + 1,..., ± N). We have thus recovered the same sequence of critical values
for the deficit angle as in the classical treatment.

Note that not all the terms will contribute to the sum in (4.17) for φ in the
interval — πα ̂  φ ^ πα. This is the quantum version of the wake structure discussed
in Sect. 3. For example, Fig. 5 shows the regions in which the terms with n = 0, ± 1
are defined when 0 < δ < 2π/3. If we now take 6 = 0 then φsc = 0 and we only have
the conditions given by the Θ(π — \φn\) in (4.17). So for 0 < δ < 2π/3 and Q = 0
instead of Fig. 5 we get Fig. 1, which reproduces explicitly the wake in the absence
of potential discussed in Sect. 3. The recovery of the wake depends strongly on
the choice of the incoming state, i.e. the fact that in (4.4) one has exp (— ikr cos φ)
and not exp (— ikr cos (φ/a)), as in [2].

It is interesting to see how the cone has affected the standard singularity of the
scattered wave in the forward direction. The forward direction is no longer φ = \π\
since it is not in the allowed domain, — πα S Φ ̂  πα. It has been rotated to
φ = π(2m -f 1) — 2πocn for suitable integers m and n, where n is the index labelling
the terms of the sum in (4.17). For example, for deficit angle 0 < δ < 2π/3, φsc(r, φ±1)
diverges at φ = + (π + δ).

We next turn our attention to the repulsive case. The analysis is similar to the
attractive one. The difference is in the asymptotes that we require for φc. As in
the attractive case, we demand that φc represents an incoming plane wave as r -• oo
and I φ I < π. However, we also want it to reproduce the standard Coulomb scattered
wave as r-> oo and \φ\<π. The latter is easy to understand using the classical
picture: since the particle is now repelled it will not cross the cut and remain on
the same sheet. Back scattering now corresponding to φ = 0. Proceeding through
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Fig. 6. Contours of integration in (4.19)

the same steps as for the attractive case, one can show that

z — iφ
(4.18)

with C 3 and C'3 the contours of Fig. 6, is the solution for the scattering in the
plane with a cut. The solution for the cone is given by (4.14) with ψc as given in
(4.18), whose asymptote is

Σ
A eιkr Γ fφ-π ,

- — —^=\ cot ^ - -cot
2α / V

(4.19)

which, as before, contains an incoming plane wave, the standard scattered piece
and other terms. It is straightforward to check that we can recover the solution
for the Coulomb scattering in the plane by taking α = 1, as well as the scattering
on a cone without potential by setting Q = 0. If we now restrict to angles
— πa^φ^πa there is a finite number of terms entering in the sum of (4.19). More
precisely, for (JV - l)2π/(2JV -l)<δ< 2πN/(2N + 1), with ΛΓ a positive integer,
there are 2N + 1 permitted values for n, namely n = 0, ± 1,..., + N. This reproduces
the same critical deficit angles as in the classical case. The wake structure is now
the same as for the case without any potential and differs from the attractive one.

5. Conclusions

To summarize, we have studied the motion of non-relativistic particles on a cone
with a Coulomb potential. We have found the classical bound orbits and the
resulting procession of the perihelion. In the quantum case, the energy levels for
the bound states were obtained. It was seen that the degeneracy in the energy
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levels in the planar case (zero deficit angle) was lifted due to the conical geometry.
We then studied the scattering problem. The classial scattering gave us the well
known wake structure. This wake structure survived in the quantum scattering as
well.

Appendix

In this appendix we derive Eq. (4.13). Taking the limit of large r in (4.11) and (4.12)
we obtain

e-πQ/2 e-ikr

χ2 (r, φ) -̂ -> ———— K(r, φ\ (A.2)

where

/( r ? (/>) = —- f -exp(ifcrcoshx-igln(2fcrsinh2(x/2))),
2πi - oo x + iφ

1 γ> Jx exp(iein(2/crsinh2(x/2)))
( Γ ' ^ } 2πί -L x + ίφ I sinh (x/2) |

1 Y Jx expθein(2fercosh2(x/2)))
(r'Φ) 2πiJ^x + iφ |cosh(x/2)|

For r -• oo these integrals can be computed, the result being

(A.5)

Combining Eqs. (4.10) and (A.1)-(A.5) we obtain Eq. (4.13). One also has to use
that the coefficient in (A.I) multiplying J has a Γ(iQ) that, when combined with
(A.4), gives no contribution.
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