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Abstract. We show how in gravitational collapse the Hawking radiation at
large times is precisely related to a scaling limit on the sphere where the star
radius crosses the Schwarzschild radius (as long as the back reaction of the
radiation on the metric is neglected). For a free quantum field it can be exactly
evaluated and the result agrees with Hawking's prediction. For a realistic
quantum field theory no evaluation based on general principles seems possible.
The outcoming radiation depends on the field theoretical model.

1. Introduction

Classical general relativity leads to the conclusion that very massive stars ultimately
end by gravitational collapse, leading at some stage to the formation of a black
hole from whose inside no signal can reach an outside observer. Furthermore, for
the outside world the black hole has properties of a thermodynamic system in
equilibrium ("no hair theorems", entropy) [1,2]. In an admirable paper [3]
Hawking argued that the association of a temperature1

^ ffc/c (1.1)
2π

with the black hole surface could be understood by considering quantum field
theory in the curved space-time given by the gravitational field of the collapsing
star. The simplest model is to take a field obeying linear field equations in a
spherically symmetric collapse. At early times, when the star is practically
stationary, the state of the quantum field may be assumed to be the "vacuum",
i.e. the lowest stationary state in the then static metric. Its development in time
or, if one talks in the Heisenberg picture, the expectation values of field quantities
at later times can then in principle be calculated by solving the quantum field
equations once the gravitational background field is known, and this latter may

M is the mass of the star, a the acceleration at the surface of the black hole, G the gravitational constant
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be taken from one of the classical models of gravitational collapse, e.g. the
Oppenheimer-Snyder model. One has to solve then an initial value problem of a
hyperbolic partial differential equation for singular functions (distributions) where
the coefficients are space-time dependent and boundary conditions on the surface
of the star have to be respected. Since one is interested in a tiny effect at very
large times it has so far not been possible to treat the problem in this way with
sufficient control of the errors. In his first paper on the subject Hawking carried
through such a calculation using a geometrical optics approximation. Although
there are many reasons to believe now that the resulting conclusions are essentially
correct it is hard to verify to what extent this approximation is trustworthy since
the light rays considered pass through regions of extremely fast changing index
of refraction.

Subsequent papers have concentrated on a different approach: the discussion
of a permanent, static black hole. There one has the analogy of the outside region
with the Rindler universe which can be described as the wedge

x1 > |x°|; - oo < xo,x2,x3 < oo (1.2)

in Minkowski space; the boundary x1 = |x°| is a horizon for linearly accelerated
observers in the wedge, following orbits of the action of a 1-parametric subgroup
of the Lorentz group, the boosts in the x1-direction

x°(τ) = P sinh τ, x1(τ) = pcoshτ. (1.3)

Without motivation from black hole physics Bisognano and Wichmann [4] had
found the remarkable theorem in ordinary Minkowski space quantum field theory
that the vacuum state, restricted to observation in the wedge (1.2) is a thermal
state with respect to the time parameter τ of (1.3). The temperature agrees with
(1.1) if the accelerations are properly compared. The parallelism between this result
of [4] and the Hawking temperature was first pointed out by Sewell [5]. Unruh
[6] presented arguments showing that a detector moving with linear acceleration
in the vacuum state of quantum field theory in Minkowski space should respond
similarly to one at rest in a medium filled by Planck radiation of this temperature.

Although these analogies are very suggestive they cannot be completely
translated to the case of a spherical black hole since there we do not have the
other time-like Killing vector field whose ground state defines a global vacuum.
Therefore, in yet another approach, attention was focused on the local aspect of
the state in the immediate vicinity of the horizon. As Fulling had first pointed out
[7], the field equations and canonical commutation relations do not suffice to
determine the theory. In [8] it was argued that all physically allowed states should
become indistinguishable in the short distance limit of observations and that the
specification of this common behaviour is an essential part of the definition of the
theory ("local definiteness"). This can be done by requiring that a short distance
scaling limit of the theory exists. It was then shown in [8,9] that this limit defines
for each point of the space-time manifold a quantum field theory in the tangent
space with a distinguished state which is invariant under translations in tangent
space. In the context of a classical treatment of gravitation it should be also Lorentz
invariant with respect to the metric at the contraction point. It is then natural to
demand that this distinguished state should be the vacuum state of the tangent
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space theory (a requirement called "local stability"). Applying this condition to
the points on the horizon in the metric of a black hole one recovers the Hawking
temperature in the following sense: of all thermal states (with respect to the Killing
vector field of Schwarzschild time translations) only the one with temperature (1.1)
satisfies the local stability condition on the horizon [8]. Another way to specify
the short distance behaviour is to require that the symmetric part of the 2-point
function should have the singularity structure of the "Hadamard elementary
solution" of the wave equation (see [10-13] and references given therein). It has
been used to derive the Hawking temperature by Kay and Wald [14] who show
that if a somewhat strengthened Hadamard condition is imposed everywhere on
the Kruskal extension then the only stationary quasifree states of the outside region
are thermal states with temperature (1.1). As far as the strongest singularity of the
2-point function is concerned local stability and Hadamard form give the same
information. Beyond this the Hadamard condition is a stronger requirement but
is limited to free field theory. The scaling condition on the other hand is not quite
sufficient to guarantee local definiteness (see [15] and Sect. 4 of [8]) but remains
natural also in interacting theories. Related to local stability is also the postulate
that the Feynman propagator should locally have an analytic continuation to
imaginary times. This was the starting point in [16,17] and also leads to a local
temperature (1.1) as judged by the Killing vector field of Schwarzschild time
translation of an outside observer.

The weakness of all arguments based on the consideration of static black holes
is that they do not give direct information about the radiation due to gravitational
collapse. This gap is filled here. We show that as long as the gravitational field is
taken to be that produced by the matter of the star alone the expectation values
of observables at any distance from the star for times t -• oo can be precisely
related to a scaling limit of the state on the sphere (2-dimensional manifold), where
the radius of the star crosses the Schwarzschild radius. According to the arguments
in [8,9,12,13] the scaling limit (the leading singularity in the short distance
behaviour) is universal, i.e. the same for all allowed states in the theory. It is not
affected by the previous history, by the initial conditions. The result is then indeed
an asymptotically constant flow of outgoing radiation. To satisfy the (Bondi-Sachs)
energy balance one has to take into account the change of the metric due to the
energy of the quantum field. If, as done here, this back reaction is neglected then
the infinite amount of energy radiated away in infinite time would have as its
source a very small region prior in time to the crossing of the Schwarzschild radius
by the surface of the star. If it is taken into account by letting the mass of the star
and hence its Schwarzschild radius decrease in time then the radiation will originate
from the surface of the black hole at all times after its formation and it will, of
course, no longer be precisely calculable from a scaling limit. This problem will
not be taken up in the present paper.

2. Set up of the Problem and Sketch of the Main Argument

We use coordintes τ, r, #, φ. The spatial polar coordinates r, #, φ are standard.
The time coordinate τ is chosen so that it remains meaningful on the horizon and
approaches the Schwarzschild time for r»r0, where r0 = 2MG/c2 is the
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rays

Fig.1

Schwarzschild radius of the star mass. The boundary of the star shall be r = rs(τ)
(Fig. 1). The origin of the time axis is chosen so that

i.e. the star radius crosses the Schwarzschild radius at τ = 0. In the outside region I:

r>rs(τ); r>ro, (2.1)

the metric is always the stationary Schwarzschild metric (BirkhofFs theorem).
In this region it is convenient to make use of the coordinates

r* = r + r0 In (r/r0 — 1), (2.2)

v = t + r*, (2.3)

u = t-f*, (2.4)

(2.5)

(here t is the Schwarzschild time) and to define our time coordinate τ by

τ — v — r = ί -f r* — r.

Far away from the horizon r*/r-+ 1. For r-*r0 and finite τ we have r*-» — oo,

M-» -f oo, v finite. The metric is

ds2 = - ( 1 - ^ + ( 1 - - ) V + r2(d92 + sin2
(2.6)

The detailed metric inside the star matter will not be used in the following. At
very early times it is nearly stationary; rs(τ) = const. The precise history of the
subsequent collapse will influence the radiation in the transition region but
not its asymptotic behaviour for large times.

Let φ(x) be a quantum field living on this curved space-time and, for simplicity,
assumed to be scalar, neutral and satisfying the covariant wave equation

OgΦ = 0, (2.7)

(2.8)
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A state is characterized by the set of expectation values

W<n)(xl9 ...,xn) = < φ ( * i ) <KxJ>. (2.9)

A detector placed in some region 0 can be simulated by Q*Q with

x, (2.10)

where ft is a smooth function with support in O2 Due to the field equation Q can
be expressed in terms of φ and its time derivative on an arbitrarily chosen Cauchy
surface. If/is a c-number solution of

D , / = 0 (2.11)

and Σl9 Σ2 are two Cauchy surfaces then

J φ(x)^f(x)dσμ = f φ(x)-/-f(x)dσμ, (2.12)
Σι OXμ Σ2 0Xμ

where dσμ denotes the surface element.
Consider now a sequence Qτ(T-+oo) which are time translates (with respect

to the Schwarzschild time t) of a fixed Q of the form (2.10) with a test function
ft having support in a space-time region around the point (0, R, So, φ0) far away
from the horizon. The function/7 needed in (2.12) to describe Qτ is obtained from
ft by

fτ(t,x) = $dtof
T4%xl (2.13)

where fTΛo is the solution of the wave Eq. (2.11) with the initial conditions

fτ'to(T + t09 x) = 0, ^fτ^{T + tω x) = ft(ί0, x). (2.14)

The essential point is now that the space-time support of fτ lies for τ ^ 0
entirely in the region I outside the star and outside the black hole (causal
propagation). Therefore only the (stationary) Schwarzschild metric enters in the
determination of fτ for τ^O. The reduction of the response rate of a far away
detector at late times T to properties of the quantum state at τ = 0 requires only
the solution of the initial value problem (2.11), (2.13), (2.14) for the smooth c-number
function fτ(x) in the Schwarzschild metric.

Inserting the right-hand side of (2.12) with Σ2 chosen as the surface τ = 0 into
the counting rate, one gets

<βfβr> = ί Wi2\xux2)DίD2f
τ(x1)fτ(x2)drίdr2r

2

ίdΩίr
2

2dΩ2 (2.17)
t l =T2 = 0

with

See [9], Sect. 2
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The asymptotic behaviour of/7 has been studied, e.g. by Dimock and Kay [18].
From their work one can extract that, as Γ-> oo, fτ decomposes on the surface
τ = o into a sum of two wave packets, one shifting with increasing T towards
r->oo, the other towards r*-> - oo(r-»ro). One may expect then that the
information about the state needed in the limit Γ -^ oo is only the 2-point function
for τ = o in the immediate neighborhood of r = r0 and for r-> oo.

3. Asymptotic Form of the Function fτ for Γ-+ oo near r = 0

We separate off the angular motion by expanding

fτ(t,r*, S,φ) = r~» £ ffjf,r*)Y,J9,φ). (3.1)
Urn

The wave equation (2.11) becomes then

J-^+ψi-O (3.2,

with

/ r \//r/4- n r \
(3.3)

:

Correspondingly we expand h. We shall discuss a single angular momentum
component and suppress the indices /, m where no misunderstanding is possible.
fτ is given by (2.13) and the initial conditions (physically rather the final
conditions for very late T) (2.14), with x replaced by r*. We are interested
in /T(ί,r*) for τ close to zero, i.e. for t close to r — r*.

By Laplace transformation the problem may be reduced to the solution of the
ordinary inhomogeneous differential equation

ί T L - zl ~ V)f^ r*) = F^ r * ) Ξ idto<r°Mto, r*) (3.4)

together with the boundary conditions

/(z,r*)-0 for r*->±oo, (3.5)

where/Γ(ί,r*) is given by

c + i oo w

/Γ(ί?r*) = (2πi)~1 j dzf(z,r*)e~z{t~τ\ o o (3.6)
c — too

for values of ί < T + ίx with t1 = inf {ίj(ίo,r*)esupph}.
Let us denote by G + , G_ the solutions of the homogeneous equation

-Z2-V\G = 0 (3.7)

with respective boundary conditions

G_e~zr*—>\ for r* —• — oo, G + ezr*—>\ for r*—• + oo. (3.8)
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G+, G- are uniquely determined for Rezg O, zΦO. They are analytic functions
of z for Re z > 0. Due to the fact that Vt decreases exponentially like er*/r° for
r*-+ — co the analyticity of G_(z,r*) in z extends into the left half plane till
2 R e z > — r0, and G_ is a smooth function of r*. This can be seen if one writes
down the explicit solution

G_(z,,*)=e-+ £ ί *yi Ί ^•Λ'
« = 1 —oo —oo —oo Z Z

(3.9)

which converges for all z in the mentioned region of the complex plane. In the
case of G+ the long range tail of Vι ~ (/(/ + l)/r*2) for r* -• oo allows only a weaker
statement. The expansion corresponding to (3.9) gives a series which still converges
on the imaginary axis with the exception of z = 0. The tail of the potential differs
from the dominating but exactly solvable l/r*2-decreases by ΔVι for which r*. ΔVι

is absolutely integrable for r* -• αo. This implies that G + behaves like z~ι for z -•().
One finds that zιG+ is continuous on the imaginary axis. In fact, using the
techniques developed in [19] one proves that, apart from the point z = o, zιG+ is
analytic (hence smooth) on the imaginary axis. In terms of G __ and G+, / is given by

f(z,r*) = ̂ -\G+(z,r*) f dr*'G_(z,r*')F(z,r*'
O(Z) I - oo r*

(3.10)

Here δ(z) is the Wronskian between G_ and zιG+,

(3.11)

Using the positivity of F(r*) one shows that δ(z) cannot vanish on the imaginary
axis.

On the imaginary z-axis the function F, being the Fourier transform of the
function h describing the detector, is smooth. We may choose F so that it as well
as some of its derivatives vanish at z = o if we are not interested in detecting
quanta of zero energy. Then/(ί'ω, r*) is (multiply) differentiable for all ω. It vanishes
fast for |ω|-+oo if F(ΐω,r*) does. The function fτ as well as its derivatives will
tend to zero uniformly in r* within any fixed finite interval of r* as T —1-> oo.

For r* to the left (respectively to the right) of the support of F, / Γ (ί,r*) has
the form

^ e - i ^ - τ \ (3.12)f^rη = (2πΓμω^Gτ(iω,rηc+(iω)e\
δ(iω)

where c+ depends on the initial conditions

c±(ίω)= fdr*G±(iω,r*)F{iω,r*). (3.13)
— 00

The leading term in G + is a spherical Hankel function describing an outgoing
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wave with angular momentum /, the leading term in G_ is a leftgoing wave in a
2-dimensional space-time. For T — ί->oo we may then decompose fτ into the
three parts

/ Γ = / ϋ + / ΐ + 4 Γ

f (3.14)

where fτ

± are given by (3.12) with G+ replaced by their leading terms. The function
Δτ(t,r*) is a smooth function which tends together with its derivatives uniformly
to zero as T -^ oo for all (ί, r*) in a neighborhood of the surface τ = 0 because fτ

tends to zero in any finite interval of r*, fτ_ tends to zero in any half infinite
interval r* > a and f\ tends to zero in any half infinite interval r* < b.

For fτ_ we have

/Γ(t,r ) = # -t+r) (3.15)

with

φ(μ) = {In)-1 \dωa(ω)eiωu (3.16)

), (3.17)
δyiω)

fτ_ is a wave packet accumulating at τ = 0 on the horizon. In the variables τ, r it is
of the form

λ (3.18)

with

r ^ 2 (3.19)

We have neglected irrelevant factors tending to 1 for r -^ r0.

4. Asymptotic Counting Rate and Short Distance Behaviour of the State

To evaluate the counting rate in the limit T->oo we need some qualitative
information about W{2) in the neighborhood of the spacelike surface τ = 0. We
assume that for spacelike separation W{2) is together with its derivatives a smooth
function which is bounded at infinity, that it approaches the ground-state-2-point-
function for rj, r% -• oo and that its short distance behaviour is of the form [8,9]

(4.1)

where σε is the square of the geodesic distance between x± and x2 with τί replaced
by τx — is, τ2 by τ2 + is and the limit εJ,0 is understood. w(2) is less singular, i.e.
σwi2) and (d/dx^d/dx^w^yid/dx^d/dx^σ;1 are continuous and vanish on the
light cone σ = 0. This is true if W{2) has the so-called Hadamard form. We expect
that the assumed properties of W{2) can be derived from the fact that W(2) at
earlier times is the 2-point function of a ground state in a static background by
an extension of the results in [12,13].
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The counting rate (2.17) is bilinear in fτ. We insert the decomposition (3.14).
The diagonal terms with f\ a n d / 7 are bounded, the term with Δτ vanishes in
the limit T-»oo. Thus by positivity of Wi2) all terms involving Δτ tend to zero.
The cross term between f\ and fτ_ involves only integration over spacelike
separated points, up to contributions which vanish in the limit Γ->oo. So, using
the assumed behaviour of W{2) at spacelike separation, we estimate this cross term
by

const. J\f\ I j\fτ_ I ̂  const. T 2e~ ( Γ / 2 r o ) -+0. (4.2)

The contribution where both factors/7 are replaced b y / 7 is not affected by the
collapse of the star. It approaches the response of the detector in the globally
static ground state of the quantum field in the metric of a stationary extended
star and is zero for a passive detector.

We are then left with the part of (2.17) where both functions fτ are replaced
by fτ_. This is governed by the short distance behaviour of the state near the
horizon at τ = 0.

To simplify the expression (2.17) we note that

Du=J» DυJ° (4.3)
dr dr

Since fτ_ is a function of u alone we have Df = — (df/dr). By partial integration
and replacement of r by r0 in the uncritical positions we get for the horizon
contribution

lim <ρ*βT> = lim 2πr6

0 £ ί »7,m,r,m^ i, ξi)φJ T )φ,;J ^)dξ1dξ2, (4.4)

Γ - oo Λ->0 l,m,ί',m' \ λ / \ Λ /

where ξ{ = (r, - ro)/ro and

ί o(l + ξj, φ + ξ2), Su Ψl, 92, φ2)YJί91,φ1)Yι.m^2,φ2)dΩ1dΩ2, (4.5)

W"(ru r2,3U φu 92, φ2) = D1D2W^(xι,x2)\τi=τ2 = 0, (4.6)

Kτr\ (47)

For small distances one has

σε = r2(K2 + θ 2

2 ), (4.8)

2ί? 1 / 2

K = (ξi ~ξi + m* Kv = (τx -τ2 + r i - r 2 - is) , (4.9)

where i912 is the angle between (3l9 φx) and (5 2, φ2)> Inserting (4.1) into (4.6) yields

W" = U2π)->(*Dφί - ̂ f] + ί ^ . 1 (4.10)
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Using (4.8) we get for τ1=τ2 = 0, DU2σ = ± Kvi D1D2σ = 0 and

lim λ2bΞξ^{λξl9λξ29 9l2) = _ Γ - 3 K l _ ξ2 + is)-2^^. (4.11)
λ-o σε

3 s i n 5 1 2

The contribution of W(2) vanishes in the limit λ -• 0. So we find

lim (Q*QT) = conSt.Σϊdξ1dξ2(ξ1-ξ2 + iεΓ2ψlm(ξι)ψlm(ξ2). (4.12)
Γ-+00 /m

To bring this into a more readily interpretable form we go back to (3.15-19). Up
to a normalization constant the right-hand side of (4.12) is

im L \ 4r 0 / J im l - e

We note that

(iω)1 _ Dz(ω)

δ(iω) 2iω

(4.13)

(4.14)

where D, is the transmission amplitude through the potential barrier (3.3). If we
replace in (3.13) G+ by it asymptotic form eίωr* we get

α^) = D1(ω)^^). (4.15)

Thus we get finally (β = 4πr0)

lim <β*βτ)> = const. X J <MDf(ω)|2' lrf ? " . (4.16)
T-oo /,m -oo ω ( l — e p ω )

Equation (4.16) shows that the asymptotic counting rate is the one produced by
an outgoing radiation with temperature (4πr o)" 1 modified by the barrier
penetration effect.

5. Summary and Conclusions

The result (4.16) is just a corroboration of Hawking's original prediction. Apart
from the effort spent in making the derivation watertight in the case of a free
quantum field the main interest of the preceding discussion lies in the clarification
of the essential steps which lead to this result. Namely the relation between the
restriction of the state to an observation region far away from the black hole at
very large times and the short distance behavior of the state on the sphere r = r0

at the instant when the star radius crosses the Schwarzschild radius and the claim
that the short distance behavior is universal for all allowed states in the theory.
The surprising aspect of the result is that the radiation caused by the changing
metric field of the collapsing star approaches a steady outgoing flow for large
times which means a drastic violation of energy conservation for the total system
if one neglects the back reaction of the (quantum) radiation of the causal structure
of space-time. Therefore a full understanding of the phenomenum including a
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self-consistent description of the causal structure needs some elements of a quantum
theory of gravity. In spite of many efforts they have not yet been elucidated in a
satisfactory manner. To turn it around: this aspect provides an important
consistency condition in the quest for a symbiosis of general relativity and quantum
physics.

The other interesting aspect is the degree of universality (model independence).
While it appears that the Bekenstein entropy and the Hawking temperature are
completely model independent these quantities do not have a direct observational
significance since they concern the "naked" black hole relative to the vector field
of time translations which is distinguished as an asymptotic symmetry far away
in the outside region3. The radiation which is transmitted to the outside depends
significantly on the quantum field theory model. In the case of a free quantum
field the modification of thermal radiation is simply determined by the transmission
coefficients |Dj(ω)|2 through the potential barrier (3.3). If we envisage instead a
realistic quantum field theory, say the standard model of elementary particle
physics, we can adapt some of the preceding arguments. Again we can expect that
(as long as the back reaction is neglected and the theory is asymptotically free in
the high energy limit) the dynamical equations define a mapping of observables
far away at time Γ -> oo into the tangent space algebras of the points on the sphere
T = o, r = r0. Again all physical states will coincide to give the same expectation
functional on the tangent space algebras. We also know some properties of the
mapping, in particular that time translations of the asymptotic observables
correspond to dilations of their images in the tangent space algebra. However, the
computation of the emitted radiation demands a detailed knowledge of the mapping
and this is a highly nontrivial problem in quantum field theory. In QCD for
example the scaling limit of a state gives the ground state for a theory of free
quarks and gluons in the tangent space. The operator whose expectation value in
this state we need to evaluate is determined in principle from the operator
representing a detector of hadrons, placed well outside the black hole, via the
dynamical equations of QCD in the gravitational background field provided by
the star. For a first orientation one may neglect the gravitational field at distances
beyond, say, R = 10 r09 and take an idealized detector appropriate to the Minkowski
space theory placed at this distance R but at a very late time Tso that the backward
light rays from the region of placement cut the hyperplane τ = 0 very close to the
Schwarzschild radius. The dynamical law in the presence of the gravitational field
may be regarded in a vicinity of each point as the dynamical law of ordinary QCD
in the reference frame of the local 4-bein. For the observable of interest one gets
as the time approaches τ = 0 into the short distance regime of QCD, i.e. one
approaches the asymptotically free limit. The transition from τ = T to τ = 0 (which
in the simple model treated in this paper is described as the penetration of a
potential barrier) poses now a tough problem even if one is content with a
qualitative treatment. In the language of present day elementary particle physics

3 As long as the back reaction is neglected it is a symmetry in the whole outside region, but realistically

it is distinguished only at large distance
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it involves the fragmentation of hadrons due to a gradual fading of the effective
interaction between quarks and gluons.
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