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Abstract. This is a study of the equilibrium thermodynamics of a mean-field
model of an interacting boson gas perturbed by a term quadratic in the
occupation numbers of the free-gas energy-levels. We prove the existence of
the pressure in the thermodynamic limit. We obtain also a variational formula
for the pressure; this enables us to compare the effect of a smooth quadratic
perturbation with that of a singular one (the Huang-Yang-Luttinger model).
The proof uses a large deviation result for the occupation measure of the free
boson gas which is of independent interest.

1. Introduction

The rigorous investigation of the thermodynamics of a system of bosons based
on the full quantum mechanical hamiltonian and using a realistic pair- potential
seems beyond the reach of present methods. Either one must use a very special
pair-potential or one must truncate the hamiltonian. The first course was followed
by Lieb and Liniger [1] who diagonalized the full hamiltonian for a boson gas
with a ^-function pair-potential in one dimension using what is now known as
the Bethe Ansatz. Using the results of [1], Yang and Yang [2] gave a formula for
the pressure in this model; in a recent paper [3], we proved that if the Bethe
Ansatz wave-functions form a complete set then the grand canonical pressure is
given by the Yang-Yang formula. The proof in [3] uses probabilistic methods
(Varadhan's Laplacian asymptotics [4] based on the large deviation principle).

The second course has been followed by many authors. One such approach is
to use a hamiltonian which is a function of the free-gas occupation numbers; the
reader is referred to the book of Thouless [5] for an introduction to these models.
In this paper, we continue our investigation by probabilistic methods of such
models: we study a smooth perturbation of a mean-field model of interacting
bosons (for perturbations of mean-field models in other contexts, see Bricmont
and Fontaine [6]).

In [7], we studied the equilibrium thermodynamics of the Huang-Yang-
Luttinger model [12] of a boson gas with a hard-sphere repulsion using large
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deviation methods, contrasting its properties with those of the mean-field model.
We proved the existence of condensate for values of the chemical potential above
a critical value and verified a prediction of Thouless [5] that there is a jump in
the density of condensate at the critical value. In the mean-field model,
condensation occurs if and only if it occurs in the corresponding free-gas; in the
HYL-model, there is always condensation provided the density is sufficiently high.
For example, when the integrated density of states of the free-gas is given as a
function of the energy λ(λ ̂  0) by F(λ) = Cdλ

d/2(d > 0) there is no condensation in
the mean-field model if d g 2, while there is condensation in the HYL-model for
aHd>0.

The difference in the conditions for the existence of condensate in the mean-field
and HYL-models reflects the difference in origin of the phase-transition. The
mean-field phase-transition is a consequence of the balance between entropy and
kinetic energy; the HYL phase-transition results from the balance between
entropy and interaction energy. The HYL-hamiltonian differs from the mean-field
hamiltonian by the addition of a singular quadratic form

(1.1)

in the occupation numbers n(j)J =1,2, . . . , of the energy-levels of the single-particle
hamiltonian of the free-gas. This quadratic form is a purely quantum mechanical
term which reflects the boson statistics. It is smallest when all the particles are in
the same energy level, and therefore tends to produce condensation in momentum
space. It is of interest to know what is the effect of a less singular quadratic
perturbation of the mean-field hamiltonian. In this paper we consider a model in
which the mean-field hamiltonian is perturbed by addition of a quadratic form

Σ ΛT^WΛ ^(/))n0M/)> (i 2)

where f( , ) is a positive-definite bounded continuous function and λ(j) is the j t h

eigenvalue of the single-particle hamiltonian. We prove that if y( , ) is sufficiently
smooth and the integrated density of states of the free-gas is given by
F{λ) = Cdλ

dl\d >0) then there is no condensation if d ^ 2.
The methods employed in this paper are extensions of those used in [7]. To

prove the existence of the pressure, we use large deviation methods; these yield a
variational formula for the pressure which is investigated by means of the
differential calculus. In both respects, the techniques of this paper are more
sophisticated than those of [7] because the spaces involved are infinite-dimensional;
nevertheless, the principles are the same and this paper should be read as a sequel
to [7] which contains a review of results on the free-boson gas obtained in [8]
and an introduction to large deviation methods.

In models in which the hamiltonian is diagonal in the occupation number
operators, it is possible to consider the occupation numbers as random variables
rather than as operators; we shall do this. The probability space on which we
define our random variables is the countable set Ω of terminating sequences of
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non-negative integers: an element ω of Ω is a sequence {ω(j)eN:j = 1,2,...}

satisfying £ ω(j) < °° The basic random variables are the occupation numbers

{σy.j= 1,2,...}; they are the evaluation maps σy.Ω-^N defined by σj{ω) = ω{j)
for each ω in Ω. The total number of particles iV(ω) in the configuration ω is
defined by

Let Λ1,/l2...be a sequence of regions in Ud and denote the volume of Ax by Vt;
we assume that T^-xx) as Z-»oo. We associate with the region /lj the free-gas
hamiltonian Ht given by

(1.4)

where 0 = λι(l) ^ λι(2) ̂  •••, and the mean-field hamiltonian HfF given by

HfίF(ω) = Hι(ω) + ——iV(ω)2, (1.5)

where a is a strictly positive real number.

The principal model considered in this paper is the perturbed mean-field model
with hamiltonian Ht given by

Hι(ω) = HιίF(ω) + —— ]Γ v(λι(j), λι(j ))σj(ω)σy{ω). (1.6)

The free-gas pressure Pι(μ), μ < 0, is defined by

ωeΩ

it is given in terms of the λt( j) by

Pι(μ)= f pίμl/Odî Hyl), (1.8)
[O,oo)

where Fι is the distribution function

and p(μ\λ) is the partial pressure given by

p(μ\λ) = β~ι\n{\ — ̂ ( μ ~ λ ) ) " 1 (1.10)

Since Ω is a countable set, we may specify a probability measure on Ω by giving
its value at each point ω of Ω. The free-gas grand canonical measure is defined
for μ < 0 by

{pμΓωΊ _ eβ{μN(ω)-Hι(ω)-Vιpι(μ)} M γγ\

The pressure p^μ) in the perturbed mean-field model is given by

eβVιpι(μ) — y eβ{μN(ω)-Hι(ω)}:> (112)

ωεΩ
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this is defined for all real values of μ because of the stability provided by the
(α/2Fj)iV(ω)2 term in the hamiltonian. However, the free-gas pressure is defined
only for μ < 0; to express (1.12) as an expectation with respect to the free-gas grand
canonical measure, we employ a device used in [7]. Fix α < 0; we may re-write
(1.12) as an expectation with respect to the grand canonical measure Pf as follows:
introduce the occupation measure Lt by defining for each Borel subset A of [0, oo)
and ω in Ω

where δx[-~\ is the Dirac measure concentrated at x so that, for each ω in ί2,
A -> Lz[ω; A~\ is a bounded positive measure; for each bounded positive measure
m on [0, oo), define

<m, Vrn} = J J v(λ,λ')m{dλ)m{dλ'\ (1.14)
[O,oo) x [0,oo)

and put

Gμ\m\ = μ\\m\\ -\{a\\m\\2 + (m,Vm}}, (1.15)

where

| | m | | = f m(dλ); (1.16)
[OΓoo)

then

eβVιpι(β) — eβVιpι(a) y ^FiG"-α[Li[ω; ] ] p α Γ ω Ί Π 17)

ωeΩ

The next step is to re-write (1.17) as an integral over E = Jtb

+(U+)9 the space of
bounded positive measures on [0, oo). We equip E with the narrow topology.
Define <m,/> by

<m,/>= J f(λ)m(dλ) (1.18)
[O,oo)

for m in E and/ in %>b(U+\ the bounded continuous functions on [0, oo) equipped
with the norm of uniform convergence; the narrow topology on E is the weakest
topology for which the mappings m-^<m,/> are continuous for all / in <gb(U+).
Let Kt be the probability measure induced on E by L{.

Kΐ = Pf°LΓ\ (1.19)

we can re-write (1.17) as an integral with respect to Kf:

E

so that

pι{μ) = pι((ή + ̂ l n $eβVιGμ~*[m]Kϊ[dnϊ]. (1.21)
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Conditions on the double sequence {λt(j)} sufficient to ensure the existence of the
limit p(α) = limp(α) were given in [8] and reviewed in [7]; for convenience, we

f-> oo

restate them here. Define φt(β) for 0 < β < oo by

φι(β)= J e-βλdFι(λl (1.22)
[0,oo)

and introduce the conditions

(51) φ(β) = lim φι(β) exists for all β in (0, oo).
i->00

(52) φ(β) is non-zero for at least one value of β in (0, oo).

When (SI) holds, there exists a unique distribution function F, the integrated
density of states, such that

φ(β)= j e-'λdF(λ) (1.23)
[0,oo)

and Ft(λ) -• F(λ) at least at the points of continuity of F. When in addition (S2)
holds, the limit p(μ) = lim pι(μ) exists for μ < 0 and p(μ) is given by

ί->oo

p(μ)= J p(μ\λ)dF(λ). (1.24)
[0,oo)

In this paper, we find it necessary to introduce a further restriction on {λ^j)}:
(53) The measure dF determined by the integrated density of states F is absolutely

continuous with respect to Lebesgue measure with a density which is strictly positive
almost everywhere on [0, oo).
(In the standard example, where the single particle hamiltonian is a constant
multiple of the Laplacian in Ax with Dirichlet boundary conditions on dΛb and
{ΛχΛ= 1,2,...} is a sequence of bounded convex open sets in Ud which eventually
fills out the whole of Ud, all three conditions hold and F{λ) = cdλ

d/2.)
The formula (1.21) suggests the use of Laplace's method to complete the proof

that p(μ) = lim pι(μ) exists. Varadhan's theorem [4] provides an efficient way of
Z->oo

doing this; the conditions on the sequence {Kf:l= 1,2,...} are stated abstractly:
Let £ be a regular topological space and {Vt:l = 1,2,...} a sequence of positive

numbers diverging to + oo. Let {IK/:/= 1,2,...} be a sequence of probability
measures on the Borel subsets of E. We say that {IKJ obeys the large deviation
principle with constants {Fj and rate-function /:£->[(), oo] if the following
conditions are satisfied:

(LD1) /[•] is lower semi-continuous.
(LD2) For each b < oo, the set {ra:/[m] ^ b} is compact.
(LD3) For each closed set C,

lim sup I- In K/[C] ^ -/[C] .

(LD4) For each open set G,

^ ^ -/[G].
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Here we have used the notational device of defining I[A], where A is a subset of
£, to be the infimum of the set {I[m\:meA} if AΦ0 and / [ 0 ] = + oo.

Varadhan's Theorem [4]. Let {Kt} be a sequence of probability measures on the
Borel subsets of a regular topological space E satisfying the large deviation principle
with constants {Vt} and rate-function /[•]. Thenjor any continuous function G.E-+ U
which is bounded above, we have

lim j-ln$eVιG[m]Kιldm] = sup [G\m] - /[m]}. (1.25)
l-*cD Vl E E

In applying Varadhan's theorem to the proof of the existence of the limit p(μ),
our first task is to find a candidate for the rate-function /[•]. There is a standard
trick which we employ. An inspection of (1.25) suggests that it might be the case that

lim -i-In Je*Fl<m f>Kf[Λfi] = sup {<m,ί> -/α[m]}; (1.26)
l^oo pVl E E

now the left-hand side is finite, provided the function is suitably restricted, and
can be evaluated explicitly. Put

Cα[ί] = lim — I n f eβVι^K*Λdm]\ (1.27)
ι^βVι E l

then

Cα[ί] = lim {p,[α + t] - p^α)} = p[α + ί] - p(α),

where

and

provided

= ί
[O,oo)

| = f p{a + t(λ)\λ)dF(λ), (1.28)
[0,oo)

inf {λ-a-t{λ)}>0. (1.29)
λ>0

That is, (1.27) suggests that

CαM = s u p { < m , ί > - / α M } ; (1.30)
E

this expresses Cα[ί] as the Legendre transform of /*[•]• Inverting the Legendre
transform, we get the following candidate for the rate-function:

= sup{<m,ί>-Cα[ί]}, (1.31)
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where the supremum is taken over those t in ^b(U + ) which satisfy (1.29), and

C α [ ί ]=p[α + ί]-p(α). (1.32)

In Sect. 3 we verify that conditions (LD1) to (LD4) are satisfied whenever conditions
(SI), (S2) and (S3) hold.

In Sect. 4 we verify that Gμ[ ] satisfies the hypotheses of Varadhan's theorem
and conclude that the limit p(μ) exists and is given by

p(μ) = p(α) + sup [G^^rή] - /«[m]}.
E

In Sect. 5 we examine this variational expression for p(μ); the expression (1.31)
for /α[m] is not convenient for this purpose. A more useful as well as a more
enlightening expression for /α[m] is

|, (1.33)

where

/ [ « ] = J λm{dλ)-β-' I s(p(λ))dF(λ); (1.34)
[O,oo) [0,oo)

here p( ) is the density of the absolutely continuous part of m with respect to dF and

Xl°0 (1-35)

Readers of the treatise of Landau and Lifschitz [9] will recognize /[m] as the non-
equilibrium free energy of free bosons. The proof of the equivalence of (1.33) and
(1.31) is a major task; the key is the Approximation Theorem. Call a measure m
a Bose-Einstein measure if it can be written as m\dλ) = p*+\λ)dF(λ\ where

p«+t{λ) = {eβiλ-a-t(λ))-iy1. (1.36)

Approximation Theorem. Let m be an element ofE such that /α[m], given by (1.31),
is finite; then there exists a sequence {mn:n= 1,2...} of Bose-Einstein measures
such that

1. lim mn = m,
«->oo

2. lim J α [mJ = /α[m].
w-»oo

The Approximation Theorem is not only necessary for the proof of the equivalence
of (1.33) and (1.31), it is also crucial in establishing (LD4). For this reason, we
place the proof of the equivalence of the two expressions for the rate-function in
Sect. 2.

Using the expression (1.33) for /α[m], we obtain in Sect. 4 the following
expression for p(μ):

p(μ)=-inf<f"[m], (1.37)
E
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where

^ [ m ] = / [ m ] + i { α | | m | | 2 + <m,Km>}-μ | |m| | . (1.38)

In Sect. 5 we use a compactness argument to prove the existence of at least one
minimizer of Sμ\_-~\ and go on to show that a measure is a minimizer if and only
if it satisfies the Euler-Lagrange equations associated with Sμ\_-~\. This result
enables us to prove that the singular part of a minimizing measure must be
concentrated on the subset RF of [0, oo) defined by

provided t ( v ) is sufficiently smooth.
Specifically, we prove that if v is continuously differentiable and dv/dλ is

bounded then ms(Rc

F) = 0 for m a minimizing measure. For example, if F(λ) = Cdλ
m,

d > 0, then RF = 0 for d ̂  2 and RF = {0} for d > 2.
In the mean-field model (v identically zero), we can prove more: in this case,

the Euler-Lagrange equations become

λ — μ -f a || m || = 0, ms — a.e.,

λ-μ + aWm^β-Hn1^^, dF-a.e..
p{λ)

They have a unique solution with

p(λ) = (e

βiλ-μ+aM) -ly1 (1.39)

and α || m || ̂  μ. It follows that

and

||mj|= J p(λ)dF(λ)£ f (e»-\)-ιdF(λ). (1.40)
[0,QO) [O,oo)

Now pc= J (eβλ - l)~1dF(λ) is the free-gas critical density, so that (1.40) implies
[0,00)

that the total mass of the absolutely continuous part of m cannot exceed the
free-gas critical density: if μ > aρc, then || ms || > 0. (Note that if F(λ) = Cdλ

d/2, d>0,
then pc= oo for d ̂  2 and pc < oo for d > 2.) In the case of the mean-field model,
the location of the support of the singular measure is determined by the necessity
of minimizing the internal energy of the free-gas since J λm(dλ) is the only term

[0,oo)

in Sμ\m\ which is sensitive to the location of ms; it follows that ms(dλ) = || ms || δo(dλ).
Assume that mis a minimizer and || ms || > 0; then, by the first Euler-Lagrange
equation,

μ = α | | m | | = α { | | m j + ||mβ | |}

and, by the second, ρ(λ) = (eβλ — 1)~x so that || ma \\ = ρc\ hence μ > apc. Thus μ 5Ξ apc

implies that || ms \\ = 0; in this case,
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where || m || is the positive root of the equation

[O,oo)

In summary, in the mean-field model (v identically zero) we have the following
result:

there exists a unique minimizer m of δμ[•] given by

so that bosons condense into a state of zero kinetic energy, in order to minimize
the free-energy, once the particle number density exceeds a critical value pc\ below
pc, the free-energy is minimized by having almost all particles in a state with strictly
positive energy.

In the case where v is not identically zero, our analysis is, at present, less
complete; it may be summarized by saying that, when F(λ) = Cdλ

d/2(d > 0), the
mean-field result that there is no condensation for d S 2 is stable with respect to
a smooth quadratic perturbation. The implications of this result for the
hamiltonians of many-body theory will be discussed elsewhere.

2. The Rate-Function

We have seen that a natural candidate for the rate-function /α[ ] of the sequence
K*:l= 1,2,... of Kac measures is the Legendre transform of the cumulant
generating function Cα[ ]. Our strategy is to define /α[ ] in this way and then to
prove that the Large Deviation Principle holds for KJ with this choice of
rate-function. Let ^ α be the class of functions defined, for α < 0, by

b(U + ):mϊ {λ-a-t{λ)}>θ\. (2.1)

For t in ^ α , define p[α + ί] by

p[α + t ] = j p(z + t(λ)\λ)dF(λl (2.2)

[0,oo)

where

p(a\λ) = β-ίln(l-e^-»y\ (2.3)

and put

C α [ ί]=p[α + ί ] - p ( 4 (2.4)

Define /α[m], for m in £, by

= s u p « m , ί > - C α [ ί ] } . (2.5)

Our first task is to find a more useful expression for /α[m] than the defining relation
(2.5); we accomplish this by a sequence of lemmas.
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Lemma 2.1. Let mbe a measure in E; then, for all α < 0, /α[m] is finite if and only
if J λm(dλ) is finite,

[O,oo)

Proof. It is convenient to introduce the function 7α( , •): E x %>h(U .+) -* IR, defined by

Iα(m,ί) = < m , ί > - C α M . (2.6)

For t in ̂ α , p[α + ί] is positive and ί(A) < λ — α so that

/α(m, ί) = <m, ί > - p[α + ί] + p(α)

< < m , ί > + />(<*)< J λm(dλ)-<x\\m\\+p(<*).
[O,oo)

Taking the supremum over t in ̂ α , we have

[0,oo)

This proves that 7α[m] is finite whenever J Λ,m(<2/1) is finite.
[O,oo)

For the converse, we define a sequence {tn: n = 1,2,...} in ^ α by

tn(λ) = \(n — <x)(n + 1 —

Then

7α[m] ^ /α(m, tn) ̂  - J (A —
2 [o,«)

taking n-» oo, we find that

2 [O,oo) 2 [0,oo)

We conclude that J λm(dλ) is finite whenever /α[m] is finite. •
[0,oo)

Next, we split off that part of a measure m which is singular with respect to
dF and deal with it separately. Let m be a measure in E; let m = ms + ma be the
Lebesgue decomposition of m with respect to the density-of-states measure dF into
the singular part ms and the absolutely continuous part ma\ let p( ) be the density
of ma so that ma(dλ) = p(λ)dF{λ).

Lemma 2.2. For each m in E and each α < 0, we have

/β[m]= J (λ-oc)ms(dλ) + nmal (2.7)
[0,oo)

Proof. For t in # α , we have t{λ) < λ — a so that

j
[O,oo)
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hence

/α[m]g f (λ-<x)ms(dλ) + nmal
[0,oo)

In proving the reversed inequality, we may assume that ms φ 0. Given t in ^ α , we cons-
truct a sequence {tn: n = 1,2,...} such that /α(m, tn) approximates J (λ — a)ms(dλ) -f

[0,oo)

/α(mα, t) for n large.
First define, for 0 < δ < inf {λ — α — ί(Λ,)},

sBjί(A) = min {λ — oc — δ,n}.

Now let 5 c [0, oo) be a Borel subset such that ms(Bc) = 0 and \dF{λ) = 0, so that
B

ms is concentrated on B. Choose a compact subset K<=B such that ms(B\K) < δ
and choose an open set 0 => B so that

5 and \dF{λ)<δ2.
o

By Urysohn's Lemma, there exists a function τ in ^b

+(ίR+) such that 0 ^ τ(λ) ^ 1
for all λ ^ 0, τ(λ) = 1 for A in K and τ(λ) = 0 for λ in the complement of O. Define

Then ίn^ is in ^ α and

O\B

f {1 -τ{λ)}{t(λ)-sn,δ(λ)}m8(dλ)
B\K

^ < ^ s ) s M > + <^α,ί> - 4max {|| t \\^n}δ,

while C«\_tntδ] S j p(λ - δ|λ)dF(λ) + Cα[ί] (since tΛtδ(λ) + α < A - δ) and

= J p(O\δ)dF(λ) £ - L f dF(A) ^

Thus we have

Now put tn = tntδ with <5 = l/n2, and sn = snδ with ^ = l/n2; then <ms,sM>-»
J (A — (x)ms(dλ) by Lebesgue's monotone convergence theorem, and it follows that

[0,oo)

[0,oo)
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since t was an arbitrary element of ^ α , we have

/ α [ m ] ^ J μ-α)m,(dλ) + /«[mβ]. •
[0,oo)

There is a special class of measures for which the supremum in (2.5) can be
computed explicitly with ease: for ί e ^ α , define the measure nί by

= pa+t(λ)dF(λl

where

p«+ί(A) = p'(α + t(λ)\λ) = (^-«-« λ » - 1)-1; (2.8)

we call these measures Bose-Einstein measures. Using the notation of Lemma 2.2
we define the free-energy functional

/[m]= J λm(dλ)-β~ι J 5(p(A))rfF(i), (2.9)
[O,oo) [0,oo)

where the entropy function s: [0, oo)-> [0, oo) is defined by

+ x ) l n ( l + x ) - x l n x , * > 0 ,

Lemma 2.3. Lei mbea Bose-Einstein measure; then the rate function Ia\m\ is given
by

Jα[m] = p(α)+ / [ m ] - α || m ||. (2.11)

Proof. Let m(</2) = m\dλ) = p"+t(A)dF(λ) with t in <<?"; we show that the supremum
in (2.5) is attained at t = t. Then (2.11) follows since, for any α,

s(p«(λ)) = βp*(λ)(λ -a) + βp(a \ λ\ (2.12)

and therefore

- a | | m ' | | = f λp*+\λ)dF(λ)- J ( A - a -
(0,oo) (0,oo)

- j p(a + i(A)|A)<iF(A)-a J p«+ t

[O,oo) [0,oo)

Now let f be arbitrary; we want to show that /α(m, f) ^ /α(m, ί). To this end, we
define qx(y, λ) = yp'(oc + x|λ) — p(oc + y\λ); the function yi—• gx(j;, A) is strictly concave
and y = x is a stationary point so that, for all y9 qx{y, λ) ^ gx(x, λ). Putting x = t(λ)
and y = t(λ) and integrating with respect to dF(λ) we find

<f,m'> - p [ α + Π g <ί,mί> - p [ α + ί] . Π

Next we approximate an arbitrary measure in £ by a sequence of Bose-Einstein
measures to prove that (2.11) holds for all m in E.

Theorem 1 (The Approximation Theorem). Let m be an element of E such that
/α[m] is finite; then there exists a sequence {tn:n = 1,2,...} of elements ofΉ* such
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that the corresponding sequence of Bose-Einstein measures mn = mtn satisfies:

1. lim mn = m in the narrow topology,
n-»oo

2. lim /α[mJ = /α[m].
n-* oo

Proof. The proof proceeds by a sequence of reductions. First we show that it is
sufficient to prove the theorem for measures with compact support. Given m in
£, define mn by mn(dλ) = l[On](λ)m(dλ); then, for each t in %b(M + \ we have

<mn,t> = <m,l [OfJ l ]t>-><m,t>

by Lebesgue's dominated convergence theorem. Hence mn-+m in the narrow
topology. Now Ia is lower semi-continuous (being the supremum of a family of
continuous functions), so that liminfJα[mJ ^ / α [ m ] ; putting tN = tv{—N), we

H-*00

have

/α(mn, ί) = / * K , ίN) + J (t(λ) + N)mn(dλ) + p[α + ίN] - p[α + ί]
{λ:t(λ)<-N}

g / α K , ίN) + p[α + ίN] - p[α + ί]

Next we estimate the right-hand side of the inequality.

Lemma 2.4. Given ε > 0, there exists No>0 such that, for all N^N0 and all t in ̂ α ,

where tN = tv(—N).

Proof. We have

<-β'x J
[O,oo)

as ΛΓ -> oo by Lebesgue's monotone convergence theorem. Π

Using Lemma 2.4, we have: given ε > 0, there exists No>0 such that

= / α ( m , ί * 0 ) - J iNo(
(11,00)

Now choose π 0 such that, for n > n0, we have Nom((n, oo)) < ε. Thus

/ α [ m J = sup /α(mn, ί) ̂  sup /α(m, ί) + 2ε
ίe^α {ίe^α:ί>-N0}

^ sup /α(m, ί) + 2ε = /α[m] + 2β.
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Hence

lim sup Γ[mJ ^ /α[m];
n-*oo

we conclude that

lim /α[mJ = /α[m].
«->oo

Thus it is enough to prove the theorem for measures m with compact support,
say suppmcz [0, T].

Next, we decompose m into a singular part ms and an absolutely continuous
part ma with respect to dF as in the statement of Lemma 2.2.

Let {mi"):n= 1,2,...} be a sequence of absolutely continuous measures on
[0, Γ] converging to ms, and put

TO(») = m w + TOfl;

such a sequence exists by virtue of assumption (S3). Then

/«[m(«)] = sup Ia(min\ t) = sup { < m<Λ), t > + /α(mα, ί)}

f (A-α)m?>(dA) + /-(mβ,ί)j= f (A-α)mi"
o,r] J [o,r]

which tends to /α[m] as n tends oo by Lemma 2.2. Hence

On the other hand, by the lower semi-continuity of /α, we have

lim inf Jα[m ( w )]^Jα[m],
n-+ao

and we conclude that

lim/α[m ( n )]=/α[m].
Π~>00

It follows that it is enough to prove the theorem for absolutely continuous measures
with compact support.

Assume, therefore, that m(dλ) = p(λ)dF(λ) with p in if *.([(), T];dF). Since
^c

+([0, T)) is dense in ̂ ^.([0, Γ];dF), there exists a sequence {pn:rc = 1,2,...} of
functions in ̂ c

+([0, Γ)) such that

o n2

Define the following subsets of [0, oo):

E: = {λeiO,T):PnW<p'-"(λ)}uiT,oo\

E°π = {λeίO, T): p ~'(λ) S Pn(λ) £ «},
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put
/ -n9
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xεE

AeE*.

(2.13)

and

It follows that {tn:n = 1,2,...} is a sequence of elements of <£** and {mn:n = 1,2,...}
is a sequence of Bose-Einstein measures with

Furthermore, for t in

U
we have

λsE°n,

t,mny-<t,m)= J

Thus

+ jt(λ){n-p{λ)}dF(λ).

p«-n(λ)dF(λ)

[0,oo)

UO.oo) n {λ:p(λ)>n}

>0 as n-> oo, so that mn->m in the narrow topology. Again, we have

<ίn,mB>-<tn,m>= J ί,μ){p'-"(A)-pll(A)}dF(A)
En

J ί.

Thus

-<ί l l,m>|^n f p«-n(λ)dF(λ)
[0,oo)

{nv(T+|α|)} f \pn(λ)-p(λ)\dF(λ)
[0,oo)

+ J (λ-oc)p(λ)dF(λ)-+0 as n->oo.
{Ae[0,T]:p(A)>w}
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But mn is a Bose-Einstein measure, so that, by Lemma 2.3,

J α [ < ] = <tn,mny - p [ α + ί j +p(α) = <ίπ,mM> - <ίM,m> + /α(m,ίw)

hence

But mπ->m in the narrow topology and mh->Jα[m] is lower semi-continuous, so
that liminf/α[mj ^ / α [ m ] . We conclude that

n-* oo

lim /«[mM] = /*[m]. D
n —* oo

We now have the corollary:

Theorem 2. Let m be such that /α[m] is finite; then

/ α [ m ] = p(oc) + /[m] - α || m ||, (2.14)

where f[m] is given by (2.9).

Proof. It follows from Lemma 2.2 that it is enough to prove the correctness of
this expression for /α[m] in the case where m is absolutely continuous. Moreover,
we have seen in the proof of Theorem 1 that, for the truncated measures
mn(dλ) = l [ 0 n](λ)m(dλ) we have lim /α[m f l] = /α[m]. On the other hand, it is evident

H-+00

that the sequence

{ J (λ-a)mn(dλ)-β-1 J s(pn(λ))dF(λ):n = l2, \ (2.15)
U0,oo) [0,oo) J

also converges; we conclude that it is sufficient to consider absolutely continuous
measures m(dλ) = ρ(λ)dF(λ) with p in JS? + ([O, T];dF) for some T < oo. We choose
pn as in the proof of Theorem 1 and define tn by (2.13). We have seen that, with
mn(dλ) = ρ*+tn(λ)dF(λ\ lim / α [mJ = /α[m]; it remains to show that, with this choice

of mn, the sequence, (2.15) converges to the expression on the right-hand side
of (2.14). Now

J (λ - a)mn(dλ) = j (λ - a)p^n(λ)dF(λ)
[0,oo) E<

+ \{λ-a)pn{λ)dF{λ) + n j (A-α)dF(A).

The first term on the right-hand side is bounded by J (λ — a)pa'n(λ)dF(λ\ which

converges to zero. We split the second term into [0'°0)

J (λ- φ(λ)dF(λ) + J (λ- a){Pn(λ)- p(λ)}dF(λ).
E° E°
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\pn(λ)-p(λ)\dF(λ)->0;
[0,oo)

as to I (A — u)p(λ)dF(λ), we remark that we may assume that pn(λ) -> p(λ) for almost

all A with respect to dF which implies that 1 0 -»1 u+ a.e. and hence, using Lebesgue's

dominated convergence theorem, we have "

J(A-α)p(A)AF(A)-* J (A-α)m(dA).
£° [0,oo)

Finally, we have

n J (A - α)ΛF(A) ^ J (A -
£> μ:/>n(A)>ιι}

0

since J (A — α)pn(A)dF(A) is uniformly bounded. We conclude that
[0,oo)

lim J (λ-a)mn(dλ)= J (A-α)m(dA).
n->oo [O,oo) [O,oo)

For the convergence of the entropy term, we use the following bound on s(x):

Lemma 2.5. For all xί9x2 in [0, oo), |s(x2) — ̂ ( ^ I ) ! ^ 4 |x 2 — x x | 1 / 2 .

Proof. We have

fin -)dx

< 2
•Λ.Z I

X2 ~Xχ

1/2

= 2

dx

z I 1 \

J i n 1 + - dx

<2

D

Now put = px+t"(λ); then

[O,oo)
^ 4 J \

[0,Γ]

This concludes the proof of Theorem 2. •

3. The Large Deviation Theorem

Before proving that the sequence of Kac measures introduced in Sect. 1 satisfies
the large deviation principle with the rate-function studied in Sect. 2, we need
some results about certain subsets of E. For each positive integer JV, define the
function tN in ^ α by

r0, λ^N,
tN(λ)=\ N(λ - JV)/2, JV g A ̂  JV + 1,

.JV/2, A ^ J V + 1 .

(3.1)
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We note that

SUp tNι

Lemma 3.1. For all α < 0, we have

(1) for all N,

M. van den Berg, T. G Dorlas, J. T. Lewis and J. V. Pule

λ>N. (3.2)

(2) there exists A>0 such that,for all N,

sup ί N l ] ; (3.3)

(3.4)

Proof. (1) follows from the monotonicity of t\-*CΛ[t] which is evident from the
definition (1.27). To prove (2) we use (1.28):

-p(α)= J {p(<x + t(λ)\λ)-p(φ)}dF(λ). (3.5)

Putting t = sup ίNi and using (3.2), we have
iV»>ΛΓ

sup t w l ] ^ f

using the convexity of a\-*p{a\λ), we have

so that

λ ί λ
2 P Γ + 2

C Γβup t w ,"U J

[N,a

ί -[0,oo)SinhjSA/4

it follows that (3.4) holds with

= ί ^
A/4

. D

For M a positive integer, define the set KM by
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for L a positive integer, define BL by

BL = {meE:\\m\\^L},

and put K^ = KMnBL. We are going to prove that K^ is compact, using

Prokhorov's Criterion. Let H be a subset of E; if H is uniformly bounded and
uniformly tight then the closure of H is compact in the narrow topology. (This is
Theorem 1 of No. 5.5 of [10].)

Lemma 3.2. The set KM is uniformly tight.

Proof. Let m be an element of KM; then <m, tN} ^ M for all N ̂  1, so that

— I m(dλ)^(m,tN}^M for all N^l.
2 N+ί

Hence, given ε > 0, there exists Nε such that

00

\m(dλ)<s for all minKM. •

Lemma 3.3. The set K^ is compact in the narrow topology.

Proof. Since K^ a BL, the set K^ is uniformly bounded; since K^ a KM, the set
K^ is uniformly tight. It follows from Prokhorov's Criterion that the closure of
KM is compact; but m\-><m,ί> is continuous so that K^ is closed. •

Lemma 3.4.

lim limsup — In ^[2?^] = — oo.
L->oo ϊ-»oo pVi

Proof. Notice that L f[ ; [0, oo)] is the particle number density, denoted in [8] by
Xt. It follows that

which, by Theorem Al of [8], satisfies the large deviation principle with rate-
function

where
/(p)=sup{αp-p(α)}^-p(O). (3.6)

α<0

It follows that, for L > p'(α), we have

lim sup — In K^B'J ^ p(0) - p(α) + ocL,

and the right-hand side decreases to — oo as L -> oo since α < 0. Π

Lemma 3.5.

lim lim sup — In IK" \KC

M] = - oo.
M->oo ϊ-^oo βVγ
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Proof. We have
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= exp|iJ7IC?[supίN]J.

Hence

limsupJ-lnE? exp{ j87,sup<tN, > I Uc β [supί N ]g>4

t L I N JJ AT
by Lemma 3.1.
But, by Markov's inequality,

so that

and

lim sup — In K?
J->oo βVl

- M + A

lim lim sup — In K* [K^] = - oo. Π
M-oo l-»oo βVi

We are now ready to prove the following result:

Theorem 3. Suppose that (SI), (S2) and (S3) hold; then, for each α < 0, the sequence
{K*= PJf°L~1:/= 1,2,...} of Kac measures satisfies the large deviation principle
with constants {Fj am/ rate-function

/a[m] = sup{<m,ί>-Ca[ί]}.

Proof (LDl) holds because the supremum of a family of continuous functions is
lower semicontinuous. To prove that (LD2) holds, we note first that it follows
from (LDl) that the level set Kb = {meE:Γ[_m\ ^ b) is closed. Next we prove that
there exists L such that Kb c BL: for t in # α and m in Kb9 we have

fc^/α[m]^<m,0-Cα[ί]; (3.7)

putting t(λ) = — α/2, we have

It follows that m lies in BL provided L > {h+ /?(α/2)-p(α)}/(-α/2)>0. Finally,
putting t = tN in (3.7), we have

so that, using Lemma 3.1, we have

for all (3.8)
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It follows that Kb a KM for all M ^ A + b. We have proved that, for suitable
choices of L and M, the level set Kb is contained in K^ = KM n £ L and Kb is
closed. It follows from Lemma 3.3 that Kb is compact in E in the narrow topology
so that (LD2) holds.

To prove that (LD3) holds, we first establish the upper bound in the case of
compact sets.

Following Ellis [11], we make use of Gartner's Lemma:

Gartner's Lemma. Given t in %>* and y in U9 define H+(t,y) by

H+(t9y) = {me£:<m,ί> - Cα[ί] ^y}.

Let K be a compact subset of E;ify< / α [X] then there exists a finite set t1,...,tr

of non-zero elements of Ή* such that

Kc= (]H+{tj,y)
7 = 1

Let K be a compact subset of E; for each y < /α[K], by Gartner's Lemma and
Markov's Inequality, we have

7=1

7=1

/=1

so that

since this holds for all y less than /α[K], we conclude that

lim sup — I n IKf [X] ^ - Ia[K].
l^oo βVi

To establish the upper bound for an arbitrary closed set C, we note that
C a CL

MuKc

MuBc

L, where CL

M = CnKL

M.

It follows that

from which we deduce that

lim sup -LIn K«[C] ^ lim sup -LIn K?[C^] v lim sup - ^ I n Kf [KC

M]

vlimsup —lnK«[B^]
/->oo pK/
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vlimsup —
I-oo P ^

since C^ is compact (by Lemma 3.3); using Lemma 3.4 and Lemma 3.5, we have

l imsup~In K«[C] ^ - Γ\CL

M] g - /α

î oo βVι

since C^ cz C. Thus (LD3) holds.
To prove (LD4), let G be an open subset of E; for each ε > 0 there exists m in

G such that /α[m] < /α[G] + ε. By Theorem 1, there exists t in # α such that the
corresponding Bose-Einstein measure mt9 defined by mt{dλ) = pct+t(λ)dF{λ\ is in G
and /α[mJ < /α[m] + ε so that

/α[m ί]</α[G] + 2ε. (3.9)

Now let Gε = Gπ{m6£:|<m,ί>-<m ί,ί>l<ε} and define the shifted Kac

distribution D<f by R«[Λn] = ̂ { < ί ' m

Lemma 3.6. For I sufficiently large,

/. Since Gε is open and mt is in Gε, there exist ί l 9...,ί r in **(R+) and (5 > 0
such that Gε contains the neighbourhood Nδ of mf defined by

Nδ= f]{msE:Ktpm-mty\<δ}.

Define the sequence {Q":/= 1,2,...} of probability measures on IRr by

the righthand side converges to 1 as /->oo so that the sequence {Qt:l= 1,2,...}
converges to the Dirac measure δ0. It follows that 0<"[Gε] >\ for / sufficiently
large since K«[GJ ^ Rf [JVa] = Q?[[ - ί, <5]r] - 1 as / - oo. Q

Returning to the proof of the theorem, we have

K?[G] ̂  K [GJ = *W ί ] J β-^l<m f>Kf [Λw]
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It follows that

l i m i n f — I n Kf [G] ̂  Cα[ί] - <mί? t > - ε

by (3.9); but ε was an arbitrary positive number so that (LD4) holds. •

4. The Existence of the Pressure

We saw in Sect. 1 that pt(μ)9 the grand canonical pressure in volume Vh can be
expressed in terms of an integral with respect to the Kac measure:

Pι(μ) = Pfa) + ̂ - l n J ̂ ~ ^ K f [ ώ n ] , (4.1)

where p^ot) is the free-gas pressure and

with α > 0 and {Vm)(λ) = $v{λ,λ')m(dλ'). It is assumed that u(y):R + x (R+->IR is
bounded, continuous and positive-definite. Having proved in Sect. 3 that the Kac
measures satisfy the large deviation principle, the next step is to use Varadhan's
Theorem to prove the existence of the limit p(μ) = lim p^μ) and to derive a

variational principle for p(μ). To carry this through, it remains to check that the
functional Gμ satisfies the hypotheses of Varadhan's Theorem. Since ι?(y) is
positive-definite, <m, Vm) is non-negative; it follows that Gμ[ ] is bounded above
for all real values of μ since a is strictly positive. Moreover, mi—• || m || is continuous
in the narrow topology so that m\-±μ || m || — \a || m | | 2 is continuous; the continuity
of mi—><m, Vm} is a little more troublesome.

Lemma 4.1. The functional mi—• < m, Vm > is continuous in the narrow topology on E.

Proof. Since U+ is a Polish space, the space E = Jί\(U+) is a Polish space in the
narrow topology (Proposition 10 of No. 5.4 of [10]) so in investigating continuity
it is enough to consider sequences. Let m be an element of £ and let {mn:n = 1,2,...}
be a sequence converging to m in E; for each s ̂  0,

J e~sλmn(dλ)-> J e-sλm(dλ).
[0,oo) [0,oo)

It follows that, for s1 ^ 0, s2 ^ 0, we have

j
[0,oo) x [O,oo)

= f e- '^ i f i ,^) J e-«Λίmπ(<U2
[O,oo) [O,oo)

-> J e-^'m^li) J" e-S2λ2rn(dλ2)
[0,oo) [0,oo)

[0, oo) x [0,oo)
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Let Xo = {λuλ2h->e~{Siλί+S2λ2):sί > 0, s2 > 0}; then Xo is the set consisting of those
real characters on U\ which tend to zero at infinity. Moreover, Xo is full and the
constant function λί9λ2\-+l is in the closure of Xo in the topology of compact
convergence; since sl9s2*-> f e~(Sίλι+S2λ2)(m® m)(dλί,dλ2) is continuous at (0,0),

[0,oo)

it follows by Theorem 3 of no. 5.7 of [10] that the sequence {mn®mn:n = 1,2,...}
converges to m(χ)m in the narrow topology on JKb

+(U2

+). But λί9λ2\-+v(λl9λ2) is
a bounded continuous function on R\ , so that by (4.2)

as n-^ oo, establishing the continuity of mi—><m, Vm} at m. •

We are now ready to prove the main theorem of this paper.

Theorem 4. Suppose that (SI), (S2) and (S3) hold; suppose also that the potential
v(',') is a bounded continuous positive-definite function on R2

+; then the pressure
p(μ) = lim pι(μ) exists for the perturbed mean-field model determined by t (y) and is

ί->oo

given by

p(μ) = — inf Sμ\nϊ\9

E

where
(Tμ[m]=/[m]+i{fl||m||2-h<m,Km>}-μ||m||,

and f[tή] is the free energy functional for free bosons given by (2.9).

Proof. Since mι->Gμ[m] is continuous and bounded above under the hypothesis
on υ(\) and since, by Theorem 3, {KJ:/ = 1,2,...} satisfies the large-deviation
principle with rate-function

Γ[m\ = p(α) + sup {<m, t > — p[α + ί]},

it follows by Varadhan's theorem applied to (4.1) that p(μ) = lim p/(μ) exists and
J-00

p(μ) = p(α) + sup { Gμ ~a [m] — Ia [m] }
E

= sup<(μ — α)||m|| — ̂ (α| |m| | 2 + <m, Fm>)
E [

— J (λ — a)m(dλ) + j8"1 J s(p(/l))dF(/l) >
[0,oo) [0,oo) J

where we have used the expression for /α[m] given by Theorem 2. •

Remark. Using the Euler-Lagrange equations derived in Sect. 5, we may obtain
the following alternative expression for β(μ):

ri (4.3)
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where m satisfies the Euler-Lagrange equations (5.3) and

tm(λ) = fl || m || +(Vm)(λ). (4.4)

5. The Minimization Problem

Recall that the functional <fμ[ ] may be written as

Sμ\m\ = /α[m] - Gμ-*[m] - p(α)

where (Vm)(λ)= J υ(λ,λ')m(dλ') and t (y) is a positive-definite bounded
[0,oo)

continuous function on IR+ x R + , and α is strictly positive.

Lemma 5.1. Let e = inf Sμ\ni\\ then there exists m* in E such that (ίμ[m*] = e.
meE

Proof. Since (ίμ[0] = 0, we have e <; 0. It follows that there exists a sequence {mn}

in £ such that e g ^ μ [m π ] ^ 0 and lim ̂ μ [m n ] = e. Since (m,Vm} is non-negative,

we have,

/ α [ m J S £μ\mn-] ~γa{a\\mn\\ + ( α - μ ) } 2 -f ^ ( α - μ ) 2 + p(α)

2α

which implies that the sequence {mn} lies inside a level set of I* which, by (LD2),
is compact. Hence {mn:n= 1,2,...} contains a convergent subsequence
{mnk:k= 1,2,...}. Let m* = lim mΠk; since, by (LD1), the function mi—•/"[m] is

lower semi-continuous, we have

lim inf J α [m π J ^ /α[m*]. (5.2)
Jfe-^oo

Furthermore mh-»Gμ[m] is continuous, so that by (5.2) and the definition of e we
have

*] ^ * = lim <r[m n j = liminf {/α[mnJ - Gμ-α[mnJ} - p(α) ̂  ^μ[m*]. Q
fc->-oo k-*oo

Recall that

f(l +x)ln(l + x)-xlnx, x>0,
ΦHo,

so that s'(x) = ln(l + 1/χ) for x > 0; we define s'(x) = oo for x = 0.

Lemma 5.2. Let m be a minimizer of Sμ and let m{dλ) = ms(dλ) + ρ(λ)dF(λ) be the
Lebesgue decomposition ofm with respect to dF; then p(λ) > 0 a.e. with respect to dF.

Proof. We write the functional <fμ[m] as

-/Γ 1 f s(p(λ))dF(λ).
[0,oo) [O,oo)
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Let m(ί; dλ) = tm(dλ) + (1 - t)m(dλ\ 0 S t ^ 1, with m(dλ) = ms(d/ί) + l
ίA(λ)e'λdF(λ)9 where ,4 = {λ:p(λ) = 0}, and let

= ms(t;dλ) + p(t;λ)dF(λ)

be its Lebesgue decomposition. Introducing/(ί) = £>μ[m(t)~], 0 ^ t ^ 1, we have, for

'(ί) = J μ-μ){m(dλ)-m(dλ)} +
[O,oo)

-r 1 J
[O,oo)

a \\ m(t) \\ f <Γ A

Now suppose that JdF(Λ)>0; then lim//(ί)= — oo since lims'(x)= + oo. Since
A ί|0 x[0

ί ι->/(ί) is convex, /'+ (0) = lim /'(ί); hence lim - {^μ[ίm + (1 - t)ni] -Sμ\m\} = -oo,
t|O t[0 t

so that, for t sufficiently small,

contradicting the assumption that m is a minimizer and proving that J dF(λ) = 0.

D

Our next task is to introduce the Euler-Lagrange equations of the variational
problem. We define the function Lμ(m;-) by

Lμ(m; λ) = λ + a\\m\\+ (Vm)(λ) - μ.

By the assumptions on ι (y), the function λ\-^Lμ(m;λ) is continuous for each m in
E. We define the Euler-Lagrange equations as follows:

Lμ{m;λ) = 0, m s-a.e., (5.3a)

dF-a.e., (5.3b)

where ms is the singular part of m and p is the density of its absolutely continuous
part in the Lebesgue decomposition of m with respect to dF. We remark that it
follows from (5.3b) that

so that the set Jί on which

Lμ(m;λ)<0 (5.4)

has dF-measure zero. But it follows from (S3) that the Lebesgue measure of Jί is
also zero which implies that Jίc is dense in [0, oo). Since λ\-+Lμ(m; λ) is continuous,
we conclude that

;λ)^09 Λe[0,oo). (5.5)
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Theorem 5. A measure m in E is a minimίzer of Sμ if and only if m satisfies the
Euler-Lagrange equations (5.3).

Proof Suppose first that m satisfies the Euler-Lagrange equations (5.3); as in the
proof of Lemma 5.2, let / : [0,1] -> U be the convex function defined by

for some m in E; then

m), (5.6)

where
(<f)'(m,m) = j {Lμ{m;λ)-β~1sf

[O,oo)

+ J Lμ(m;λ)ms(dλ). (5.7)
[O,oo)

Using (5.3), we have

/ ' + ( 0 ) = j Lμ{m;λ)ms(dλ)
[0,oo)

so that, by (5.5), / + (0) is non-negative; but ίι—•/(£) is convex which implies that

We have proved that

Sμ[m~\ - &μ\m\ ^ 0

for an arbitrary element m of E so that m is a minimizer of Sμ.

To prove the converse, assume that m is a minimizer of &μ\ putting

for an arbitrary element m of £, we have f(t) ^ /(0) for all t in [0,1] so that
and hence

Now let m be defined by

m(dλ) = (1 + ocg{λ))m(dλ),

where g is in i f °°(R+,m) for α sufficiently small, m is an element of E; then

($μ)'(m, m — m) = a($μ)'(my gm) ^ 0.

Since α can be either positive or negative, we conclude that S'(gm, m) = 0; explicitly,

J {Lμ(m;λ)-β-1s'(p(λ))}g{λ)p(λ)dF(λ)+ J L*(m;%(A)ms(^) = 0. (5.8)
[O,oo) [0,oo)

Now g is an arbitrary element of JSf^R+ m) and p is strictly positive rfF —a.e.;
we conclude that (5.3a) and (5.3b) hold. •

Lemma 5.3. Let m and m be minimizers of Sμ\ then their absolutely continuous parts
coincide and \\m\\ = | |m||.
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Proof. The function xι—•s(x) is strictly concave and the function mv-*$μ[m\ is
convex; this proves the first statement. The second statement follows from the
strict convexity of the function || m || h-> || m ||2. •

Let RF denote the subset of [0, oo) on which the function λ'\-+(λ — λ')~x is
locally dF-integrable:

Lemma 5.4. Let v be such that λ\->v(λ9λ') is continuously differentiable for such λ1

in [0, oo) and λ, λ'\-^>(d/dλ)v(λ, λ') is bounded; then the singular part ms of a minimizing
measure m is concentrated on the set RF:ms(Rc

F) — 0.

Proof Let S = {Ae[0, oo):Lμ(m; λ) = 0}; it follows from Theorem 5 that ms(Sc) = 0,
and that

so that

hence

(5 9 )

Now fix λ0 in S; then μ-a\\m\\=λo + (Vm)(λ0). It follows that, for all λ in [0, oo\
we have Lμ(m;λ) = λ — λ0 + (Vm)(λ) — {Vm)(λ0) since λ\-^(Vm){λ) is continuously
differentiable, we have

λ - λ0 + (Vm)(λ) - (Vm)(λ0) = (λ- λo)(l + {Vm)\λx))

for some λx in (λo,λ). It follows from the assumption that λ9λ'\->(d/dλ)v(λ9λ') is
bounded that

Lfl(m;λ)SK\λ-λ0\ (5.10)

with 0 < K < oo; hence, using (5.9), we have

•"•V
so that λ\-+(λ — / I Q ) 1 is locally dF-integrable. We have proved that SaRF; it
follows that

Theorem 6. Suppose that v satisfies the smoothness conditions of Lemma 5.4 and
that F(λ) = Cdλ

d/2, d>0; then a minimizer m of Sμ has the following properties:

f ^ s ,
2. if ms Φ 0 then ms is concentrated at λ = 0,
3. m is the unique minimizer of Sμ.

Proof If F{λ) = Cdλ
d/2, d > 0, then, by Lemma 5.4, RF c {0}, so that (2) holds;

when d g 2, RF = 0 , so that (1) holds. Let m and m be two minimizers; it follows
from (2) and Lemma 5.4 that m = m.
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