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Abstract. The quantization of the Virasoro group is carried out by means of a
previously established group approach to quantization. We explicitly work out
the two-cocycles on the Virasoro group as a preliminary step. In our scheme
the carrier space for all the Virasoro representations is made out of polarized
functions on the group manifold. It is proved that this space does not contain
null vector states, even for c ^ l , although it is not irreducible. The full
reduction is achieved in a straightforward way by just taking a well defined
invariant subspace ^C > Λ ), the orbit of the enveloping algebra through the
vacuum, which is irreducible for any value of c and h. ̂ f{Cfh) is a proper subspace
of the space of polarized functions for those values of c and h for which the Kac
determinant is zero. We give the local version of these group representations as
well as the associated classical phase space structures, i.e., symplectic form and
Noether invariants.

I. Introduction

The Geometric Quantization of Co-adjoint Orbits of a Lie group G [1,2] is
intended to be the quantum mechanical description of a dynamical system defined
by the group G itself. In GQCO the phase space M of the dynamical system is
constituted by the symplectic manifold structure with which the coadjoint orbits
are naturally endowed. The Hubert space of wave functions is a space of sections of
a line bundle on the symplectic manifold M once the so-called polarization (or
Planck) conditions are imposed [1]. This scheme aims to establish in this way a
correspondence between the set of irreducible unitary representations (quantiza-
tions) of G and that of its co-adjoint orbits. Nevertheless this association is in
general not quite well achieved, as has been made evident when applied to the
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Virasoro group [2]. The underlying philosophy of GQCO, i.e., the description of
the quantum behavior of physical systems from (or on) a group manifold, is the
base of several group theoretic formulations [3-12].

In this paper we undertake the task of quantizing the Virasoro group through a
Group Approach to Quantization (GAQ) [5, 10, 11] whose starting point is an
entire group manifold rather than a symplectic manifold (co-adjoint orbit). The
basic structure of the GAQ formalism is a "quantum group" G, i.e., a Lie group
endowed with a principal bundle structure with fiber a one dimensional subgroup
T(C/(l)orR) [5].(Seeref. [12] for a generalization in which T is replaced by a non-
abelian, non-compact subgroup.) Typical finite-dimensional quantum groups are
the centrally extended Galilei group [5] (see ref. [13]), the Poincare group [6]
SU(2) [10], SL(2,R) [14] (see ref. [15]) and the infinite-dimensional case: the Kac-
Moody groups [10,11] (see ref. [16]) and the subject of the present paper, the
Virasoro group.

As in the finite-dimensional case the T-fibration diffS^-^diffS1 associated
with the non-trivial central extension of diffS1 (as well as a pseudo-extension or
trivial extension closely related to the fibration diffίS

1->diffS1/</0-subgrouρ), see
later on) allows us to single a vertical component Θ [5, 6, 10] out of the left-
invariant canonical 1-form [17]. This globally defined 1-form is a connection form
and can be locally calculated as the left-invariant 1-form dual to the fundamental
vector field (central generator). On the other hand (9 is a pre-contact 1-form on
diffS1 whose characteristic module Cθ = (XeX(diΐfS1)/iχΘ = O = ixdΘy is gen-
erated by a subalgebra ^Θ, the characteristic subalgebra, of left-invariant vector
fields in the kernel of the Lie algebra cocycle^ Indeed a quantum manifold in the
ordinary sense [1] may be obtained from (diffS1, Θ) by taking the quotient by &Θ

and further quotient by T would lead to the classical symplectic manifold
(diffS1, dΘ)l(yΘ®T). The quantum representations of the Virasoro group will be
obtained from those Γ-equivariant functions on the group, Ψ e J^diίfS1, C),
satisfying the polarization conditions (see Sect. IV).

We show in this paper that the space generated by the polarized functions on
the group is not, in general, an orbit through the vacuum of the enveloping algebra
and, therefore, it is not properly a highest weight nor irreducible module. We
nevertheless prove the nice property that no null vector state is present, i.e., the
vacuum is the only wave function annihilated by the annihilation operators, so
that the irreducible module is obtained by simply considering the mentioned orbit
through the vacuum. The concrete values of c and h (central charge and
expectation value of the Lo operator respectively) for which the initial space of
polarized functions is not a highest weight module, then provide the values
corresponding to the existence of null vectors in the standard Virasoro Verma
modules [16].

The non-irreducibility of the space of polarized functions is not a property of
the infinite dimension. In the case of SL(2, R) it will be shown (see the appendix)
how this space is not irreducible for N ̂  — 1 (is not an orbit through the vacuum).
This fact has not been sufficiently remarked probably because, unlike the Virasoro
case, these representations are not unitary.

In order to perform the GAQ for the particular case of the Virasoro group we
first need a local group law near the identity from which explicit calculations can
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be achieved. Thus, in Sect. II we give an exact formal group law, including the two-
cocycle, obtained by using a "perturbative" method specially designed for those
purposes [10]. In Sect. Ill we study the different characteristic moduli of the
quantization 1-form Θ according to the possible values of h and c. In Sect. IV the
Virasoro quantization is accomplished. We work out the (polarized) wave
functions, discuss the above mentioned problem concerning the irreducibility and
construct, explicitly, the Lie algebra representations from those of the group.
Finally in Sect. V our approach is compared with the coadjoint orbits method. The
paper is supplemented by an appendix where the GAQ is briefly illustrated on the
SL(2,R) subgroup of the Virasoro group.

II. Formal Group Law for diffS1. Two-Cocycle for the Virasoro Group

In order to achieve explicit calculations on the Virasoro group we start looking for
a formal group law [18] up to the oo order of the centrally extended group diffS1.
That means finding an exact solution for the formal power series for the
parameters of the unextended group,

as well as another for the central parameter

^ γχB[,^k+..., (2.2)

where

i)δmJ+J, (2.3a)

fδ^ _t (2.3b)

are the structure constants of the extended Lie algebra,

[Ln,LJ = - i / Γ Ϊ ( n _ m ) L i i + m _ tΞLcn3δn< _m (2.4)

and the constants Biί...ikjί...j^ which are symmetric in 0Ί...ϊk) and (/i ir)
respectively, are constrained by the associativity condition,

(g" * f) • g = g" * (g' * $U I", f, g e difϊS1.

The trivial two-cocycle — ί/12c'nδn _m, to be added to (2.4), will be introduced
later on.

A general method for calculating formal group laws from structure constants
has been shown in ref. [10]. The associativity condition entails a set of constraints
on the coefficients B order by order whose general expressions are given by
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formulas (2.4-6) of ref. [10]. These equations do not have a unique solution but a
"gauge" can be fixed which eliminates this freedom and unambiguously deter-
mines all the B's to any order. Of course, the difficulty lies in fining a valid gauge to
any order, i.e., compatible with all the constraints.

In the first place we will obtain one explicit formal group law for the
unextended diffS1 group. Our gauge is

(2.5a)

nj (2.5b)

It can then be proved that the resulting algebraic system on B after imposing (2.5) is
compatible and has a unique solution which displays the correct symmetry in

il+...+ik+j. (2.6)

The formal group law for diffS1 thus follows:

2j pn m-n-p •••

• B l + B 2 + - + Π r + P = m r! - W » , - ^ + - - (2 7)

Notice that the coordinates /m in (2.7) do not correspond to those associated with
the exponential map, nor (2.7) itself is the Baker-Campbell-Hausdorff (BCH)
formula, since l'ή(ΐn = /„, lk) + 2/m. The BCH formula that can be obtained through
an adequate gauge, has the drawback that it does not apply to those elements out
of reach of the exponential map. Yet for finite-dimensional (non-compact)
connected groups one may have some group elements which do not belong to any
one-parameter subgroup, as for instance, diag( — \λ\, — \λ\ ~x) in SL(2, R) with real λ
different from 1. However, the formal group law corresponding with the power
expansion of the SL(2,R) composition law (A.I) is rid of this difficulty.

The actual meaning of the local coordinates lm in our particular choice of the
gauge might be established by means of the Noether invariants which could be
compared with those given in terms of the coordinates for which the diffeomor-
phism Θ^S(Θ) is written as θ+ l/2πΣsnexp — inθ. They are found in the first refer-
ence in ref. [2] although the computation is given to the lowest order.

We now calculate the central group law (2.2) which may be written as

thus defining a two-cocycle ξ on diffS1. The gauge to be chosen must be more
involved, as it has to be compatible with the Lie algebra cocycle (2.3b) as well as the
formal group law for diffS1 just found (2.7) and has to lead to B coefficients,

proper index symmetry. Our guess for the gauge is

>i2δt,-j, (2.8a)

2 4 v , v •l)!;1...j ri%.- j l-...-Jr. (2.8b)
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The resulting system of constraint equations is also compatible once (2.8) are
taken into account and has a unique solution. The general formula giving the Bφ's
to arbitrary order is

( 2 9 )

In (2.9) P(k)(iu...,ik) is a symmetric homogeneous polynomial of degree k in the
variables il9...,ik,

p(k\h,-,ik)= Σ 41...^-fr, (2.io)
part(fc)

where the sum goes over the partitions \_λu ..., λs~] of k. The coefficients, af} Λs, are
recursively given as

Γ )
2, aλ1...λi-ι...λs

Thus, for instance, the lowest polynomials P{k) are

P(1)(x) = x, P(2)(x, 3;) = x2 + / + xy,

P(3)(x, 3;, z) = x 3 + y3 + z3 + 2(x2y + x2z + y2x + y2z

(2.12)

The two-cocycle ξ is derived from the φ group law (ξ = φ" — φ' —

?

x P»\nlt...,nk)lmi... l j ' n i . . . ϊnk + . . . ] , (2.13)

which along with (2.7) constitute the formal group law for the centrally extended
Virasoro group diffS1.
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At this point it must be remarked that the unextended group diffS1 already
undergoes a non-trivial fibration diffS1 ->diffS1/^} conferring on it the structure
of a quantum group. This constitutes a natural generalization of the three
fibrations of the subgroup SL(2,R) (parametrized by Zo, / ± 1 ) : one l/(l)-fϊbration
on a two-sheeted hyperboloid and two R-fibrations on a one-sheeted hyperboloid
and a (light-)cone respectively. Nevertheless we shall always call Zo the param-
eter of the structure group irrespective of its topology rather than denominat-
ing Zo the U(l) parameter and Z±1 the other non-compact parameters. The
advantage in so doing is the possibility of handling all cases together. We must,
however, be aware of the actual topology of the fibration in question when doing
the local calculations.

^The simplest way of incorporating the "Z0"-fibrations into the main fibration
diffS1 -•diffS1 is by means of the pseudo-extension concept [6,10]. The non-trivial
Z0-fibration diffS1->diffS1/<Z0> can equally be treated as a "trivial" central
extension of diffS1, diff51®<Z0>-^diffS1, achieved by means of a (pseudo-)cocycle
(coboundary actually) locally generated by a linear function on Zo. This class of
coboundaries, which indeed modify the structure constants of the Lie algebra
define pseudo-extended groups looking like non-trivial extension under the GAQ
formalism (dΘ φθ). The group law for the parameter of the (7(1) central subgroup
in difFS1(g)</0> is \_ζeU{\\ locally ζ = eiφ~\

and thus, a real number d comes into the theory. This number must be an integer if
Zo parametrizes the [/(I) subgroup of diffS1. In that case we are generalizing the
discrete SL(2,R) representations associated with the [/(l)-fϊbration on the two-
sheeted hyperboloid (see appendix). If we wanted to represent just the Lie algebra
we would consider continuous valuesj3f d irrespective of the topology of the
Z0-subgroup. We finally propose for diffS1 the group law (2.7) in addition to the
following one for the U(ί) central parameter:

±ξ(g>,g)- |_ξ c o b ( g >,g),

(2.15)

where ξ(g\g) is read from (2.13) and ZJ from (2.7).
To end this section, and for the sake of completeness we include different

actions of the Virasoro group. We provide the vector realization corresponding to
the action on the anti-ghost operators Ψn of string theory, the dual one on ghost
operators Ψ*n and the action on the string modes oζ. According to the infinitesimal
actions

(2.16)
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the finite actions on the field (group) variables, Ψn, ψ*m

9 aμ

p, are derived much in the
same way the action of the Virasoro group on itself was. They are

ψf

m = Rm

n

Ψn, ψ'*m = R;1'mψ*\ o t f = l / m χ , (2.17a)

where

Rkm = δk+ Σ ^ i . m Ί i i + + Tf Σ ^ ί i . .iij.ifAii ' * . , + •••>
n i + m = fc J'Πι + ... + Πj + m = k

(2.17b)

+ 2( - fcy- V i + ... + „.) + ( - fcy], (2.17c)

(2.17d)

III. Quantization Form and Noether Invariants

From (2.7), (2.15) the vertical component Θ (quantization form) of the left-
invariant canonical 1-form 9L can be derived by duality with respect to the left-
invariant vector fields f 1

Θ(Ξ = X\) = 1, Θ(any other) = 0. (3.1)

χL=-!h ,g"=g'*g\.
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x ί = + i k l ~ ζ + ~ Γ ι J ζ +

/! n + +ϊ =m-k j dl

24 Γ ; v ' - « ' 2! n i + B t = - * v - - ( 3 2 a )

XΪ = iζ^=Ξ, (3.2b)

where |/—1 has been converted to the customary notation. They close on the
algebra #:

(3.3)

Duality on (3.2) finally leads to the following quantization form:

^ ^ ( {-ifn,n2lnιln2 + ...

(3.4)
j= -k

The characteristic subalgebra &Θ of <9 is the left subalgebra of #, a^basis of
which generates the characteristic module of Θ, i.e., the vector fields on diffS1 such
that:

0 = iχΘ. (3.5)

In other words, @Θ is the kernel of the Lie algebra cocycle. The actual structure of
<gΘ depends on the particular values of cΦO and d. We find the following
possibilities:

xϊ0,Xir,Xlr)*sIΪ'\2,K) if c'lc =

The corresponding symplectic manifolds1 (diffS1,dθ)/^βφiι(l) will be

(diίf S\dΘ)KXΪ0}9 (3.7a)

(diffS1, dΘ)/sL(r\2, R), r = 1,2,3,... (3.7b)

respectively.

1 The 2-form d<9 on άifΐS^S1 parametrized by (c,cf) turns out to be the Kahler metric [19]. We
must remark at this point that no global complexification can be achieved on the Virasoro
group [20]. The use of (local) complex coordinates (the group law is compatible with the rule
/* „ = /„) is only to simplify calculations and does not mean a lack of globality
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As in the general case the integral curves of the generators in <3Θ can be
interpreted as generalized equations of motion. In GAQ the Noether invariants
are given by iχRΘ [5] which close on the same Poisson algebra as the respective
right-invariant vector fields, i.e.,

(3 8)

iχR& is in fact invariant along the trajectories of the motion, LXL9iχRΘ = 0. The
calculation of the right-invariant vector fields, XRe&R (diffS1) is straightforward.
By using (2.7) and (2.15) we get

d

Σ

-^i(-k)l_kΞ. (3.9)

Equation (3.9) permits us in particular to obtain an explicit expression for the
classical Hamiltonian ίχRΘ,

l ^ Σ (-ι?n1n2lmιln2lm+...
nί+n2= -m

+ Σ (-iy+1n1...njlnί...lnjm+...), (3.10)
n + τ i + + r i = m J.. +rij= —m

from which a study of positivity can be made along similar lines to those in ref. [2].
The critical points p o{H = iχRΘ on the symplectic (solution) manifold, dH\P = 0
satisfy

% 0, (3.11)

and then

* £ I P = 0 , (3.12)

for dΘ is not degenerate on the symplectic manifold. Therefore the critical points p
are left fixed under the left action of the /0-subgroup. Looking now at (2.7) it is
easy to see that the only critical points p are those coming from the identity of the
group when projected onto the symplectic manifolds. The stable critical points
appear for diffS7<lo> (c'/c#N2) or diffS7SL(1)(2,]R) (c'/c = l) and the Hamil-
tonian (3.10) is positive if c>0 and c^cf.

IV. Group Quantization and Virasoro Representations

The GAQ idea is to perform the quantization from the Virasoro group itself rather
than its symplectic manifolds (coadjoint orbits) (3.7). We do not need to start with
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any truly symplectic manifold. In this respect our point of view is different from
that of the standard Geometric Quantization approach applied to the coadjoint
orbits [2]. Nevertheless both formulations have many common points.

Inorder to quantize the group dife1 we start with the complex functions on it
f C ) . A naive quantization (prequantization or Bohr quantization) is

achieved from the right-invariant vector fields acting on ^"(diffS1, <C). This
representation is highly reducible, and it is for that reason that a proper
quantization mechanism must be followed. One can in fact check that there are
non-trivial operators, XL indeed, which commute with the representation
XR ([X*,XL] =0 is well known to be a general group feature). Then reducing the
representation means seeking a maximal set of compatible conditions on
J^diίfsSC) trivializing the effect of #"L(diffS\(C). For instance the operator
Xfζ) = Ξ can be made trivial by imposing the so-called l/(l)-equivariance condition
already found in the traditional Geometric Quantization formalism [1], That is to
say, ΞΨ = iΨ. The next step is to impose the maximum number of compatible
conditions of the form XLΨ = 0. This is actually accomplished by means of a
polarization.

Unlike the customary definition of polarization [1] where a certain unwanted
ambiguity is present [14], in our quantization formalism the definition of
polarization is constrained by the structure of &θ. A Full Polarization 2FSP
(respectively Polarization 0s) is a maximal left-subalgebra containing (respectively
a proper subalgebra of) yΘ [11,12] and excluding Ξ. This definition generalizes
that of Geometric Quantization. In some special cases an obstruction to the Full
Polarization can occur. This obstruction is associated with the existence of gauge
transformations in anomalous theories relating two different polarizations [19].
From the classification (3.6) we find the following non-equivalent Full Polariza-
tions and Polarizations.

For ^ = <Xfo> the Full Polarization is

j ^ = ^ = < χ ^ 0 > . (4.1)

For ^ ( 9 = SL(1)(2,R) the Full Polarization is

In both (4.1) and (4.2) cases Full Polarizations and Polarizations coincide. For
^6> = SL(r)(2,R)^2 the Full Polarization is

P0M = <Xfkr> > fc = -1,0,1,2,3,..., (4.3a)

but the Polarization is different 2 :

^ ( r ) = α t s o > (4 3b)

From now on we only deal with the two different Polarizations ^ ( r - 2 ) = <X^ 0>
and gP{1) = <Jt\nίkiy which are complete in the sense that they have "half the
Virasoro generators. We neglect the Full Polarization # ^ ( r = 2 ) because we think
that it would lead to a set of non-standard highly reducible representations. The
use of ^ ( r = 2 ) will lead, on the contrary, to the highest-weight Virasoro

2 In a different language these results can be expressed by saying that the only symplectic orbits of
(3-7) which are Kahler manifolds are diffSVS1 and diffS'/SU&WL) [2]
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representations with d/c = r2, r = 2,3,.... In terms of c and h = (c — c')/24 the
relation c'/c = r2 is h= — c(r2 —1)/24 and is known to correspond to non-unitary
representations.

We define the wave functions as the l/(l)-equivariant functions on diffS1

(ΞΨ = iΨ) satisfying the polarization conditions

XtsoΨ = 0 if c + d, (4.4a)

X£sιφ = 0 if c = d. (4.4b)

We restrict ourselves to the case c # d because that of c = d (the difference being the
extra polarization condition Xf+1*F = 0), can formally be obtained from the
former by putting c = d everywhere at the end of the calculus.

Equations (4.4a) can be exactly solved to any order. The polarized wave
functions factorize into a product of basic functions W and {/„}, n = 1,2,3,..., one
of which, the weight function W, is a common factor in all states. We find

\0} = ζW (the vacuum)

i U{U...{y, (4.5)
where the explicit expressions for W and {/„} are given below. Here we just write
the terms which are relevant in computing the Lie algebra operators. The
remaining part of each function can be systematically computed from the exact
expression of the left-invariant vector fields (3.2). The superposition property of the
states can be proved by exactly the same procedure used in ref. [11]. Up to the
factor ζ the vacuum is given by

; n2, n3) = - ( - iqz)Q(2\nx, n2) -

i-i(-iq.f u_k)

k=ι k\

(4.6)
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where the polynomials P where defined by (2.10), (2.11). For the functions
{lq} we write

{!,}=!,+ Σ *(1W?)/.Λ-.,
wi>0
n\>q

+ Σ Rw(nun2;q)lniln2lq-ni-n2 + ...
n\,Π2> 0

Hi +ti2>q

+ Σ
n i,..., n j > 0

+ + +

(—i)2 (—i)3

n1,...,n J;9)= Σ ^ ( f i i + .-. + nj-i^w-V,...,«;_,;«). (4.7)
s= 1 5!

The group representations (parametrized by c and cr) could now be explicitly
obtained from the polarized functions and the group law by means of the finite left-
translations „ Λ

W ψ(g) = Ψ(gf * g), Vg', g e diffS1. (4.8)

We only make explicit the Lie algebra action through the right-invariant vector
fields. From (3.9), (4.6-7) we obtain exactly

*f_jo>=^{ Σ Σ β°K.. . .B^.. ./„,>
^T- 7= 1 «i «/>0

(̂  πι + ...+τij = k

+i"Σ (k-s)Σ Σ QU)("u -,njK-Λ, '„,>
s = 0 j = l ni , . . . ,« j>0

ni + . . . + ttj = s

Σ Σ i-:^-n1...nj\lai...lΠj) + c'k\lk>\, (4 9a)
«i + ... +«j = fc

fc + ί

o\ιq>=Σ Σ
7 = 1 «i, . . . ,«j>0

k-1 s+q

iΣ(ks)Σ Σ Ru\nι,...,nJ)
s = 0 7 = 1 wi,...,πj>0

ni +... +Πj = s + q

(4.9b)

(4.9c)
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The action of the basic operators Xfk on any other state \lni... ln.} follows from
(4.9a-c) because of the factorization property of the polarized functions. The
commutation relations among the right-invariant vector fields

[Xfn,ZfJ = i(n-m)Xf n + m +^(cn 3 - C 'n)^,_ m S (4.10)

are converted to the usual Virasoro commutators, [Ln,Lm\—(n — m)Ln+m

+ c(n3 — n)/12, with the redefinition

t n Φ 0 =-i l f n , L0=-i(X?0 + hΞ), (4.11)

where h — {c — c')/24 is the vacuum expectation value of Lo.
The above expressions (4.9-11) can be seen to constitute a Virasoro representa-

tion on the space of (polarized) wave functions. Had we taken the polarization
gpw (c = d o h = 0) we would have obtained a set of states of the form |/Wl... /„.>,
n fc^2. In both cases the polarized functions are linearly independent, and the
associated partition functions are

L = qh Π π if &*<>, (4.12a)
1 1 (

= fί τ^-n if h=0, (4.12b)

which coincide with those obtained in the first reference in ref. [2], for the
"quantizable" orbits difίS^S1 and difT5VSL(1)(2,R), by using the fixed point
theorem. At this moment, a very careful analysis of the representations (4.9) in
relation with the standard theory for the Virasoro group and, in particular, with
the GQCO method, is required.

One of the main properties of the representations here obtained is the absence
of null vectors, i.e., polarized functions on the group vanishing under all the
annihilation operators. This property is stated by the following

Proposition. The only (polarized) wave function on the group satisfying Xfn>QΨ = 0
is the weight function ζW.

The Proof immediately follows from the fact that we know the operators Xfn

explicitly. In fact, the equations X?n>oΨ = 0 can be integrated explicitly with the
general solution

0 ι i i2Vni<0ln2<0]+..., (4.13)

where

W= 1+0(2). (4.14)
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It is clear from the general solution (4.13) that the only solution which can be in
turn a polarized function is ζW since the leading terms of the functions [/ni... lnj,
unlike the functions (4.5), have negative indices. However, the analytic function ζW
satisfies exactly the same linear differential system {Xfn^QζW=O) as ζW [see
(4.9c)] and coincide with it. This result can also be tested easily by direct
calculation.

A crucial point to be remarked is that, unlike for finite-dimensional compact
semisimple groups, the space of polarized functions on the group or, equivalently,
the space of holomorphic sections of the corresponding line bundle in the Kahler
Geometric Quantization scheme, is not in general irreducible (in this respect the
Virasoro group is different from the loop groups on compact Lie groups for which
the Borel-Weil-Bott theorem [20] still applies). Indeed, the invariant subspace

^h)^{Xfnj...Xfni\ζWy>, nfc>0,7 = l,2,3,... (4.15)

is a proper subspace for certain values of c and h (see later). A corollary of the above
proposition is that (4.15) is irreducible. Therefore, the action of the right-invariant
vector fields on ^Cfh) provides a highest weight representation without null
vectors. As a consequence of the irreducibility of J^ c h ) (no null vector is present),
the possible linear relations among states in (4.15) appear automatically and no
additional quotient has to be taken. In other words, the actual values of c and h for
which ^C,A) is a proper subspace of the set of polarized functions will emerge in a
straightforward way and coincide with those annihilating the Kac determinant.

We want to insist on the difference between our construction of (4.15) and the
analogous construction (Verma module) in the standard abstract theory. There
one starts with an abstract vector state \Ω} with lowest L0-eigenvalue h and
satisfying Lm>o|jQ> = 0, and then constructs a formal (Verma) module by linear
combination of

Y[Lc!n\Ω}. (4.16)
i

The formal states (4.14) themselves may firstly be considered as generators of a
linear space and then constrained according to the special values of c and h. It is
well known that the Virasoro Verma moduli for c ^ l posess null vectors [16]
(more precisely, for c> 1 the Verma modules are irreducible, for c = 1 there is a null
vector on level n given by h = (n —1)2/4, and for c < 1 there are more than one) and
the irreducible representations are quotients of Verma moduli by the null vectors.

On the contrary, our construction does not start with abstract states but rather
with explicit functions on which the differential operators XR do act. Thus, the
possible linear relations among states in (4.15) will appear automatically. Let us
illustrate this fact with a few examples, and we will see how the values at which the
linear relations happen are those for which null vector states are found in the
standard representation theory [16].

To this end we first write the creation operators to the lowest orders:
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i Σ Γ-*(-
m,»2>o|

k2 1 Ί
2j"(»i + » ί + 2nιn2)c- — («! + n2)V |/Πl/n2>

Σ - * K | | i
«l,Π2,«3>0 | _

—(n1

2 ! ( cn1+cn1)+2 j P (n^n^n^c ^ c jJ/^W

k-i Γ

s = 0 |_

Γ π 3 S^ 2 n 2

+ Cfe2[-fc|O+^n1n2 |ίB l/ n 2>

+ -n 1 n 2 π 3 | / n i / Π 2 / Π 3 > + ... +c'fc|/k>L

(- Ϊ W ( « I + "2 - i)i(»i - ί)

L

l fc3Ί
^)2)--/c2ϊ(n1-^) + z— J

+
fc-l Γ

i Σ (k-s)\ ίs
S=0 |_

(4.17)

>- Σ

The vector state defined as Xf-i|0> is the following wave function,

?U , (4.18)

which is automatically zero if c = d (or h = 0).
The next examples are less trivial. The irreducible space of level two is

generated by the functions Xf_2|0> and (Xf.^lO), and the question arises as to
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whether or not these wave functions are proportional. With the help of expressions
(4.18) one can compute both wave functions:

^ ^ (4.19a)

(4.19b)

They are proportional, i.e., (Xf_2 + A(Xf_1)
2)|0> = 0, if

= M 5 - c ± ]/(c-l)(c-25)]. (4.20)

Finally we consider the level three. The irreducible space of level three is generated
by the functions Zf_3|0>, Zf_2Xf_J0>, and (Xf./IO):

(4.21)

They are proportional, i.e., (Zf_3 + μXf_2Zf_1+μ/(Xf_1)
3)|0> = 0 for

/ (4.22)

or, the values [(4.20)] which are the induced ones from the previous level
and correspond to relations of the form Xf_1(Xf_2 + A(Xf_1)

2)|0> = 0.

V. Final Comments and Comparison with the Coadjoint Orbits Method

Let us summarize in a few lines. Starting from the Lie algebra of the Virasoro
group we have constructed a local group law to which we have applied our GAQ.
This method provides a functional space of polarized functions on the Virasoro
group constituting a Virasoro Lie algebra module or, even more, a carrier space for
the finite action of the group. As a non-trivial result we find that unlike the finite-
dimensional compact semisimple Lie group this space of polarized functions is not
irreducible. However, the reduction is achieved in a straightforward manner by
just taking the invariant subspace J^{Cfh) which is irreducible irrespective of the
concrete values of c and h. Discrete values of c and h, precisely those for which the
Kac determinant is zero, characterize the representations whose carrier space
J^ c Λ ) is a proper subspace of the space of polarized functions. Nevertheless we are
always rid of null vector states. The fact that ^ C , Λ ) does not coincide, in general,
with the space of polarized functions finds its origin in the non-compactness of the
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α " ^ — * * " b
Fig. 1. A is the space of polarized functions on the group, B the Verma module. AnB is the
irreducible carrier space for the group representations. In a) not all the polarized functions are
obtained from the vacuum. In b) the whole space A is irreducible, a) Virasoro group, b) Compact
groups (finite-dimensional semisimple groups and Loop groups)

Virasoro group. In the compact cases (finite-dimensional simple Lie groups and
Loop groups [20], going from the local solutions of the polarization equations to
the global ones restricts the space and make it irreducible (see Fig. 1).

One of the improvements of the method here developed with respect to the
GQCO is the capability of providing the irreducible representations of the group
for any value of c and h. For the latter only the (Kahler) orbits diffS1/<Sil and
difFSVSIί 1}(2, R) are quantizable (polarizable) and the partition function for these,
coinciding with ours (4.12), corresponds to irreducible representations only for
c>\. According to the strict rules of the Geometric Quantization one must
conclude that this method is unable to get all the irreducible unitary representa-
tions (in particular the discrete series 0 < c ^ 1) [21], as stated in the first reference
ofref. [2].

In the light of the results obtained with the GAQ we have the strong feeling that
what happens in the GQCO method for c ̂  1 is simply that the representations
obtained by means of the holomorphic sections are not irreducible and the full
reduction could be accomplished by just considering the "orbit" through the
vacuum of the enveloping algebra, rather than looking for a non-standard
quantization of the non-polarizable co-adjoint orbits.3

Another open question concerns the scalar product. We also believe that the
breakdown of square-integrability might be at c = 0, where the unitarity ceases,
instead of c = 1, where the space of polarized functions (respectively holomorphic
sections) stops being irreducible. This is something to be discussed more accurately
once a proper scalar product will be defined. In principle, it seems natural to
prolong the definition of the scalar product on the SL(2,TR) group (A. 14) to the
Virasoro group by means of the formal integral

> = J (θ
diffS1

ιL(Ό)
«-l) A 0 L ( I 2 ) Λ (5.1)

where 5 L ( } are components of the left-invariant canonical 1-form 5L. The practical
capability of this expression is under study.

We want to point out, as a final comment, that the mechanism which has led to
the full reduction of the polarized functions on the Virasoro group is of general
applicability and has already been used to obtain the irreducible representations of
a supergroup, the BRST-supergroup, containing among its generators the
β-charge, the ghost and anti-ghost operators and the Virasoro constraints of

3 Examples of non-polarizable, finite-dimensional symplectic manifolds have been given in
reference [22]



592 V. Aldaya and J. Navarro-Salas

string theory. The critical dimension arises in the same way as the critical values c
and h here [23].

Appendix

This appendix is devoted to a brief illustration of the Group Approach to
Quantization formalism by means of a much simpler example: the 5L(2,R)
subgroup (see ref. [14] where the dynamics on SL(2,R) is interpreted either as
that of a relativistic harmonic oscillator or as a particle moving on a 1 + 1 anti
de Sitter universe.

The group law we give for SL(2, R) is written in a global fibre bundle chart of
the fibration SL(2,R)->SL(2,R)/£/(l). In this chart η parametrizes the fibre U(ί)
and 2z, 2z* the hyperboloid Ω. The law is

= z'η ~ 2 + κ'z + — ^ - lz*z'η " 2 + z'*zη2],
1 + K,

z*" = z*rη2 + κ'z* +

η" =

2z*_

η'η- 7 z*z'η*ηf (A.1)

where κ=j/l +4zz* and κ" = κ'κ-2(z*z'η-2 + z*'zη2).
The fibration SL(2,R)->SL(2,]R)/(7(1) canonically defines a Z-parametrized

family of pseudo-extensions which are realized by means of coboundaries
generated by linear functions on the η parameter of the 1/(1) structure subgroup.
The group law for the (7(1) structure subgroup of the pseudo-extended group is
(C = expίφel/(1)): r*-r>r,^->-i--i* NeZ. (A.2)

From (A.I) and (A.2) the left- and right-invariant vector fields are respectively

d 2i

d 2 Ϊ d . z „

^=8θ-iZ8z-+iZ*\

(A.3a)

(A.3b)

δθ'
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The Lie algebra commutators are

lX^X^-] = -2iXfθ)-iNΞ,

VA {ΘY Λ (z)J — l Λ (z) ? LΛ (0)> Λ (z*) J — —IΛ (z*) .

From the last expressions (A.4) the characteristic subalgebra can be derived,

*• = <*£>>, (A.5)
and the Full Polarization can be chosen as

J ^ = <Z£,,Xfz)>. (A.6)

The polarized wave functions, which satisfy

ΞΨ = iΨ, XL^Ψ = 0, (A.7)

are linear combinations of the following basic functions (η = eiθ):

|m> = C(l+κ:)- i V / 2[^- ί 0(l+κ:)-1z*]m, m = 0,1,2,3,.... (A.8)

The group representations (parametrized by the discrete index N) are given by the
left translations acting on the wave functions,

Ls,Ψ(g)=Ψ(g'*g). (A3)

The Lie algebra operators are the right-invariant vector fields acting on the wave
functions as ordinary derivations [thus producing the infinitesimal version of
( A 9 ) ] ? i>n>=

We get the usual SL(2, R) action on |m> and Lie algebra commutators from the
trivially redefined operators Xfη) = Xfη) + NΞ, X^ = Xfzγ X^} = X^y

It is very illustrative to realize, on the grounds of the present example, that even
for (non-compact) finite-dimensional Lie groups one finds (polarized) wave
functions not belonging to any orbit through the vacuum of the group. In fact, for
negative N only those wave functions with m^—N come from the vacuum. Of
course this fact only happens (in finite dimensions) for non-unitary representations
(negative N).

The scalar product of polarized wave functions out of which unitary
representations can be found is given by

(ψf,Ψy= j 0L<2>Λ0L<z*>Λ0L<*y*φ, (A.11)
SL(2,R)

where #Lare (the non-vertical) components of the canonical left-invariant 1-form,

i±^ dz _ ^ L
dz ^ rf

K κ(l + K)

-i-κ Az*
2

d*-dz-2iz*dθ,

1-hκ
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The invariant volume is

μ = 0L<*> Λ 0L<**> Λ 0L<"> =-dzΛdz*Λdθ, (A.13)
fV

and the scalar product between basic states |m> is

\z\2m

A group representation will in principle be unitary (XRt = —XR) if the integral is
finite. Among the values of the parameter N characterizing the representations
only N ̂  2 make the wave functions square-integrable with respect to the scalar
product (A. 14). Nevertheless, from the strict Lie algebra point of view, for which N
need not be an integer, the operators (A. 10) are anti-hermitian for just N > 1. In
addition, the scalar product (A. 14) can be continued to the value JV = 1 which
defines a group representation (the Mock representation):

<m|»> i V = 1=lim ^ g
+

So then, and among the class of representations here studied, those representations
are unitary for which N = 1,2,3,.... The rest of the (unitary) group representations
can be constructed within the same framework taking the other two (R-)fibrations
of SL(2,R), one over the 1-sheeted hyperboloid and another over the light-cone.
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