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Abstract. We introduce a Hamiltonian system with many degrees of freedom for
which the nonvanishing of (some) Lyapunov exponents almost everywhere can
be established analytically.

Introduction

Dynamical properties of Hamiltonian systems with many degrees of freedom are
reasonably well understood. At least we think we know what to expect. The two
major ingredients of the dynamics are quasiperiodic motions and a component
with strong mixing properties. The other features of the dynamics like Smale's
horseshoes and Cantori of Mather and Aubry take place on sets of measure zero
and probably do not matter that much in the case of many degrees of freedom.

There are Hamiltonian systems where the whole phase space is filled with
quasiperiodic motions. These are so-called completely integrable systems and there
is an ample supply of examples. By the KAM theory nonresonant quasiperiodic
motions survive small perturbations. For many degrees of freedom the smallness
of the perturbation is probably very restrictive so that for a typical system only a
small portion of the phase space is filled with quasiperiodic motions. Nonetheless
their actual or possible presence thwarts attempts to study the mixing component
since the two components have to be intricately intertwined. So far only crude
models were found where the two types of behavior were shown to coexist ([Wl,
Prl, W2, Del]) but the success there depends on a simple splitting of the phase
space which is destroyed under any kind of perturbation. Thus for the case of
mixed behavior we have virtually no examples and no theorems about the mixing
component. We have though a solid conjecture: for a "typical" Hamiltonian system
there is a component of positive measure where Lyapunov exponents are nonzero.

The systems which do not have the quasiperiodic component and where the
strong mixing is present in all of the phase space should be more accessible, yet
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there are few examples known. Here is a list of some relevant examples:

1. Geodesic flows on manifolds with negative (nonpositive) curvature ([A-S, B-B,
Bu]).
2. Gas of hard spheres ([SI, Ch-S, W3]).
3. Planar billiards with concave boundaries and with special convex boundaries
([S2, Bl, W4, M, Dol]).
4. Symplectic Anosov and pseudo-Anosov diffeomorphisms ([A-S, G]).
5. Linked twist mappings ([B-E, W5, Pr2, De2]).
6. Geodesic flows on surfaces with special metrics and potentials ([Do2, B-G, Kn,
D-L]).

In this list only the gas of hard spheres is a realistic physical model with many
degrees of freedom. Mathematical treatment of this system is due to Sinai. The
purpose of this paper is to present another such example.

An excellent framework for studying the mixing component in Hamiltonian systems
is provided by Pesin theory [P] and its version for discontinuous maps worked
out by Katok and Strelcyn [K-S]. It is worth noting that some of the above
examples were testing grounds in the development of the theory of hyperbolic
behavior in dynamical systems which led to Pesin theory. Given this theory the
problem of establishing strong mixing properties is largely reduced to studying
the Lypunov exponents: the more different from zero they are the more mixing
our system is. In this paper we use a slight generalization of the criterion for
nonvanishing of Lyapunov exponents in a symplectic setup developed in [W3]. We
present it in Sect. 3.

The scarcity of examples of systems with nonzero Lyapunov exponents almost
everywhere can probably be explained by the fact that Hamiltonian systems have
in general many periodic orbits and some of them may happen to be linearly stable
(by accident or design). A system may look like one in a computer simulation yet
contain a longer stable periodic orbit with a tiny domain of stability. That was
the case with the billiard in a convex domain studied by Robnik [Ro] in which
Hayli et al. [ H - D - M - S ] found a stable periodic orbit. Similarly the claims made
by Bunimovich [B2] that billiard systems in some three dimensional domains have
chaotic behavior in all of the phase space were put to doubt by the construction
of long linearly stable periodic orbits in a billiard system in a domain built of
semispheres [W6].

Our system consists of n particles with masses m1,m2,...,mn moving on a
vertical half line (the lowest particle has mass ml9 the next m2, etc.). They are
subject to constant acceleration (i.e. they all fall down) and collide elastically with
each other. The lowest particle also collides elastically with the floor. Considering
the manifold M where the total energy is constant we obtain a piecewise
differentiable flow φtm.M->M, teU which preserves the finite Liouville measure.
For equal masses our system is completely integrable. We prove the following

Theorem. If m1 ^ m2 ^ ••• ^ mn and not all of the masses are equal, then the flow
{ψ*} has at least one nonzero Lyapunov exponent almost everywhere.

We believe that actually the following is true.
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Conjecture. If m1 ^ m2 ^ ^ mn and not all of the masses are equal then {ψ*} has
exactly one zero Lyapunov exponent almost everywhere.

We expect the system to be actually ergodic and hence the Lypunov exponents
to be constant almost everywhere but we do not include it in the conjecture since
it seems to be of much higher order of difficulty.

The following partial results lend support to the conjecture.

Proposition 1. For every ε > 0 ίfm1 > m2 > > mn and (m1 — mn)/m1 is sufficiently
small (depending on ε) then {ψ*} has exactly one zero Lyapunov exponent except
possibly on a set of Liouville measure g ε.

Proposition 2. // there are exactly I groups of particles with equal masses, I ̂  2,
containing k1,...,kt particles respectively, the greatest common divisor ofkl9...,kt

is one and m1 ^ m2 ^ ^ mn then {φ1} has exactly one zero Lyapunov exponent on
a set of positive Liouville measure.

The proofs are such that in Proposition 1 we have to take extremely close yet
different masses to satisfy the claim and in Proposition 2 the set where all (except
for one) Lyapunov exponents are guaranteed to be nonzero has extremely small
measure.

Proposition 3. For the system of three masses ifmγ >m2>m3 then {ψ*} has exactly
one (out of 5) zero Lyapunov exponent almost everywhere.

The conditions on the masses cannot be easily relaxed because of the following
fact.

Proposition 4. For the system of two masses there is a periodic orbit of \j/1 which
becomes linearly stable ίfmί < m2.

The successful application of the criterion for nonvanishing of Lyapunov
exponents depends crucially on the right choice of coordinates in which the
derivatives of ψ* have enough built in structure to be treatable. The preferred
system of coordinates is furnished by individual energies of the particles hί9..., hn

and their velocities vί9...9vn. This is a canonical system of coordinates so that the
Hamiltonian character of our system is preserved. At the same time the Hamiltonian
becomes a linear function (H = hί + —\-h n ) and hence in these coordinates the
phase space loses the geometric structure of a (co)tangent bundle.

Our system could be treated in a natural way as a billiard system on a
multidimensional manifold (of nonnegative curvature) with boundaries but it
seems to be a wrong approach. In Sect. 1 we introduce a general concept of a flow
with collisions. We hope that by describing the setup in abstract terms we make
the technical details of the paper more accessible. In Sect. 2 we describe our system
and we show that it fits the framework of Sect. 1. In Sect. 3 we introduce the
criterion for nonvanishing of Lyapunov exponents. For ease of reference we call
it the Q-criterion. In Sect. 4 we obtain formulas for the derivatives of {ψ*}. In
Sect. 5 we prove all of the above formulated results.

The starting point for the present work was the paper by Lehtihet and Miller
[L-M] in which they studied numerically the billiard ball in a wedge with gravity.
In the Appendix we show how our system with two masses can be reduced to
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such a billiard system. We are then able to substantiate the numerical findings
from [L-M].

1. Flows with Collisions

Let N be a fe-dimensional smooth complete Riemannian manifold and let F be a
nonvanishing smooth complete vector vield on JV. We consider the dynamical
system

x = F(x\ xeiV, (1)

and we assume that the flow φ^.N^N defined by (1) preserves a smooth volume
element if. We denote by v the Borel measure defined by if. Further let M cz N
be an open subset with compact closure M and piecewise smooth boundary. We
split the boundary dM into regular—dMr and singular—dMs parts. A point x
belongs to dMr if the boundary is smooth at x and the vector F(x) is transversal
to the boundary at x. The boundary dM is called a collision manifold.

We assume that the orbits of φ* which pass through the singular part of the
boundary dMs = dM\dMr lie in a set of v measure zero. This is the case for example
if such orbits have to pass through a finite union of submanifolds of lower dimension.

The regular part of the boundary 3Mr splits further into dM*, where F points
inside M and dM~, where F points outside M. Let Φ:dM~ ->3Mr

+ be a
diffeomorphism. We will call it a collision map. The restriction of the interior
product i r

ί = if\F to dMr defines a Borel measure μ (which we extend to dM by
putting μ(dMs) = 0). We assume that dM is sufficiently "nice" so that the measure
μ is finite. We require that the collision map preserves the measure μ.

In such a setup we introduce a flow \j/u. MudM* ->MudM* called a flow with
collisions defined v almost everywhere and preserving the measure v. We put
φ'x = φ*x if φuxeM for all 0 < u ̂  t and if φ'xedM;, while φuxeM for all 0 < u < t
then we put φtx = Φφ*x and we call t = τ(x) the first collision time of x. If φιxsdMs

while φuxeM for all 0 < u < t then φ*x is not defined (the φ orbit of x dies at φ*x). By
our assumptions this happens on a set of v measure zero. The definition of φ* is com-
pleted by the group property i.e., for τ(x) ̂  t < τ(φτx) φ*x = φ^^x = φf~τΦφτx, etc.

If φ* is well defined at xeM then it is also well defined in a neighborhood of
x and if only φ*xeM φι is differentiable. (If φxxedM^ then φ* does not stand a
chance to be differentiable since it is discontinuous; we could get around it by
glueing dM* and dM~ by the collision map Φ but we choose not to do it here.)
The derivative (when defined) Dxφ

u. TXM -• TφtχM preserves the velocity vector field
F i.e., Dxφ\F(x)) = F(φtx). This is why we want to consider the quotient linear
operators Vx\?Γx-*?Γ^tχ, where ZΓy, yeN is the quotient of TyN by the 1-dimen-
sional subspace of TyN spanned by F(y). We can describe Lx in the following way.
Let φux be well defined for 0 ̂  u ̂  t and suppose that τ(x) < t < τ(φτx) i.e., x has
only one collision time τ(x) in the time interval [0, ί]. If we choose representations
of ?Γy, j e M a s subspaces of TyM transversal to F(x) we can write

Vx = π1°Drxφ
t-<°Dφ,xΦ°π0oDxφ*\,χ, (2)

where
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and

are the linear projections along F. Dxφ
ι can be found explicitly by solving the

linearization of the system (1).

)' = (Dφ<xF)δx.

Note that the formula (2) makes perfect sense also for the collision time t = τ(x),
i.e. Ux

(x) is well defined. Clearly then for v almost all xeMvdM+Lx is well defined
for all teU.

Let us further assume that all xeM (v almost all) are bound to leave M under
φ\ We define then a map Ψ: δM r

+ ->δMr

+ by Ψx = Φφτ{x)x, where τ(x) is the first
collision time of x. ^ i s a piece wise differentiable map (at least when the boundary
of M is sufficiently "nice") and it preserves the finite smooth measure μ. From the
point of view of Ergodic Theory {ψ*} is the suspension of Ψ with the ceiling function
τ, cf. [C-F-S], p. 292. We will call Ψ the standard section map of the flow {ψ*}.
The derivative Dx Ψ of Ψat xedM? is equal to Ux

{x) under the natural identification
of yx with Tx(dMr

+).

Suppose now that the original smooth flow is hamiltonian i.e., we consider the
system

. dH dH

(q,p)GUn x Un and H = H(q,p) is a smooth function. We let N = {H = const} and
then φt:N-^N preserves the Liouville volume element y = (dq A dp)\_u, where u
is any vector field such that dH(u)= 1, e.g. w = (gradiί/| |grad/ί | | 2). Since δMr is
locally a manifold transversal in N to the hamiltonian vector field it has the
canonical symplectic structure. We call a collision map Φ: dM~ -> 3Mr

+ symplectic
if it is symplectic with respect to the canonical symplectic structure. For such a
map we do not have to check separately that it preserves the induced volume
element i r

1 because ^ is equal to the symplectic volume element on dMr.
For example let S: Un x Un -• IR" x Un be a symplectic diffeomorphism mapping

dM~ onto 3M r

+. Then the map Φ=S\dM- is a symplectic collision map.
Our system can be viewed as a hamiltonian flow with collisions having a

symplectic collision map.

2. Description of the System

Let us consider n point masses m l v . . , m n o n a vertical line. We will refer to them
as particles. We denote by qγ,..., qn the positions of the particles and by vί,..., vn

their velocities. We assume that all the masses are subjected to constant acceleration:
they all fall down. They also collide elastically with each other and with the rigid
floor q = 0. This dynamical system can be viewed as a hamiltonian flow with
collisions as described in Sect. 1.
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The dynamics between collisions is described by the hamiltonian H = -Y -L-\-
n 2i=ίmi

Σ mi<lh where p{ = m p^ ί = 1,..., n are the momenta. At a collision of ΐth and 7 t h

particles there is an instantaneous change of their velocities,

vt =(l+yij)υr -yijV]-, (3)

where ytj = (mf — m^HjΠi + nij), the — sign refers to velocities before the collision
and + sign to velocities after the collision. If the masses of colliding particles are
equal then ytj = 0 and the collision results in the exchange of velocities. We have
then the option of assuming that the particles go through each other without
interaction. More precisely the system in which particles with equal masses pass
freely through each other is a finite covering of the system where the particles
collide elastically regardless of their masses. The instability properties of the system
which we will study (nonvanishing of Lyapunov exponents) are shared by any
finite covering.

At the collision of the ίth particle with the floor

vf = -vr. (4)

If the particles have equal masses m1 = ••• —mn = m our system is completely
integrable. This is especially transparent if we allow the particles to pass freely
through each other. We have then the system of n independent particles and the
individual energies ht = ̂ (pf/m) + mqh i = 1,..., n, give us n integrals of motion in
involution. For the system of impenetrable particles we can use fi = hi

1-\ h tin,
ί = 1,..., n, as the integrals.

Let us describe explicitly in the framework of Sect. 1 where our system lives.
We will do it for impenetrable particles. We have

N = {(q,p)eR"xRn\H(q9p)=l}9

M={q,p)€N\0<q1<q2-<qn}.

The hamiltonian flow φ* is defined by

• =EL

. l m ' i = l , . . . , n . (5)
Pi= -nti

The regular part of the boundary of M, dMr is the union of n submanifolds

dMr = dM0 u dM1 u u dMn _ j , where

dM0 = {(q,p)eN\0 = qί < q2 < ••• < qn,v1 Φ 0},

dMί = {(q,p)eN\0 < qx = q2 < ••• < qn9υί - v2 Φ0},

n-.1 = {q,p)eN\0<q1<q< ..<qn_ί=qn,vn_-1-υnφ0}.
n - l

Further 5M* = \J dMf1, where
ί = l

dM± = {(q,p)edMo\±Vl>0},

t = {(q,p)edMi\±(vi-υi+1)<0}, i=ί,...,n-\.
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The singular part of the boundary of M, dMs is a finite union of submanifolds of
N of codimension at least two so the orbits of the flow φ* which pass through dMs

form a set of Liouville measure zero.
The collision map φ:dM~ ->δM r

+ is described by (3) and (4) (the positions q
stay unchanged). In particular Φ takes dM^~ onto dM*. Let Φt = Φ\dMr. We claim
that Φ is a symplectic collision map. We will treat separately the cases i > 0 and
i = 0. For i = 1,2,..., n — 1 let St be the linear symplectic map of Un x Un given by

the matrix
R> O Ί
0 Rf]'

where

I ith column

R,=

. th mi-mί+1

- r-row, V; =

1

we adopt here the convention that all the empty entries are actually zeros. It is
straightforward that Φ t = Si\dMr. Hence Φt is symplectic with respect to the reduced
symplectic structure as it was explained at the end of Sect. 1. Moreover St commutes
with the flow, i.e., H°St = H.

In the case of Φ o we use the extension S{°~Lo /° where/1=diag(-l,!,...,!)

is the diagonal matrix with all diagonal entries equal to 1 except for the first one
equal to - 1 . Again Φ o = S0\dM- but So does not commute with the flow.

The fact that Φi9 i = 1,..., n - 1 can be extended to a symplectic map St of the
whole space commuting with the hamiltonian flow simplifies the description of
the derivative of the standard section map Ψ. It will be more complicated for Φ o .

The collision map is not defined at multiple collisions where more than two
q9s assume the same value. Multiple collisions belong to the singular part of the
boundary. Simultaneous double collisions where more than one pair of g's assume
the same value also belong to the singular part of the boundary. But the dynamics
can be naturally continued beyond such collisions. Moreover if for xeM there is
a simultaneous double collision in the time interval [0, t) and \j/ιxeM, then ψ* is
differentiable (!) at x. This observation will play a role in the proof of Proposition 2.

Thus our dynamical system is described by the flow φt:MκjdM^ ->MuδM r

+ ,
teU preserving the Liouville measure v or by the standard section map
Ψ: dM? -• 3Mr

+ preserving the measure μ. Almost everywhere in M ψ* is different-
iable and almost everywhere in dM? all iterates of Ψ are differentiable. The
conditions of Oseledets Multiplicative Ergodic Theorem [O] are satisfied here so
that the Lyapunov exponents are well defined for the flow {ψ*} and the map Ψ.
There is a natural relation between them, in particular the flow {ψ*} has as many
nonzero Lyapunov exponents as Ψ. Ψ falls into the category of smooth maps with
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singularities of Katok and Strelcyn [K-S] so the nonvanishing of all/some
Lyapunov exponents for Ψ leads to the structural results of Pesin theory: stable
and unstable invariant manifolds, positive entropy, Bernoulli property, ergodic
components of positive measure. Properties of Ψ can be then translated into
properties of the flow

3. Lyapunov Exponents and the ^-Criterion

We formulate here the criterion from [W7] and [W3] which we will use to establish
nonvanishing of Lyapunov exponents for our system. We start by recalling the
abstract definition of Lyapunov exponents in the case of discrete time. Let μ be a
probabilistic measure on X and T.X^X a measure preserving transformation.
Let further A:X-+Gl(m,M) be a measurable matrix valued function such that
Jln+ ||A(x)||dμ(x)< +00, where ln+ α = max(α,0). By the Multiplicative Ergodic

Theorem of Oseledets ([O], [Ru]) we have that for μ-almost all xeX the following
limit exists:

lim (Ak*(x)Ak(x))1/2k = Λ(x),

where

The logarithms of eigenvalues of A are called Lyapunov exponents of the
measurable matrix cocycle (T,μ,A). For our dynamical system we will study the
Lyapunov exponents of (Ψ,μ,DΨ).

Suppose now that there is a subspace V aUm which is invariant under the
action of all A(x\ xeX. Without loss of generality we can assume that V = Uι x {0}.
For each A(x) we consider its restriction to V which we denote by A0(x), and its
quotient by V which we denote by Ax(x). We will need the following fact.

Lemma 1. The Lyapunov exponents of (T, μ, A) are obtained by putting together the
Lyapunov exponents of(T,μ,A0) and of

Proof. We can write A(x) = ( °Γ / ^ ) and A\x) = ( Λ f "' ). In the
0 Λ1(x))aDάA{x)[ 0 A\(x)y

proof of the Oseledets Theorem [O] the matrices Ak(x) are factored into Θk(x)Tk(x\
where Θk(x) is orthogonal and Tk(x) is upper triangular. The Lyapunov exponents
are then obtained as exponential rates of growth of the diagonal elements of Tk(x).
But if we factor Ak

0(x) = 0%(x)T°(x) and A\ = &l(x)Tl(x) then

Hence the diagonal elements of Tk(x) are obtained by putting together the diagonal
elements of Γ£(x) and Tl(x). •

The criterion which insures nonvanishing of Lyapunov exponents is based on
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a simple idea: if we multiply special matrices the product has to grow exponentially
regardless of the order in which we multiply them. We rely on the properties of
the matrices A(x\ xeX, alone and Tcan be arbitrary.

Let ω be the standard symplectic form in Un x Un: co(v1, υ2) = <£\ η2} - <£2, η1 X
w h e r e υi = (ξi

9η
i)eUnx Un

9 i= 1,2, a n d (ξ,η} = ξ1ηί + ••• + ξnηn- T h e s y m p l e c t i c

group Sp (n, U) is the group of matrices (linear maps on Un x Un) preserving the
symplectic form i.e. SeSp(n, U) if ω(Svί9Sv2) = ω(vl9v2) for every vί9 v2eUn x IR".
A Lagrangian subspace of a linear symplectic space is an n-dimensional subspace
of Un x Un on which the restriction of ω is zero. We further introduce a special
quadratic form β on IR" x ίRn:

We call a symplectic matrix 5eSp(n, U) Q-monotone if Q(Sv)^Q(v) for every
veW x Un and strictly Q-monotone if Q(Sv) > Q(v) for every vφO. Detailed
investigation of Q-monotone matrices is contained in [W3], pp. 138-145 (see also
[W7]). We summarize here the results without proof.

(A 0 \
1. ForSeSp(n,U)Q(Sv) = Q{v)ϊoτevQvyveUnxUniϊfS = ( sfc_1 )9AeGl(n9R).

\0 A* ιJ

2. S is (strictly) Q-monotone iff S = ί Λ*-I )( p PJ?) w i t h P a n d R

symmetric and P ̂  0, R ̂  0 (P > 0, R > 0).

3. For a Q-monotone S = l I C*J3 has only real nonnegative eigenvalues
\C DJ

(C*B = PR from 2) wx ̂  w2 ̂  ••• ^ wn^0. Let p(5) = JΊ[ (V 1 + «ί + v^i) =

expί V sinh"1 Vί^ I. p(.S) is the minimal rate of volume expansion under the

action of S on Lagrangian subspaces on which Q is positive definite (the volume
defined by Q itself). So for two Q-monotone matrices Sl9S29

pfaSJ^piSMSJ. (6)

We will need the following test for strict Q-monotonicity.

Lemma 2. If for a Q-monotone matrix S we have

Q(Sv)>0

for all vectors v of the form v = (ξ,O)9 O^ξεW1 and υ = (09η)9 O^ηeU" then S is
strictly Q-monotone.

Proof By 2 if Q is increased on every vector (ξ9 0), 0 φ ξeU" then P > 0, and if it
is increased on every vector (0, η\ 0 Φ ηeUn then R > 0. Now \iυ — (ξ,η)

Q(Sv) - Q(v) = (Rη,η} + (P(ξ + Rη), ξ + Rη)\

which is positive unless (ξ9 η) = (0,0). •
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g-Criterion. Let S: X->Sp (n, R) have values in Q-monotone matrices and 0 S λx S λ2 ^
••• ^ λn be the nonnegative Lyapunov exponents of (T9μ9S) then

If further for almost all xeX there is a natural k = k(x) such that p(Sk(x)(x)) > 1 then
(T, μ, S) has at least one nonzero exponent μ almost everywhere (i.e., λn(x) > 0 μ almost
everywhere). If for μ almost all xeXί a X there is a natural k = k(x) such that Sk(x)(x)
is strictly Q-monotone then all Lyapunov exponents are nonzero almost everywhere
in X1 (i.e., λx(x) > 0 μ almost everywhere in XJ.

Both in the system of hard spheres [W3] and in our system it is much easier
to establish that p(Sk) > 1 for sufficiently large k than strict β-monotonicity of Sk.
In both cases the latter remains basically unproven (though there are very strong
heuristic arguments in favor of it). The geometric difference is that in the first
case we establish only the exponential growth of the volume element defined by
the form Q on all Lagrangian subspaces in some cone, whereas in the second case
we establish the exponential growth of the form Q itself on all vectors in the same
cone which is a significantly stronger property.

4. Description of the Derivative

The crucial step in the description of the derivative of ψ* is the right choice of
coordinates. We will use as coordinates the energies of individual particles and
their velocities:

This is a canonical change of variables so we do not loose the hamiltonian structure
of the system. The hamiltonian becomes the linear function H = h1 + — \ - h n and
the equations of motion (between collisions) are

, (-1 a (7)
Hence the flow φ* defined by (7) acts on the linear manifold iV = {/ι1 + + /ι1 = l}
by translations and its derivative Dφ* is the identity operator. Our goal is to
describe the derivative of the standard section map Ψ: the map from a collision
to the next collision. As it was explained in Sect. \DΨ coincides with the quotient
of Dφ1 by the velocity vector fields (7) if we identify the quotient of the tangent
space to M with the tangent space to 5M r

+.
We coordinatize the quotient (by the velocity vector field) of the tangent space

to M by choosing a codimension one subspace F in the tangent space to
M,

F = {(δh,δv)eUn x Un\δhx + ••• + δhn = 0, mίδv1 + ••• + mnδvn = 0 } .

M being an open subset in the linear manifold Λ1 + + Λn = l allows for
identification of all its tangent spaces.

We choose now to consider the model in which particles with equal masses
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pass through each other without interaction. The part of the collision manifold
corresponding to the collision of ith and j t h particles is

hi 1 i ft, 1 i
—L — vf = — — υ 2 , + (v: - vA <
m t 2 rπj 2 J ~ K ι j )

We assume here that i <j and the ίth particle is below the 7 t h particle. The collision
map Φif. dM^j -• dMϊ describing the collision of ίth and 7 t h particles in the (ft, v)
coordinates is given by Φij(h~9υ~) = {h+

9υ
+)9 (h~9v~)edMij9 (h+,v+)edMϊ ,

where

(8)

mi

and the other coordinates are unchanged.
The formulas (8) describe actually an extension of Φi} to the whole of Un x W

but this extension is not symplectic. The symplectic extension Sf j : U
n x 1RΠ -• Un x Un

is given by the formulas S ί j (ft~,ι?~) = (ft+,t;+),

K = la K + (i + yy)Λ/ - δtJ(vr - vj)\

K = (i - y«)AΓ - ivA~ + 5y(»Γ - vjΫ, (9)

where δij = mimj(mi — mj)Hrn{ + m̂  ) 2 and the other coordinates are unchanged.
This is the same symplectic extension which we considered in Sect. 2 and which
was linear in (q,p) coordinates. In particular Sί<7 commutes with the flow {φ1}
defined by (7). Moreover Stj preserves the total momentum P = mιvι + ••• + mnvn9

i.e. P°Sij = P. It follows that the derivative DStj takes the subspace ZΓ onto itself
and the restriction of DS^ to F coincides with the quotient of Ό\\ιx by the velocity
vector field (7) (if in the time interval [0, ί] only the collision between ith and 7 t h

particles is involved). As explained in Sect. 1 this is also the derivative D Ψ of the
standard section map.

Note that the quotient of DStj by F is the identity operator. Indeed the linear
functionals δH = δh1 + ••• + δhn and δP = m1δv1 + —\-mnδvn can be used as
coordinates in the quotient space Un x WJ2Γ and DS y preserves both functionals.

Differentiating (9) we obtain

where

0
(10)
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- 1

(all the absent entries are zero) and

- 1

0_

2mίm/ (mI —m,)

More precisely Rij={rUp}lP=ι, rι,P = δf (Kronecker's δ) for Iφij or pφij,
'a = yΦ rtj = 1 - yij9 rn = 1 + yij9 rn = - y y and Ky = {kUp}lP=l9 kUp = 0 for / Φ ij
oτpφ ίj, kH = kjj = 1, ku = kβ = — 1. Note that R^1 = Ru. We can see that DS ί7 is
Q-monotone if and only if α y ̂  0. We assumed that the ith particle is below the j t h

particle so that vf —vj~>0 and DSU is Q-monotone if and only if mi ^ m7 . Moreover
we have

h, δv) - Q(δh, δv) = aL^ - δvj)2. (11)

By a straightforward computation one can check that DS^ and DSkl commute
if only {ij} n {fe, 1} = 0 i.e., if the two collisions are between two disjoint pairs of
particles.

The simplicity of the formula (10) is a byproduct of the fact that in a collision
of two particles the total momentum is preserved. This is not so in the collision
of a particle with the floor. We will consider now such a collision. The part of the
collision manifold corresponding to the collision of the ίth particle with the floor is

dM& = {(Kv)eN\hi-^mivf = 0, ±υt>0}.

The collision map ΦOί:3Moϊ->dMo/ is given by Φoi(h~9v~) = (h+,v+),

v? = -vr, (12)

and the other coordinates are unchanged.

Lemma 3. // in the time interval [0, t] there is only one collision: the fth particle
collides with the floor then the quotient ofDψ* by the velocity vector (or the derivative
of the standard section map D Ψ) is equal to the restriction to ZΓ of the linear operator
(δh~,δv~)\-^(δh + ,δv+) given by

δh+ =δh~,

m,v^δvr-β^δhr far (13)

where M = m1 + — h mπ, βt = — (2/m^ ) > 0 and vt is the velocity of the ith particle
immediately before the collision with the floor.
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Proof. According to the formula (2) in order to find D Ψ we have to proceed as
follows. Given {δh~,δv~)e3T i.e., <5A",0> = O, (δv~,m) = 0 where 0 = ( l , . . . , l ) ,
m = (mu...,mn\ we project the vector into the tangent space TihtΌ)(dMόi) along the
velocity vector of the flow (0, — II). Since

TlkAdMoι) = {(δKδv^δh, + .- + δhn = 09δht - mpM = 0},

we have (δh~,δv~)\-^(δh~,δv~) + λ(0J\ where

λ) or A = h[~ — δv[~.

Then we apply the derivative of the collision map ΦOi given by (12) i.e.,
(δh~,δv~)\->(δh~ Jfiv~) + λ(091^) where /j = diag(l,..., - l , . . . , l ) i s the diagonal
matrix with all diagonal entries equal to 1 except for the ϊ th entry equal to — 1.

Finally we apply the projection onto ZΓ along the velocity vector (0,0) i.e.,

λ</£0,m> + σ<Q,m> = 0 or

- Imjvr + λ(M - 2/Wi) + σM = 0.

where

Hence λ + σ = 2δhr/Mvr and -λ + σ= -(2/mivf)((M-m^/Nί))δhΓ +2δv^ which
immediately yields (13). Π

The operator (13) has a useful extension from 2Γ to Un x Mn.

/ 0N

Lemma 4. The linear operator £P{ = I o r ), where

I ith column
a ••• a b a ••• a

a b a

b c b

a b a

a b a ... a

- ith row

MY MY " Y MJ

has the properties:

(i) The restriction of 0>

i to 3~ coincides with the operator {13\ in particular

(14)

(ii) 0)

i is a Q-monotone operator and



520 M. P. Wojtkowski

(iii) The quotient of ^{ by the invariant subspace ZΓ is the identity operator on the
quotient space.

Proof. We have mJ^i = 09 where m is the row vector (m1?...,mM). It follows
immediately that &lf) = F. Further

m, if

which shows that 0>

i restricted to

^ )

coincides with (13). Also (Jίiδh,δhy =

— —^- Σ δh; ) ^ 0 which proves (ii). To prove (iii) note that 9i preserves the
M i=i /

linear functional δH = δht + — h δhn and δP = mίδv1 + — h mnδvn and they can
be used as coordinates in the quotient space Un x Un/^~. •

Iϊ(δh,δv)e3r then the formula (14) reads

(QoPdVK δv) - Q(δh, δv) = βiδhd2. (15)

Again we have that &{ and DSjk commute if only ίφ{j,k} i.e., if the collisions
involve three different particles.

Thus far we obtained a satisfactory description of the derivatives D Ψ and dψ*
by extending the linear operators from the subspace ZΓ to IR" x IR". Another way
to go is to introduce internal coordinates in ZΓ. We will do it by the following
symplectic change of coordinates

= A~1δh w h e r e ξ = (ξθ9ξl9...9ξH^)

[η = A*δυ ^ = (̂ /o î> ^ π - i ) '

A* =

- 1

0

m2

1

— 1

0

1 0

m
• 0

• 0

0 - 1 1

and

1

M

m.
1

M

m1 +m2

M

M

- 1

l

M

M

! + m 2

M
- 1

M

1

M

M

1 +^2

M

- 1
mί H

M
- 1

m1-\

M
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Note that this change of coordinates preserves the form Q. Also in (ξ9 η) coordinates
2Γ = {ξ0 = 0, η0 — 0} so that ?Γ acquires the structure of the standard symplectic
space W~ι x W~γ and the restriction of Q to 5" is equal to the form Q in
IRΠ~1 x R"'1. Hence we can choose to apply the β-criterion to DΨ as an operator
on SΓ (without extending it to W x W\ We would like to have coordinates which
allow the expression of the derivatives D Ψ (or Dxj/1) in a fairly simple form. The
(ξ9 η) coordinates satisfy this requirement but only for the system of impenetrable
particles, i.e., where the only collisions allowed are between the fth and the ί + 1
particles and the collision of the first particle with the floor. To simplify the notation
w e p u t Su+1=Si9 Rii+ί=Rh yiti+ί=yi9 aiti + ί=<*i9 ί= l , . . . , n - 1, a n d »γ =&9

Jίγ — Jl9 βx = β. Expressing DSt in the coordinates (ξ,η) we obtain using (10)

DS: = IP* HP «^\\A ° 1
J |_ 0 Ri] [0 / J L° A*'1]

[A-xRtA 0 Ί VI OLiA-^-KiA*-

~\_ 0 X /M -^XO /

Γ 1 0

0 A*

A~xRfA

0

After somewhat tedious matrix multiplications we obtain that in the coordinates

l_ i J l_ J

where

0 1

and for 2 < / ̂  n - 2

J,ίth column

1 0 0

— 7i " I 1 +
0 0 1

1

-ithrow,

and J f̂ = diag (0,..., 1,..., 0) is the diagonal matrix with all diagonal entries equal
to 0 except for the ith entry equal to 1.

Hence we managed to further simplify the formula (10). Similarly using the
formulas in Lemma 4 we have in (ξ, η) coordinates

0 A*

1 °MA ° 1=Γ ' Ί
βM i] \_0 A*"1] lβA*JίA /J



522 M. P. Wojtkowski

which yields

U ?} ^ (17)
- U ?} '-^r

Now we have three ways of working with D Ψ (or Dψ*):

1. extending DΨ to Un x [Rπ: (10), Lemma 4;
2. identifying ^ with the standard symplectic space U""1 x (R""1 using the (ξ9η)
coordinates so that the restriction of the form Q from Un x Un to 2Γ becomes the
form Q in R"" 1 x IR"*"1; then ihei Q-monotonicity of the derivative DΨ can be
decided by the formulas (11) and (15);
3. expressing DΨ in (ξ,η) coordinates: (16), (17).

In view of the remarkable simplicity of the formulas (16) and (17) one would think
that the third option is the best but because it is limited to the case of impenetrable
particles we will find it convenient to use also the other two options.

5. N on vanishing of Lyapunov Exponents

We are now ready to prove that in our model (some) Lyapunov exponents are
nonzero. We will apply the β-criterion to the measurable matrix cocycle (Ψ,μ,D Ψ).

Theorem. / / m 1 ^ m 2 ^ ^ m n and not all of the masses are equal then Ψ (and φ*)
has at least one nonzero Lyapunov exponent μ almost everywhere.

Proof. We will use the extensions of DΨ to Un x Un constructed in Sect. 4. By the
construction of the extensions their quotient by 2Γ is the identity operator. Hence
by Lemma 1 the extension cannot add any new nonzero Lyapunov exponents.
Since the masses do not increase as we go up we have by (10) and Lemma 4 that
the extensions of D Ψ are Q-monotone. Suppose now that there are exactly / groups
of particles of equal masses:

m1 = = m k l < m J k l + 1 ,

wiJkl + 1 = = w Λ l + k 2 , etc., n = kί+k2+ •• + fcί.

We assume that only particles with different masses collide. To apply the β-criterion
let us note that independent of the initial conditions the first particle will eventually
hit the floor and after maybe several more bounces it will collide with a particle
from the second group i.e., for sufficiently large k we have

DΨk=.~DSίj' >0>1~>0>1~>9 k1<j^k1 + k2.

The matrices in the above product corresponding to collisions of different sets of
particles commute. Hence using (6) we get

We have by (10) and Lemma 4
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The matrix JίιKιi has exactly one nonzero eigenvalue equal to 1. Hence

and so for sufficiently large k p(DΨk)>\. By the g-criterion the theorem is
proved. •

To be able to claim by the β-criterion that all Lyapunov exponents are different
from zero we have to establish that for sufficiently large fe, DΨk is strictly
g-monotone. This is definitely not so for the extension so we consider D Ψk as an
operator on 3Γ which can be identified with the standard symplectic space
IR""1 x Un'K By (11) and (15) DΨk is β-monotone also in this space if only the
particle's masses decrease as we go up. By Lemma 2 to check that D Ψk is strictly
Q-monotone it is sufficient to consider only the vectors of the form (δh, 0) or (0, δv)
and establish that the form Q is positive on their images. For a vector of the form
(0,<5ι;) we see by (13) that collisions with the floor will not change it. By (11) we
obtain that after a collision of ith and j t h particles either the value of the form Q
on the resulting vector is positive or δvf = δvj. In the latter case we see from (10)
that DSij preserves the vector (0, δv). Hence for a vector of the form (0, δv) we have
the following alternative: either it is preserved by the D Ψk or the form Q is positive
on the image. If a vector (0, δv) is preserved by D Ψ for all k ^ 1 then it gives us a
zero Lyapunov exponent. But in such a case each collision between particles with
different masses forces the equality of the respective components δvt = δvj. Since
we take only vectors from 2Γ then m1δv1 + ••• + mnδvn = 0 and not all of the δv
components are equal. We come to the conclusion that there is a nonzero vector
(0, δv) which is preserved by D Ψk for all k only if for the given initial conditions
the particles can be divided into two groups in such a way that all the collisions
in the future occur only between particles from one group. In the case of strictly
decreasing masses this is impossible. Indeed in such a case all the collisions that
can happen have to happen regardless of initial conditions. If there are particles
with equal masses then there may be initial conditions such that a vector (0, δv)
will be preserved by D Ψ for all k (both in the future and in the past). This is the
case for the periodic orbit from the proof of Proposition 2 if the combinatorial
assumption there is not satisfied. It is though very unlikely that this can happen
on a set of initial conditions of positive measure. At the same time it seems that
the proof will require much more work and this is one of the stumbling blocks in
the proof of the conjecture. (Not a serious one since the conjecture does not loose
its interest by the assumption that the masses are strictly decreasing.)

So far we showed that in the case of strictly decreasing masses for every nonzero
vector of the form (0, δv) the value of the form Q on the image vector under D Ψk

is positive if only k is sufficiently large, depending on the initial conditions.
Let us now investigate what happens to a vector in ZΓ of the form (δh, 0). By

(10) collisions between two particles will in general change the (5/z-components but
will not introduce any nonzero ^-components. By (13) and (15) after a collision
of ith particle with the floor either <5/z£ φ 0 and the value of the form Q becomes
positive or δh( = 0 and the vector is not changed. Hence the value of the form Q
will be zero on all the images of a nonzero vector (0, δh) only if each time the ίth

particle is about to hit the floor δhi = 0. It seems very unlikely that such a conspiracy
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could happen on a set of positive measure but we do not know how to prove it.
If we could prove it the conjecture for the case of strictly decreasing masses would
follow immediately by the β-criterion. In the integrable case of equal masses the
form Q becomes positive on some image of any nonzero vector in 3Γ of the form
(δh9 0) regardless of initial conditions. Indeed we have now only collisions with the
floor and each particle will eventually hit the floor. One could try to argue by
continuity that the same happens if the masses decrease but are almost equal. The
difficulty it that the perturbation may introduce combinatorially new sequences
of collisions. Still such an argument works on a subset of the phase space where
for a sufficiently long time the particles stay away from multiple collisions. That
is the plan for the proof of Proposition 1.

Let us note that we have a paradoxical situation where we can establish the
mixing behavior of the system only when it is least pronounced: near the integrable
case.

Proposition 1. For every ε > 0 there is δ such that ίfm1 > > mn and (m1 — mn)/m1 < δ
then Ψ has no zero Lyapunov exponents except possibly on a set of μ measure ^ε .

Proof. We want to identify the phase spaces M of our system for different
values of the masses. This can be done in (q, p) coordinates by considering the
following gauge group g«:Mn xUn-^Un x Mn, g\q,p) = {θί2q,ap\ α > 0 . Let F =
{(q,p)eUn x Un\0 < qt < < qn} and F = F/{ga} i.e. F is obtained by identifying
(q, p) and (q\ p') if there is α > 0 such that q1 = a2q and p' = ocp. For fixed values of
the masses and any (q,p)eF there is exactly one α such that H(ga(q,p)) = oc2H(q,p)=l.
Hence for any values of the masses M can be naturally identified with F. The
normalized Liouville measure v = v(m) on F depends on the masses. The dependence
is continuous for example in the following way: for any bounded measurable
function h on F the integral J hdv is a continuous function of m = (m1,..., mn).

Let us consider the system of n impenetrable particles with equal massess
m1 = -" =mn. We choose to use coordinates (ξ9η) in 5". It follows from the
discussion preceding Proposition 1 that regardless of initial conditions after k
collisions (k depending on the initial conditions) any nonzero vector in 3~ of the
form (ξ,0) will be transformed by DΨk into a vector on which the form Q has
positive value. The collision of ί and i + 1 particles transforms a vector {ξ,0)s3Γ
into (^i&O) (cf. (16)). By (17) in the collision of the first particle with the floor
either ξx =0 and then the vector (£,0) stays unchanged or ξ1φ0 and then it is
transformed into a vector on which the form Q is positive. The k collisions split
naturally into s groups spaced by collisions with the floor:

i.e., we have first the collision of particles iίί and iίί + 1, then ί12 and iί2 + 1,.. .

then i l h and iUl + 1, then the collision of the first particle with the floor (possibly

several collisions in a row), then the collision of particles i21 and i21 + l, etc. Note
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that the first and the last group may be empty: the first (last) group is empty if the

first (last) collision is with the floor.

If we let K = { ζ ε R " - 1 | ί 1 = O } a n d

1 o . . .

then the space Vk of vectors ξ such that the form Q is zero on the image of the
vector (ξ, 0) after k collisions can be described in the following way:

V. (18)

We choose k for a given initial condition in such a way that Vk = {0}. Note that the
matrices £ l 5 . . . , Es depend only on the order of collisions and not on velocities or
positions at the times of collisions (they also depend on the values of the masses
but for the time being we consider only the case of equal masses). Now we take
a typical initial condition (q, p) in M such that the trajectory of the flow φt is
transversal to the boundary of M at all future times and after k = k(q, p) collisions
Vk = {0}. If we allow a small change in the values of the masses then by continuity
the first k collisions will take place in the same order and the matrices E1,...,ES_1

will change so little that Vk in (18) will stay equal to {0}. More precisely there is
δί = δ^q.p) such that if {m1 - mn)/m1 < δx then Vk = {0}. When we fix (q,p) and
change the values of the masses then (q, p) in general leaves M i.e., H(q, p) is no
longer equal to 1. But if {q(t),p(t)\ ίeR, is a particular solution of our system then
for any α > 0 also (α2g(f/α), α/?(ί/α)) is a solution. Hence we can think that our (q,p)
is a representative of an element in F. The important fact is that the combinatorial
data about collisions depend only on the element of F and not on the scale.

For a given ε we take δ2 = δ2(ε) such that

where the Liouville measure v is taken for equal masses. By continuity of the
Liouville measure v = v(m) if (m1 — mn)/m1 ^ <53 = δ3(ε) then also

Finally δ = min((52,^3) is the desired number for a given ε > 0. Indeed for the set
F£

 = {(Q^P)GF\^i(^P) > δ2} we have v(m)(Fε) ̂  1 — ε if only (m1 — mn)/m1 S δ and
for any typical (q,p)eFε the first k = k(q,p) collisions will be the same as in the
case of equal masses with Vk = {0}. Hence any nonzero vector of the form (ξ,0)
will be transformed to a vector on which the form Q is positive. In the discussion
preceding Proposition 1 we checked that the same is true for the nonzero vectors
of the form (0, η) provided all the masses are different. By Lemma 2 D Ψk is strictly
β-monotone at (q,p) (with respect to the form Q in <F given by the coordinates
(ξ,η)). By the Q-criterion all the Lyapunov exponents in Fε are different from
zero. •
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It should be clear by now that what we need to prove the conjecture is some
combinatorial information about the sequences of collisions along typical trajec-
tories of the flow {ψ*} of finite but considerable length. In Proposition 1 we exploited
the proximity to the integrable case to obtain this information. In Proposition 2
we will use the proximity to a special periodic orbit.

Proposition 2. // there are exactly I, I ̂  2, groups of particles with equal masses
containing kl9...,kt particles respectively, mx ^ ••• ^mn and the greatest common
divisor ofkί,...,kι is one then Ψ has all Lyapunov exponents different from zero on
a set of positive μ measure.

Proof It will be convenient to assume initially that the particles are impenetrable
and to use the (ξ, η) coordinates in ?Γ.

We begin by constructing explicitly a periodic orbit of our system. The cases
of even and odd number of particles differ slightly and for the sake of notational
simplicity we will consider in detail only the case of even n. We will specify later
what has to be changed for n odd. We prefer to have a periodic orbit with a small
period so it is reasonable to require that total energies h{ of individual particles
do not change in collisions (otherwise it will take additional time before they come
back to the original values). From (8) we see that this is the case if the centre of mass
of colliding particles is at rest i.e., the sum of their momenta is zero. In such a case
a collision results in reversing the momenta i.e., pf = —pΓ We take initial
conditions (q, p) at t = 0 which describe n/2 colliding pairs with their centers of
mass at rest, i.e.,

and ' 3 + * = ° (19)

Furthermore at time t = t0 we want the first particle to hit the floor, the second
to collide with the third, etc., the nth particle to slow down to zero velocity and
again the centers of mass of colliding pairs to be at rest. Hence

P 1
Qi = to— + ~ *o Pi + Pi = ~ to(m2 + m3)

( Pi P3
— - —

: (20)
Pn-2+Pn-l= -£(M» )

Pn=-tomn

»-2 mn-l

We can see that for any t0 > 0 the system (19), (20) has a unique solution. The
initial conditions (q, p) obtained in such a way lead to a periodic orbit of period
2ί0. Indeed our system is reversible and the initial conditions were chosen in such
a way that both at time t = 0 and t = ί0 the collisions result in reversing the
momenta so that for t > t0 we pass the same orbit backwards and at t = 2t0 we
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come back to (q, p). By scaling we can normalize the value of the Hamiltonian H to 1.
In the case of odd n we give the top particle zero momentum at time t = 0 and

we make it collide with the n — 1 particle at time t = t0 with their center of mass
at rest. The rest of the construction is identical.

At such (q9 p) we cannot differentiate the standard section map Ψ simply because
we are not in the smooth part of the boundary of M. Nevertheless if we take a
point on the orbit at time ί, — ί0 < t < 0 which is inside M and consider the Poincare
return map to a local manifold interesecting the orbit transversally at this point
we conclude easily that it will be differentiable and the derivative can be written
as a linear operator on 9~ of the form

DSn_2o oDSAoDS2°0>oDsn_1o...oDs?>°DSι. (21)

The reader may be worried that since the collisions take place simultaneously there
is no distinguished order of operators in (21). But the operators mostly commute
and in particular (21) is equal to

0>oDSn-2°DSn_^-°DS±oDS5oDS1°DS2)°DSl. (22)

We claim that applying the operator (22) n — 1 times to any nonzero vector of 2Γ
of the form (ξ, 0) will transform it into a vector on which the form Q is positive.
Taking into account the proof of Proposition 1 this is equivalent to

1 K 1 n 7 1 = {0}, (23)

where V, = {ξeUn-ί\ξί = 0} and

E = @n-2o®n-lo~'o®2o®3°®l'

We will prove (23) by showing that for k = 1,2,..., n — 1,

F 1 n F 1 ) = n - / c - l . (24)

Indeed (24) holds for k = 1 and as k increases the dimension decreases by at most
1 at a time. So to prove (24) it is sufficient to exclude the possibility that for some
k and k + 1 the dimensions in (24) are equal. If that is the case we have

and we see that this subspace is invariant under E. Suppose now that U czVί is
a subspace invariant under E. We will show by induction on / that U c Vh

/ = l , . . . , n - l , where Vι = {ξeUn~1\ξ1 = 0 , . . . , ^ = 0}. Indeed _suppose that
U = E(U) a Vj and ξeU. If / is odd then_££ = 0 I I _ 2 0 I I _ 1 ..•®I_10zf. The /th com-
ponent of 3}χξ is by (16) equal to (1 + yt)ξι + 1 and none of the rest of ί^'s will change
it so that if/ + 1 = O i . e . , ξeVι+J. If / is even then Eξ = @n-2@n-1~_:_@ι + 3@ι@ι+1ξ.

The / + 1 component oϊ@ι+ίξ must be zero since otherwise 2χ2ι+1ξ and hence also
Eξ would have the Zth component different from zero which contradicts our
assumption that EξeVt. So for / even we get EξeVi + 1 for every ξeU i.e.,
U = E(U) czVι + ί . Thus (24) and (23) are proven.

We have yet to show that also every nonzero vector in F of the form (0, η)
will be transformed by some power of the operator (21) into a vector on which
the form Q is positive. For that purpose it is more convenient to go back to
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coordinates (δh,δv). Now we take a nonzero vector (0, δv)e3Γ and we apply to it
the operator (21). We have already seen that if particles i and j have different
masses and collide then either the form Q becomes positive or δvt = δvjt Hence if
all the masses are different we are done. If we have / groups of equal masses:
m1 = -" =mkl>mkί + 1=mkί + 2, etc., then it is more convenient to let particles with
equal masses pass through each other without interaction. Now our orbit is
periodic with a much higher period. If the form Q stays equal to zero on all images
of the vector (0, δv) then we get a lot of equal δvis: a collision between particles i
and j forces δvt = δvj. After a moment of reflection one can see that the complete
set of equalities among δv?s can be described in the following way. First we index
the particles in every group in such a way that a particle with index i + 1 will
assume after time 2ί0 the position and velocity of the particle with index i. Then
we consider the doubly infinite periodic sequences obtained by repeating the finite
sequence δv1,δv2,...,δvkί. We construct such a sequence also for the other /— 1
groups of particles. Now the complete set of equalities among δt /s is equivalent
to these / doubly infinite periodic sequences coinciding up to a shift. Hence we
have a sequence which is simultaneously periodic with periods kί,k2,...,kι. The
basic period of the sequence is a divisor of all of fc/s. If it is 1 then the sequence
is constant and hence all of δvt's are equal which contradicts our assumption that
(0, δv)e^~, δv φ 0. (Let us note that the above argument shows also that if kx,..., kt

have a common divisor > 1 then there are nonzero vectors (0,δv)e3~ on which
the applications of the operator (21) will never increase the form Q.)

Now if we take initial conditions from a small neighborhood of our periodic
orbit then for a long time it will be closely followed so that D Ψk is, for appropriate
fc, a small perturbation of the Nth power of the operator (21). As such DΨk is also
strictly Q-monotone. Thus by the Q-criterion all Lyapunov exponents in such a
neighborhood are different from zero. •

In the case of three particles we can easily list all possible sequences of collisions
between consecutive collisions with the floor. It leads us to the following
proposition.

Proposition 3. In the system of three particles ifmί>m2>m3 then Ψ has all {four)
Lyapunov exponents different from zero almost everywhere.

Proof. Let us consider the dynamics of the system between two consecutive
collisions with the floor. The center of mass is uniformly accelerated (it falls down).
In the system of coordinates in which the center of mass is at rest we have the
system of three free particles interacting by elastic collisions alone. Following Sinai
( [C-F-S] , p. 152) we can reduce such a system to a billiard ball problem in the

wedge vW^i + ̂ fΰhQi + y/nhtis = 0, (qjy/mi) ύ(qjy/^ϊ) ^(h/y/^l wh^re
q. = <N/m^ i, ί = 1,2,3. The cosine of the angle of this wedge is ^ / ( l +y1)(l — y?)
and since 0 < y f = (mf — mi + 1)/{mi + mi + 1)< 1 we get that the angle is strictly
between 45° and 90°. Billiard ball in a wedge can hit the boundary only finitely
many times before escaping to infinity. The possible number of hits depends on
the angle. In our case the ball can hit the sides of the wedge at most four times
(at most three times if the angle is bigger than 60°). Hitting one side corresponds
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to the collision 1: the first particle and the second, hitting the other side corresponds
to the collision 2: the second particle and the third. Hence in our original system
the only possible sequences of collisions between consecutive collisions with the
floor are:

1, 2,

12, 21,

121, 0 Γ 212,

1212 2121.
It follows from the discussion preceding Proposition 1 that to apply the Q-criterion
we need only to show that along a typical solution a nonzero vector in 9~ of the
form (£,0), ξeM2, is transformed into a vector on which the form Q is positive.
The value of the form Q may stay zero only if before each collision with the floor
ξί = 0. Hence the important question is which of the following 2 x 2 matrices:

preserve the 1-dimensional subspace V = {ξelR2!^ = 0} (i.e., are lower triangular).
By (16)

.-[-; ιτ]
and we can check immediately that the only such matrix is 3)2. But along any
solution we must also have the other collision i.e., we will encounter one of the
other matrices which do not preserve V. Π

It is interesting to know how important is the assumption of nonincreasing
masses. A very modest observation is that

Proposition 4. In the system of two particles there is a periodic orbit which is linearly
stable ifm1 <m2.

Proof. The periodic orbit was constructed in the proof of Proposition 2. Its linear
stability is described by the matrix

•-[; ?Γ•"•-[; ?Γί -
w h e r e β = -(2/Pl ( t 0 ) ) a n d ot, = ( 2 m 1 m 2 ( m 1 - m2)/{mί + m2)

2)((Pl (0)/mi) - ( p 2 (0)/

m2)) (the momenta are taken at the moment preceding the respective collision). By
the construction of the orbit pj~(O) = -p2(0) = t0m2 and pϊ(t0) = —pϊ(0) - t0mx =
— ί o (m 1 +m 2 ) . The matrix is elliptic if and only if — 4 < j 8 α 1 < 0 . But βoc1 =
4m2(m1 — m2)/(m1 + m2)2 and so — 4 < βa1 < 0 if and only if mί < m2. •

Appendix

Let us consider the system with two particles only. We assume that m1+m2 = \
so t h a t m1 = s i n 2 φ, m2 = c o s 2 φ for s o m e φ,O<φ< π/2. By ql9q29 0^qxS qi, we
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denote the positions of the particles and by pί9p2 their momenta. The hamiltonian
of our system (between collisions) is H = \{(p\lm1)^-{pl/m2))Λ m1q1

 Jrm1q2.
Following Sinai ([C-F-S], p. 152) we transform our system into a billiard system
by the following linear canonical change of variables;

Pxι=l—Pi-I—P2

X2 = m1q1+m2q2 PX2

 = Pι+ Pi (25)

The Hamiltonian becomes H = ^(/?2

X + p2

2) + x2 and the new configuration space

Wφ = {x1 S 0, cos φxx + sin φx2 ^ 0}.

Hence we obtain a billiard ball problem in the wedge Wφ in which the ball is
subjected to the constant vertical acceleration (it falls down). This is the system
studied by Lehtihet and Miller [L-M]. Strictly speaking they considered wedges
symmetric about the vertical axis but since the acceleration is vertical such a system
is just a double covering of the system in the "one sided" wedge Wφ.

As we established in Theorem 1 if m1 > m2 the system has nonzero Lyapunov
exponents almost everywhere. This condition is equivalent to φ > π/4 which is
exactly the condition for completely chaotic behavior which Lehtihet and Miller
obtained by numerical simulation. It is interesting that also for the billiard system
in the asymmetric wedge.

Wφψ = {cos φ xx + sin φx2 ^ 0, — sin ψxί + cos φx2 ^ 0},

the sufficient condition for nonvanishing of Lyapunov exponents is φ + φ > π/2.
We will establish this result by representing such a system in the following way.
We consider two billiard systems: one in the wedge Wφ9 the other in the wedge
Wφ. We glue the systems by requiring that each time the point mass collides with
the vertical axis it also passes to the other wedge. Clearly it does not make a
difference whether it passes to the other wedge before or after the collision with
the vertical axis. Each of the billiard systems is equivalent to the two particle
system with masses sin2 φ, cos2 φ and sin2 φ, cos2 φ respectively. We will refer to
them as (/>-model and φ-modd. In the language of these models the glueing
procedure amounts to changing the masses and velocities of the particles prior to
(or after) each collision between them.

We will use the (ξ9 η) coordinates in the tangent bundle of the phase space in
both models. In these coordinates the collision with the floor results in the operator
£P which by (17) is β-monotone regardless of the mass ratio. We need to derive
the operator resulting from the switch to the other model followed by the collision
of the two masses. Using (25) we obtain

0

sin2w

1
2 cos 2M

sin 2M
 Xι x

Pxi

0

2
sin 2M

2 Pxi

0

1

0

δx
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where u = φ,φ indicates that we consider (ξ, η) coordinates in the w-model. Hence
the switch from the 0-model to the i/f-model is given by the operator

ξ) =
n)φ

1

0

0

0

0
sin 2φ

sin 20

0

0

0

0

1

0

0
sin 2 ( 0 -

2

0

sin2<

Φ)v
P

sin 2φ

(26)

We can see in particular that the subspace ZΓ = {ξ0 = 0, η0 = 0} of the 0-model is
mapped into the subspace &~ of the t^-model. Restricting the operator (26) to this
subspace we obtain

Γsin 2x1/
sin 2(0 - φ) sin 2φ . J, 0

-Pχi

nj*
2 sin 20

1

sin 20

0
sin 20

sin 2φ

(27)

We have pXί = -s/m1rn2{v1 — υ2) and just before the collision of the two particles
pXχ > 0. By (16) the subsequent collision of the two particles in the 0-model results
in the operator

sin Aφ -i
1 — Pxι

0
2

1

(28)

Composing the operators (27) and (28) we obtain

0

sin 2(0 + φ) sin 2φ

2 sin 20

1

pXι

"sin 2φ

sin 20

0
sin 20

sin 2^_

(29)

The matrix (29) is Q-monotone if and only if φ + φ^.π/2. We will obtain the
same condition for the operator resulting from the switch from the ι/̂ -model to the
0-model and the subsequent collision of the two particles in the 0-model.

By the Q-criterion the billiard system in the wedge Wφtψ has nonvanishing
Lyapunov exponents almost everywhere if only φ + φ> π/2.
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Added in proof. Recently the author was able to prove that the system of n particles in a line with an
external field of general nature but different from constant acceleration has all Lyapunov exponents
different from zero. This result will appear in the present journal as a sequel: 'The system of one
dimensional balls in an external field IF.






