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Abstract. We introduce a class of quantum spin systems on Z%. We show that
the translationally invariant ground state is unique for this system if it is in a
strong external field.

1.

In this paper, we study translationally invariant ground states of quantum spin
systems. We consider our problems in C* algebraic framework. (See [2].) We
introduce a class of quantum spin Hamiltonians which are translationally invariant
and have the Perron Frobenius property. The Hamiltonians contain an external
field term. We establish uniqueness of translationally invariant ground state if the
strength of the external field is sufficiently large. Our class of Hamiltonian contains
Quantum Ising models and Heisenberg models. In the due course of the proof,
we will see that the invariant ground states of our systems can be realized by
(finite temperature) Gibbs states of classical spin models. This correspondence has
been first found by Kirkwood and Thomas in [4].

To be more precise, we introduce some notations. Let o,(a = x, y, z) be Pauli

spin matrices,
01 0 —i 1 0
ax—[l 0], ay—[i 0 ], az—[o _1]. (L.1)

We consider the C* algebra &7 = X) M2(C) and by ¢9¥(jeZ% a=x,y,z) we
Zd

denote the Pauli spin matrix on site j. Hence ¢ satisfies the following commutation
relations:

[69,69]1=06P6P —cPcP =0, if k#j, (1.2a)
00 = icapyo?, (1.2b)
where ¢,4, is the totally antisymmetric tensor with ¢,,, = 1.
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Let «7,,. be the subalgebra of strictly local elements, that is, the set of all
polynomials of ¢.
We next define the lattice translation automorphism o, (ke Z?) via the formula,

wl(6d) =y *h. (1.3)

The Hamiltonian we consider has the following form:
H()= —{/1 o + Vi(ox, 02 }, 1.4
()=—12 3, 00+ 3 Vi(ow02) (14)

where 1 is a real parameter and Vj(ox,0:) is a selfadjoint element of o7),..
The time evolution is determined via the formula,

7(Q)=e""Qe ™ for Q in . (1.5)

Definition 1.1. A state w of o7 is an invariant ground state of H(4) if w satisfies
the following two conditions:

(i) weu(Q)=w(Q) for kin 7% and Q in (1.6a)
(i) (Q*[H(4),01)20 for Q in o/, (1.6b)
We make the following assumptions for Vj(a,,0,) in (1.4).

Assumption 1.2.
(i) (translational invariance)

a(Vi(0x,02)) = Vj14(0x,0z) for any j and k in Z°. (1.7)

(ii) (Perron Frobenius Property). Let A4, B be finite subsets of Z¢ and we set

ox(A)=[]0?, oAB)=T]]c¥. 1.8
(4) Jll (B) ]Isl (1.8)
Then
Vi(ox,02) = ; Vg0(A)o=(B), (1.92)
A,Bc 74

where
@@ Y V@30.B)=VP,)20 (1.9b)

Bc 74

if A is not empty. (The positivity of (1.9b) is the operator positivity.)
(b) V95=0 (1.9¢)

if #4N B is odd
#A N B is the number of lattice sites in AN B.

Remark. In the representation (1.1) of Pauli matrices, (1.9b) and (1.9c) lead the
reality and non-negativity of off-diagonal matrix elements in V(o,,0,). We will
see that the Hamiltonian — H (1) defined on a finite region A in Z“ satisfies the
positivity and irreducibility conditions of the Perron Frobenius theorem. Hence
the system on a finite region A has the Unique ground state. However, in the
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infinite volume limit, we can’t expect uniqueness of the ground state. If fact for
the exactly solvable 1 dimensional quantum Ising model, it has been rigorously
established that in the strong field the ground state is non-unique.

Theorem 1.3. Suppose Assumption 1.2 for Vi(o,,0,) is satisfied. Then there exists
Ao >0 such that for A > A the translationally invariant ground state of H(A) is unique.

Examples
(i) Quantum Ising model. The Hamiltonian of this model is

HA)=—-21Y 69+ Y Vo), (1.10)
j€Z4 j€ze

where Vj(o) is a polynomial of c®(keZ?).
Let y» be the time evolution automorphism defined by (1.5) and (1.9). Then

yp):yg-l)oAd( ; a(zj)>. (1.11)
Jjez4

By Theorem 1.3 and (1.11), we have uniqueness of the invariant ground state
for both positive and negative large .
(i) Heisenberg model. The Hamiltonian is determined by

H(A):-{l o + Z (axog’a(,{"+ayo(yj’a§"')+oczag’o(zj'))}. (1.12)
Jjez4 li-71=1

Our method covers the following cases.
(@ a,<0,0,>0,0,<0, (b) ,<0,0,<0,0,>0.
To see this it suffices to note the following identity:
a(l + baPe (1 + c6P09) = a + abeQc¥" — abcaPcV” + acaPe).  (1.13)

We now sketch briefly the idea of the proof of our main theorem. Our proof
depends crucially on ideas of Kirkwood and Thomas in [4]. We consider a
perturbation times a parameter ¢ to the Hamiltonian. If the ground state energy
density is differentiable at 6 =0 for any perturbation, then the translationally
invariant ground state is unique. (See Proposition 2.1.) By the result of [4], this
energy density is differentiable for a restricted class of local observables. To prove
uniqueness, we consider a realization of the translationally invariant ground state
which is again due to Kirkwood and Thomas in [4]. In [4] exponential decay of
correlations is established for observable generated by diagonal matrices. What
we will do is to study the representation of the set of all observables using C*
algebraic techniques.

2.

Let A be a subset of Z%, and ./ be the C* subalgebra generated by ¢{(« = x, y, z,j
isin A). We consider the Hamiltonian H and the local Hamiltonian H ,defined by
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H= Y o), (2.1a)
Xcz74

H,= Y &X), (2.1b)
XnA+ D

where the sum in (2.1) is taken over all finite subsets of Z¢ and @(X) is a selfadjoint
element of <7,
Let w be an invariant state of <7, i.e. w is a state satisfying woo, =  for all kin Z¢
If we assume translation invariance of H and

Y IoX)| < oo, 22
X30
then the following limit exists:
H(w)= lim 25 (23)
Ao |A]

(The limit must be taken in the sense of van Hove, see [2].) Furthermore the
following identity is valid.

Hw) = ¥ 22X, (2.4)

X0 |Xl

We call H(w) the mean energy of the state w.
The result below is proved by O. Bratteli, A. Kishimoto and D. Robinsonin [1].

Theorem. Let w be an invariant state. The following conditions are equivalent.

(i) w is a ground state for H.
(i) @ minimizes H(w).
We now define the mean ground state energy E(H) by
EH)= inf H(w) (2.5)
w:invariant state

Let Q be a selfadjoint element of o/ and consider the perturbed Hamiltonian H(d)
determined via the equation,

HO)=H+5 Y 4(Q). (2.6)

keZ4

Proposition 2.1. If E(H(9)) is differentiable at 6 =0, for any invariant ground state
w, the following identity is valid:

d
dhéE(H (0))5=0 = @(Q)- 2.7

Proof. This is a consequence of the theorem cited above. Let @ be an invariant
ground state of H. Then by (2.4),

E(H(5))§w< 2(X) | 5Q>= 5 ©(000)

0 = E(H) + éw(Q). (2.8
& x| 27 x| +6w(Q) = E(H) + 60(Q). (2.8)
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If we set J positive and take J to zero,

d

s E(H)|;- < 0(Q). (2.92)
If we set § negative

d

T E(H(®))|5=0 2 @(Q). (2.9b)

By the result of Sect. 3, we will establish the differentiability for Q = g,(B),
6,(4)e? and ¢¥. (qed.)

The Hamiltonian we introduced in Sect. 1 is real in the following sense. Let
j() be the complex conjugation of o/ defined by

j@e®)=e¥, j@¥)=—0¥, jo¥)=0c¥. (2.10a)
and
H(cQ)=¢j(Q) if ceC, Q€j(Q,0,)=i(Q:1)i(Q,) (2.10b)

Then joy,(Q) = y,°j(Q) for Q in o/, where v, is defined in (1.5).
Definition 2.2. A state w is j symmetric if for any Q in &/
o(j(Q) = v(Q). (2.11)
Lemma 2.3.

(i) Let wq, be a ground state of the ‘real’ Hamiltonian, i.e. j(H,) = H, for any finite
A. Set

o(Q) = 3{wo(Q) + wo(j(2))}- 2.12)

Then w is a j symmetric ground state.
(i) A state w is j symmetric if and only if

w(o.(4)o,(B)) =0
for any pair of finite subsets A, B for which #4 N B is odd.

3.

In this section we give estimates of the ground state energy. We apply the
expansion in A developed in [4]. This method is quite simple and useful for our

purpose.
We start with the Hamiltonian on a finite cube A with volume L¢, and we
impose a periodic boundary condition, so we set

0t = g0 (3.1

forjin Aand a=x,y,21,=(0,0,...,1,...,0)eZ%.
k
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Then consider the perturbed Hamiltonian defined by

Hye,0)=— { Y (09 + eV (o,.0,) + 5«,.(Q)}, (3.2a)
jeA

where Vj(o,,0,) satisfies Assumption 1.2,
Vioya,)= 3, VPpo(A).(B). (3.2b)

A,B

We consider the following case:

¢ (3.3a)
Q={{ltao,(A)}s?, (3.3b)
6,(B) (3.3¢)

where A and B are finite subsets and 4 does not contain the origin 0.

We fix a representation of Pauli matrices as in (1.1) and use the following basis
la,

6> =Re;, =) or (9. (3.4)
jeA

We identify |o ) with a configuration of classical spin in {1, — 1},

In this basis, we may apply the Perron Frobenius theorem for — H (¢, d). (See
[3] for the criterion of this theorem.)

Lemma 3.1. The Hamiltonian — H e, d) satisfies the assumptions for the Perron
Frobenius theorem (irreducibility and non-negativity) if ¢ is non-negative and 0 is
also non-negative in the case (3.3a) (3.3b) or if ¢ is non-negative in the case (3.3c).

Proof. 1t suffices to show
(o'le” 45y >0 (3.5)

for t positive and any vectors |a) |0’ of the form (3.4). It is easy to show the

inequality by "
o Ly oY
(d'|le A g> > C{a'|e ¥4~ |a| = C(sinh ), (3.6)

because the assumption (1.9b) ensures the non-negativity of matrix elements of
Vi(o,,0,) after adding a large positive scalar to — H A&9). (qed)

By this result H /¢, §) has a unique ground state and all the coefficients of this
ground state are positive. We also note that this state and the positive vector are
periodic by uniqueness of the Perron Frobenius vector.

The positivity of the ground state vector enables us to use the following
definition:

— H (e, 000 A(&,0) = | Al ex(e, O (e, 9), (3.7a)

YA, 8) =Y e VA0 5% (3.7b)

a
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Let 4, be the set of all functions of {1, —1}* Any function f(c) is a linear
combination of monomials o(A4), where o; is the spin at the site j taking value 1
or —1 and

o(4) =[] o; (3.8)

JjeA

We can identify o; and 6%, 6(A4) and ¢,(A4). Thus we may write
fl@)= ). fao(A). (39
Ac A

By (3.9) #, can be regarded as a subalgebra of #,, if AcA’. Let &, be the
inductive limit of 4, by this inclusion,

B, =lim%B,
We now define two norms | | ,| | on %,
1f(0)lo=sup [f(o)l, (3.11)
ae{l,—l}zd
1f@) =3 Ifal (3.12)
Acz4
Obviously the following (in)equalities are valid:
If©@)lleo =1l f(@)l, (3.13)
le(A)f ()l =1 f(o)I. (3.14)

By (3.14) we have

1f1(@)f2(0) ] = ;Ifl,Al la(A)f>(a) |

= (Zlfl,AI>||fz(U) I=1fi@) 1S ()] (3.15)
A
Let % be the completion of #_, by the norm | |- %4 may be identified with
the C* subalgebra of o/ generated by ¢\(jeZ?). The.identification is
a(A) = a,(A). (3.16)

Let f(o) be in B, and A be a finite subset of Z%. We define f¥(¢) and f“(c)
by the following equations:

196)= ¥ f40(4) (3.17)
fHo9)= Y fzo(B) (3.18)
#(BNA)isodd

where f, is the coefficient in (3.9).
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We first consider the case 6 = 0. We set
H €)= H (&, 6), eAe) = e, 0), h () (0) = h(e, 0)(0).
Proposition 3.2.

(i) There exists ey, e4(€), hY)(€)(0), g(€) such that g(g) is analytic in {|¢| < & },9(0) =0,
hA€)(0) is real and e/(e), h\(¢)(0) satisfy (3.7a) and for ¢ in {|¢| <é&y},

leA®) + 1R (0) || < ge). (3.19)
(i) Thefollowing limits exist inthenorm | ||, and hYe)(o) is analytic in {|e| < &y }:
lim h9(e)(o) = h9(E)(0), (3.202)
A~ ©
lim h(e)(0) = h(e) o). (3.20b)
Furthermore
Ih4(e) (o) | < 1A4lg(e)- (3.21)

Proof. The main idea of proof is the same as that of [4].
(i) By use of the vector (3.4), (3.7) is written in the following form:

) { A0 4 8< ) V‘,{faehﬁ‘a""’a(3)> - eA(a)} =0. (3.22)
jeA A,B
We solve (3.23) by a perturbation expansion,
hQ(e)(0) = L hP(0)e", (3.23)
eAe) = 8,e" (3.24)

where we omit the subscript A for kY and &, for simplicity of notations.
_ If e=0, we can solve (3.7) easily and we see hy(0)(o) is a constant, thus
hP(¢) = 08, = 1. The expansions (2.23), (3.24) lead to

Y. {(R9(0) + P,(hD,... . kY ) - &,}

jeA

=-3 { ) Vﬁ:’,B(fz;*_l(a)+P,,_I(Tzf(o»...,%;*_z(a)))a(B)}, (3.26)

jeA L A,B

where P,(x,,X,,...,X,_,) is defined by
=1

exp( i S”x.,>= 1+ i (X 4 Po(X1,- s Xy 1))E (3.27)

Obviously all the coefficients in P, are positive. Equation (3.26) determines %,(c),
¢, in the following sense. Let f(o) be a function written as

flo)= ;on'(A)'
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Equation (3.26) has the form
c+ <Z f”’(a)) = F(0), (3.28)
j

where F(g) is a known function. However

<Zf“’(o))= S 141fa (329)
J A+ D
Thus (3.28) determines the f(o) except the constant term f, and the constant
term of F(o) is equal to C. As the constant term in h 4(¢)(¢) contributes to the
normalization of the vector, (3.26) determines completely the ground state. (See
(3.7b).)

Now it is easy to see

If4@) 1 = 3 1fD)]. (3.30)

Jjed

As we impose the periodic boundary condition, the following are valid:

gﬁ‘:’(a) =14 [R9()]I, (3.31)
190) | < | A] 1RP@)]]. (3.32)

Thus by (3.31) and (3.32), (3.26) implies that if n> 2,
IRD(G) || + 18, < P,(1RP@) .., I1RY (@) [1)

+ V{2, @)+ PoeycIBP@),. 0} (333)
where
c=sup {|A; Vy #0} (3.34a)
V=73 VPl (3.34b)
A,B
For n=1 we have
1@ + ey < V. (3.35)
We now set
a,=c{[|hP(0)] +12,}. (3:36)
Then by (3.33)
a, =cV
a,ScPyay,....a,_ )+ (V){ay_ 1+ P,_1(as,...,a,_3)} (3.37)

Let f(¢) be a function defined implicitly by
(L+o)f(e)—(cV)e—c{ef® -1} — (Vc)e{e!® — 1} =0. (3.38)

By the implicit function theorem, f(¢) satisfying f(0)=0 exists and is real
analytic in a neighbourhood of ¢ = 0. Set
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1dr
bﬁmgf(e)lpo. (3.39)

Then b, satisfies
(1+c)b,=c{by,+ Py(by,....0,— )} +(cV){by_1 + P,_1(by,...,b,_3)}, (3.40)

(1+c)by =cV +cb;. (3.41)
We can show the following inequality by induction and (3.37), (3.40) and (3.41):
a,<b,. (3.42)
Thus
Y a,e, < f(e) (3.43)
n=1

By setting g(e) = (1/c) f(g), we have (3.19).
(ii) By definition (3.18) we have
Ihf&)(0) — k@)1 < Y. 1h9E)(0) — hR(E)(0) . (3.44)

Thus (3.20b) and (3.21) follows from (3.202). Suppose A is larger than the range of
potential V,(o,,0,). Then the same hY is the solution of (3.26) for different
A, AAc A, if nis small. So the following estimates can be proved:

1RQ(e) — he) | < ety (3.45)
where L is the shortest side of A. This completes the proof. (q.e.d.)
Next we consider the Hamiltonian (3.2). By the choice of Q in (3.3), — H(e, 6)

satisfies the assumption for the Perron Frobenius Theorem in the following range
of parameter J:

>

g,(B), o:arbitrary
IfQ=
¢ {ai"’, lol<1

{1+0,(4)}c'®, o: positive.
Proposition 3.3. Suppose h(¢,0) satisfies the following condition with a constant d’'

independent of A:

1369 1) 4 |¢] <d <1. (3.46)

Y V9,0(B)e"0”
A,B

Then there exists constants 84, 4, such that e \(¢,0) is an analytic function of é in

{|6] < 8o}, the limit lim e (&, o) exists

A~ ©

lim e 4(¢, 0) = e(g, 6) (3.47)
A~ ©
and
I h%(e, 0)(@) Il < c4- (3.48)
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Remark 3.4. (i) (3.46) is satisfied if ¢ is sufficiently small because the following

estimate is valid by (3.15):
I e "A0E _ | < HAO@I _ 1 1. (3.49)

(ii) e(e,d) is analytic because for any sequence of analytic functions on a fixed
domain, we can choose a subsequence convergent to an analytic function.

The proof of Proposition 3.3 goes along the same lines of Sect. 2 of [4]. We
don’t repeat it here.

4
We now set
H(4,0)=H(4)— ¢ kZZd % (Q), 4.1)

where Q is one of (3.3).
Proposition 4.1. Let ¢ = (1/2) and hY)(¢)(o) satisfy (3.46).

(i) If Q is either a,(A) or ¢, then the mean ground state energy E(H(A,0)) is
differentiable in 6 at 6 =0.

(i) IfQ = {1 + 0,(B)}d?, where B does not contain j, E(H(A, 6)) is right differentiable
at 6=0.

Proof. 1t is easy to see

H(A,0)=H Gg) (4.2a)
~(16 16
E(H(A,5)) = AE<H<H>> = Ae<ﬂ). (4.2b)

Thus (i) follows from Proposition 3.3 and Remark 3.4 (iii). If we consider the case
Q={1+0.(B)}s?,

we have (4.2b) for 6 > 0. In view of (2.9a), it is easy to prove the assertion of (ii).
(q.ed)

Proposition 4.1 and 2.1 imply the following.

Corollary 4.2. If A satisfy the condition of Proposition 4.1, for the invariant ground
states w,,w, of H(1), we have
1(0) = w,(Q),
Q0=o0,(4) or o¥. 4.3)
Let 2 be the C* algebra generated by {¢'? jeZ?}. As is remarked in Sect. 3, we
may identify # with the function space c({1, — 1}Z°).
Let F, be the linear map from 7, to & defined by

Fy(0.(A)o(B)) = a(A)e" P, (4.42)
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Let F{¥ be a linear map from o/ 4, to & defined by

F{®0,(A)o,(B)) = o(A)e"'A’“""). (4,4b)

It is easy to see
FMQ10,)= 0, F{M(Q,), (4.5a)
Fi(Q:1Q,)=0Q.F(Q,), if Q;isin A. (4.5b)

The vector state w¥() associated with i 4(1/4,0) is the unique ground state
of H ,(A). Now

oP(Q) = 0PFN(Q)). (4.6)
To see this we consider the case
Q =0,(4)a,(B).
Then
oP(Q) = ZL { Z (aloB)la> e—u/zmu/z)(a)—(1/z)hu1/z><a;)}, @.7)
A Laod’

where Z , is the normalization constant and o, is the flip of spin in A.
By the definition (3.18), we have

4.7 = _Zl_ { Y 6(B)e"A(117() g ~ha1/1(o) } 4.8

A a

Equation (4.8) may be interpreted as the integration of F ,(Q) by a Gibbs measure.
We next consider the infinite volume limit.

Proposition 4.3. Suppose the limit (3.20) exists. Then we have the existence of the
Jollowing:

oW(Q)= lim oD(Q) for Qesly,. 4.9)
A ©
Furthermore
oP(Q) = 0(F,(Q)). (4.10)

Proof. By (3.13) and (3.20) the following limit exists in the C*norm of
lim F{(Q) = F4(Q).

A—-©

By (4.6), it suffices to show the existence of limit (4.9) for Q in #n .
Consider a weak accumulation point of lim @‘¥(-). This limit is an invariant
A— 0
ground state of H(4). By Corollary 4.2, the limit state is unique on 4%, thus we
have existence of limit. (q.e.d)

We may also use (instead of (4.6)),
03(010,) = 0Q(F(Q1)*F(Q,)). (4.11)
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Then
©(Q¥Q,) = 0 P(F(Q,)*F(Q,))- (4.12)
Lemma 4.4. Let satisfy the assumption of Proposition 4.3. Let {n,(")Q,# ,} be the
G.S.N. triple for o®. Then
(i) 2, is cyclic and separating for 7,(%),
(i1) 7,(B)" is maximally abelian in B(H ,).

Proof. (i) is obvious by (4.12) and commutativity of 4, (ii) follows from
Lemma 4.3.15 of [2]. (q.ed.)

Lemma 4.5. Let o/; be the C*subalgebra generated by % and . Let & be an
invariant j symmetric ground state of H(J). Suppose that ) satisfies the assumption
of Proposition 4.3. Then

®(Q)=wPQ) for Qin ;. (4.13)
Proof. Consider Q = {1 +0,(A)}c?, where A does not contain j. We see that

x

e(1/2,6/4) is analytic in a neighbourhood of 6 =0 and E(H(1/4,9/2)) = e(1/4,6/4)

in Sect. 3. We also have
16
0
e”(ii)

10
del =2
e(ii)

= lim , 4.14)
05 5=0 A= 0 66 =0
because of the following identity:
aeA(ii) 1
z
N 4.15
30 lyo 2m§ z2 A(u) (*.13)

The formula analogue to (2.4) for the periodic Hamiltonian H 4(4) is valid, so
we have

= P(0). 4.16)

=0

(¥ A(e, ) is the ground state vector even if § is negative but small by the continuity
of Y 4(¢,0) in §.) Combined with (4.14), (4.16), (2.9a) leads to

@((1 £ 0,(4))0?) £ 0®((1 £ 0,(4))5?).
But we already know
3(0) = 0P (c). 4.17)

An arbitrary Q in o/;n .o/, is a linear combination of ¢, 0,(4) and ¢,(B)¢?. By
Jj symmetry of @, the proof of the lemma is complete. (g.e.d)

Lemma 4.6. Let &, 4 satisfy the condition of Lemma 4.5. Let (ﬁ(-)f);f) be the G.N.S.
triple associated @&. Then 7i(%)Q is dense in H.



466 T. Matsui

Proof. Itsuffices to show that #(#)Qis invariant by #(¢) for any k in Z%. We set
H ;= fi(0;) 0. (4.18)

In Lemma 4.5, we see the representation of «/; on J#; is unitarily equivalent
to that of o/, on #; (the G.N.S. space associated with w?(-)). As @, is cyclic for
7,(B), Q is cyclic for 7#(%) in # ;- In particular #(%)Q is invariant by #(c). By
translation invariance #(%)f2 is invariant by #(¢®) for any k in 7. (q.e.d.)

Lemma 4.7. Let &,/ satisfy the condition of Lemma4.5. Then & = w'?, ie. the
Jj-symmetric invariant ground state of H(A) is unique.

Proof. We prove
@(0,(A)o,(B)) = D(F(0,(A4)o(B))). (4.19)

By Corollary 4.2 and the fact that F,(c,(A4)o,(B)) is in 4, (4.19) implies the claim
of lemma.
We show (4.19) by induction of #B. For #B =1, we have for Q in #n .,

@®(Q0(B)) = &(F;(Q0(B)) (4.20)

by j-symmetry and Lemma 4.5. Suppose (4.20) is verified for #B <n — 1. Then by
(4.5), Lemma 4.6 we have

7(0.(B))2 = 7(F ;(0.(B)) 2.
Then for Q in %,
B(Qo,(BUK) = (2, #H(QoP)A(F (0,(B))D)
= (@, #QAPF (0,(B)o® )i(c®)Q) (4.21)
However 6®F(o,(B))e®~! is in 4, thus
(4.12) = (2. #Q)RPF (0. (B)o® M )A(F (c¥))D)
= (2, 1 Q)P F (0,(B)a® ™ )my(F (0 P)€2,). (4.22)
(We have used Corollary 4.2.) We trace back to (4.21) replacing Q, (") by 2,7,(-),
(4.22) = 0¥(Q0(BU {k})) = 0P(F Qo (BU {k})). (4.23)
(ged)

Proof of Theorem 1.3. The centre of n,(/)" is contained in 7,(#)" by Lemma 4.4.
As ¢ is diagonal, any selfadjoint element of Z isj invariant. Let J be the antiunitary
defined by

Iy (Q)2; = m,(j(Q2))€2;. (4.24)
It is easy to see
I Q) = n(j(Q)).
Then any selfadjoint element of 7,(%4)” is j invariant in the sense that

0=JQJ if Q=0Q*en,(ABY. (4.25)
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Let @ be an invariant ground state. Then by Lemma 4.7. We have

Q) +3(j(Q)

Q) ="

Thus there exists a projection p in the centre of 7,(</)” such that

_ (2, Pr;(0)£2;)

“O="a,ray -

Then, &(*) is j symmetric by (4.25), because

(JQ,, Pr;(Q)J2;) _ (JPr,(Q)JQ2;,2;)
(£2,, PQ2;) (£2,,PL;)

_(Pr(@)R232) _ o =
= o = 0@ = o)

Q)=

By Lemma 4.7 0, = &.

467

(4.26)

4.27)

(4.28)

Remark 4.8. We proved w, is pure because the Gibbs state we considered is ergodic
and our analysis shows the centre of ,(.o/)" coincides with 7 ,(.«/) by Lemma 4.4.
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