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Abstract. We introduce a class of quantum spin systems on Zd. We show that
the translationally invariant ground state is unique for this system if it is in a
strong external field.

1.

In this paper, we study translationally invariant ground states of quantum spin
systems. We consider our problems in C* algebraic framework. (See [2].) We
introduce a class of quantum spin Hamiltonians which are translationally invariant
and have the Perron Frobenius property. The Hamiltonians contain an external
field term. We establish uniqueness of translationally invariant ground state if the
strength of the external field is sufficiently large. Our class of Hamiltonian contains
Quantum Ising models and Heisenberg models. In the due course of the proof,
we will see that the invariant ground states of our systems can be realized by
(finite temperature) Gibbs states of classical spin models. This correspondence has
been first found by Kirk wood and Thomas in [4].

To be more precise, we introduce some notations. Let σα(α = x, y9 z) be Pauli
spin matrices,

Γ0 11 Γ0 - Π Γl 01 ίΛ Λ.

o} σ' = [i o j σ* = Lo - i ! ( U )

We consider the C* algebra s/= (X)M2(C) and by σiJ)(jeZd,(x = x,y,z) we
z d

denote the Pauli spin matrix on site;. Hence σψ satisfies the following commutation
relations:

\σψ,σfΊ = σ$σf-σfσψ = Q9 if k Φ j, (1.2a)

σψσf = i&Λβyσ^\ (1.2b)

where εaβy is the totally antisymmetric tensor with εxyz = 1.
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Let J/ 1 O C be the subalgebra of strictly local elements, that is, the set of all
polynomials of σ^λ

We next define the lattice translation automorphism ock(keZd) via the formula,

(1-3)

The Hamiltonian we consider has the following form:

H(λ) = - [λ£dσ$ + .gd Vj(σX9σz)}, (1.4)

where λ is a real parameter and Vj(σx,σz) is a selfadjoint element of s/loc.
The time evolution is determined via the formula,

γt(Q) = eitHQe-itH for Q in s/. (1.5)

Definition 1.1. A state ω of si is an invariant ground state of H(λ) if ω satisfies
the following two conditions:

(i) ω°αfe(β) = ω(Q) for k in Zd, and Q in (1.6a)

(ii) ω(Q*lH(λ\Q])>0 for β in j * l o c . (1.6b)

We make the following assumptions for Vj(σx,σz) in (1.4).

Assumption 1.2.

(i) (translational invariance)

αfc(K/(σ*, ffz)) = vj+k(°χ> <*z) for any j and k in / d . (1.7)

(ii) (Perron Frobenius Property). Let A, B be finite subsets of Zd and we set

σχ(A) = jΠ[ σ?, σ,(B) = J I σ^λ (1.8)

Then

Vj(σx,σz)= V K^σ,μ)σ z(5), (1.9a)

where

(a) Σ V&MB) = 7 ^ ) 3 : 0 (l 9b)

if 4̂ is not empty. (The positivity of (1.9b) is the operator positivity.)

(b) V% = 0 (1.9c)

if #AnBis odd
#A n B is the number of lattice sites in A n J5.

Remark. In the representation (1.1) of Pauli matrices, (1.9b) and (1.9c) lead the
reality and non-negativity of off-diagonal matrix elements in Vj(σx, σz). We will
see that the Hamiltonian — HΛ(λ) defined on a finite region A\nZd satisfies the
positivity and irreducibility conditions of the Perron Frobenius theorem. Hence
the system on a finite region A has the Unique ground state. However, in the
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infinite volume limit, we can't expect uniqueness of the ground state. If fact for
the exactly solvable 1 dimensional quantum Ising model, it has been rigorously
established that in the strong field the ground state is non-unique.

Theorem 1.3. Suppose Assumption 1.2 for Vj(σχ9σz) is satisfied. Then there exists
λo>0 such that for λ > λ0 the translationally invariant ground state ofH(λ) is unique.

Examples
(i) Quantum Ising model. The Hamiltonian of this model is

H{λ) = -λ^σψ + JΓd Vj(σz), (1.10)

where Vj(σz) is a polynomial of σi

z

k)(keZd).
Let y\λ) be the time evolution automorphism defined by (1.5) and (1.9). Then

(1.11)

By Theorem 1.3 and (1.11), we have uniqueness of the invariant ground state
for both positive and negative large λ.
(ii) Heisenberg model. The Hamiltonian is determined by

H(λ) = - j λ V σ$ + Y (α,σ<M#) + 0Lyσψσ^ + oιzσψσP)\. (1.12)

Our method covers the following cases.

(a) αx < 0, αy > 0, αz < 0, (b) ocx < 0, ocy < 0, αz > 0.

To see this it suffices to note the following identity:

α(l + bσψσ{p)(l + cσψσ{p) = a + abσψσP - abcσfσ^p + acσψσP. (1.13)

We now sketch briefly the idea of the proof of our main theorem. Our proof
depends crucially on ideas of Kirk wood and Thomas in [4]. We consider a
perturbation times a parameter δ to the Hamiltonian. If the ground state energy
density is differentiable at δ = 0 for any perturbation, then the translationally
invariant ground state is unique. (See Proposition 2.1.) By the result of [4], this
energy density is differentiable for a restricted class of local observables. To prove
uniqueness, we consider a realization of the translationally invariant ground state
which is again due to Kirk wood and Thomas in [4]. In [4] exponential decay of
correlations is established for observable generated by diagonal matrices. What
we will do is to study the representation of the set of all observables using C*
algebraic techniques.

Let A be a subset of Zd, and S/Λ be the C* subalgebra generated by σψ{on = x, y, zj
is in A). We consider the Hamiltonian H and the local Hamiltonian HΛdefined by
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tf= £ Φ(X), (2.1a)

H Λ = Σ Φ(X), (2.1b)
X p> yl Φ Φ

where the sum in (2.1) is taken over all finite subsets of Zd and Φ(X) is a selfadjoint
element of s/Λ.

Let ω be an invariant state of J / , i.e. ω is a state satisfying ω ° αfe = ω for all fe in Z d

If we assume translation invariance of H and

X | |Φ(X) | |<oo, (2.2)

then the following limit exists:

τjί \ i CO(HΛ) / Λ O X

i i ( c o j = l i m —-—-——. (^"3)
Λ->oo I Λ. I

(The limit must be taken in the sense of van Hove, see [2].) Furthermore the
following identity is valid.

H(ω)= Σ

We call H(ω) the mean energy of the state ω.
The result below is proved by O. Bratteli, A. Kishimoto and D. Robinson in [1].

Theorem. Let ω be an invariant state. The following conditions are equivalent.

(i) ω is a ground state for H.
(ii) ω minimizes H(ω).

We now define the mean ground state energy E(H) by

E(H)= inf H(ω). (2.5)
ω: invariant state

Let Qbe a selfadjoint element of srf and consider the perturbed Hamiltonian H(δ)

determined via the equation,

Σ (2.6)
fceZd

Proposition 2.1. IfE(H(δ)) is differentiable at (5 = 0, for any invariant ground state
ω, the following identity is valid:

~£(tf(<3))U0 = ω(β). (2.7)
do

Proof. This is a consequence of the theorem cited above. Let ω be an invariant
ground state of H. Then by (2.4),

E(H(δ)) ^ ( Σ ^ Γ + « δ ) = Σ ω<τ¥rί + δω(Q) = E(H) + δω(Q). (2.8)
V |A| / Xeo \X\
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If we set δ positive and take δ to zero,

~E(H(δ))\i=o^ω(Q). (2.9a)
ad

If we set δ negative

— E(H(δ))\s_0 > ω(Q). (2.9b)
dδ

By the result of Sect. 3, we will establish the differentiability for Q = σz(B%
σz(A)σ{l) and σψ. (q.e.d.)

The Hamiltonian we introduced in Sect. 1 is real in the following sense. Let
j( ) be the complex conjugation of J / defined by

i(σi f c )) = σχfc)' Ji*7^) = — σf\ j{σ

z

k)) — σ

z

k) (2.10a)

and

J(cQ) = cj(Q) if ceC, Qej(Q1Q2)=j(Q1)j(Qi)' (2 10b)

Then^y^Q) = yt°j(Q) for Q in J / , where γt is defined in (1.5).

Definition 2.2. A state ω is j symmetric if for any Q in J /

ω(;(<2)) = ̂ (β). (2.11)

Lemma 2.3.

(i) Let ω0 be a ground state of the 'real' Hamiltonian, i.e. j(HΛ) = HΛfor any finite
A. Set

(2.12)

Then ω is a j symmetric ground state.
(ii) A state ω is j symmetric if and only if

for any pair of finite subsets A,Bfor which #AnB is odd.

3.

In this section we give estimates of the ground state energy. We apply the
expansion in λ developed in [4]. This method is quite simple and useful for our
purpose.

We start with the Hamiltonian on a finite cube A with volume Ld, and we
impose a periodic boundary condition, so we set

σ ^ = σf (3.1)

for j in A and α = x,y,z, lk = (0,0,..., 1,... ,0)eZd.
k
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Then consider the perturbed Hamiltonian defined by

ϋ> + ε K j (σ x , σ2) + ί α / β ) j , (3.2a)

where 7, (σx,σz) satisfies Assumption 1.2,

*>«,*,) = Σ ^W^M*)- (3.2b)
A,B

We consider the following case:

\ (3.3a)

(3.3b)

(3.3c)

where /I and B are finite subsets and A does not contain the origin 0.
We fix a representation of Pauli matrices as in (1.1) and use the following basis

\°>=(8)ep ej = e0) or (°). (3.4)

We identify |σ> with a configuration of classical spin in {1, — 1}Λ.
In this basis, we may apply the Perron Frobenius theorem for - HΛ(ε, δ). (See

[3] for the criterion of this theorem.)

Lemma 3.1. The Hamiltonian — HΛ(ε, δ) satisfies the assumptions for the Perron
Frobenius theorem (irreducibility and non-negativity) if ε is non-negative and δ is
also non-negative in the case (3.3a) (3.3b) or if ε is non-negative in the case (3.3c).

Proof. It suffices to show
r (3.5)

for t positive and any vectors |σ> \σ') of the form (3.4). It is easy to show the

inequality by
t Σ σU)

(σ'\e-tHΛ^\σ) ^ C(σ'\e ^ * \σ\ ̂  C(sinhί) | Λ |, (3.6)

because the assumption (1.9b) ensures the non-negativity of matrix elements of

Vj(σx, σz) after adding a large positive scalar to - HΛ(ε, δ). (q.e.d.)

By this result HΛ(e, δ) has a unique ground state and all the coefficients of this
ground state are positive. We also note that this state and the positive vector are
periodic by uniqueness of the Perron Frobenius vector.

The positivity of the ground state vector enables us to use the following
definition:

- HΛ(ε, δ)ψΛ(e, δ) = \Λ\ eΛ(ε, δ)φΛ(ε9 δ\ (3.7a)

Σe-1/2hAεMσ)\σ}. (3.7b)
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Let MA be the set of all functions of {1, — 1}Λ. Any function f(σ) is a linear
combination of monomials σ(Λ\ where σ7- is the spin at the site j taking value 1
or — 1 and

σ(A)=l\σj. (3.8)
JeA

We can identify σ7- and σ{

z

j\ σ(A) and σz(A). Thus we may write

f(σ)= Σ /A*(A). (3.9)

By (3.9) MA can be regarded as a subalgebra of 3tA9 if A c A. Let J ^ be the
inductive limit of J*Λ by this inclusion,

We now define two norms || || ao9 \\ || on J^^,

II/WII co= sup | / ( σ ) | , (3.11)
σe{l,-l}Z<ί

ll/(*)||= Σ IΛI. (3.12)

Obviously the following (in)equalities are valid:

ll/Wlloo^ll/WII, (3.13)

lkμ)/(σ)| | = ||/(σ)||. (3.14)

By (3.14) we have

Let 0& be the completion of J*^ by the norm || \^.SI may be identified with
the C* subalgebra of si generated by σ(

z

j)(jeZd). The.identification is

Let f(σ) be in J ^ and A be a finite subset of Td. We define / ω (σ) and /A(σ)
by the following equations:

/ ϋ V)=Σ/>(Λ)> (3.17)
Aej

= Σ /B^(5), (3.18)
#(BnA) is odd

where /^ is the coefficient in (3.9).
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We first consider the case δ = 0. We set

HΛ(ε) = HΛ(ε9 δ)9 eΛ(ε) = eΛ(ε, 0), /ιΛ(ε)(σ) = /ιΛ(ε, 0)(σ).

Proposition 3.2.

(i) There exists ε0, eΛ(ε), h°2(ε)(σ),g(ε) such that g(ε) is analytic in {\ε\ < ε0},g(0) = 0,
hΛ(ε)(σ) is real and eΛ(ε), hΛ(ε)(σ) satisfy (3.7 a) and for ε in {|ε| < ε0},

(3.19)

(ii) The following limits exist in the norm || ||, and h^\ε){σ) is analytic in {| ε | < ε0 }:

lim hiJ2(ε)(σ) = /ιω(ε)(σ), (3.20a)
Λ-»oo

lim hΛ

Λ(ε)(σ) = hA(ε)(σ). (3.20b)
Λ-> oo

Furthermore

Proof. The main idea of proof is the same as that of [4].
(i) By use of the vector (3.4), (3.7) is written in the following form:

Σ f S ) - eΛ(ε)\ = 0. (3.22)
A,B J

We solve (3.23) by a perturbation expansion,

h^{ε){σ) = γh^{σ)ε\ (3.23)

eΛ(ε) = Σϊnε
n, (3.24)

where we omit the subscript A for h® and en for simplicity of notations.
If ε = 0, we can solve (3.7) easily and we see hΛ(0)(σ) is a constant, thus

% = 0e0 = 1. The expansions (2.23), (3.24) lead to

= - Σ j Σ ^B(Sί-iW + Λ-i(Sί(^. .^ί
jsΛlA,B

where Pn(xί9x29...,xn-ι) is defined by

exp( Σ β"^) = l + Σ (xH + PΛ(x1,...,xH-1))f. (3.27)
\ l / 1

Obviously all the coefficients in Pn are positive. Equation (3.26) determines hn(σ),
en in the following sense. Let f(σ) be a function written as
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Equation (3.26) has the form

where F(σ) is a known function. However

Σ/°V))= Σ \Λ\fΛ
j / AΦΦ

461

(3.28)

(3.29)

Thus (3.28) determines the f(σ) except the constant term fφ and the constant
term of F(σ) is equal to C. As the constant term in hA(ε)(σ) contributes to the
normalization of the vector, (3.26) determines completely the ground state. (See
(3.7b).)

Now it is easy to see

(3.30)

(3.31)

(3.32)

(3.33)

(3.34a)

(3.34b)

(3.35)

(3.36)

(3.37)

(3.38)

As we impose the periodic boundary condition, the following are valid:

= \Λ\\\h^(σ)\\,

Thus by (3.31) and (3.32), (3.26) implies that if n ̂  2,

II h(»(σ) || + I en \ ^ Pn( || hψ(σ) | |,..., || h<jί 1 (σ) ||)

+ F{c || ΛJΊ t (σ) || + PΛ _! (c || hψ(σ) | |,...)

where

Λ,B

For π = 1 we have

We now set

Then by (3.33)

Let /(ε) be a function defined implicitly by

(1 + c)/(ε) - (cV)ε - c{em - 1} - {Vc)ε{em - 1} = 0.

By the implicit function theorem, f(ε) satisfying /(0) = 0 exists and is real
analytic in a neighbourhood of ε = 0. Set
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b - - -
nldε"

Then bn satisfies

1 +P π _ 1 (& 1 , . . . , f t n _ 2 ) } , (3.40)

(3.41)

We can show the following inequality by induction and (3.37), (3.40) and (3.41):

an^bn. (3.42)

Thus

Σ anεnSf(ε\ (3.43)

By setting g{ε) = (l/c)/(ε), we have (3.19).
(ii) By definition (3.18) we have

II hΛ

A(ε)(σ) - hA

Λ(ε)(σ) \\^Σ\\ h^{ε){σ) - h%ε)(σ) ||. (3.44)

Thus (3.20b) and (3.21) follows from (320a). Suppose A is larger than the range of
potential Vj(σx9σz). Then the same h^ is the solution of (3.26) for different
Λ, AΆ a A\ if n is small. So the following estimates can be proved:

l l ^ ε ^ , (3.45)

where L is the shortest side of A. This completes the proof, (q.e.d.)

Next we consider the Hamiltonian (3.2). By the choice of Q in (3.3), — H(ε, δ)
satisfies the assumption for the Perron Frobenius Theorem in the following range
of parameter δ:

i, δ: arbitrary

|<5|<1 '

{1 ± σz(A)}σ(°\ δ: positive.

Proposition 3.3. Suppose hΛ(ε, 0) satisfies the following condition with a constant d'
independent of A:

|| e
h^M{σ) - 11| + IεI £ V%σ(B)eho{ε'0) <d' <\. (3.46)

A,B

Then there exists constants δo,cA, such that eΛ(ε,δ) is an analytic function of δ in

{\δ\<δ0}, the limit lim eΛ(ε,δ) exists

lim eΛ(ε,δ) = e(ε,δ) (3.47)
Λ-*oo

and
\\hA

Λ{ε,δ)(σ)\\<cA. (3.48)
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Remark 3.4. (i) (3.46) is satisfied if ε is sufficiently small because the following
estimate is valid by (3.15):

\\e-h>*σ)-l\\£e*h>*σn-l<l. (3.49)

(ii) e(ε, δ) is analytic because for any sequence of analytic functions on a fixed
domain, we can choose a subsequence convergent to an analytic function.

The proof of Proposition 3.3 goes along the same lines of Sect. 2 of [4]. We
don't repeat it here.

4

We now set

H(λ,δ) = H(λ)-δ Σ α*(β), (4-1)
fceZd

where Q is one of (3.3).

Proposition 4.1. Let ε = (I/A) and hϋ2(ε)(σ) satisfy (3.46).

(i) If Q is either σz(A) or σ(j\ then the mean ground state energy E(H(λ,δ)) is
differentiate in δ at δ = 0.
(ii) IfQ = {1 ± σz(B)}σ(j\ where B does not contain j , E(H(λ, δ)) is right differentiable
at (5 = 0.

Proof. It is easy to see

( δ \ (4.2a)

Thus (i) follows from Proposition 3.3 and Remark 3.4 (iii). If we consider the case

Q = {l±σx(B)}σ<?,

we have (4.2b) for δ > 0. In view of (2.9a), it is easy to prove the assertion of (ii).
(q.e.d.)

Proposition 4.1 and 2.1 imply the following.

Corollary 4.2. If λ satisfy the condition of Proposition 4.1, for the invariant ground
states ω l 5 ω 2 of H(λ), we have

= σ2(A) or σf. (4.3)

Let J 1 be the C* algebra generated by {α^'jeZ1*}. As is remarked in Sect. 3, we
may identify ^ with the function space c{{\, — l}z d).

Let Fλ be the linear map from ss?loc to & defined by

Fλ(σz{A)σx(B)) = <τ(Λ)eftB<λ)(σ>. (4.4a)
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Let F(

λ

Λ) be a linear map from sf Λ to & defined by

(4,4b)

It is easy to see

F^ΛHθ Q ) = 0 F^ΛHθ ) (4.5a)

Fλ(QiQ2) = QiFλ(Q2l if Qx is in ^ . (4.5b)

The vector state ω ^ ) associated with φ Λ(l/λ,0) is the unique ground state
oϊHΛ(λ). Now

ω (^(β) = CO(A(F[A)(Q)). (4.6)

To see this we consider the case

Then

Λ(l/λ)(σ)-(l/2)hΛ(l/λ)(σΛ) I M J\

where Z Λ is the normalization constant and σA is the flip of spin in A.
By the definition (3.18), we have

(4.7) = — { I σ(B)eh>/λ)iσ)e-hΛ(1/λ)iσ) j . (4.8)
Z Λ I σ J

Equation (4.8) may be interpreted as the integration of F Λ(Q) by a Gibbs measure.
We next consider the infinite volume limit.

Proposition 4.3. Suppose the limit (3.20) exists. Then we have the existence of the

following:

ω(λ)(Q) = lim ω (^(β) for Qe^loc. (4.9)

Furthermore

ω(λ\Q) = ωiλ)(Fλ(Q)). (4.10)

Proof. By (3.13) and (3.20) the following limit exists in the C*norm of

lim

By (4.6), it suffices to show the existence of limit (4.9) for Q in l o c

Consider a weak accumulation point of lim co^i')- This limit is an invariant

ground state of H(λ). By Corollary 4.2, the limit state is unique on J*, thus we
have existence of limit, (q.e.d)

We may also use (instead of (4.6)),

ω ^ ( β f β 2 ) = ω^{F{Q1)*F{Q2)). (4.11)
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Then

ω ( A ) (β*β 2 ) = ω^(F(Q1)*F(Q2)). (4.12)

Lemma 4.4. Let satisfy the assumption of Proposition 4.3. Let {πλ(')ΩλJ^λ} be the
G.S.N. triple for ω{λ\ Then

(i) Ωλ is cyclic and separating for πλ{β\
(ii) πλ(β)' is maximally abelian in M(βtf λ).

Proof, (i) is obvious by (4.12) and commutativity of έ%, (ii) follows from
Lemma 4.3.15 of [2]. (q.e.d.)

Lemma 4.5. Let jtfj be the C*subalgebra generated by & and σ(j\ Let ώ be an
invariant j symmetric ground state of H(λ). Suppose that λ satisfies the assumption
of Proposition 4.3. Then

ώ(Q) = ωiλ)(Q) forQin^j. (4.13)

Proof. Consider β = {1 ± σz(A)}σ®9 where A does not contain;. We see that
e(l/λ,δ/λ) is analytic in a neighbourhood of δ = 0 and E(H(ί/λ9δ/λ)) = e(l/λ,δ/λ)
in Sect. 3. We also have

δδ
= lim

,5 = 0 /l-»oo dδ
(4.14)

because of the following identity:

deλ —
\λλ

dδ

1 dz

2πiJ{δ-zf

ίz
(4.15)

The formula analogue to (2.4) for the periodic Hamiltonian HΛ(λ) is valid, so
we have

δe A —
Λ\λλ

dδ
(4.16)

δ = 0

(φ Λ(ε, δ) is the ground state vector even if δ is negative but small by the continuity
of φΛ(ε9δ) in δ.) Combined with (4.14), (4.16), (2.9a) leads to

± ± σ

But we already know

cΰ(σo >) = ωW)(σ<Λ). (4.17)

An arbitrary Q in •$&j<~^stflΰC is a linear combination of σ(^,σz(A) and σjβ)σψ. By
j symmetry of ώ, the proof of the lemma is complete, (q.e.d)

Lemma 4.6. Let ώ, λ satisfy the condition of Lemma 4.5. Let (π(-
triple associated ώ. Then π(β)Ω is dense in Jf.

e the G.N.S.
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Proof. It suffices to show that π(β)Ω is invariant by π(σ^) for any k in Zd. We set

3fj = φj)Ώ. (4.18)

In Lemma 4.5, we see the representation of s&' } on ̂ f ; is unitarily equivalent

to that of es/y on Jf j (the G.N.S. space associated with ω(A)( )) As Ωλ is cyclic for

πλ(β\ Ω is cyclic for π(β) in ̂ f 7 . In particular π(β)Ω is invariant by π(σ^). By

translation invariance π(β)Ω is invariant by π(σ^}) for any k in Zd. (q.e.d.)

Lemma 4.7. Lei ώ, λ satisfy the condition of Lemma 4.5. Then ώ = ω ( λ ), i.e. the
j-symmetrίc invariant ground state of H(λ) is unique.

Proof. We prove

ώ(σz(Λ)σx(B)) = ώ(Fλ(σz(Λ)σx(B))l (4.19)

By Corollary 4.2 and the fact that Fλ(σz(A)σx(B)) is in 01, (4.19) implies the claim
of lemma.

We show (4.19) by induction of #B. For #B = 1, we have for Q in J>rW l o c ,

ώ(Qσx(B)) = ώ(Fλ(Qσx(B)) (4.20)

by j-symmetry and Lemma 4.5. Suppose (4.20) is verified for #B < n — 1. Then by
(4.5), Lemma 4.6 we have

π(σx(B))Ω=f;(Fλ(σx(B)))Ω.

Then for Q in J>,

ώ(Qσx(Buk)) = (Ω,π(Qσ^)π(Fλ(σx(B)))Ω)

= (A «(β)π(σ?>FA(σx(JΪ))σ«- ^fiίσ^ίΛ). (4.21)

However σf i7(σx(5))σξc

fc)~1 is in * , thus

(4.12) = (fl, π ( ρ ) π ( σ ^ F A K ( 5 ) σ f " ̂ {F λ{σ™ ))Ω)

= (Ωλ, πMn^fFλ{σx{B))σf-')πλ{Fλ{σf)Ωλ). (4.22)

(We have used Corollary 4.2.) We trace back to (4.21) replacing Ω, π( ) by Ωλπλ{-\

(4.22) = ωW(Qσx(Bu {k})) = ω^(Fλ(Qσx(Bu{k})). (4.23)

(q.e.d.)
Proof of Theorem 1.3. The centre of πλ(s4)" is contained in πλ(@t)" by Lemma 4.4.
As σz

j) is diagonal, any selfadjoint element of & isj invariant. Let J be the antiunitary
defined by

(4-24)

It is easy to see

Then any selfadjoint element of πλ(βy isj invariant in the sense that

Q = JQJ if Q = Q*eπλ{&)". (4.25)
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Let ώ be an invariant ground state. Then by Lemma 4.7. We have

ω ( λ ) ( e ) = ω(8) + ω(7(0) ( 4 2 6 )

Thus there exists a projection p in the centre of πλ(s/)" such that

JΩλ,Pnλ(Q)Ωλ)

(Ωλ,PΩλ)

Then, ώ( ) is j symmetric by (4.25), because

-,™ (JΩλ,Pπλ(Q)JΩλ)

(Ωλ,PΩλ) (Ωλ,PΩλ)

(Pπλ(j(Q))Ωλ,Ωλ)
(Π p n \ wv./v^ // wv./v>^// (4.ZOJ

By Lemma 4.7 ωλ = ώ.

Remark 4.8. We proved ωλ is pure because the Gibbs state we considered is ergodic

and our analysis shows the centre of πλ(jtf)" coincides with πλ(srf)' by Lemma 4.4.
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