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Abstract. This paper discusses certain aspects of the spectral and inverse

spectral problems for the Schrόdinger operator L(q)= —-T-J-+ ?(*), for

q (x) e C(R), the space of bounded continuous functions. The trace formula of
the title is the relation

with appropriate choices of {λj}fL 0 and {///}JL i, which is a familiar relation in
the theory of Hill's equation. We characterize the set 2Γ c; C(R) of potentials
for which this holds. Further extensions of the theory of Hill's equation are
also obtained. From the spectrum σ (L(q)) a torus T(q) is constructed, which is
in general infinite dimensional; every q{x)eZΓ can be mapped to a continuous
path on T(q)9 described by the auxiliary spectrum {μj}jL1. Under certain
geometrical conditions on σ (L(q)) this path is the orbit of a C1 vector field on

T(q), and the mapping extends to one from the hull Jf (g) = {q{x + ξ)\ ξeR}
to the closure of this orbit. In particular Jf (q) is compact. These results have
applications in the theory of Schrόdinger operators with ergodic potentials.

1. Introduction

This paper is concerned with the study of the spectral problem for the Schrδdinger
operator / 2

considered on the line — oo < x< + oo. We consider potentials g(x)eC(R), the
space of bounded continuous functions. Two standard spectral problems are that
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of defining the operator on a dense subdomain of L2 (R), and of defining the
operator with additional Dirichlet conditions imposed at x= 0. It is well known
that these problems are of Weyl limit point case at x -> + oo. Denote these two
operators L (q) and LD (q) respectively; their difference has a finite trace in the
generalized sense, which we denote tr (L(q) — LD(q)).

In the case that q (x) is periodic, say of period 1, this trace can be computed in
two ways. Let {λj}f=0 be the collection of periodic and anti-periodic eigenvalues
of (1.1) on the interval [0,1], and {μJJL i the collection of Dirichlet eigenvalues on
the same interval (the auxiliary spectrum); it is a beautiful formula that

Λ) + Σ λ2j + λ2J-1 ~ 2μj = 2 tr (L(q) - LD(q)) = q(0). (1.2)

The motivation of this paper is to extend this simple formula, with a suitable
definition of λ>} and μ, to a larger class of potentials q(x)eC (R), extending certain
results of Bargmann [2], McKean et al. [13,14], Dubrovin et al. [6], Moser [15],
Levitan [12], and Kotani and Krishna [10]. In particular, certain examples of
Moser [16] and Avron and Simon [1] with nowhere dense spectra are included
within this class. It turns out that the right-hand equality of (1.2) holds generally,
for any q(x)eC(JR); this is the result of Sect. 2. Furthermore, the trace of the
difference of higher powers of L(q), LD(q) is computed, and is shown to be finite
depending only on the local regularity of q(x) near zero. The method uses the
Feynman Kac expression for the heat kernel.

The left-hand equality of (1.2) will involve the spectrum. The simple formula
cannot be true in general; however, it will hold for a certain class 2Γ of potentials
q (x) which we will identify by the behavior of the Green's function for L (q) on the
real axis. In particular, all periodic potentials belong in this class. We call this class
"reflectionless" or "of Bargmann type" by analogy to the reflectionless multi-
soliton potentials of [2]. A discussion of this condition appears in Sect. 3, with the
proof of the second equality of (1.2) in Theorem 3.6. The proper definition of the
points λj is as endpoints of spectral gaps for L (q). The spectrum σ (L(q)) is a closed
set of R, with a finite minimum point λ0, whose compliment consists of the ray
( — oo, λ0) union possible infinitely many open intervals (components of
R — σ (L(q))) which we enumerate somehow, and denote (λ2j-1, λ2j), jeΈ+. This
gives the λ's. Roughly, μ/e[/l2j _1,/l2 j ],yeZ+, are taken to be L2 eigenvalues of
the left and right half-line problems, combined in the operator LD (q). These points
are of course not necessarily able to be enumerated in order on the line. The impact
of the defining condition of 2Γ is that for this class the contributions of the
continuous spectrum to the trace formula (1.2) cancel.

Via the trace formula one is naturally let to study the inverse spectral problem,
considering {λj}fL0 and {//,-}]!i as spectral data. Let μj(ξ) be as above, with
respect to the half-line eigenvalue problem starting or ending at £eR. The trace
formula recovers q (ξ) from {λj} and {μj (ξ)}. As in the periodic case it is better to
consider these spectral quantities in angular variables. Define a change of
variables

COSψj- ,
A2j Λ2j-1 A2j A2j~l
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with a choice of arccosine to be decided later; the set {φ; 0 ^ φ} < 2π,jeΈ+} gives
global coordinates to an infinite dimensional torus T. This torus is compact in the
topology specified by the distance function

\\ψ-θ\\= sup (λ2j-λ2j-1)
1/2\φJ-θ\mod2ic.

Define the function
00

> = A 0H- Σ ^2.7 + ^ 2 . 7 - 1 - 2 ^ i » (1-3)

which is continuous on T. The results of Sect. 5 include that under translation by ξ,
every potential qe^~is given as the evaluation of Q along a continuous path φ (ξ)
on the torus Γ. All this reminds one of the periodic case; however, now the orbit is
not necessarily closed. Section 5 also includes a discussion of the closure of this
orbit on Γ, a description of the dynamics of the orbit, and a derivation of the
analogue of the Dubrovin vector field for μ in terms of the Green's function for
(1.1). In particular, it is shown that the vector field is autonomous.

The analysis for an existence theorem for integral curves of the Dubrovin
vector field involves consideration of the geometry of the spectrum. In Sect. 6, a
subclass of potentials in SΓ is considered, for which the vector field admits a global
C1 bound. Existence, uniqueness, and continuous dependence of solutions are
immediate consequences. The criterion specifying this subclass is in terms of the
torus Γ, or equivalently in terms of the geometry of the spectrum σ(L(q)) a R.
For this subclass the mapping from q (x + ξ) to Γis shown to extend continuously
to the hull 34? (q) of q:

where closure is taken with respect to the topology of uniform convergence on
compact sets. One conclusion is that the hull is compact. The C1 estimate is given
in Theorem 6.2. Specific estimates give that many potentials admit this global C1

bound, including ones with Cantor spectra such as the examples of Moser [16] and
Avron and Simon [1]. Global C1 bounds on the Dubrovin vector field have been
derived in the periodic case by Trubowitz [18].

There is a connection between this discussion of the trace formula and the
study of Schrόdinger operators with ergodic potentials. These are operators of
form (1.1), whose potential q (x) possesses some form of recurrence properties; the
definition is given precisely in Sect. 4. Via a result of Kotani [9], an ergodic
potential for which the Lyapounov exponent vanishes almost everywhere on the
spectrum belongs to the reflectionless class &~, and thus is recoverable by formula
(1.3) from a continuous orbit on a compact torus. Since the Lyapunov exponent
vanishes on a dense subset of the absolutely continuous spectrum, this suggests the
following appealing conjecture: if q (x) is ergodic and σ (L(q)) = σac (L(q)), then in
fact, q (x) is an almost periodic function. If this were true, the following alternative
holds for ergodic Schrόdinger operators: if the singular spectrum is empty,
σsing (L(q)) = σpp (L(q)) u σsc (L(q)) = φ, then the potential q (x) is almost periodic.
The results of Sects. 5 and 6 prove the following weaker conclusion: if q (x) is
ergodic and the Lyapounov exponent vanishes almost everywhere on the
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spectrum, then (i) the hull Jf (q) is compact, or else (ii) the spectrum σ (L(qj) is a
wild set, not satisfying the hypotheses of Theorem 6.2. Roughly, such a wild set
must possess accumulation points of endpoints of spectral gaps, with the sizes of
converging gaps quite large compared to their relative distances apart. By
contrast, standard Cantor sets of large relative Lebesgue measure are not wild sets.

This article has not addressed several natural questions. First, the Dubrovin
vector field on T has formally the structure of a completely integrable Hamil-
tonian system. For q (x) within a restricted subclass of &~, Levitan has considered
limits of the Jacobi inverse problem, integrated the motion, and showed that in
fact q (x) is almost periodic, a uniform limit of lacunary (finite spectral band)
potentials. In Kotani and Krishna [10], it is remarked that Levitan's subclass
includes spectral sets in which certain finite limit points of the set {λj}jL0 are
admissible. Their conditions, however, exclude any Cantor spectrum. Levitan's
analysis has not been carried out for a broader subclass of 2Γ. Secondly, the torus
T should represent the reflectionless spectral class of the operator L (q), and the
KdV and higher KdV vector fields should be identified and their initial value
problems solved. This work has been done, including C1 estimates for the higher
KdV vector fields; it will appear in a subsequent publication.

2. The First Half of the Trace Formula

The approach that gives a proof of the trace formula in our general setting is to
compute the trace of the difference of two heat kernels. In this section we evaluate
this quantity in the first of two different ways. For q(x) a bounded continuous
function consider the Sturm-Liouville problem on the line

d • ' ^ * - o o < x < +00, (2.1)
dx

and the one on the line, with Dirichlet conditions imposed at x = 0.

= λψ -oo <x<0 and 0<x< +oo (2.2)

The integral kernels H and HD of the solution operators for the two heat equations

d 1
= 0 -oo < x < +oo (2.3)

and

d 1
γίu-\-^LD(q)u = 0 -oo <x<0 and 0<x< +oo (2.4)

are conveniently expressed using the Feynman-Kac formula,

H(x,y;t) = Ex(exp( - - [q(β(s))ds)δy(β(t))\ (2.5)
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1 rHD(x,y; t) = Ex (^exp( - - J g(β(s))dsj χ{t<To(β)}δy(β(t))j. (2.6)

The path integral is with respect to the classical Brownian motion process on R,
with β (0) = x, δy is the Dirac measure at y e R, and To (/?) is the first hitting time of
zero for the path /?(/);

In the free case, q (x) = 0, the heat kernels (2.5) (2.6) are given explicitly by the
method of images,

2πt
(2.7)

and

2 ί
(χ + y)2

2ί

2πt
H°D(x,y;t) =

On the diagonal {x = y}

if χ,y>0 orχ,y<0;

ify<0<xorx<0<y.

H°(x9x;t)-H°(x9x;t) =
2x2

>2πt

and we have that

f H\x,x;t)-Hl{x,x;

Theorem 2.1. Let q(x) be a bounded measurable function on R which is continuous
at x = 0. Then

lim j t j H(x, x; t) - HD (x, x; t)dx=-

CO

Proof Consider the quantity

H(x,x;t)-HD(x,x;t) = Ex fexp (-\ \ q(β(s)ds) (1 -χ{ι<To})δx(β(t)))

(2.8)

(2.9)

Since || q || m < oo, the series is convergent. The term j = 0 of the series is easily
evaluated,

J £x((i- ί̂<7i})<Jje(i5(O))</Λ= ϊ /r o(χ,χ;0-«S(*.*;0^ = i
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Forj^2we have
00

7 = 2 .

W. Craig

j=2 J' \ Δ

which for t< 1 is bounded by Ct2e 2χ2/t/γ2πt. Thus as

oo co A / / AΪ \j

-oo j=2 β \\ 2 o /

It remains to evaluate the term 7 = 1 ,

l - X { ί < r o } ) ^ ( / f ( 0 ) ) ^

ί J Ex
0 - o o

ί oo oo

- o o - o o— oo

-Hl{x,y;s) q(y) H°D(y,x;t-s) dyds.

Using the semigroup property of the heat operator and interchanging
integrations:

A t oo oo

= ~i ί ί <l(y) ί H°{y,x; t-s) H°(x,y;s)
0 — oo oo

-H°D{y, x; t-s)H° (x, y; s) dx dy ds

ί ί q{y){H\y,y;t)-Hl{y,y;t))dyds
O - o o

2 y 2

1

It is now clear that lim f H{x, x; t) — HD (x, x; t) dx = 1/2, and that
t~*0+ - o o

I 00

flim ^ j H(x, x; t) - HD (x, x; t) dx

A / 00 00

= lim -I f H(x,x;ή-HD(x,x;t)dx- f H°{x,x;t)~H°D (x,x;t)ώ
t-0+ ί\-oo -oo

2y2

g(0)
4 "

This completes the proof. D
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It will be whown in Sect. 3 that formula (2.8) has the interpretation of the trace
of the difference of L (q) and LD (q). If the function q (x) has better differentiability
properties at x = 0 then we may derive the trace of the difference of higher powers
of the operators L (q) and LD (q). In the periodic case these traces are discussed in
[13]. In our present setting the first 1/2 of these higher trace formulae are obtained.

Theorem 2.2. Suppose that q (x) is bounded, and that all derivatives up to order r are
continuous at x = 0. For 0 ̂  a ̂  [r/2] + 1,

f d\
lim m j* H(x,x;ή-HD(x,x;t)dx = Pΰi(q(O\...,q(2«-2\O)), (2.10)

t-+o+\dtj j^

where Pa are universal polynomials in q(0),... # ( 2 α~ 2 )(0).

Proof. One uses the same strategy for higher derivatives that is used for the
estimation and evaluation of terms for α = 0,1. The expansion of the exponential
in the Feynman-Kac formula gives both a computation of Pa and an estimate of
error terms. Only integral powers of t will appear in the asymptotic expansion of

oo

J H(x, x; t) — HD (x, x; t) dx as t — 0 + ; this is expected because of its interpre-
— oo

tation as the formal quantity tr (e~tL{q) - e~tLDiq)).
Consider the expression (2.9). T h e / h term in the expansion of the exponen-

tial is

Ex[\^qMs))ds) (1 -χ{t<To])δx(β(t))j

t t i j x

= ί i ' x K Π 9(β(s,)) (1 -X{t<ro}) Sx(β(t))h
0 0 \I=1 /

= r(j) ί ''I ί Ex ( Π ?(/?(*ί)) (1 - ^ { ί < r o } ) <5»(/?(0)
0 0 0 \/=l

where r(j) is the number of rearrangement of the set {sί9...,Sj}. If

Q(χ)= Σ Φl)Φ)χlll\ + 0(l*Γ) as x-^0, for small t, we use the Taylor expansion
1=0

of the product Π ? ( / « = Σ Σ Π έΛι)Φ)β(sι)aι + er{β), where

er(jff) = ί?(|^(j 1)| 2+...+|)ff(j i /)| 2) r / 2 controls the error term. The resulting
expression is

n^r \a\=n α < 1 = 1 0 0

Π β*ι(sι)(1-X{t<τ0})<

•Ex(\- ]er(β)ds1...dsj(l-χ{t<To})δx(β(t))). (2.11)
\o o
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The coefficients of the universal polynomials come from the integrals

0 0 -oo \I=1 ° / 1=1

(2.12)

An explicit computation shows that if ]Γ αt is odd then the integration in x
1=1

vanishes, hence only integral powers of / appear in (2.12). The error term in (2.11)
can also be shown to contribute only higher order behavior in t as t->0 + .
Computing the constants aal and ordering the resulting powers of t up to [r/2] + 1
(which in practive may be tedious), the result follows. •

These two results are adaptations of the method used in Deift and Trubowitz
[4] and Douady [5]; they were worked out for me in this setting by
V. Papanicolaou.

3. The Second Half of the Trace Formula

As the first half of the trace formula is obtained from perturbation theory for the
heat kernel, the second half must concern the spectra of the operators L (q) and
LD(q). In this section we derive formulae in terms of the Green's function
g (x, y; λ), its values on the diagonal y = x, and their limits on the real axis as
im λ -> 0+. We have taken q(x)eC (R), bounded continuous functions on the line.
It is well known that the resulting operators L (q) and LD (q) are Weyl limit point
case at x-+ ± oo. Consider a fundamental solution matrix for Eq. (2.1),

For λ in the upper (or lower) half plane C ± one constructs the limit points m+ (λ)
and the stable and unstable solutions

f±(x9λ) = φ1(x9λ) + m±(λ)φ2(xiλ)eL2(R±). (3.1)

Since the problem is real, m+ (λ) = m+ (A), and/+ (x, I) =f± (x, λ). Computing the
Wronskian at x = 0, [f+,/_] = m_ (λ) — m+ (λ), we obtain the expression for the
Green's function for problem (2.1);

-CM)

The trace formula involves a comparison of this full line Green's function with the
one for the half line problem (2.2);

9>2CM)/+(*,λ) O^y^x
o y^o^x (3.3)

-f-(y9λ)φ2(x,λ) yύxύO.

The elementary properties of these functions are given in this lemma,
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Lemma 3.1. The Weyl m-functions m± (λ) and the diagonal of the Green's function
g(x, x; λ) are analytic in (C±. For imΛ, > 0,

imm+ (λ) > 0, im m_ (λ) < 0, im g(x,x;λ) > 0.

Analytic functions of λ which satisfy this property of mapping the upper
(lower) half plane to itself are called Herglotz; they play a central role in the
spectral theory of Sturm-Liouville problems. The lemma states that m+, — m_
and g (x, x; λ) are Herglotz.

Proof. First notice that g (0,0; λ) = (m _ — m+) ~1 (λ); therefore the result for g will
follow from that for the Weyl m-functions. For the Weyl functions it is a
computation that

Thus
i — ±G0

imm±(λ) = ̂ [f±,f+] = imλ J \f±\2dx,

from which the result follows. D

The second elementary result that we use is that the Weyl m-functions and thus
the diagonal of the Green's function are continuous as functions of the potential q,
considered in the topology of uniform convergence on compact sets.

Lemma 3.2. If qn (x) converges to q (x) uniformly on compact sets, then m\ (λ)
converge to m+ (λ). This convergence is uniform in λ,for λ in compact sets o/C*.

The proof of this lemma has appeared in several settings. See, for example,
Johnson and Moser [8], or Craig [3], in which the nesting property of the Weyl
circles are used.

The spectrum σ (L (q)) of L (q) may be a quite complicated set on the real axis.
There may be isolated points, bands, Cantor sets or other phenomena. It is
bounded below, however, and the complement of the spectrum consists of at most
countable many disjoint open intervals. We denoted the bottom of the spectrum
λ0, and enumerate the spectral gaps I} = (λ2j-1, λ2j),

The principal concern of this section is to obtain a trace formula in the cases in
which the potential can be described by quantities outside the spectrum. The
quantities of interest will be the collection of gap endpoints {X^JLQ and the zeros
of the diagonal of the Green's function in each gap, which are traditionally
denoted {μj}fLx.

Lemma 3.3. The function g (0,0; λ) is real and increasing for λelj. Thus there is at
most one zero λ = μ^ in each gap.
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Proof. I/s are regions of analyticity of g(0,0;A), and furthermore
g (0,0; λ) = g (0,0; λ), so that within the gap the diagonal of the Green's function is
smooth and real valued. We compute

hence g is strictly increasing in λ in each gap, and any zero must be unique. D

If g(0,Q;λ) vanishes in the open interval Ij9 we denote that point μjt It can,
however, occur that g will have entirely one sign throughout Ijm If g < 0 in /, set
μj = λ2j, the right endpoint, while if g > 0, set μ^ = λ2j-1, the left endpoint. A zero
of g (0,0; λ) in /, corresponds to a pole of either one of m+ (A), and therefore to an
eigenvalue in the Dirichlet spectrum for either the right or the left half line
problems (2.2).
. Using the spectral representation of the solution operators to the two heat

equations (2.3) and (2.4), we obtain the following formulae. Let Γ be a contour
around the spectrum of both L(q) and LD(q); for example,

Γ={λo-δ + iη;

Lemma 3.4. The trace of the difference of the two heat kernels satisfies

λ. (3.4)

A similar expression is obtained if we consider the difference
f(L (q)) —f(LD (#)) of any function/in the bounded spectral calculus for which/'
is integrable on the ray [λ0, 4- oo); the heat kernel has of course f(λ) = e~λt/2 .

Proof This formula follows from a computation involving the two Green's
functions. The left-hand side of (3.4) can be written in terms of a contour integral
over Γ:

^~ ί \e-W{g(x,x;λ)-gΌ{x,x;XDdλdx. (3.5)

Compute the difference of the Green's functions;

f+(x,λ)φ2(x,X) XΪO

By the resolvant formula we recognize that d/dλR(λ) = R2(λ), hence in terms of
coogn
cointegral kernels dg (0,0; λ)/dλ = j g2 {x, 0; λ) dx. Thus from (3.2) and (3.6):

— oo
oo oo j

j g(x9x;λ)-gD(x,x;λ)dx = (m--m+)(λ) J g2(x,0;λ)dx = -=τ logg(0,0;λ).
(3.7)

With a change of constant, this gives formula (3.4). D
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Formula (3.4) is generally valid, and in a sense is comparable to the trace
formulae of Deift and Trubowitz, or McKean, can Moerbeke, and Trubowitz. In
this paper I want to discuss a special class of potentials q (x) for which the right-
hand side can be evaluated more explicitly at ί->0 + . Let

lim reg(x,x;λ + iε) = O

for all x e l , for almost all λeσ(L(q))}.

We will call this class of q the "reflectionless" potentials. From Lemmas 3.1 and
3.2 it is clear that

lim img(x, x;λ + is) = 0
ε-> 0

for all A G R — σ(L(q)), and that the argument of g(x,x;λ) in (C+ is bounded
between 0 and π.

This class of reflectionless potentials includes many of the well-studied classes
of spectral and inverse spectral theory. Among these are (i) all continuous periodic
potentials [14], (ii) the reflectionless potentials of Bargmann [2], (iii) finite gap
potentials studied by Dubrovin, Matveev and Novikov [6], (iv) potentials
constructed by Moser and Trubowitz that are related to orbits of the constrained
harmonic oscilator problem of C. Neumann [15], and all examples known to the
author of constructions of nowhere dense spectra with limit periodic potentials.
Another case that is of great interest is the class of ergodic potentials which posess
entirely absolutely continuous spectrum. The definition of an ergodic potential
and the theorem that ergodic plus absolutely continuous spectrum implies
reflectionless will be given in Sect. 4; this result follows from the work of Kotani
[9]

Using (3.4) we obtain the following general trace formula that can be used as
an inversion theorem for reflectionless potentials:

Theorem 3.6. Let q e 2Γ then
00

• ί = 1 (3.8)
00

Thus if ]Γ | Ij | < oo, the second half of the trace formula holds;

Σ (λ2j + λ2j^-2μj). (3.9)

Denote the midpoint of the gap Ij by ξj = (λ2j + λ2j-1)/2. If the higher moments
are finite

00

Σ\ij\tfm<<χ>, (3 io)

and the coefficient q (x) e C (R), then the γ trace formulae hold

.^ ( 2 r 2 ) (O))=f-JΪfc+ Σ λlj + λlj^-lμj) (3.11)
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Proof. We of course want to take the limit as β->0+ of the contour integral in
(3.4). In general there will be a contribution to the result from the continuous
spectrum, a case that we do not consider in this article. The reflectionless condition
is precisely the one for which this contribution is zero. From (3.4),

2 * i

The first term will vanish as ε ->0 while in the second we integrate by parts,

iπ

One takes the limit ε -» 0 using the dominated convergence theorem; we obtain

Z

In the reflectionless case the limit of the function im logg (0,0; λ + i 0) — π/2 = 0
for almost every λ e σ (L(#)). Since g (0,0; A) is Herglotz, for λ φ σ (L(#)), λ φ μj for
some 7, there are two possibilities;

ίimlogg(0,0;λ + zΌ)-f = - f for g(0,0;λ + i0)>0
l ; A + /0)-f = f for g(0,0;A + /0) < 0' { }

Taking δ->0 and integrating over each spectral gap,

I ~λot f- + o° ~λt

— t i p 2 J - V (p 2 A - p 2 — ? ρ 2 ) \ Π 1 T>
z \ i=i /

which is formula (3.8). In case the gap lengths \Ij\ = (λ2j — λ2j-1)/2 are summable,
the time derivative of (3.8) has a finite limit as £-»0 + , giving formula (3.9) in
conjunction with Theorem 2.1. Of course with more control on the asymptotic
rate of decrease of gap widths, more derivatives of formula (3.8) will have limits as
t ->0 + . Sufficient control in terms of moments is stated in (3.10), which together
with Theorem 2.2 proves (3.11). An alternative condition to (3.10) is the moment
condition

00 00 Γ-Ί

- oo j = 1



Trace Formula 391

If a potential q (x) has only finite differentiability properties at x = 0, then for
- 00

some γ the limit limί_>0 + (d/dt)y j H(x,x;t) — HD(x,x;t)dx diverges. This
— 00

implies a converse; the moment estimates (3.10) and (3.14) cannot hold, and there
must exist relatively many relatively large gaps as λ -+ -f GO. D

The first half of the trace formula holds independently of the summability of
oo

the gap lengths £ \Ij\ < oo. It would be pleasing if the second half would be
J = l

independent of this condition as well. In the periodic case these asymptotics of gap
lengths are obtained as consequences of smoothness of the potential q (x); in the
general case we have not been able to prove similar results.

I would like to end this section with a justification of the term "reflectionless".
When a potential q (x) is given which presents a scattering situation, for example if

00

J I q (x) I (1 — x2) dx < oo, the spectral and inverse spectral problems are discussed
— oo

in terms of the Jost functions. These are solutions of (2.1) satisfying

ψ + (x, k) ~ eίkx as x -> + oo,

ψ- (x,k)~e~ιkx as x^> — oo

for ^ e R such that k2 = λ. Their asymptotic behavior at the other extreme of the
x-axis is given in terms of transmission and reflection coefficients;

as^-oo,

ψ _ (x, k) ~ ~ y eikx + Y ^ - e ~ikx a s x

From (3.15) it is clear that for k > 0, ψ± (x,k) represent the same solutions as the
Weyl solutions l im i m l ^ 0 + f± (x, λ), k2 = λ, with however a different normalization
at x = 0. Computing Wronskians, we see a correspondence between Weyl
m-functions and R+ (k) and T(k);

—2ik
[ff] ( ) \ψ+φ,k)\2'

2ίk

\ψ-(P,k)\2'

1 -2ik

ψ+(

The other scattering theoretic identities are that

T(k) '

[+(k). (3.17)
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For λ = k2 such that imm + (λ) Φ 0 it is clear that R+ (k) = 0 corresponds to the
condition that re g (0,0; λ) = (re m _ (X) - re m + (λ))/\ (m _ - m +) (λ) \2 = 0.

4. Ergodic Potentials

A coefficient q(x) in Eq. (2.1) is called an ergodic potential if it has certain
properties of recurrence under translation of x. Potentials of this kind have been
widely studied in the past decade, as they are taken to be reasonable models of
quantum mechanical problems in the presence of some randomness or disorder.
The setup we describe below applies in great generality, and the word ergodic will
refer to a large class of functions q(x) that include periodic and almost periodic
potentials as well as the genuinely random potentials of the class considered by
Goldsheid, Molchanov, and Pastur [7] and others. The spectrum, spectral
decomposition, and many other functional of q can be shown to be constant
almost everywhere with respect to an underlying probability measure, and thus
can be defined as functionate of that measure.

Let the class of potentials q (x) which we consider be uniformly bounded on R;
without loss of generality suppose that — 1 ̂  q (x) g 1. We take the unit ball
2?! c C(R) to be a probability space Ω, endowed with the topology of uniform
convergence on compact sets. There is a transformation of Ω corresponding to
translation on the line; (φsq) (x) = q (x + s), for — oo < s < +oo. A probability
measure P on Ω gives rise to a class of ergodic potentials if (i) P is φs invariant and
(ii) φs is ergodic with respect to P. In order to integrate functionate of q e Ω, the
expectation value is defined by

EP(f(q))=]im±$f(φJds, (4.1)

which by ergodicity is constant for P-almost every q. The support supp P of a
measure P on Ω is taken with respect to the topology of uniform convergence on
compact sets of R.

Lemma 4.1. (Pastur [17]). The spectral decomposition holds for P-almost every
qeΩ. That is, there exist sets σ (P) = σac (P) u σsc (P) u σpp (P) c R such that for
P-almost every q{x);

The Floquet exponent w (λ) for an ergodic potential is defined for im λ φ 0 by

it furthermore has almost everywhere nontangential limits on the real axis. The
Lyapounov exponent is γ(λ)= — rew(λ). Previous sections of this article are
concerned with the set of λ e σ (L(q)) for which the zero reflection property holds;
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re g (x, x;λ + iε) = 0. In the ergodic case this can be stated in terms of the
vanishing of the Lyapounov exponent.

Theorem 4.2 (Kotani [9]). Let P be an ergodic probability measure on Ω. For any
qesuppP let A = {/leR; γ(λ) = 0}. For almost every λeA,

m+ (λ + zΌ) = m_ (λ + zΌ) = m_ (λ - zΌ). (4.2)

Furthermore, for every xeTS.9for almost every λeA,

O. (4.3)

This is a very beautiful result that has appeared in Kotani [9], to which the
reader is referred for a proof. We mention here, however, that the result follows
from certain covariance properties of the Weyl functions m±(λ) and their
expectation values. As an immediate consequence we have:

Corollary 4.3. If q e supp P is an ergodic potential such that meas (σ(L(q)) — A) = 0,
then for all X G R , for almost all λeσ{L{q)),

lim VQg (x, x; λ + is) = 0.
e-> oo

That is, an ergodic potential for which the Lyapounov exponent vanishes
almost everywhere on the spectrum is reflectionless.

5. Flow on a Torus

The formula (3.9) recovers the potential #(0) from spectral information of the
operators L (q) and LD (q). It suggests the following inverse spectral procedure; let
{μj(ξ)}JL1 be the zeros of the Green's function g(ξ,ξ;λ) in the spectral gap I}.
These are eigenvalues of the half-line problems with Dirichlet conditions imposed
at x = ξ. For reflectionless potentials the trace formula recovers q (ξ) from {//,.}. In
the next sections the motion of μj(ξ), ξe(—00,00) will be studied, and
information about the class of reflectionless potentials will be deduced. We

00

assume that ]Γ \Ij\< 00 in the following; the conclusion will be that a

reflectionless potential can be associated with a path on a torus. The torus is
infinite dimensional if there are infinitely many spectral gaps; however, as 17} | —> 0
asy'-»oo, the torus is compact.

The topology on the class of potentials qeCQR) is that of uniform
convergence on compact sets. Define the hull of a potential q (x) to be the closure
with this topology of all translates of q:

All L(q(xJrτ)) have the same spectrum, but limit points may not. The Weyl
criterion allows us to draw some conclusions about the spectra of potentials in

Lemma 5.1. If p e^{q) then either σ (L(p)) = σ (L(q)) or σ (L(p)) cz σess (L(q)).
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Proof. For peJ^(q) consider translates τn such that q(x + τn) = qn(x)-*p(x),
uniformly on compact sets. If there is a subsequence τn ( m )-»τeR, then
p(x) = q(x-\- τ) and σ (L(p)) = σ (L(q)). If not, the sequence τn diverges, and we
may assume it diverges monotonically to ±00. For λeσ(L(p)) there exist
approximate eigenfunctions ym(x)eL2QR) such that II J'm II £.2 = 1 and
II (L(p) — λ)ym IIL2 < 2~m. Using a smooth cutoff function, we may even assume
that ym{x) = 0 outside an interval [ — N(m),N(m)]. Pick n0 so large that on this
interval | q (x + τn) — p (x) | < 2 ~ m whenever n^n0. Then

UL(qn)-λ)ym\\L2S\\(L(p)-λ)ym\\L2+\\(qn-p)ym\\L2

Certainly n(m)^n0 can be chosen sufficiently large that |τn ( m ) | > 2N{m). This
constructs an orthonormal Weyl sequence {ym(x — τn(m))}%=ι f° r K f° r the
potential q (x), hence λ e σess (L{q)). D

To obtain more information in the case of a reflectionless potential q (x) and its
hull, a technical lemma on the boundary behavior of Herglotz functions is used.
This result has been used by other authors; for neatness it is included here.

Lemma 5.2. Consider a sequence of Herglotz functions hn(λ) which converges to
someh(λ) uniformly on compact sets of(£+LetAn = ί/leR; the nontangential limit

00

TQhn(λ + iϋ) = ϋ}. Suppose that there is a set in common A= f) An. Then
reh(λ) = 0 for almost every λeA. n=1

Proof There is a representation theorem for Herglotz functions in terms of the
Cauchy integral. For αeIR, b ^ 0 and e a nonnegative Borel measure on R, such
that j( l -j-μ2)~1 de(μ) < 00, the integral

^ (5.1)

defines a Herglotz function, and conversely each Herglotz function is represented
by a unique a, b, and e. The measure e is recovered from the nontangential limits of
im/z(λ), which are known to exist almost everywhere; if I=(λι,λ2), with
β({^}) = 0then

e (I) = lim - f im h (μ + is) dμ,
e~> 0 + 71 j

eac (AO
 = ^ m ~ im λ (μ + iε).

e-+o+ π

The uniqueness statement of this representation implies that if hn(λ)-^>h(λ)
uniformly on compact subsets of C + , then αn->α, bn->b and en^e as Borel
measures.

To prove Lemma 5.2 consider the representation of the Herglotz functions
\oghn(λ)-+logh(λ). The representation of logh(λ) is less singular than that for
h (λ) itself, since 0 ^ im log h (λ) ̂  π.
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where de (μ) = eac (μ) dμ has no singular part. In fact, for test functions f:

ίf(μ) d e (μ) = lim - J 7 ( μ ) i m l o s h (μ+i

™ i m l Q g A (^ + "0 * = ί/(^) âc (μ) dμ, (5.2)

by the bounded convergence theorem. Thus, for any subset

lim jden(μ)=1-m(B)=
n-+oo 5 Z β

implying that arg A (λ + zΌ) = π/2 for almost every λ e A. D

The Herglotz representation of log h (λ)9 when exponentiated, gives a product
representation of A (λ). The equality (5.2) shows that this product representation is
less singular than the "partial fractions" representation, or usual Herglotz
representation of (5.1).

This result is applied to the Green's function to obtain information about the
hull of a reflectionless potential.

Lemma5.3. Let q(x) be reflectionless, and let p(x)e3tf(q). Then p(x) is also
reflectionless, and σ (L(p)) = σ ((L(q)) - B, where m (B) = 0.

Proof. Let q{x-\-τn) = qn{x)^p{x)eJ^{q). Consider the Herglotz functions
hn(λ) = gn(x9x;λ) and h(λ)=g(x,x;λ), the Green's functions for qn,p9 respec-
tively. If A czσ(L(q)), then ΐQhn(λ + i0) = 0 for almost every λeA; hence, this
property holds in the limit and p(x) is reflectionless. Defining
B = σ(L(q))-σ(L(p)), then (1) g(x,x;λ) is analytic at each λsB, (2)
img(x,x; λ) = 0 for all λeB, and (3) by Lemma 5.2, veg(x,x;λ) = 0 for almost
every λeB. Thus, m(B) = 0, for otherwise (1), (2), and (3) imply g = 0. D

It certainly can happen that the set B is nonempty; however, if
σ(L(q)) = σΆC(L(q)) is entirely absolutely continuous, then for any set A with
m(A) = 09

σ(L(q))-A=σ(L(q)).

If in addition q is reflectionless, Lemma 5.3 implies that the spectrum is constant
for allpeJf (q). We have proved the following lemma.

Lemma5.4 If σ(L(q)) = σΆC(L{q)), then the spectrum is constant on (q).

Lemmas 5.3 and 5.4 identify situations in which every point in the hull Jf7(q)
gives rise to the same torus. Lemma 5.4 appears in similar form in the work of
Pastur [17] and Kotani [9]. If P is an invariant ergodic probability measure on Ω
giving rise to a class of ergodic potentials, then for all q e supp P9 jf (q) c supp P.
Furthermore there are potentials p e supp P such that J4? (p) = supp P.

A potential q (x) which is reflectionless can be regarded as a function defined
on a torus, evaluated along a path which is parameterized by x. This torus is most
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often infinite dimensional, and is associated with the gaps {/,-} f= 1 in the spectrum
σ(L(q)). Define the torus in terms of coordinate charts; T= </ι,σ> with

<7 = < σ 1 ? σ 2 5 . . . > Gj= ± 1 .

One chart is given by specifying σ, and letting μ range over the above values.
Charts are connected by associating the sets {//,- = λ2j, Oj = +1} with {μj = λ2j,
Gj= — 1}, and similarly with λ2j-x. This still does not give a complete atlas for T\
to give more global coordinates define constants

ζj = &2j ~ λij-1)/2, ξj = (λ2j + λ2j^)/2, (5.4)

and then globally define angles φ by

ζ. cosψj = μj - ξj, A2J _ ί^μj^ λ2j,

0 < ̂  < π for σ, = + 1 , π < φj < 2π for o} = — 1.

There is no ambiguity in ̂  when //̂  = λ2j-1 or A2 j The topology of T is given by
the distance functional

The assumption throughout this section is that Σζj<co\ this implies the
compactness of T with this topology.

We now define the map from a reflectionless potential to its torus, which is
denoted by Φ; q (x) -* φ. Let q (x) -+ q (x + ξ) for ^ e R, and let μj (ξ) e [λ2j- ί , λ2j]
be the zeros of g(ξ,ξ;λ) in the gap I} or an endpoint as above. As long as
μ} (ξ) e (λ2 j - ! , λ2j), it is differentiable with respect to ξ, and satisfies a differential
equation

O = ̂ g(ζ,ζ;μj) = dξg{ξ9ζ;μj) + dλg(ξ,ζ;μj)&. (5.6)

The Green's function can be expressed in terms of the Weyl m-functions:

/x \

/+ (x, λ) = exp f m± (z, λ)dz)9

o /

Differentiating g(x, x; A) in x, using (5.7),

Zeros μelj of the Green's function g(ξ,ξ;λ) correspond to poles of the Weyl
functions m+ (λ). A pole of m+ (X) corresponds to an eigenvalue of L (q) for the
Dirichlet problem on [ξ, + oo), and correspondingly for m_ (λ). Since λ is not in
the spectrum, they cannot both be singular. Evaluating (5.8) at the zero
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where + corresponds to the left or right half-line Dirichlet eigenvalue. This
defines (μ(ξ),σ(ξ)) as a point of T. The vector field on T satisfied by μ(ξ) is
obtained from (5.6),

*H °M = γ. (u σ ζ) (5 9)

This so far is only defined in the individual charts (5.3). The next theorem discusses
the behavior of (μ(ξ), σ(ξ)) at gap endpoints as well.

Theorem 5.5. The translations q(x)-+q(x + ξ) define a continuous path on the
torus T. Specifically, ///(£) e [λ2j~ i, λ2j] is continuous in ξ, andθj{ξ) is constant as
long as μj(ξ) e(λ 2 j_ x , λ2j).

Proof The pole μj(ξ)e(λ2j_1,λ2j) is an isolated eigenvalue of a half-line Dirichlet
problem, of multiplicity 1. Under small perturbations ξ-+ξ + δξ this eigenvalue
persists, and σ} remains constant. The difference quotient for dμj/dξ converges,
giving rise to the vector field (5.9). If μ,- (ξ) = λ2j (respectively λ2j-ι), an endpoint,
then g (ξ, ξ; λ) < 0 in I}, (g (ξ, ξ; λ) > 0). For any λ e (λ2j_ 1 + ε, λ2j - ε) express g
using Gauss' law of mean:

g(ξ,ζ;λ) = j - J πg(ξ,ζ;μ)dSμ
71ε sε/2x

= ±- f πg(ξ9ξ;μ)dSμ+± J reg(ξ,ξ;μ) dSμ,
πε Sι

 π ε s2

with 5X = Sε/2(X)n {imλ > ε^} and S2 = Sεί2(λ) - Sx. The arcs of S^ lie within
C 1 , where g is continuous with respect to convergence oΐq(x + ξ) uniformly on
compact sets. On the arcs of S2, there is an upper bound
\g(ξ,ξ;μ)\ < C0/dist(μ,σ(L(#))) which controls the contribution of the integral
over S2. Thus for small δξ, g (ξ + δξ, ξ + δξ; λ) < 0 in (λ2j_ x , λ2j — β), and μs (ξ) is
continuous at the gap endpoints as well.

The topology of Tis such that the continuity oΐ(μ(ξ),σ(ξ)) follows from that
of the individual //,(£), since for any ε > 0 there are only finitely many ζj/2 ^ ε,
thus finitely many μj(ξ) to be considered. D

We have obtained a result for reflectionless potentials that is familiar in the
periodic case. The Dirichlet eigenvalues μ^ move in the gaps /,- as the potential is
translated. The motion is uniform in each gap, either increasing or decreasing
monotonically, for dλg(ξ, ξ; λ) > 0 and σ7- is constant as long as A2j _ i< Mj< λ2j.
To continue thus analogy the Green's function, and the vector field (5.9) are
considered in more detail.

At first glance the vector field (5.9) might depend explicitly on ξ9 which would
be bad for our purposes. The next lemma is thus useful.

Lemma 5.6. The vector field is autonomous;

Vj(μ,σ,ξ)=Vj(μ,σ).
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Proof. We again use the Herglotz representation of \ogg(ζ, ξ λ)

\ogg(ξ,ξ;λ)-\og]/λ^λ = - ί

π _>„ v-λ

x(im\ogg(ξ,ξ;v + i0)-^χ[λθf + oo](v))dv-\og2

x (im log g (ξ, ξ;v + /0) - ^ I dv - log 2.

We have used that the representing measure for logg is entirely absolutely
continuous^Since q (x) is reflectionless it is determined entirely by {λj}jL0 and by
the zeros {μ, }JLi of g(ξ9ξ λ) in the spectral gaps,

\ogg(ξ, ξ; λ) - log|/A0 - λ = -

i rr ΎT \

Λ-log2

(5.10)

Finally, expression (5.10), whose dependence on μ is explicit, is used to compute
the vector field (5.9). D

The Herglotz representation in (5.10) expresses a product representation of
g(ξ,ξ;λ) for λe<E+. An easy estimate shows that this representation can be
continued into the spectral gaps. That is, for λelj9

where the branch of the square root is taken which maps (C — (— oo, 0] into the
right half-plane. The behavior of the representation at the endpoints λ2j-1 and λ2j

is more problematic, and will be taken up in several cases in the following section.

6. A Compactness Theorem

In the previous section a reflectionless potential is shown to be recovered by the
evaluation of a function (the trace formula) along a continuous path on the torus
T. In this section we derive some consequences of this inversion formula. In
particular, we obtain information about q (x) and JΊP (q). We unfortunately cannot
proceed for completely general closed sets σ = σ(L(q)); a geometrical condition
will be imposed on the spectrum which will imply that (i) the spectrum is constant
on jf (#), and (ii) the vector field (5.9) is C1 continuous on T. The conclusion is
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then that 2tf (q) is compact. For simplicity we will exclude a discussion of isolated
point spectrum, such as the eigenvalues of Bargmann potentials; these could be
handled as well as long as accumulation points are excluded.

Formulae (5.8) and (5.11) describe the motion of μj{ξ)elj, which is
interpreted as the motion of (μ(ξ),σ(ξ)) on Γin coordinates,

,σ) = 2σj ] / ( λ 0 - μ 3 ) ( λ 2 j - μ 3 ) (A 2 j_ x -μj)

In the global angular coordinates φ this equation is transformed into the equation

&=Wj(φ). (6.2)

Denote ζj = (λ2j — λ2j-ι)/2, ξ} = (λ2j + λ2j-1)/2, and the distance between spec-
tral gaps ρjk = λ2j-ι — λ2]ί when Ik<Ij. From (5.11) the vector field has
coefficients

ί\ β + 2 (ζ cos2 (ψ/2) + ζ sin2iί<\ βjk + 2 (ζj cos2 (ψj/2) + ζk sin2 (φk/2))

π V(Qjk + 2ζj sin2 (yj/2)) (ρik + ζk + 2ζ} cos2 ( y j

M 2 2

One simple advantage of these coordinates is that the bothersome choices of ± 1 in
different coordinate patches has been eliminated. We place geometrical conditions
on the spectrum so that this vector field has a global C1 bound on T; the condition
takes into account both the sizes of gaps Ij, and their relative distances ρjk. Define
constants

Lemma 6.1. The constants have an estimate

Oj + ζj exp I - 2, CJ^ k

Proof. Setting μ} = ζj cos ψj + ^., one estimates

Π O + ̂ ^T1^) Π

log(l+Ck/β j k)
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Theorem 6.2. If the following three geometrical conditions hold for the closed set
σ(L(q))> then W(φ) is globally C1 on Γ, and thus has global solutions
φ(ζ),-co<ζ< -foo.

(i) The measure of the gaps is finite

ΣίjύC0< +oo.

(ii) The product is uniformly bounded in j ;

CjCjiC0.

(iii) For convenience set ζ0 = 1. The sum is also uniformly bounded in j ;

(6.4)

Proof Condition (i) is already used in the trace formula, to recover limits as
t-+0+ of the Laplace transform of the trace of the difference of resolvants. It
incidentally implies that ζj -> 0 as j -> oo. Condition (ii) implies firstly that each
component of the vector field W is pointwise bounded. The vector field will be
shown to be C1 if the Frechet derivative dφ fF exists as a bounded operator on the
tangent space of T, with a uniform bound. The directional derivatives of the
components of W are:

(6.5)

One estimates

W(φ) - W(θ) || = sup ζ)'21 Wj (φ) - Wj (θ) |

^ sup ζj'2 ( Σ sup I δ φ k Ψ, (^) I I % - θk

< sup Σ C)/2/C,1/2 II c ^ ^ || L o o ( T ) sup ft'2 \φk-θk
J \k k

Split the remaining sum in two; the first term can be estimated
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if the geometrical condition (iii) holds for the set σ(L(q)). The remaining term in
the sum has a similar estimate. Rewrite

Then from (6.5),

sup II dφj Wj\\LaoiT) £ sup \ (ίL + Σ 2 £ £

C C I \ 2

Estimating £ -^V^= Σ Ql2Ck/2/Qjk -> the geometrical condition (iii) implies
hthat

This finishes the C1 estimate. Condition (i) is in fact implied by condition (iii); it is
retained for its intuitive content. D

Denote by <€ the class of closed set for which (6.4) (i) (ii) (iii) hold. These
conditions do not exclude Cantor sets, as we shall see below. The conditions can be
violated, however, by very tight accumulation of large gaps, with asymptotically
very small distance between the gaps. Some examples of sets σ satisfying (i) (ii) (iii)
are given here.

1. If Σζj < oo, and the gap endpoints λ-} are distinct and accumulate at most only
at + oo, then (6.4) holds. This includes spectra of all periodic potentials q(x), as
well as the Dubrovin, Mateev, and Novikov examples [6] of finite gap spectra.

2. Limit periodic potentials of the type constructed by Moser [16], Avron and
Simon [1] and others. These possess Cantor spectra which are nowhere dense and
of large Lebesgue measure, and the spectral gaps accumulate in such a way that
conditions (6.4) are satisfied.

3. The reflectionless potentials of Bargmann do not have a global C1 bound, but
this is due only to a singular set of Won Toΐcodimension 2. This arises from the
fact that they are limiting cases of finite dimensional tori, where the dimensionality
is dropping by 1.

4. In two papers [11,12], Levitan constructed almost periodic potentials given
through orbits on infinite dimensional tori. The trace formula is also recovered. In
[10] Kotani and Krishna improved upon this work, allowing more complicated
spectra. Under their hypotheses, it can be shown that W(φ) is C1 in the /2-
topology on T;

\\φ~θ\\f2=Σ Cjlφj-θjlL^n
J = l

Conditions on the set σ(L(q)), however, exclude nowhere dense or Cantor-like
spectra.

5. A standard Cantor set of zero measure will violate condition (6.4) (iii).
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Proposition 6.3. If σeΉ, then for any B with m(B) = 0, σ — B = σ. Thus by
Lemma 5.3 if σ(L(q))e#, then σ(L(p)) = σ(L(q)) for aliped(q).

Proof. It sufficies to show that if there is an interval / such that A = σnl+ φ, and
m (A) = 0, then (6.4) (iii) is violated. First, we need all ρjk > 0 or else there is no
hope of a uniform bound Co. Label all intervals Ij^Acnϊ; there must be
infinitely many of them. Since m (A) = 0, ρjk = Σ ζx. Consider Ij fixed and
estimate ij<iι<ik

r r / r \
r V **k > r V =k > r V1 / W \ _ r ιn

Vjk J*k I v r \ ik<iι<ij\ / v r \ I

\/k<Jί</J / \\/fc</i</j / /

Taking Ik->Ij results in ρjk-*Q, violating any bound Co attempted for (6.4)
(iii). D

6. A Cantor set of sufficiently positive measure will satisfy (6.4). Specifically, the
OO

set | J Bι E %>, where Bx = a Cantor set of measure mx in the interval [/— 1, /], /e Έ+,
1=1

which is constructed in the usual way by excising evenly spaced intervals. If
oo

£ /(I —mx) = C1< oo and each mx > 6/7, then the resulting torus will have a
1=1
global C bound for the vector field W(φ).

To prove that the Cantor set described above gives rise to a C1 vector field (6.2),
00 00

we show that (6.4) (i) (ii) (iii) are satisfied. Certainly Σ ζjίk Σ C ~~ m^ = ^ i ' s o

that (i) holds. Conditions (ii) and (iii) both depend upon control of the growth of
Cj asy' -» oo. The problem is basically for intervals Ik with ρjk < 1, for otherwise the
estimate reduces to that of (i). This Cantor set is constructed by recursively
excising evenly spaced intervals of length e~hk, k = 1,2,... . At step k there are 2k

intervals excised of this length. Fix a gap / from step/ For k^j the distance
between any gap from step k and /is very close to ρjk = 2~k, as long as at each step
the excisions are spaced evenly within the remaining closed sets. For k<j there are
at most two worse cases: the nearest gap on the left and right of/; these can have
ρjk = 2~j while have relatively large length e~bk. All others at step k <jhave better
distances ρjk ^ 2~fe. To estimate Cj

Π (i + f- exp Σ f-
two worse \ Ψjk/ Vail other Ψjk

cases

^4(/+l)exp(/'log2)exp / *
6-2 log2

This grows at most exponentially in/ The factor / is here because we are inspecting
Cantor sets near [/ — 1, /]. Since ζj = \I\ = exp (— bj), b>2 log 2, the bound on Cj ζj
depends only upon /. Computing the measure of the Cantor set in [1—1,1],
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Z?/ log( l -mx). If 1(1 -mt)^ Cl9

there is a global bound for Cjζj, and estimate (ii) is satisfied. Similar consider-

ations give estimate (iii), where it is required that b > 4 log 2. The measure of these

permitted sets is computed from this requirement of b, finding that mι > 6/7.

To have a selection criterion among closed sets σ cz R , in order to distinguish

better the class # , there is a comparison theorem. Define a partial order among

closed sets of R ; σγ < σ2 if every component 7 1 c R — Gγ intersects at most one

component 7 2 ^ R — σ 2 , which it contains; 7 2 ^ 7 1 .

Theorem 6.4. Ifσίe
(£ and σi^σ2' then σ1e

cβ.

Proof. Estimates (6.4) (i) (ii) (iii) are all clearly monotone in σ, with respect to the
partial order. D

A global C1 bound for the vector field W(φ) on T implies the existence of
global, unique integral curves, which for finite ξeWL depend continuously on the
initial data. When the spectrum σ {L{q)) of a reflectionless potential q (x) is in class
^, more global information is obtained about ^f (q). The angles ψj(ζ) derived
from translating the potential satisfy Eq. (6.2) as long as φj φ 0, π; that is, as long
as μ} is not a gap endpoint. However, continuous ψj(ζ) which are solutions for
almost every ξ are a priori solutions for all ξ; thus the angles and the integral
curves coincide. This is as in the periodic case, the auxiliary spectrum ///(£)
touches a gap endpoint, and then reverses its direction without stopping.

Lemma 6.5. For q (x) reflectionless, such that σ (L(q)) e ̂ , the mapping Φ extends
continuously to the hull Jf7 (q). That is, whenever qn (x) = q(χ + τn) -^p (x) e 2tf (q),
then

φ (p (x)) = lim φ (q* (x)) 6 T.
n-* oo

Thus Φ; Jt(q)^>T gives a continuous mapping of Jf (q) into a subset of T.

Proof Since σ ( L ( # ) ) e ^ , Lemma 5.3 and Proposit ion 6.3 imply that the torus is

constant over J^(q). Techniques similar to those of the proof of Theorem 5.5

show that the points μj(qn)-^ μj(p) as qn (x) ->p (x) in the topology of uniform

convergence on compact sets. D

We wish additionally to show that the image Φ (Jf7 (q)) ς: Γ i s a closed set; this

will imply the compactness of

Lemma6.6. Let σ(L(q))e^. If ψn = φ(τn)^>φ in Φ(3^(q))<^T, then the orbit
φn(ζ) = ψ(ζ + τn) of (6.2) through φn converges uniformly to φ(ξ) for ξ within
compact subsets o/R.

Proof This is just the results of continuous dependence of solutions of (6.2) on
initial data. D

Consider angles φn = Φ(qn(x)) converging to a limit in T. For each n we
recover the potential via the trace formula

) = λ0+ £ λ2j + λ2j^ - 2μ](ξ),
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with μnj (ξ) = ζj cos φ" (ξ) + ζj. This expression is continuous with respect to the
topology on T. Lemma 6.6 implies that qn(ξ) converges uniformly on compact
sets to the function

thus peJ<ίf(q). We have recovered the potential p from spectral information
{^ (ζ)}jL i, including that σ(L(q)) — σ(L(p)), and that the Green's function for
p (x) is given by

g(x,x;λ)=g(μ(x),λ),

with the full Green's function obtainable from the diagonal by quadrature. This
defines the inverse of the map Φ; ̂ (q)-^T on the image Φ (Jf7 (q)) 9; T, as being
continuous one-one, and onto Jf (q). That is, for φ e Φ (Jf (q)) define (1) φ (ξ) the
integral curve of (6.2), (2) μ(ξ) = <CjCos^ + ̂ ) ] ° = 1 , (3) via the trace formula

p{ξ) = λo-\- Σ λ2j + λ2j-1 — 2μj(ξ); this inverts the map Φ on the image in Tof

We have shown the result:

Theorem 6.7. For q{x) reflectionless, with σ{L{q))e(S then ̂ (q) is compact, the
continuous image under the trace formula of Φ (ffl (q)) a compact subset of T.

We expect that a reflectionless potential q{x) with the assumption that
σ(L(q))e^, will be in fact an almost periodic function. The result of Theorem
(6.7) is that Jf (q) is compact in the topology of uniform convergence on compact
sets. If we knew the stronger result of compactness in the uniform topology this
would already imply almost periodicity. This is a more delicate question, and
requires detailed knowledge of the orbits of the vector field (6.2) on T.

We also expect that if q(x) is an ergodic potential, then σ(L(q)) = σac (L(q))
implies that in fact q (x) is almost periodic. Theorem (6.7) gives the weaker result
that if q (x) is ergodic, then either (1) there is a subset B of the spectrum of positive
measure such that γ (X) > 0 on B, or (2) supp P is compact, homeomorphic to a
closed subset of a compact torus, or (3) the spectrum is an irregular set; that is
σ

7. Elliptic Spherical Coordinates

This last section is to point out formal analogies between the orbits the orbits
φ (ξ) e T, and a mechanical problem of constrained harmonic oscillators first
studied by C.Neumann. The connection between this problem and the
Schrόdinger operator was discovered by J. Moser and E. Trubowitz [15], in the
setting of periodic potentials or finite gap potentials. We phrase their results here
in terms of the Green's function, and we consider the general reflectionless case. In
the ergodic setting, Kotani and Krishna [10] have discussed a similar analogy.

From Eq. (5.8), sometimes known as the Dubrovin equation, the motion of μ^
in a spectral gap is described,

dξ
σΛ
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The notation for the Green's function is, following Lemma 5.6, that
g(ξ9ξ;λ) = g(μ(ξ)λ), while σ; = +1 as before. We define a normalizing factor
Γ(λ) for what follows; this depends only upon the torus T, and as well — Γ(λ) is a
Herglotz function. For im λ > 0,

%-λfA 1 ' ' ' {Ί2)

oo

When the total gap length is finite, £ ζj<oo, this representation can be
3 = 1

continued into the open gaps. Following Moser [15], define a metric by giving
diagonal entries

gj(ti) = 7 Γ(μj)dλg(μ,μj) (7.3)

for μjtlj, setting off diagonal entries to zero. This has a formal interpretation as
the Euclidian metric restricted to the unit sphere, given in elliptic coordinates. The
kinetic energy of (7.1) is given by

(7.4)

although the expression does not necessarily converge. However, from (7.1) the
law of conservation of energy is satisfied

with potential energy

From (7.5), the system can be guaranteed to have finite energy if the sum
converges;

For certain spectral geometries this may be infinite; however, in the notation of
00

Sect. 6, if Σ ζjl2Cj< +oo, the potential energy, and hence also the kinetic

energy, are finite on the torus. For spectra of class ^ this condition is satisfied.
The variables μj9 dμj/dξ are Lagrangian variables. To obtain a Hamiltonian

system, one defines canonical conjugate variables

dμ]
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which gives
00 A 00 Λ

IT- y — «?= y ?

The Hamiltonian H(μ,υ) = T+ U has formally the structure of a completely
integrable system in infinitely many degrees of freedom. To prove complete
integrability analytically, it would suffice to construct a smooth canonical
transformation of the system to action-angle variables. From another point of
view, this was carries out by Levitan [11,12], for a class of spectra somewhat
weaker than #. The complete class of spectra for which this can be carried out, and
for which orbits are shown to be almost periodic, is of great interest, and is yet to
be fully explored.
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