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The Weil-Petersson Geometry of the Moduli Space
of SU(n^3) (Calabi-Yau) Manifolds I
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Abstract. The Weil-Petersson metric is defined on the moduli space of Calabi-
Yau manifolds. The curvature of this Weil-Petersson metric is computed and
its potential is explicitely defined. It is proved that the moduli space of Calabi-
Yau manifolds is unobstructed (see Tian).

Dedicated to Lipman Bers on the occasion of his 75th birthday

0.1. Introduction

In this paper we are going to study some differential-geometric properties of the
moduli space of compact complex manifolds of d i m ^ S which admit non-flat
metrics g with holoriomy groups #(g) + {0} and H(g)QSU(n). Such manifolds we
will call SU(ή) or Calabi-Yau manifolds. Before stating the main results, we will
make several remarks.

Remark O.l.ί. It is not difficult to see that a metric on a compact complex
manifold whose holonomy H° Φ {0} and HQSU(ri), will be Kahler and Ricci flat.
We will call it the Calabi-Yau metric. (See [2]).

Remark 0.1.2. If M is a Calabi-Yau manifold, then from the theory of invariants of
the group SU(n) and the fact that the holonomy group # ° φ {0} and HQSU(n% it
follows H°(M,Ωι) = 0 for l<i<n and H°(M,Ωn) is spanned by a holomorphic
n-form w0, which has no zeroes and no poles. This implies that c1(M) = 0.
Constructions of Calabi-Yau manifolds are based on the solution of the Calabi
conjecture by Yau. See [15].

Recently SU(3) manifolds have attracted the interest of physicists working on
string theory and algebraic geometers working on the classification of threefolds
and on algebraic cycles.

* Permanent address: Max-Planck-Institut fur Mathematik, Gottfried-Claren-Strasse 26,
D-5300 Bonn 3, Federal Republic of Germany



326 A. N. Todorov

Let me state the results that are contained in this paper. In Sect. 1 the following
theorem is proved:

Theorem 1. Let M be a Calabi-Yau (SU(n^3)) manifold, where n = dim(CM. Let
π:X-+SsO, π~1(0) = M be the Kuranishi family of M, then S is a non-singular
complex analytic space such that

dimcS = dim€iί
1(M,θ) = dim(Ci/1(ΩM-1). See also [13].

More precisely we have proved Theorem Γ. From Theorem Γ follows Theorem 1
and our curvature computations are based on Theorem Γ.

Theorem 1'. Let M be a Calabi-Yau (SU(n^3)) manifold. Let (gβ?) be a Calabi-Yau
metric on M. Let H1(M, θ) denote the harmonic elements of HX(M, θ) with respect to
(gaβ\ let φί be any element of IH^M,^), then there exists a unique power series

such that for \t\<ε9

a) φ W e C ^ M , ^ 0 ' 1 ® ^ ) .
b) 3*φ(ί) = 0, where 3* is the adjoint operator of d with respect to

c) Wt)-KΦ(t\Φ(t)=o.
d) for each K7^2 φκlω0 = dΨKi where ωoeH°(M,Ωn) and ω0 has no zeroes.

Theorem 1 was first announced by F. A. Bogomolov in [18]. Later P. Candelas,
G. Horowith, A. Strominger, and E. Witten proved Theorem 1 under the
assumption that

H2(M,Z)^Z. ([17])

Theorem 1 was also proved by Tian independently. Next we are going to describe
the results in Sect. 2. So we need some definitions in order to formulate the results.

Definition. A pair (M, L) where M is a Calabi-Yau manifold and LeH2(M, R) will
be called a polarized SU(ή) manifold if L= [Img^], where (g^) is a Kahler metric
on M.

With [ω] we will denote the class of cohomology of a form ω. From now on we
will suppose that L is fixed.

Suppose that M-+S is the Kuranishi family of polarized Calabi-Yau manifold
{M,L\ so may be after shrinking S we may suppose that for each SES on
Ms = π~1(s) there exists a unique Ricci-flat Kahler metric ga-β{s) such that [Imαjg(s)]
= L. The last fact follows from Yau's solution of Calabi's conjecture, Kodaira's
stability theorem, which states that small deformations of Kahler manifold is
Kahler and the fact that for SU(n>3) manifolds H2(X, Θx) = 0. From h2'° = 0 it
follows that M is an algebraic manifold. Here we use the fact n^3, since iΐn = 2
h2' ° = 1. Now we can identify the tangent space at s e S, Ts s with H1(MS, <9S), where
M1(MS, Θs) is the harmonic part of H1(MS, Θs) with respect to ga-β(s) and Θs is the
sheaf of holomorphic vector fields. Now we are ready to define Weil-Petersson
metric on S- the local moduli space of (M, L).

Definition. Let φί9 φ2eTsS = Mί(MS9Θs\ then

<Φi,</>2>w.P.:= ί Φμi-Mβgμ-,gβ^
Ms
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Here we are using the usual Einstein's conventions for summation.
In Sect. 2 we calculated the Weil-Petersson metric on the moduli space of

polarized SU(n^3) manifolds in terms of the standard cup product on Hn~ίf \ i.e.

< ^ > w . p . ^ - l Γ M O w ~ 2 ί UΛV, u,υeHn-^.
M

In order to simplify the computation of the curvature tensor RaβiμV of the Weil-
Petersson metric (hμV) we need to find "good" local coordinates (ί1,..., tκ) in S so
that

Kv = δμv+ Σ ^ v , α ^ α ^ +(higher order terms).

In Sect. 2 it is proved that such a coordinate system exists and so {hμV}, i.e. the
Weil-Petersson metric is a Kahler metric. Let me describe how one fixes such a
"good" coordinate system which we call "Kodaira-Spencer-Kuranishi" local in S.
Let {nv} v = 1,..., K be a basis in Mί(M, Θ) and let

be the power series with the properties stated in Theorem Γ, then it is proved in
Sect. 2, that (ί1,..., tκ) will be a good local coordinate system, namely the following
lemma is proved.

Lemma. Let (haβ) be the Weil-Petersson metric on S, then with respect to Kodaira-
Spencer-Kuranishi local coordinates the following formula is true:

π(n-l)

Ka(Ut)

+ 2t«tμ J [Λ2?/α-J ω 0 ] Λ l(ηβ A ^ ) _ J ω 0 ]

+ tμtv J [ηΛ Λ ^ _ J O ) ] Λ [ηβ A *7v_ι ω 0 ]

+ (terms of order ^ 3)1 [1 - £ δaβt
a7]X, (*)

where

Λ2ηa: Λ2Ωι> °->Λ2Ω°(Λ2ηa(u A υ)

= nM Λ ηjv)) and lΛ2ηa±ω0l [_ηa A ημ±ω0~]

denote the cohomology class of M(Λ2ηaλω0) and H[τ/αΛ?7μ_Lω0] in Hn~2'2

CH"(M,C), where M is the harmonic projection. From this lemma we derive the
following theorem:

Theorem 2. a) The following formulas are true for the curvature tensor RaβtμV of
the Weil-Petersson metric on the moduli space of SU(n^3) manifolds

= (-1) 2 J lηaΛίlμJω0]Λ[^Λf/vjω0]-
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From observation 1 (**) it follows that

,ί) = log (-1) 2 (0""2 (I ωtΛώΛ is ίfte potential for the Weil-

L W ΛJPetersson metric.
If α φ μ and /? φ v,

b) Tίi^ biholomorphic sectional curvature of the Weil-Petersson metric on the
moduli space of SU(n^3) manifolds is negative.

c) Curvature operator ^0.

The proof of the lemma is based on the following two observations.

Observation!. <φ1? 02)w.P.
 = (~l) 2 (0"~2 ί (Φι-^-ωo) A(Φi Λ ωo)? where

J ω 0 Λ ώ 0 = Jvol(gα^).
This formula says that in case of SU(ή) manifold we do not need the Calabi-

Yau metric in order to define the Weil-Petersson metric. We only need the
polarization class since if J ωt A ώt = J Lw, then we have a canonical isomorphism
a:H1(M,Θ)->Hί(Ωn~i)a(φ) = φ±ω0. On Hn~ίΛ we have a canonical metric;

»(n+Γ)
<α,b>=(-l) 2 (i)M~2 J α Λ b. This is so since if n ^ 3 all elements of H " " 1 ' 1 are

primitive and Hn~20= +H°(M,Ωn~2) = 0.
Let wt be the holomorphic n-form on Xv Then we have the following formula

ϊorwteΓ(X,Ωx/s):

ω t = ω 0 + Σ (-1) 2 /

where

and
Aκφ(t){u^Λ...Λuk) = φ(t)(Ml)Λ ... Λ

From (***) Theorem 2 follows almost directly.

Remark ί. It is a well known fact that the moduli space of marked polarized K3
surfaces is SO (2,19)/SO(2) x SO (19). From observation 1 it follows that the Weil-
Petersson metric is the Bergmann metric on SO (2,19)/SO(2) x SO (19). (See also
[11]).

Some Historical Notes. The purpose of introducing the invariant metric on the
moduli space (in the case of Riemann surfaces on the Teichmϋller space), is to
provide information on the intrinsic properties of the space. The Weil-Petersson
metric has successfully filled this role in the case of Riemann surfaces of genus g ̂  2.



Weil-Petersson Geometry 329

Ahlfors was the first to consider the curvature of the Weil-Petersson metric in
the case of Riemann surfaces, i.e. on the Teichmϋller space. See [1]. He obtained
singular integral formulas for the Riemann curvature tensor. As an application he
found that the Ricci, holomorphic sectional and scalar curvatures are all negative.
Royden later showed that the holomorphic sectional curvature is bounded away
from zero. Tromba gave a complete formula for the curvature of the Weil-
Petersson metric on Teichmϋller space and found that the general sectional
curvature is negative. See [14].

Later Scott Wolpert gave other formulas for the curvature tensor of the Weil-
Petersson metric on the Teichmϋller space of Riemann surfaces of genus g ̂  2.
From his formulas S. Wolpert showed that the holomorphic sectional and Ricci

curvatures are bounded above by —- — and the scalar curvature is bounded
-3(3g-l) 2π(g-l)

above by . S. Wolpert showed that the curvatures are governed by the
4π

spectrum of the Laplacian. See [16]. J. Royden also obtained similar results. Later
S. Wolpert used his calculations of the curvature tensor of the Weil-Petersson
metric to get some information of the global structure of the moduli space of
Riemann surfaces.

Siu generalized the formulas of S. Wolpert in the case of algebraic manifolds
with Ricci < 0 and complex dimension ^ 2. See [12]. Nannacini obtained formulas
similar to Siu's in the case of SU(n ̂  2) polarized manifolds. See [9]. Unfortunately
Siu's and Nannacini's formulas did not say anything about the sign of the
curvature. Royden also obtained some formulas for manifolds of dim ̂  2 and Ricci
<0.

Koiso was the first to introduce the Weil-Petersson metric in dim ̂ 2. See [7]
and [4].

Review ofT.iaris results. See [13]. In his paper Tian proved that the Weil-Petersson
metric is just the pullback of the Chern form of the tautological of <CΨN restricted
to the period domain, which is an open set of a quadric in <EΨN. From this
description Tian obtained that the Weil-Petersson metric is a Kahler one and the
holomorphic sectional curvature is bounded away from zero.

All the results in [13] that overlap with the results of this paper are obtained
independently by Tian.

Wolf in his thesis obtained a similar results as Theorem 2.6 in the case of the
Teichmϋller theory of Riemann surfaces. See [16].

Recently the author found some applications of the results of the present paper.
Namely we prove the analogue of the Global Torelli theorem for SU(n^3)
manifolds. The proof is based on the fact that the discs Dα, defined in Observation 2
are totally geodesic submanifolds. We proved that the Weil-Petersson metric is
complete on the Teichmϋller space of the Calabi-Yau manifolds. From this result
we obtained some interesting degenerations and simultaneous resolutions of
singularrites of the one parameter family of Calabi-Yau manifolds. We also proved
similar results to that of Beauville in the case of complete intersections, namely that
the image of

Diff+(M) = {all diffeomorphisms that preserve the orientation of M}

has a finite index in Auti/Π(M,Z). See [3].
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At last we should mention the following result, that will appear in a joint paper
with D. Bao and T. Ratiu. Let M be the moduli space of polarized manifold (Xt, gt),
where gt is a Kahler-Einstein-Calabi-Yau metric, [ImgJ = L, then as in the case of
Calabi-Yau manifolds we can define the Weil-Petersson metric on M. Let det d be
the determinant line bundle on M that corresponds to different dt operators on Xt

and let || \\Q be the Quillen metric on detcΓ, then

Theorem dd log || \\Q is the Weil-Petersson metric on M.

0.2. Conventions on Some Relations.

(z1, ...,zM) will denote a system of local coordinates

on a compact complex manifold. (0.2.1.a)

dzx A ... Adziι A ... Λdz l κ A ... Adz11 means that if iί< ... <iκ

then dzh,..., dzίκ are omitted. (0.2.1.b)

0.2.2 Given a Hermitian metric ds2 = h^dfΛdF on a complex manifold, we say
that it is Kahler if

A metric is Kahler if and only if we can find normal coordinates at each point, i.e.
holomorphic coordinates such that at the point the metric tensor has the
development K-β = δa-β + O(\t\2). If the metric is Kahler and real analytic, one can
introduce a set of canonical coordinates at a point which are characterized by the
property that the power series for ha-β contains no terms which are products only of
unbarred (or only of barred variables). In terms of canonical coordinates

Kβ = δ«β + ΪK-β,ystyts+O(\t\3), (0-2.2.2)

where ha-β9y-δ is the Riemann curvature tensor. If (ξ1,..., ξκ) and (η1,..., ηκ) are unit
tangent vectors, the holomorphic bisectional curvature in direction ξ, η is given by:

See [10] (0.2.2.3)

and the holomorphic sectional curvature in direction ξ is given by

Kξξ = Rahydξψξyξδ. See [10]. (0.2.2.4)

So we have proved in Sect. 2 that Kodaira-Spencer-Kuranishi coordinates are
normal coordinates. So we apply (0.2.2.3) and (0.2.2.4) in order to get Theorem 2.

1. The Kuranishi Space of a SU(n) Manifold M is Unobstructed

ί.l. Remark, a) From now on we will suppose that Mis an SU(n) manifold with a
fixed Calabi-Yau metric (gα^), i.e. gα« is a Kahler, Ricci-flat metric on M.

b) If φ is any element oϊHj(M, A Θ\ then by IHφ we will denote the harmonic
part of φ and by HJ'(M, ΛKΘ) all harmonic tensors on M which are elements of
Hj(M, ΛKΘ) with respect to the Calabi-Yau metric.
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c) For any point XEM from now on we will chose the local coordinates
(z1, ...,zπ) in U^x in such a way that

ωo\u = dz1 A ... Λdzn

9

where ω0 is the holomorphic form without zeroes on M.

Theorem 1.2. Lei M be a SU(ή) manifold and let

M C I

0 eS

be the Kuranishi family of M, then
a) S is a non-singular complex manifold,
b) dim c S = dim(Ciί1(M,<9).

Proof Let us first remember how the Kuranishi family is defined. We define δ* to
be the adjoint of d with respect to the Calabi-Yau metric, D to be the Laplace
operator, and G to be the Green operator. Let {̂ v|v = l,...,m} be a base for
H1(M, Θ). Kuranishi proved that the power series solution of the equation

where η(t) = Σ tvηv has a unique convergent power series solution. And this φ(t)
satisfies v = 1

dφ(t)-ilΦ(t\Φ(t)']=O

if and only if

Let {βλ\λ = 1,..., Z} be an orthonormal base of H2(M, Θ) and let < , > be the inner
product in

A2 = Γ(Ω°>2®Θ).

Then

Hence H[φ(ί),0(ί)]=O iff <LΦ(tlφ(t)lβv)=Q for λ=ί,...,τ. Since A=l, . . . ,τ .
Since φ(t) is a power series in t so is <X_φ{t\φ(t)~\,βy

s) = bx(t). Thus bv(t) is
holomorphic in t for /I = 1,..., τ and |ί| < ε. Then Kuranishi proved that S is defined
as follows:

We have a family X-^ 5 such that it is locally complete and π~1(0) = M. From all
this it follows that if we prove that for each ηv, v = 1,..., r, there exists a power series
(convergent)
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such that:

a) fyM = K
b) φv(t) fulfills the following equation:

then bv(t) = O and so S is an open subset in H^MjO), i.e. S is an non-singular
manifold of dimension equal to the dimff X(M, Θ).

So we need to prove that for each ηv e Mι(M, <9) v = 1,..., y we can find a power
series

φv(
 2 κ

such that

a)

b) ΦM=

Lemma 1.2.1. Let φv(t)=ηvt + φv

2t
2 +... + φv

κt
κ+... be convergent power series

such that

a) δ*</>v(0 = 0

b)

then

Proof φM-^Φv(t) = Gπφ^ = G(d*d + M*)φv(t) = Gd*dφv(t)' This is so since
5*0v(ί) = O. From the equality

and from dφv(t) = KΦv(tlΦM~] we get

φv(t) = Mφv(t) + tf GlφJίt), ΦM = ηvt + $d*GlφM ΦMl Q.E.D.

From all these facts it follows that we need to solve by induction the following
equations:

ίvL where d*φl = O

(*)

where d*φv

N+1=O.
The solutions of (*) is based on the following lemmas:

Lemma 1.2.2. For each ηeMι(M,Θ) ^J_ω0 is a harmonic form of type (n —1,1).

Proof Let η\v= £η^d?1® j - ^ and ωo\u = dz1 Λ ... Λ^ZW, then
GZ

ηlωo\v= Σ ( ~ l ) μ " ^ - α ^ α A ... Λdzμ A ... Λdz n .
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Now clearly

5^ = 0 =

Next we need to prove that

The proof of this fact is based on the following fact:

Φ*Φ)Ap,B9={-W+ί Σ g**KΦAp,A> S e e [8] (**)
β

From the formula

V(ηlω0) = Vηlω0 ±ηlVω0

and from the Bochner principle, that on any Ricci flat compact complex manifolds
any holomorphic tensor is parallel, we get that Vωo = 0. See [8]. So

Va(ηlω0)=Vaηlω0.

From this formula we get that

o = 0. Q.E.D.

Lemma 1.2.3. For each ηeM1(M,Θ) we have that if r\\υ= Yη^dz*® ——, then
ozμozμ

Proof. We know that ηl.ω0 is a harmonic form on a Kahler manifold so

d(ηlωo) = 0.

On the other hand

ηlωolu^Σi-^T'^dz01 Adz1 A ... Adzμ A ... Adzμ.

So

d(ηlωo\v)= Σ(Σdμφξ\dz* Adz1 A ... Adzμ A ... Adzμ = 0.
α \μ

From here => £ dμφ
μ = 0. Q.E.D.

Lemma 1.2.4. Let φ,ψeΓ(M,Ω°>1®Θ) = Γ(M,llom(Ω1>0, Ω0Λ)) and d(φ±ω0)
= d(xpA.ωo) = 0, then

2d(φ A ψ-Lω0) = ([0, ψ] l ω 0 ) ,

where φAΨeΓ{M,Uom{Λ2ΩUQ,Λ2Ω0Λ)) and

(φ A ψ) (u A v): = φ(u) A ψ(v).

Proof. We have

Λ ψI v = ( Σ φl A ψj - ψ1 A φj\ (X) ~{ A —..
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Here

and

Φl=ΣΦμdzμ, ψ^
μ v

From these formulas we get:

2(φAψlωo)\v

= Σ (-i)i + i~^ ΛXpί-tp* Λίjήdz1 Λ ... Ad# Λ ... ΛdέJ Λ ... Adz" .

Let us compute the coefficient of 2d(φ Aψλω0) in front of
dzι A ... Λ dzι A .. .dzj A ... Λ dzμ. So we have

2d(φ A φ±ω o) | l,= Σ ΓΣ ( - iy" 1(5ι φ
ί Λ ψ>- dtf A φi + φ%φi-φt A

Adz1 A ... Adz1 A ... Adέj A ... Adzμ~\,

μ = l v = l

where

From

So from these formulas and (1.2.4.1) it follows that:

2<3(</>Λt/;±ωo)|t7

n f n \
= Σ Σ {-l)1+j(ΦidiΨJ-ψidiΦj) Λdz1 A ... AdzjA ... Adz").

j=i \ί = i )

(1.2.4.2)
From the definition of [φ,φ], i.e.

lΦ>ψl\u= Σ (Σ (Φ'd^-ψ'dtΦ^ ® ̂ j , (1.2.4.3)

and (1.2.4.2) we get that

Id [_(φ A φ) lω 0 ] = \_φ, \p] l ω 0 . Q.E.D.

Lemma 1.2.5. Let ^ e ^ H o m ^ 1 ' 0 ^ 0 ' 1 ) ) for l^i^N and

b)
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Then

Proof, Clearly we have:
N~1 \ 1 / _

Σ IΦN-K,ΦK+I]) = ~[ Σ ( [ # N - J &

o / 2\ o
(1.2.5.1)From -Iφpdφ^ldφttφj] lΦbΦj] = [_ΦPΦά (see [8]) and

κ

we get

+ Σ ίίΦv Φj], Φκ] + IIΦK, Φil Φj] + KΦp Φκl ΦJ)
i>ίj>ίK>l

i*j*K
j + K = N+ί

Σ
2

if N +1 = 3K). From (1.2.5.2) and Jacobi identity we get that

= 0 . Q.E.D.

1.2.6. Now we are ready to solve the equations (*) from Sect. 0,1. We will solve
them inductively.

Induction Hypothesis. Suppose that for any 2^K^N,we have
1 / \

a) Sφκ=-[ £ lφκ-h φι~\ ,

b) 3*0 K = O,

c) φκlω0 = dψκ and so d(φκλωo) = 0.

We must find φN+ί such that

a) d

b) 3*

c) d(φN+1.Lωo) = 0 and moreover φN+ίlωo = dψN+i.

From Lemma 1.2.4 it follows that

(1.2.6.1)
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From Lemma 1.2.5 it follows that

( (ΦiAφκ)lωo)=0. (1.2.6.2)
)

Σ ί Φ N i + i Φ i l ) 0 ( Σ

From the Hodge theorem, the fact that M is a Kahler manifold we get

Σ φiAφκ)lω0]=dd(-Ψ1

N+ί) = ddΨx

N+1. (1.2.6.3)

From the Hodge theorem and the fact that M is a Kahler manifold we get

3 ^ 1 = ̂ + 1 + ^ 1 ^ (1-2.6.4)

where 3*Ψχ+ x = δΪV + x and so 5 * 5 ^ + x = 0 since d* o β* = 0. Define

where

ωj eΓ(M, ΛnΘ) and <ωg, ωo> = 1 pointwise, i.e.

Clearly from the fact that

Vaω% = 0 (Bochner principle)

we get immediately that

(For more details see Lemma 1.2.2). So

1 / N

d*φN+ί=O and 5 ^ + ! = - ! X lΦN+i-i>Φi]

2\i=l

The theorem is proved. Q.E.D.

We have proved the following theorem:
Theorem 1.2'. Let M be a SU(N) manifold and let η e M1(M9 Θ\ then there exists a
convergent power series in norms defined in [8]

such that

1. (^

2. 3 * ^ = 0,

3. φi

4.

Remark. It is proved in [8] that if φ(t) fulfills 1), 2), and 4), then
φ{f)eC»{M,Ω0Λ®Θ).
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2. Computation of the Curvature Tensor of the Weil-Petersson Metric

2.1. Let S be the Kuranishi space of a Calabi-Yan manifold M o and let π: X-+S be
the Kuranishi family of Mo. The tangent space Ts s at the point seS can be
identified with M1(MS, Θs), where MX(MS9 Θs) is the harmonic part of H1(MS, Θs)
with respect to the Calabi-Yau metric gaβ(s) on Ms and we suppose that for all s e S

We know from [15] that gap(s) is a unique Kahler-Einstein metric on Ms.

Definition. Let φu φ2eTs S = M1(MS,Θs\ then we can define the Weil-Petersson
metric as follows:

<ΦuΦ2>= J (<K)£Wfeg'avol(g t A(S)). (2.1.1)
M

J
From Lemma 2.2, it will follow that the Weil-Petersson metric is topologically
defined, i.e., in the case of Calabi-Yan manifolds M Mί{M, Θs) can be identified
with ff^A^Ω"-1). If d i m M ^ 3 it is easy to see that Ή^M.ίΓ'1) consists of
primitive classes of forms of type {n — 1,1). On H1{M,Ωn~1) we can define in a
natural way a scalar product, i.e., if ωu ω2eiί1(M,ί2M~1), then

r - 1 ί ω 1 Λ ώ 2 . (2.1.2)

Remark (2.13). Notice that the identification

H\M,0)^Hl(M,Qn-1)

is given by

α->α_ιωM(tt,0).

Since L is fixed we may suppose that all coMs(n, 0) are fixed since we may assume
that ^_

j ωMs(n,0)ΛωMs(n,0)= j U.
Ms Ms

So fixing L we have fixed the identification

H\Ms,Θs)^H\Ms,Ω
n-1).

Lemma 2.2.

= ί (ΦlY«
Mo

= (-1) 2

where ωo(n, 0) is a holomorphic n-form on M o and

J ωo(tt,0)Λωo(rc,0)= j vo\(gτfl).
Mo Mo

Proof. From Vωo(n,0) = 0 => V(ωo(n, 0) Λ ωo(n, 0) = 0. Since P(vol(gτ^)) = 0 wemay
assume that

ωo(n, 0) Λ ωo(n, 0) = vol(gτp). (2.2.1)
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From φ e Mί(M0, Θ) it follows that φ^β = gμ-βφ£ = φpΛ. (See [9].) Using this fact we
get that:

(Φ ύίiΦiYβg^ vol (gi3) = (φ ± _J ωo(n, 0)) Λ (φ2 _J ωo(n, 0)). Q.RD.

2.3. a) Let {φi}^= i be an orthonormal basis in Mί(M0, Θ). Let

where V(i 1,...,i J k)0 i l,...,i k)φ i l f..M ί f c6Γ(M,θ(8)βo 1) and for φ(ί1 ? ...,ίk) the follow-
ing conditions are fulfilled:

2.
3. For iu ...Jk such that z'1 + . . . + i k ^ 2 we have φiχ ik-iωo(n,0) = dψiu_)ίk

then ί = (ί1 ? ...?ίfc) will be a local coordinate system in S. From Theorem 1.2 it
follows that φ(tu...Jk) = φ(t) exists and φ(t)eΓ(M^Ω°Λ®Θ\ ί = (ί1,...,ί fc) we
will call Kodaira-Spencer-Kuranishi coordinates. From now on we will fix these
local coordinates.

b) Let {Ua} be a covering of M o and (z*,..., z") be local coordinates in Ua such

d z α

1 Λ . . . Λ ^ = ωo(n,0)| t / α.

c) Let <9j = dzi+ ΣΦ)dzi F r o m t h e definition of φ(ή=ΣΦϊ(t)dzJ®yί it

follows that for each f = (ί\ ...,ίw)GS{Θ/} (/ = 1, ...,n) is a basis for Ω]'\x.

Lemma 2.4. d(Θ} Λ ... Λ θ?) = 0. (See also [19] and Weil, Collected work, vol. 2).

Proo/. Since <£(ί)eΓ(M,Hom(Ω£'°, Ωj'0)) then for each k^n, k>0 we can define

Λxφ(ί) e Γ(M, Uom(AκΩ^ °, ̂ ίκΩg'x)),

where

{Λκφ(ή) (U1Λ...ΛUK) = φ(t) {uj A ... Λ φ(t) {uκ).

Next we have the following formula

„ K(K-l)

(2.4.1)

Formula (2.4.1) follows from the definitions of Λκφ(t) and θ} A ... Λ 0".
K(X-l) X(X+1)

Proposition 2.4.2. (-1) 2 δ μ κ 0 1 ω o ) + ( - l ) 2 δ(^x+1(/>-Lωo) = 0.

Proof. So it is enough to prove

d(Λκφlωo) + (-l)κd(Λκ+ιφlωo) = 0.

From d#(t) = l/2[ψ(ί),Ψ(ί)] it follows that

dφ\t)= Σ ΦidJΦ
i. (2A2.1)
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Since

Aκφ = Σ φiίΛ...Λφi=®1?rι Λ ... Λ - ^ , (2.4.2.2)
iΛ<...<iκ S z OZ

we get

{Λκφ±ω0)\u=Σ(-l)iίί-ί) + -' + iiκ-χ)φίlΛ...ΛφiκΛdz1Λ...Λ3ziί

Λ...ΛdziκΛ...Λdz\ (2.4.2.3)

A ... Λ ...dzh A ...AdziκA...Adzn. (2.4.2.4)

From (2.4.2.1) and (2.4.2.3) we get

j

Adz1 A ... Adzh A ... Adziκ A ... A dzn

Adz1 A ...d?1 A ... Adzίκ A ... Adzn. (2.4.2.5)

Next we must compute (-l)κd(Λκ+1φlω0) = Ί

Suppose that iί <i2<... <U-1 ^j f<iχ <... < i κ ,

A ... Λ 0 ί κ Λ dz1Λ... Λ dzh A ... A dzj A ... A dzlκ A ... A dzn

Λ . . . Λ 0 / κ Λ i/zXA ί/z^1 Λ ... Λdzj Λ...Λ dziκ A ... A dzn .

(2.4.2.6)
From Σdjφj = O and (2.4.2.6) we get that

d((-\)κΛκ+1φ±ω0)

Λ . . . Λ ί ί z ί κ Λ . . . Λ d z n . (2.4.2.7)

From (2.4.2.5) and (2.4.2.7) we get that

d{Λκφ±ωo) + (-\)κd{Λκ+1φ±ωo) = 0. Q.E.D.

From 2.4.2 it follows that

d(0ί

1Λ...Λ0ί

n) = O. Q.E.D.

Remark 2.4.9. Since ω0 and for all K Aκφ are globally defined tensors it follows
t h a t ^ υ

ωt=ω0+ Σ (-1) 2 ( ^ 0 1 ω o ) (2.4.9.1)
l
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is also globally defined. From (2.4.1) it follows that ωt is a holomorphic n-form on
M ί? since dωt = 0 and ωt is of type (n,0) on Mt.

Definition 2.5.

Theorem 2.6. a) (h^) = ( - I is the Weil-Petersson metric.
\υtι(jtjj

b)Λ0.a=>

2(-lΓMj/^ϊy2 j

'/ J

i f i = k 9 j = l,

^ϊr 1 J
Mo

J
Mo

where [φt A φj_j ω 0 ] is ί/ιe cohomology class of φt A φj-i ωQinHn~2i2c> Hn(M0, C).
c) For all μ and v \_φμAφv-\ωQ~\ is a primitive class of cohomology in

2 2

I iProof of 2.6a. Since φ: S-*R it follows that (h^) = I - I is a Hermitian matrix.
From the definition of φ it follows that \ ι j/

* I ^ Λ ̂ ) ( f ^ Λ ώ Λ " 1 (2.6a.l)hc= ( ( -

Griffiths proved in [6] that

defines a non-zero class of cohomology of type {n — 1,1) on M f. (For the proof of b)
see the appendix.)

Remark, b) is the so-called local Torelli theorem. Since for the Calabi-Yan
manifold of dim ̂  3 each class of cohomology of type (n — 1,1) is primitive we get
that {hιj)>0. This follows from the following well-known fact from Kahler
geometry: If η is a primitive form on M of type (a, b) then

where n = dim c M,L=the class of the cohomology of the imaginary part of the
Kahler metric and * is the Hodge operator.
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Now we are ready to prove that (htl) is the Weil-Petersson metric on S. Since

- ^ is a class of cohomology of type (n — 1,1) it follows from Lemma 2.2 that
dt
exp (/)(%) = Weil-Petersson metric, where / : S-»R. In [9] it is proved that Weil-
Petersson is a Kahler metric, so

But _ _
d{Qxp(F)Σhfjdti A dtj) = d(exp(/)) Λ Σh^dt, A dtj = 0. (2.6.a.2)

This is so since (hη) is a Kahler metric. Next we will prove that from (2.6.a.2)
->d(exp(/)) = 0 and so /=const. Indeed at a point 5 ε S we may suppose that (%)
= (/) - the identity matrix. So from here it follows that

(df) A Σdti AΈi = Σ^- dtj A dU A Έi + Σ^L dtk Adtj υtk

so d(exp/) = 0 => /=const. So since these two metrics are different by a constant
and coincide at s0 e S we have proved 2.6a. Q.E.D.

Proof of 2.6b. Everything follows from the following two formulas:

exp(0(ί))= Σ Φtι+ Σ Φi2tf+ Σ ϊΣ Φtι Σ Φi2f Σ φ i j i j φ ί 3 ϊ Σ j , W

where φi2-jω0 = dψh, φiJ-jω0 = dψiJ and φi3-jω0 = dψh,

fc(fc-l)
2 (Akφ(t)).iω0. (2.6.b.2)

From (2.6.b.l) and (2.6.b.2) it follows that

Σ (
jΦi

---- (2.6.b.3)

From (2.6.b.3) we get that

f J (φ i 2_iω 0)Λ ((/>,._) ωo) + 2ί j J (φ ί_jω0)
Mo Mo

Σ hh J [(^A
ΦiΦj Mo

.f, _J ω 0 ) ]

+ 2 Σ ίA ί (-(
1=1 Mo

I ! + 1 £

Mo

•? ί (Φh
Mo

+ (terms of order higher than 3)] l\\ωt\\~2 = l-Σδiltiΐj + . . . ] .



342 A. N. Todorov

Proposition (2.6.b.4). The coefficients in (2.6.b.3) in front of 2ti9 2tp 3tf9 and 3tj are
equal to zero.

Proof We know from Sect. 1 that

(φj2 _J ω0) = dψj2, (φh _ι ω0) = dψh,

and for each i d(<^_i ω0) = 0. Let us prove that the coefficient in front of tt is zero in
(2.6.b.3),

Mo M o Mo

= (Stokes's theorem) = 0.

Exactly in the same manner we prove that the other coefficients are zero. Q.E.D.

From (2.6.b.3) and (2.6.b.4) it follows that we have
n(n+l)

+ Σ kk ί ((ΦiAΦk-io)0)-(φUk-jω0))A(φjAφι^ω0)~(φjj^ω0))
kΦi Mo

+ 2 Σ ¥, J I
l±j Mo

+ 2 Y tkt, f
fcΦi Mo

^ - J (A2φi-iωo-φi2^ωo)A(A2φj-iωo-φJ2-iωo)
Mo

+ (terms of order ^3)1 [| |ω t |Γ
2 = 1 - 2 : 5 ^ + . . . ] . (2.6.b.5)

From dωt = 0 we get that

{d(φι Aφμ-jω0 — φUμAω0) = 0 for all i,μ. (2.6.b.6)

Since φiμ-\ω0 = dψUμ we get that

φμ-jω0-φUμ_j ω0) = M(φi Λ ^ J ω0), (2.6.b.7)

where 1H is the harmonic projection. From (2.6.b.5) and (2.6.b.7), (2.6.b) follows
directly. Q.E.D.

Proof of (2.6.6). From the definition of ωt we get that the following formula is
true:

where [ ] means the class of cohomology. If [φt A φj-j ω 0 ] is not a primitive class
of cohomology, then

lφt A φ^ ω 0 ] = [L] Λ [ψy] . (2.6.C.2)
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Since [ ω j is an (n, 0) form it follows that [ ω j is a primitive for all t e S with
respect to L=[Imgα^(ί)] fixed. So (2.6.C.2) will contradict the fact that ωt is a
primitive class of cohomology. Q.E.D.

Corollary (2.6.1). The bίholomorphic sectional curvature of (/î  ) is negative.

Proof. Let E Q Mn be the subspace spanned by

i\_Ψi-Δω0] & [φ f Λ φy_j ω 0] for all i,j.

So from 2.6.c it follows that £ £ H o , where Mn

0 are primitive classes of cohomol-
ogy. If ω e £, then we have

(— 1) ^ (τ/31)»-2 i ω Λ ( y < 0 . (2.6.1.1)
Λίo

Let ω = Σ

easy to check that

( - i Γ M / ^ ΐ y 1 ί ωAώ^ΣRxhμVξψη"ή\ (2.6.1.2)
Mo

Since ω e E, it follows that

ΣRahμ-vξψη^<0. (2.6.1.3)

Expression (2.6.1.3) is exactly the biholomorphic sectional curvature. Q.E.D.

Corollary 2.6.2. The sectional curvature of the Weil-Petersson metric is ̂  0.

Proof. The proof is based on the following observation:

Observation. Let {0J be an orthonormal basis of harmonic forms in
M\M, ^^(dim^IH^M, ΘM) = N), then {φj} can be viewed as a global section of

H o m ( ί 2 1 0

? ί 2 0 1 ) .

Since

so we can view φj for every j as a global section of

Hom(73(R)<g>C, Γi(R)®<D)).

Now we can define

φt Λφj e Γ{M, Hom(Λ2(T£(R)(8>C), ^2(T,*

where

φι A φj(u AV): = φi(u) A φj(v) (this is defined pointwise for x e M).

Definition. Let (A1,..., /lN) and (ζ1,..., ζN) be any two linearly independent vectors in
(CN. Then we will define

ω G Γ{M,

in the following way:
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Proposition 2.6.2.1. (ω±ώ)(m)= ||ω(m)||2^0, where (ω_Lώ)(m) is the construction
of the tensors ω&ώ at a point meM and ||ω(m)\\2 is the norm of the tensor ω at the
point meM with respect to the induced metric on Hom(T*(IR)(x)<C, T*(R)(x)C)(m)
from the restriction of the Calabi-Yau metric on T*(R)(m).

Proof Let

{dz1} and < -r-y

be the orthonormal basis of T*(E)ltΌ(m) and T(€)lt0(m). If we write down ω in
these coordinates and compare the definition of the construction (ωlω)(m) and
the norm ||ω(m)||2 we will see that they coincide. So Proposition 2.6.2.1 is
proved. Q.E.D.

Proposition 2.6.2.2.a.

(-1) 2 (ι)n j (ωlώ)ω(n, 0) Λ ω(0, ή)^0(ωJn9 0)

is the holomorphic n-form on M and we suppose that ω(w,0)Λω(0,rc) = vol(gα^),
(ga,β)ιs the Calabi-Yau metric on M).

Proposition 2.6.2.2.b. Let ω' = (Y (λιζj—ζ^^iφiλφjUωjJ^O), then

n(n+ί)

(-1) 2 (i)"-2 J c
M

Proposition 2.6.2.2.C.

""2 ί (ωlώ)ωM(n, 0) Λ ωM(0, n) + J ω' Λ ώ')
M

Proof o/ 2.6.2.2.a. We know from [5] that if ω(n, 0) is a form of type (n, 0) on an
rc-dimensional complex manifold, then ω is primitive from M so

( - l ) ^ ( i ) " - 2 J ωM(n,0)ΛωM(0,n)^0.
M

Now (2.6.2.2.a) follows immediately from (2.6.2.1). Q.E.D.

Proo/ o/ 2.6.2.2.b and 2.6.2.2.c. This follows immediately from the definition of the
construction of tensors, Theorem 2.6 and the fact that (i)2 = — i. Q.E.D.

The End of the Proof of 2.6.2. Notice that

is exactly the sectional curvature of the Weil-Petersson metric in the plane spanned
by

iV) and (Reζι,...,ReζN).

(For this fact see [10].)
So 2.6.2 is proved. Q.E.D.
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Remark. In the same manner we can prove that the curvature operator is negative

in Nakano's sense.

Appendix

Proposition 3. —^ defines a non-zero class of cohomology of type (n— 1,1) on Xt.
dti

Proof From 2.3 it follows that locally

ωt = {Atdz1)Λ...Λ{Atdzn) = Θl A ... Λ Θn

t,

where At = id + Σφiti + (terms of order ^2) and Θ{ = Atdzj. From the fact that

dz^A^Θl we get that

(3.1)

From the expression At0 = id + £ φi(ti)0 + . . . we get that At0

1 = id — Σφjit^Q + . . .

and so ί

AtA~ι = id + Σφ fo-(ί;)o) + terms of order ^ 2 . (3.2)

From (3.1) and (3.2) it follows that

+ terms of order ^ 2 . (3.3)

Since Θ}ΌA ... Λ β"o = ω ί o and dωt = 0 we obtain from (3.3) that

0 ί

1

oΛ...Λ0foΛ...Λ0(V (3.4)

So -r-^ is a closed form of type (n — 1,1) on X ί 0 for ί = ί0. That ~- is a non-zero
Ul i uli

class of cohomology follows immediately from the so-called local Torelli theorem.

See [6].
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