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of SU(n=3) (Calabi-Yau) Manifolds I
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Abstract. The Weil-Petersson metric is defined on the moduli space of Calabi-
Yau manifolds. The curvature of this Weil-Petersson metric is computed and
its potential is explicitely defined. It is proved that the moduli space of Calabi-
Yau manifolds is unobstructed (see Tian).

Dedicated to Lipman Bers on the occasion of his 75th birthday

0.1. Introduction

In this paper we are going to study some differential-geometric properties of the
moduli space of compact complex manifolds of dimg=3 which admit non-flat
metrics g with holonomy groups H(g)=+ {0} and H(g)CSU(n). Such manifolds we
will call SU (n) or Calabi-Yau manifolds. Before stating the main results, we will
make several remarks.

Remark 0.1.1. Tt is not difficult to see that a metric on a compact complex
manifold whose holonomy H®# {0} and H C SU (n), will be Kéhler and Ricci flat.
We will call it the Calabi-Yau metric. (See [2]).

Remark 0.1.2. If M is a Calabi-Yau manifold, then from the theory of invariants of
the group SU(n) and the fact that the holonomy group H®#+ {0} and HCSU (n), it
follows H°(M, Q)=0 for 1<i<n and H%M, Q") is spanned by a holomorphic
n-form w,, which has no zeroes and no poles. This implies that ¢,(M)=0.
Constructions of Calabi-Yau manifolds are based on the solution of the Calabi
conjecture by Yau. See [15].

Recently SU(3) manifolds have attracted the interest of physicists working on
string theory and algebraic geometers working on the classification of threefolds
and on algebraic cycles.

* Permanent address: Max-Planck-Institut fiir Mathematik, Gottfried-Claren-Strasse 26,
D-5300 Bonn 3, Federal Republic of Germany
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Let me state the results that are contained in this paper. In Sect. 1 the following
theorem is proved:

Theorem 1. Let M be a Calabi-Yau (SU (n= 3)) manifold, where n=dimgM. Let
n:X—-S830, n7Y(0)=M be the Kuranishi family of M, then S is a non-singular
complex analytic space such that

dimgS =dimg HY(M, 6) =dim¢ H'(Q"~').  See also [13].

More precisely we have proved Theorem 1'. From Theorem 1’ follows Theorem 1
and our curvature computations are based on Theorem 1'.

Theorem 1’. Let M be a Calabi-Yau (SU (n 2 3)) manifold. Let (g,3) be a Calabi-Yau
metric on M. Let IH'(M, 6) denote the harmonic elements of H'(M, 0) with respect to
(8.p), let ¢, be any element of H'(M, 0), then there exists a unique power series

PO)= t+Pt* + ...+ PytV + ...

such that for |t|<e,
a) P(t)e C*(M, Q%' ®0,).
b) 0*¢(r)=0, where 0* is the adjoint operator of 0 with respect to (g,p)-
c) dp(t)—3Lh(1), $(t)=0.
d) for each K=2 ¢xlwy=0Px, where wye H(M,Q") and w, has no zeroes.

Theorem 1 was first announced by F. A. Bogomolovin [18]. Later P. Candelas,
G. Horowith, A. Strominger, and E. Witten proved Theorem 1 under the
assumption that
HX M, Z)=Z. ([17))

Theorem 1 was also proved by Tian independently. Next we are going to describe
the results in Sect. 2. So we need some definitions in order to formulate the results.

Definition. A pair (M, L) where M is a Calabi-Yau manifold and LeH*(M,R) will
be called a polarized SU (n) manifold if L=[Img};], where (g;3) is a Kahler metric
on M.

With [w] we will denote the class of cohomology of a form w. From now on we
will suppose that L is fixed.

Suppose that M — S is the Kuranishi family of polarized Calabi-Yau manifold
(M, L), so may be after shrinking S we may suppose that for each s€S on
M, =n""(s) there exists a unique Ricci-flat Kéhler metric g,3(s) such that [Im,(s)]
= L. The last fact follows from Yau’s solution of Calabi’s conjecture, Kodaira’s
stability theorem, which states that small deformations of Kéahler manifold is
Kibhler and the fact that for SU(n>3) manifolds H%(X, ©)=0. From h*°=0 it
follows that M is an algebraic manifold. Here we use the fact n>3, since if n=2
h*°=1. Now we can identify the tangent space at s€ S, T, s with IH'(M, @), where
H'(M,, ©,) is the harmonic part of H'(M, &) with respect to g,5(s) and O is the
sheaf of holomorphic vector fields. Now we are ready to define Weil-Petersson
metric on S- the local moduli space of (M, L).

Definition. Let ¢4, ¢,€ T, s=H (M, ©), then
{1 P20wp.:= Ai D4:9558,58" vOl(g,5(5)) -



Weil-Petersson Geometry 327

Here we are using the usual Einstein’s conventions for summation.
In Sect. 2 we calculated the Weil-Petersson metric on the moduli space of
polarized SU (n = 3) manifolds in terms of the standard cup product on H* "1, i.e.
n(n—2)

<uav>w.p.=('—1) 2 (i)n—zjf,lu/\ﬁ’ U,UEH"—I’I.

In order to simplify the computation of the curvature tensor R, ,, of the Weil-

Petersson metric (h,;) we need to find “good” local coordinates (¢, ...,¢¥) in S so
that
By =0,5+ Y hyy .3t°t" +(higher order terms).

In Sect. 2 it is proved that such a coordinate system exists and so {h,}, i.e. the
Weil-Petersson metric is a Kéhler metric. Let me describe how one fixes such a
“good” coordinate system which we call “Kodaira-Spencer-Kuranishi” local in S.
Let {n,} v=1,...,K be a basis in H'(M, ©) and let

d(t)= Y n,t"+ " Z o Gi i), >0, 222

be the power series with the properties stated in Theorem 1', then it is proved in
Sect. 2, that (¢, ..., t*) will be a good local coordinate system, namely the following
lemma is proved.

Lemma. Let (h,z) be the Weil-Petersson metric on S, then with respect to Kodaira-
Spencer-Kuranishi local coordinates the following formula is true:

n(n—1)

hag(t, )=(—1) 2 ()"~ 2{[}{4 (nyL o) A (g Lavg)
+4178 | [A2h, L] A [A%hy Laog)
M
#2607 | (A1, 2061 A [l A l,) o]

+t”t—v§ [’h A ﬂu_JCU] A [nﬂ A ’7v—1600]

+(terms of order 23)] [1— Zéa,—,t"‘f’?]}, *)

where
APy, A2Q1 0 A2Q° (A% (u A V)
=1u) A1 (v)) and  [A%n, L], [, AN Log]

denote the cohomology class of H(A*y,Lwy) and H[n, An,Lwy] in H™>?
CH"(M, ), where H is the harmonic projection. From this lemma we derive the
following theorem:

Theorem 2. a) The following formulas are true for the curvature tensor R,z ,, of

the Weil-Petersson metric on the moduli space of SU(n=3) manifolds
nn+1)

RaB,uV=(—1) 2 (i)"azzl&[naA’?u—'wo]/\[’1/3/\’7v—'wo]_5,w-
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From observation 1 (**) it follows that

A T do, do, -
hat D) =(=1) 2 “')"‘Z(Af, %Ad—‘fﬁ)(l& I

n(n—1)

and ¢(t,t)=log [(—1) 2 (i)""z(j" a),/\cbt>] is the pbtential for the Weil-
I

Petersson metric.
If o p and B=+v,

n(n+1)
Rggap=+(=1) % ("8 ) (4%, Log] Al Le],
nn+1)

R w=(—1) % (/—1r"24 | [P 00] Al AT S 0l,  Bp

b) The biholomorphic sectional curvature of the Weil-Petersson metric on the
moduli space of SU(n=3) manifolds is negative.
¢) Curvature operator <0.

The proof of the lemma is based on the following two observations.

nn+1)

Observation 1. {¢y, P> p.=(—1) 2 ()72 [(P; L) A(P; Ag), where
fwo A @o= [Vol(g,p)-

This formula says that in case of SU(n) manifold we do not need the Calabi-
Yau metric in order to define the Weil-Petersson metric. We only need the
polarization class since if [ w, A @,= | L", then we have a canonical isomorphism
a:HY(M, @)—;(ﬂllgﬂ"'l)a(@:qblwo. On H" ! we have a canonical metric;

{a,bp=(—1) 2 (i)' 2 { anb. Thisis so since if n>3 all elements of H"~*! are

M
primitive and H"~%°= + HY(M, Q"~%)=0.
Let w, be the holomorphic n-form on X,. Then we have the following formula
for w,e I'(X, Qys):

K(K—-1)

w=wo+ ¥ (1) T A%(t)La,
K=1

where
AXp(t) e I(M,Hom(A'Q4°, 41Q% 1))

and

AP A Au)= () W) A ... A (D) ()
From (***) Theorem 2 follows almost directly.

Remark 1. It is a well known fact that the moduli space of marked polarized K3
surfaces is SO(2,19)/S0(2) x SO(19). From observation 1 it follows that the Weil-
Petersson metric is the Bergmann metric on SO(2,19)/SO(2) x SO(19). (See also

[11]).

Some Historical Notes. The purpose of introducing the invariant metric on the
moduli space (in the case of Riemann surfaces on the Teichmiiller space), is to
provide information on the intrinsic properties of the space. The Weil-Petersson
metric has successfully filled this role in the case of Riemann surfaces of genus g = 2.
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Ahlfors was the first to consider the curvature of the Weil-Petersson metric in
the case of Riemann surfaces, i.e. on the Teichmiiller space. See [1]. He obtained
singular integral formulas for the Riemann curvature tensor. As an application he
found that the Ricci, holomorphic sectional and scalar curvatures are all negative.
Royden later showed that the holomorphic sectional curvature is bounded away
from zero. Tromba gave a complete formula for the curvature of the Weil-
Petersson metric on Teichmiller space and found that the general sectional
curvature is negative. See [14].

Later Scott Wolpert gave other formulas for the curvature tensor of the Weil-
Petersson metric on the Teichmiiller space of Riemann surfaces of genus g=2.
From his formulas S. Wolpert showed that the holomorphic sectional and Ricci

curvatures are bounded above by and the scalar curvature is bounded
—3(3g-1)

4n
spectrum of the Laplacian. See [16]. J. Royden also obtained similar results. Later
S. Wolpert used his calculations of the curvature tensor of the Weil-Petersson
metric to get some information of the global structure of the moduli space of
Riemann surfaces.

Siu generalized the formulas of S. Wolpert in the case of algebraic manifolds
with Ricci <0and complex dimension = 2. See [12]. Nannacini obtained formulas
similar to Siu’s in the case of SU (n 2 2) polarized manifolds. See [9]. Unfortunately
Siu’s and Nannacini’s formulas did not say anything about the sign of the
curvature. Royden also obtained some formulas for manifolds of dim > 2 and Ricci
<0.

Koiso was the first to introduce the Weil-Petersson metric in dim = 2. See [7]
and [4].

—1
2n(g—1)

above by . S. Wolpert showed that the curvatures are governed by the

Review of Tian’s results. See [13]. In his paper Tian proved that the Weil-Petersson
metric is just the pullback of the Chern form of the tautological of CIPY restricted
to the period domain, which is an open set of a quadric in CIP". From this
description Tian obtained that the Weil-Petersson metric is a Kidhler one and the
holomorphic sectional curvature is bounded away from zero.

All the results in [13] that overlap with the results of this paper are obtained
independently by Tian.

Wolf in his thesis obtained a similar results as Theorem 2.6 in the case of the
Teichmiiller theory of Riemann surfaces. See [16].

Recently the author found some applications of the results of the present paper.
Namely we prove the analogue of the Global Torelli theorem for SU(n=3)
manifolds. The proofis based on the fact that the discs D,, defined in Observation 2
are totally geodesic submanifolds. We proved that the Weil-Petersson metric is
complete on the Teichmiiller space of the Calabi-Yau manifolds. From this result
we obtained some interesting degenerations and simultaneous resolutions of
singularrites of the one parameter family of Calabi-Yau manifolds. We also proved
similar results to that of Beauville in the case of complete intersections, namely that
the image of

Diff , (M) = {all diffefomorphisms that preserve the orientation of M}
has a finite index in Aut H(M, Z). See [3].
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Atlast we should mention the following result, that will appear in a joint paper
with D. Bao and T. Ratiu. Let M be the moduli space of polarized manifold (X, g,),
where g, is a Kdhler-Einstein-Calabi-Yau metric, [Img,] = L, then as in the case of
Calabi-Yau manifolds we can define the Weil-Petersson metric on M. Let det d be
the determinant line bundle on M that corresponds to different d, operators on X,
and let || ||, be the Quillen metric on detd, then

Theorem d01og|| ||, is the Weil-Petersson metric on M.

0.2. Conventions on Some Relations.
(z%,...,2" will denote a system of local coordinates
on a compact complex manifold. 0.2.1.a)

dz' A ... AdZVA ... AdZE A ... AdZ" means that if i; <...<ig
then dz', ..., dz'* are omitted . 0.2.1.b)

0.2.2 Given a Hermitian metric ds®=h,zdt*Adt" on a complex manifold, we say
that it is Kédhler if

Ohag _ Ohyy
ot o’

0.2.2.1)

A metric is Kahler if and only if we can find normal coordinates at each point, i.e.
holomorphic coordinates such that at the point the metric tensor has the
development h,3=24,3+0(|t|?). If the metric is Kédhler and real analytic, one can
introduce a set of canonical coordinates at a point which are characterized by the
property that the power series for h,; contains no terms which are products only of
unbarred (or only of barred variables). In terms of canonical coordinates

hap= 45+ 5 Ryp,,5"6 +0(11), 0222)

where h,p .5 is the Riemann curvature tensor. If (¢, ..., £) and (', ..., n*) are unit
tangent vectors, the holomorphic bisectional curvature in direction &,  is given by:

Ke=R,3, 58888, See [10] (0.2.2.3)
and the holomorphic sectional curvature in direction & is given by
Kee=R,3 58888 . See [10]. 0.2.2.4)

So we have proved in Sect. 2 that Kodaira-Spencer-Kuranishi coordinates are
normal coordinates. So we apply (0.2.2.3) and (0.2.2.4) in order to get Theorem 2.

1. The Kuranishi Space of a SU(n) Manifold M is Unobstructed

1.1. Remark. a) From now on we will suppose that M is an SU (n) manifold with a
fixed Calabi-Yau metric (g,p), i.e. ga}-(, is a Kéhler, Ricci-flat metric on M.

b) If ¢ is any element of H/(M, A% @), then by H¢ we will denote the harmonic
part of ¢ and by H/(M, A¥@) all harmonic tensors on M which are elements of
Hi(M, A¥@) with respect to the Calabi-Yau metric.
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¢) For any point xe M from now on we will chose the local coordinates
(z%,...,2" in Usx in such a way that

Woly=dz' A ... AdZ",
where w, is the holomorphic form without zeroes on M.

Theorem 1.2. Let M be a SU(n) manifold and let
McX

||

0eS

be the Kuranishi family of M, then
a) S is a non-singular complex manifold,
b) dim¢S=dim¢H'(M, O).

Proof. Let us first remember how the Kuranishi family is defined. We define 0* to
be the adjoint of J with respect to the Calabi-Yau metric, O to be the Laplace
operator, and G to be the Green operator. Let {#,/v=1,...,m} be a base for
H(M, ©). Kuranishi proved that the power series solution of the equation

) =n(t)+20*G[(1), p(1)],

m
where n(t)= Y t,n, has a unique convergent power series solution. And this ¢(t)
satisfies vet

09(t)—3[$(1), p()]=0
if and only if
H[¢(1), $(1)]=0.

Let {f,/A=1, ..., Z} be an orthonormal base of H*(M, ®) and let { , ) be the inner
product in
A2=T(Q*’®0).

Then

H$0.60]= ¥ <90, $(0] BB,

Hence H[ (1), ¢p(t)]=0 iff <[d(t), #(t)],B,>=0 for A=1,...,7. Since A=1,...,7.
Since ¢(f) is a power series in t so is {[P(¢), p(¢)], B,> =b,(t). Thus b (t) is
holomorphicin ¢t for A=1, ...,7 and |t| <e&. Then Kuranishi proved that S is defined
as follows:

S={t|lt|<e,by(t)=0, A=1,...,7}.
We have a family X %, S such that itis locally complete and 7~ *(0) = M. From all

this it follows that if we prove that for each ,, v=1, ..., r, there exists a power series
(convergent)

DO =n,t+ P>+ ...+ PpptE...
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such that:

a) 0,(t)=3[0,(1), $,(1)]
b) ¢,(¢) fulfills the following equation:

o )=n,t+30*G[¢,(1), d,(1)],

then b,(t)=0 and so S is an open subset in H!(M,0), i.e. S is an non-singular
manifold of dimension equal to the dim H(M, ©).
So we need to prove that for each ,e H'(M, ®) v=1, ...,y we can find a power

series
POy =n,t+ P53+ ...+ PptE+ ...

such that
a) 09,(t)=3L8,(t), $,(t)],
b) () =n,t+30*G[ (1), $,(0)] -

Lemma 1.2.1. Let ¢ (t)=n,t+@P4t2+ ...+ dxtX+... be convergent power series
such that

a) 0*¢,()=0
b) 06,(t)=3L9,(2), 6,01,
then

) =nt+30*G[(1), $,(1)].

Proof. ¢(t)—IH¢ ()= GOg (t)=G(0*0+ 00*)$ (t)= Gd*0¢ (t). This is so since
0*¢(t)=0. From the equality

o,(t) —He ()= Go*(0¢,(1)),
and from ¢,(t)=2[$,(t), $,(1)] we get
&) =He,(t)+ 2*G[ (1), $.()] =n,t +3*G[ (1), $,()]. QE.D.

From all these facts it follows that we need to solve by induction the following
equations:

0y =3%[n,n,], where 0*p3=0
: *)
0N +1=3[ PR, ]+ [N -1, P51+ ... + [, X))

where 0*¢) ., =0.
The solutions of (*) is based on the following lemmas:

Lemma 1.2.2. For each ne H'(M, ®) nLw, is a harmonic form of type (n—1,1).
0
Proof. Let n|y= Y n4dz*® 50 and wy|ly=dz' A ... Adz", then

nlogly=Y (=1 yedz* A ... AdE* A ... AdZ".



Weil-Petersson Geometry 333

Now clearly
on=0 = d(nLlwy)=0.
Next we need to prove that
0*(nLwy)=0.
The proof of this fact is based on the following fact:
(@) a5, =(—1"" %g’_’“VaqSAp,aEq, see [8]. **)

From the formula
Vinlowg)=Vnlw,tnlVw,

and from the Bochner principle, that on any Ricci flat compact complex manifolds
any holomorphic tensor is parallel, we get that Vw,=0. See [8]. So

Va(rl -LwO) = Van -LwO .
From this formula we get that
0*(nLwy)=(0*n)Lwy,=0. Q.E.D.

Lemma 1.2.3. For each ne H(M, ©) we have that if n|y= Y ndz*® 6—;’ then

1M1=

0,04=0 Yoa=1,...,n.
1

u

Proof. We know that # Lw, is a harmonic form on a Kdhler manifold so
0nLwy)=0.
On the other hand
nlwoly= S (=1 " ntdz* Adz' A ... AdE* A ... A dZ".
So
o Lawgly)= ; (% (Zﬂﬁéﬁ)dz""/\dz1 A AdZPA L AdZ*=0.

From here = ) J,¢5=0. Q.E.D.

Lemma 1.24. Let ¢,peI'(M,Q%'®0)=I(M,Hom(Q"°, Q%) and d(¢Lw,)
=0(pLlwy)=0, then

20(¢p AwLawo)=([¢, p] L),
where ¢ AW e I(M,Hom(A2Q"°, A2Q°% 1)) and

(@ Ap)Av):=dw)Ap(v).
Proof. We have

S S 0 0
20 Ayly= (_z.¢lAU’J - 1.01/\¢J>®§ Nog
i<j
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Here
— id—u a _ ‘Ld-v 0
Ply= Y. ¢pdz ®ﬁ» Ylp= Y ppd2’® P
and
=Y $idZ, =Y pldz.
u v
From these formulas we get:

2(p A Lag)ly
= Y (=) HPAY —p AP)dZt A AdE A AN A"

1<j

Let us compute the coefficient of 20(pAwlew,) in front of
dz' A ... AdZEA A8 A .. AdZ" So we have

20(p ApLayg)ly= ‘J; [; (1Y Y0 Ay — O ' AT+ fbiﬁiw"—w" Ny

AdZ A AAZ AL ANAEA L /\dZ”],
where
.= ’él @phydz, owi= V:fl dapidz. (1.2.4.1)
From
(b Lavg) = Larg) =0 = izfl o= ii dap=0.

So from these formulas and (1.2.4.1) it follows that:

20(¢ A L)y
= i < i (=D (P — 90,97y AdzE Ao NdET A .. /\dz").
j=1 \i=1
(1.24.2)
From the definition of [¢,y], i.e.

U S 0
[P yllv=2 (z (¢'aiw1-w’ai¢1)> ® 5 (1.2.4.3)

T \7 Z

and (1.2.4.2) we get that
20[(¢ Ayp)Log]=[¢,y]Llw,. QED.
Lemma 1.2.5. Let ¢;e '(M,Hom(2!'° Q%)) for 2<i<N and

a)  00;=3([hi—1, 11+ [diz2 P21+ ... +[d2, i 1+ [D1, b 1],
b) 0¢,=0.
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Then

a_(%([d)Na ¢+ [dn-1, P21+ ... + [P b1+ [f1, #x1)=0.
Proof. Clearly we have:

% 5(22;::) [dn-r0 Pk 1]) = % <:;1) ([5¢N—Ka Pk + 1] ~[Pn-x 3¢K+ 1]) .

o (1.2.5.1)
From — [¢j, 0¢;1=[0¢;, d’;] K22 ¢]] = [¢j7 ¢:] (see [8]) and
- 1
O RS EEL o ()
we get
373 b)) =L 01614 D003y
b 00+ T 6061+ T, 646
T SN 1 C ORI s K O I X S RRCL P
HENZ2ur (1.25.2)

if N+1=3K). From (1.2.5.2) and Jacobi identity we get that

1 _/N-1
55( ) [¢N—Ka¢x+1]> =0. QED.
K=0

1.2.6. Now we are ready to solve the equations (*) from Sect. 0, 1. We will solve
them inductively.

Induction Hypothesis. Suppose that for any 2< K < N, we have

_ 1 [/K-1
) Gpx=> ( ¥ [bx-s m),
b) 0*px=0,
) oxlwg=0px andso 0(Ppxlwy)=0.

We must find ¢y, such that
1 N

a) 5¢N+1=§<.;1 [¢N—i+1:¢i]>
b) 5*¢N+1 =0
c) O(py+1Lwe)=0 and moreover ¢y, lwog=0pPy.;.

From Lemma 1.2.4 it follows that

%<,§1 [Dn-i+15 ¢i]> Lag=0 (Hk %, (i ¢k)_Lw0>. (1.2.6.1)
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From Lemma 1.2.5 it follows that
1./ X -
) 0 <Z Lon-i+15 d’:]) Lwo=00 ( Y (din ¢K)J-wo) =0. (1.2.6.2)
i=1 i+K=N+1

From the Hodge theorem, the fact that M is a Kéhler manifold we get
6[( Y 1¢,~/\¢K> icoo] =00(—Py41)=00¥N,,- (1.2.6.3)

i+K=N+
From the Hodge theorem and the fact that M is a Kdhler manifold we get
0Py 1=0Py 1 +T* PNy, (1.2.6.4)
where 0*Wy, , =0%y,, and so 0*%0¥y, , =0 since 0* o 0* =0. Define
On+1=0¥y 41 LG,
where
wfel'(M,A4"@) and <{w§ w,>=1 pointwise, i.ec.

0 i
Oflo= 53 A A o (1.2.6.5)

Clearly from the fact that
V.wé=0 (Bochner principle)
we get immediately that
0 0wy + 1L 0E)=(0*0py 41 L) =0.

(For more details see Lemma 1.2.2). So

N
0*¢py+1=0 and 6_¢N+1=%(i;1 [¢N+1—1=¢'i]>-

The theorem is proved. Q.E.D.
We have proved the following theorem:

Theorem 1.2”. Let M be a SU(N) manifold and let e H(M, ©), then there exists a
convergent power series in norms defined in [8]

dO)=nt+ Pt + ...+ ot +...
such that
1. ¢;eIT(M,Q°'®06),
2. 0*¢;=0,
3. ¢ilwog=0y;,
4. dp(t)=3[0(0), ()]

Remark. It is proved in [8] that if ¢(¢) fulfills 1), 2), and 4), then
P(HeC(M,Q>'®0).
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2. Computation of the Curvature Tensor of the Weil-Petersson Metric

2.1. Let S be the Kuranishi space of a Calabi-Yan manifold M, and let 7: X —S be

the Kuranishi family of M,. The tangent space T, g at the point seS can be

identified with H' (M|, @), where H' (M, @) is the harmonic part of H(M,, ©)

with respect to the Calabi-Yau metric g,3(s) on M and we suppose that for allse S
[Im(g,5(s))] = [Img,p(0)]=L.

We know from [15] that g,4(s) is a unique Kéhler-Einstein metric on M.

Definition. Let ¢, ¢, € T, s=H'(M,, O), then we can define the Weil-Petersson
metric as follows:

($1,92= | (@ )4 2)38,8" VOl (g(s) - 2.1.1)

From Lemma 2.2, it will follow that the Weil-Petersson metric is topologically
defined, i.e., in the case of Calabi-Yan manifolds M H!(M, ©) can be identified
with H'(M,Q"~"). If dimM >3 it is easy to see that H!(M, Q" !) consists of
primitive classes of forms of type (n—1,1). On H(M, Q" ') we can define in a
natural way a scalar product, i.e., if w,, w,e H'(M, Q"™ 1), then

nn+1)

{o,0,0=(=1) 2 (/=1)"fo,rd,. (2.1.2)
Remark (2.1.3). Notice that the identification
HY(M, @)~ H'(M, Q" ")
is given by
a—0_1wyn, 0).
Since L is fixed we may suppose that all w,, (n,0) are fixed since we may assume
that | @p(n,0) A m= | L.
M, M,
So fixing L we have fixed the identification
H'M,09)=H'M,Q"™ ).
Lemma 2.2,
$rd2>= 1 (@ (P 2)8,8" vol(gyy)
n(n+1)
=(=1) 2 (/=1 [($1200(n,0) A($2 1 0e(n, 0)),
where wq(n,0) is a holomorphic n-form on M, and

[ @o(n,0) Awo(n,0)= [ vol(g).
Mo Mo

Proof. From Vw(n, 0)=0 = V(wy(n,0) A wy(n,0)=0. Since V'(vol(g,;)) =0 we may
assume that

o(n, 0) A wo(n, 0)=vol(g,,). (2.2.1)
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From ¢ e H'(M,, ©) it follows that ¢z3=g,30% = ¢, (See [9].) Using this fact we
get that:

(@ 1)5(‘152)58 uvgﬁa vol(g ij‘) =(¢; I 0o(m,0) A (P, 1 0e(n,0)). Q.E.D.
2.3. a) Let {¢;}¥-, be an orthonormal basis in H'(M,, ©). Let

k
By, -nt)= Y dtit.oc+ X byt

i=1 i1+...+ig=n
ij20

where V(iy, ..., i) Pips - i) bs, i €T(M,0Q0% 1) and for @(t, ..., 1) the follow-
ing conditions are fulfilled:

1. 0%(¢p(ty, ..., t)=0.

2. 0ty ...t =1/2[(ty, ..., 1), Pt1, .. t)].

3. For i;...,i, such that i; +... +i, =2 we have ¢;, _;, 10,n,0)=0y;, ;.
then t=(t,,...,t,) will be a local coordinate system in S. From Theorem 1.2 it
follows that ¢(t,,...,t,)=@(t) exists and @(t)e (M, Q%' ®O), t=(t;,...,t,) We
will call Kodaira-Spencer-Kuranishi coordinates. From now on we will fix these
local coordinates.

b) Let {U,} be a covering of M, and (z,, ..., z}) be local coordinates in U, such

that
a Azl A ... Azt =a(n, )]y, .

-

) Let @=dzi+ ¥ ¢¥(t)dz]. From the definition of ¢(t)= Y ¢¥(1)dZ’® a—i; it
follows that for each t=(i',...," e S{@f} (j=1,...,n) is a basis for Q}*°|,..
Lemma 2.4. d(@}! A ... A ©")=0. (See also [19] and Weil, Collected work, vol. 2).
Proof. Since ¢(t)e ['(M, Hom(Q}:°, Qi) then for each k<n, k>0 we can define

AXp(t)e I(M, Hom (AXQ}-°, AXQY-1)),
where
(5P (Uy A ... Au) =) ) A ... A D(E) (ug)-

Next we have the following formula
K(K—1)

OIA ... At =dz' A ... AdZ"+ ‘Z (—=1) 2 AXpLdz'A...ndz"
=wgly+ L(=1) ? (%P Lag),- (24.1)
Formula (2.4.1) follows from the definitions of AX¢(t) and 0} A ... A O
K(K—-1) K(K+1)

Proposition 2.4.2. (—1) 2 0(A%¢Lwg)+(—1) 2 (A" 1p Lwy)=0.
Proof. So it is enough to prove

(A% P Larg) +(—1)*0(A** 1 p Lawg)=0.
From d¢(t)=1/2[¢(t), (t)] it follows that

3bi(t) = jzil $0,0'. (2.42.1)
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Since
AXp= Y ¢i1/\.../\¢"x®~i—/\.../\—a—, (2.4.2.2)
ia<ii<ix 0z" 0z
we get
(AP Lag)ly= T (— 1)~ D Fx=Dgis A A AdziA ... AdZ"
A ANAZEA L AdZ", (2.4.2.3)
AP Larg)|, = T (— 1)~ D*eH = DFW= Dy A A 0P A ... p; Adz?
AciiAdZA L ANZEA A2 (24.2.4)

From (2.4.2.1) and (2.4.2.3) we get
(A P Larg)l,= T (=17 DF O DHEDGEA A Y G AP A AP
AdZUA L AdZEA L AAZEA L A" J
=Y (=1~ ht+lx=D) (ZJ: N ¢"‘/\.../\6j¢"/\...A¢"">
ANAZUA L dZA L AdEEA A" (24.2.5)

Next we must compute (—1)%0(A** ¢ Lwy)=?
Suppose that i; <i, <...<ij_; Sj<i; <...<ig,

a((__i)KAK+1¢_Lw0)=(__1)Ka(z(__1)(i1-1)+...+(j—1)+...+(ix—1)¢i1/\ ¢
A ANPEAAZIA L ANdZOA NP A NAZEA A"
=(_1)K Zz(_1)(i1—1)+...+(j—1)+...+(iK—1)+(l—1)+(j—1)+(K+1)
i
Xy Ao A0 A -

A AP ANAZ ANAZUA NI A AdZEA LA dZ"

. (2.4.2.6)
From ) 0;¢’=0 and (2.4.2.6) we get that
(=¥ A% ¢ L)
== (i 2 (Gt VAR (jil ¢j> AP A ... A
A AQEANAZIN L OANAER A L AAEEA L AdZ". (2.4.2.7)

From (2.4.2.5) and (2.4.2.7) we get that
AAXP Larg) +(—1)¥0(AX 1p Lwy)=0. Q.E.D.
From 2.4:2 it follows that
A} A...A0H=0. QE.D.

Remark 2.4.9. Since w, and for all K A¥¢ are globally defined tensors it follows

that KE-1)

o=wo+ ¥ (1) * (4%$Lay) (2.4.9.1)
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is also globally defined. From (2.4.1) it follows that w, is a holomorphic n-form on
M,, since dw,=0 and w, is of type (n,0) on M,.

Definition 2.5.

nn=1)
¢(t1,...,tk,t_l,...,t_k)=log((—1) 2 (1/——1"-1(14 thw,>>.

*¢
0t 0t;

Theorem 2.6. a) (h;;)= < > is the Weil-Petersson metric.

n(n+1) —
2(—1) Z(V:BVZJ[@A%deAH%A@me
if i*k and j¥I °
ot 1) o
bmw=4enzvmﬂéwﬂwww@w~w1
if j+l
ot 1)
8(—1) 2 MZQEM@J%ywﬁ@JQLJM
if i=k, j=1,

where [; A ¢; 1] is the cohomology class of ¢; A ;1 wqin H*™*2 ¢, HY(M,, T).
c) For all p and v [¢,A¢,1w,] is a primitive class of cohomology in
H""22(M ).
2
Proof of 2.6a. Since ¢ :S—R it follows that (h;;) = <£—§Z_) is a Hermitian matrix.
From the definition of ¢ it follows that &
) o0, 0,
= _ 2 _1\y—2 0t it 3 =\—1
hi; <( 1) (/-1 Aio i, A 6t,~> ( jo w,/\cot) (2.6a.1)

M

Griffiths proved in [6] that

dw, _ 0p(1)

3) o o 2
@,

b) W

defines a non-zero class of cohomology of type (n—1, 1) on M,. (For the proof of b)
see the appendix.)

Remark. b) is the so-called local Torelli theorem. Since for the Calabi-Yan
manifold of dim = 3 each class of cohomology of type (n—1, 1) is primitive we get
that (h;)>0. This follows from the following well-known fact from Kdéhler
geometry: If # is a primitive form on M of type (a, b) then

(a+b)(a+b+1)

ml/ - 1 n—a-—
*;’]:(—1) 2 ( _1a me b”:

where n=dimgM, L=the class of the cohomology of the imaginary part of the
Kéhler metric and * is the Hodge operator.
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Now we are ready to prove that (h;;) is the Weil-Petersson metric on S. Since
Fwi is a class of cohomology of type (n—1,1) it follows from Lemma 2.2 that

exp(f) (h;;)= Weil-Petersson metric, where f: S—R. In [9] it is proved that Weil-
Petersson is a Kéhler metric, so

d(exp(f)Zh;dt; Adt)=0.
But .
d(exp(F)Zhgdt; A dt)=d(exp(f)) A Zhizdt; A d_tj =0. (2.6.a.2)

This is so since (h;;) is a Kahler metric. Next we will prove that from (2.6.a.2)
—d(exp(f))=0and so f'=const. Indeed at a point s€ S we may suppose that (h;;)
=(I) — the identity matrix. So from here it follows that
— 3 — _
j k

J

so d(exp f)=0 = f=const. So since these two metrics are different by a constant
and coincide at s, S we have proved 2.6a. Q.E.D.

Proof of 2.6b. Everything follows from the following two formulas:

k K
exp(é(1) = _Zl piti+ '21 biti + ; ¢ jtiti+ 20t + Y il
i= i= i*j

e (2.6.b.1)
where @;, 10o=0;,, ¢; j1wy=0y; and ¢;, 1wo=0y;,,
wt=wo+2(—1)ﬁ%ﬁ( A (1) - .- (2.6.b.2)
From (2.6.b.1) and (2.6.b.2) it follows that
%—Z’ =(¢; 2 w¢) + 2t {¢;, 1 o) + j;i (s, j 2 wo)t;+ 3tF (¢, )

+ 3 i taty — 2621 00) = ¥ ($i A byt o)ty ... (265.3)

From (2.6.b.3) we get that

o nont 1)
(hij)= (0t-g§t_-> =(-1) ? (]/—_1)"*2<A£ (i o) A (1)
+2tih§ (¢i2on)/\(¢j-on)+2t_jA£ (i1 o) AP, @)

+ Y b | Hden ¢ o) +(dx00)]
kEi{Fixj Mo
A[_(¢1A¢j-—|w0)+(¢j,l—Jw0)]

+2 l; tit—lJ (— (A2 ;1 @0) + t s, )]

I=1j+1i

A ['_(d)l/\d)j—!wo)‘i_((bj,l—]wo)]
+4t,.t—jA£ (—A2P; o+ by, 1 we) A(—A*P; 1 wo + i, 1)

+3t7 A; (1,2 w0) A ;o) + 317 [ (d;— o) A (;, - @)

+(terms of order higher than 3)] [ " 2=1—Zd;tt;+ ...].

ijei
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Proposition (2.6.b.4). The coefficients in (2.6.b.3) in front of 2t 2t;, 3t7, and 3t7 are
equal to zero.

Proof. We know from Sect. 1 that
(i, @o)=0y;,, (D1, Wo)=0;,,
(@, wo)=0v;,, (¢;,—wo)=0yj,,
and for each i d(¢; 1 w,)=0. Let us prove that the coefficient in front of ¢; is zero in
(2.6.b.3),
[ (o)A (bj,—00)= [ (i) Adpy,= [ d(d;—0o) Ay,)
Mo Mo Mo
=(Stokes’s theorem)=0.
Exactly in the same manner we prove that the other coefficients are zero. Q.E.D.

From (2.6.b.3) and (2.6.b.4) it follows that we have
nn+1)

h,.5.=[(—1)_2“q/—_1)"-2 (§, o0 @

+ k;i tly JO (9i A D) — (¢, k1 @) AP A Py @) — (@, 11 @)

l£j

+2 z;' tit, M‘ (A2 P wo— Py, o) A (Pjndawe—; 1)
J 0o

+2 k;_ tkt—jni (P A P09 —; 1) A (A2¢j——'wo_¢j2—‘ o)
i o

+4tit_j 1\; (A*h; 1o — Py, o) A (A2¢j—' Wo— G j,1Wq)
1]

+ (terms of order > 3)j| [l "2 =1—26;t:¢;+ ... (2.6.b.5)
From dw,=0 we get that
(dPp;nd,0o—¢; , Awo)=0 forall i,p. (2.6.b.6)
Since ¢; , 1wy =0y; , we get that
H($; A 19—, ,10o)=H(p; A ¢, ®,), (2.6.b.7)

where H is the harmonic projection. From (2.6.b.5) and (2.6.b.7), (2.6.b) follows
directly. Q.E.D.

Proof of (2.6.6). From the definition of w; we get that the following formula is
true:

[o]=[wo]+2t;[¢p;1wo]— Y tit;[pi A pj1we]+ ..., (2.6.c.1)

where [ ] means the class of cohomology. If [¢; A ¢;1w,] is not a primitive class
of cohomology, then

LA djwo]=[LIA[w;]. (2.6.c2)
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Since [w,] is an (n,0) form it follows that [w,] is a primitive for all te S with
respect to L=[Img,s(t)] fixed. So (2.6.c.2) will contradict the fact that w, is a
primitive class of cohomology. Q.E.D.

Corollary (2.6.1). The biholomorphic sectional curvature of (h;;) is negative.
Proof. Let ECIH" be the subspace spanned by
i[pinw] &[p;Adp;aw,] forall i,j.

So from 2.6.c it follows that ECHY, where H{ are primitive classes of cohomol-
ogy. If weE, then we have
nn+1)

(1) 7 (/-1)"% [ 0r@<0. (2.6.1.1)

Let o= Z{[Eﬁj ENPLoa A pp10o] +il P Lpp C"o]] + 2%6“11“[/12%—1 coo]}- It is

easy to check that
nn+1)

(=1 2 (/-1 J OAG=ZRy E T (2.6.1.2)

Since we E, it follows that

ZR,3, & <0. (2.6.1.3)
Expression (2.6.1.3) is exactly the biholomorphic sectional curvature. Q.E.D.
Corollary 2.6.2. The sectional curvature of the Weil-Petersson metric is <0.
Proof. The proof is based on the following observation:

Observation. Let {¢;} be an orthonormal basis of harmonic forms in
H(M, 0,,) (dimcH'(M, ©,,)=N), then {¢;} can be viewed as a global section of

Hom(Q"°, Q%1).
Since L
Q4%+ 2’ =THR)®C,
so we can view ¢; for every j as a global section of
Hom(Ti{(R)®C, Tii(R)®T)).
Now we can define

¢; Ad;e I(M, Hom(A(THR)@C), A(T(R)®T)),
where

¢ A Pjunv):=d u) A P{v) (this is defined pointwise for xe M).

Definition. Let (A1, ..., A¥)and ({1, ..., (") be any two linearly independent vectors in
C". Then we will define

weI'(M,Hom(AX(T(R)® ), AX(TH#R)QT))

in the following way:

W= izj(liff—éiz")(@ A 5})
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Proposition 2.6.2.1. (0 L®)(m)= |w(m)||2=0, where (o Ld)(m) is the construction
of the tensors w & & at a point me M and ||w(m)||? is the norm of the tensor w at the
point me M with respect to the induced metric on Hom(T*R)® T, T*[R)QCT) (m)
from the restriction of the Calabi-Yau metric on T*(IR)(m).

Proof. Let

{dz'} and {%}

be the orthonormal basis of T*(@)!%(m) and T(C)''°(m). If we write down w in
these coordinates and compare the definition of the construction (w1 ®)(m) and

the norm ||w(m)||> we will see that they coincide. So Proposition 2.6.2.1 is
proved. Q.E.D.

Proposition 2.6.2.2.a.

nn+1)

(=1) 2 ()| (0Llo)o(n,0) A w(0,n)=0(w,n,0)

is the holomorphic n-form on M and we suppose that w(n,0) A »(0,n)=vol(g, ),
(84,p) is the Calabi-Yau metric on M).

Proposition 2.6.2.2.b. Let o' = (Z (AT =02 (¢i L d)) w1, 0), then
ij

n(n.+ 1)

(=1) 2 (%] o A& <0.
M

Proposition 2.6.2.2.c.
n(n+1)
(=) 2 @2 (5 (@ LD) 031, 0) A 0,0, 1) + | ' A @)
M M
=X (/W.Tj— Cixj) (/1"5’ - CkII)Ri}',kfé 0.

Proof of 2.6.2.2.a. We know from [5] that if w(n,0) is a form of type (n,0) on an

n-dimensional complex manifold, then w is primitive from M so
nn+1)

(=1) 2 @' | op(n,0) A wy(0,n)20.
M
Now (2.6.2.2.a) follows immediately from (2.6.2.1). Q.E.D.

Proof of 2.6.2.2.b and 2.6.2.2.c. This follows immediately from the definition of the
construction of tensors, Theorem 2.6 and the fact that (i)>= —i. Q.E.D.

The End of the Proof of 2.6.2. Notice that
YA =LA~ TR

is exactly the sectional curvature of the Weil-Petersson metric in the plane spanned
by

(ReAl,...,Rei) and (Rell,...,RelM).

(For this fact see [10].)
So 2.6.2 is proved. Q.E.D.
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Remark. In the same manner we can prove that the curvature operator is negative
in Nakano’s sense.

Appendix

d
Proposition 3. 7(:5 defines a non-zero class of cohomology of type (n—1,1) on X,.

Proof. From 2.3 it follows that locally
0, =(AdzYA ... AN(AdZ)=OL A ... A O,
where A,=id+ Z¢;t;+ (terms of order =2) and @)= A,dz). From the fact that
dz'=A;.' ©} we get that

0, =(AdA 'O A .. AALAL O =((Ar0 A O A ... A(AAL T O
(3.1)
From the expression A, =id + Z @i(t)o+ ... we get that A '=id—Z¢(t;) +
and so
A A =id+ X (t;—(t)o) +terms of order 22. (3.2)

From (3.1) and (3.2) it follows that
=OLA...AO!+ z =)o) @I(— 11 OLANOLA . ANOLA ... A O

+terms of order ;2. (3.3)
Since O A ... A OF =w,, and dw,=0 we obtain from (3.3) that

dao, ==Y (MO AOLA...AOLA...AOL. (3.4)

dti ti =(t:)o [t

dw, .
So % is a closed form of type (n—1,1) on X, for t=t,. That ga;‘t 1 a non-zero

class of cohomology follows immediately from the so-called local Torelli theorem.
See [6].
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